Шим генератор для электролизера схема: Как собрать водородный генератор своими руками. Получение водорода электролизом воды

Содержание

Генератор водорода для отопления своими руками

Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом — сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и геотермальное тепло — вот неполный список альтернативных вариантов. Казалось бы — живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии — водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.

Устройство и принцип работы генератора водорода

Заводской генератор водорода представляет собой внушительный агрегат

Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ.

Как все помнят из школьного курса химии, при окислении двух атомов водорода (химическая формула H2 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется в три раза больше тепла, чем при сгорании природного газа. Можно сказать, что равных водороду среди других источников энергии нет, поскольку его запасы на Земле неисчерпаемы — мировой океан на 2/3 состоит из химического элемента H2, да и во всей Вселенной этот газ наряду с гелием является главным «строительным материалом».
Вот только одна проблема — для получения чистого H2 надо расщепить воду на составляющие части, а сделать это непросто. Учёные долгие годы искали способ извлечения водорода и остановились на электролизе.

Схема работы лабораторного электролизёра

Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один — кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула — HHO, а теплотворная способность — 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.

Схема установки для получения газа Брауна

Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором.

Благодаря им устраняется возможность распространения обратного пламени. Водород горит только на выходе из горелки, а не воспламеняется во все стороны. Многократное увеличение полезной площади установки позволяет извлекать горючее вещество в количествах, достаточных для различных целей, включая обогрев жилых помещений. Вот только делать это, используя традиционный электролизёр, будет нерентабельно. Проще говоря, если потраченное на добычу водорода электричество напрямую использовать для отопления дома, то это будет намного выгоднее, чем топить котёл водородом.

Водородная топливная ячейка Стенли Мейера

Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.

Преимущества газа Брауна как источника энергии

  • Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
  • При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
  • В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
  • При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.

Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор: https://aqua-rmnt.com/otoplenie/kotly/gazogenerator-na-drovakh-dlya-otopleniya-doma-svoimi-rukami.html

Область применения

Сегодня электролизёр — такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела — всё определяло удобство и практичность.

В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд — приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить — их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Видео: Как правильно обустроить водородное отопление

Что необходимо для изготовления топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами.

Отказ от традиционной схемы позволяет значительно уменьшить габариты топливной ячейки.

 

В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.

Выбор материалов для строительства генератора водорода

Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.

  1. Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование — достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.

    Электродная сборка для водородного генератора «мокрого» типа

    При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.

  2. Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
    — диаметр внешней трубки — 25.317 мм;
    — диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.

    От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность

  3. ШИМ-генератор. Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.

    Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.

  4. Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
  5. Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор. Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.

    Конструкция бабблера

  6. Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
  7. Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
  8. Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
  9. Автомобильный силикон или другой герметик.

Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.

Инструменты, которые потребуются в процессе работы

Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.

Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома: https://aqua-rmnt. com/otoplenie/alt_otoplenie/alternativnye-istochniki-energii.html

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.

    Изготовление боковых стенок

  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 — 7 мм — для подачи воды в пространство между электродами и толщиной 8 — 10 мм — для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.

    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки

  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.

    Укладку электродов начинают с уплотняющего кольца

    Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

  8. Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.

    При сборке пластин важно правильно ориентировать выходные отверстия

  9. После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.

    При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов

  10. При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
  11. Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.

    Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна

  12. На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Отдельные моменты использования

Прежде всего, хотелось бы отметить, что традиционный метод сжигания природного газа или пропана в нашем случае не подойдёт, поскольку температура горения HHO превышает аналогичные показатели углеводородов в три с лишним раза. Как вы сами понимаете, такую температуру конструкционная сталь долго не выдержит. Сам Стенли Мейер рекомендовал использовать горелку необычной конструкции, схему которой мы приводим ниже.

Схема водородной горелки конструкции С. Мейера

Вся хитрость этого устройства заключается в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь поднимается по каналу 63 и одновременно осуществляет процесс эжекции, увлекая за собой наружный воздух через регулируемые отверстия 13 и 70. Под колпаком 40 задерживается некоторое количество продуктов горения (водяного пара), которое по каналу 45 попадает в колонку горения и смешивается с горящим газом. Это позволяет снизить температуру горения в несколько раз.

Второй момент, на который хотелось бы обратить ваше внимание — жидкость, которую следует заливать в установку. Лучше всего использовать подготовленную воду, в которой не содержатся соли тяжёлых металлов. Идеальным вариантом является дистиллят, который можно приобрести в любом автомагазине или аптеке. Для успешной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта примерно одна столовая ложка порошка на ведро воды.

В процессе работы установки важно не перегревать генератор. При повышении температуры до 65 градусов Цельсия и более электроды аппарата будут загрязняться побочными продуктами реакции, из-за чего производительность электролизёра уменьшится. Если же это всё-таки произошло, то водородную ячейку придётся разобрать и удалить налёт при помощи наждачной бумаги.

И третье, на чём мы делаем особое ударение — безопасность. Помните о том, что смесь водорода и кислорода не случайно назвали гремучей. HHO представляет собой опасное химическое соединение, которое при небрежном обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Только в этом случае «кирпичик», из которого состоит наша Вселенная, принесёт тепло и комфорт вашему дому.

Правила безопасности необходимо соблюдать не только при монтаже водородного генератора. При сборке и эксплуатации биореактора тоже нужно быть крайне осторожным, поскольку биогаз взрывоопасен. Подробнее об этом типе установке читайте в следующей статье: https://aqua-rmnt.com/otoplenie/alt_otoplenie/kak-poluchit-biogaz.html.

Надеемся, статья стала для вас источником вдохновения, и вы, засучив рукава, приступите к изготовлению водородной топливной ячейки. Разумеется, все наши выкладки не являются истиной в последней инстанции, однако, их вполне можно использовать для создания действующей модели водородного генератора. Если же вы хотите полностью перейти на этот вид отопления, то вопрос придётся изучить более детально. Возможно, именно ваша установка станет краеугольным камнем, благодаря которому закончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.

Благодаря разносторонним увлечениям пишу на разные темы, но самые любимые — техника, технологии и строительство. Возможно потому, что знаю множество нюансов в этих областях не только теоретически, вследствие учебы в техническом университете и аспирантуре, но и с практической стороны, так как стараюсь все делать своими руками. Оцените статью: Поделитесь с друзьями!

Водяная топливная батарея майера на 12в автомобильная схема. Двигатель на воде

    Рис. 1. Состояние молекул воды: A — случайное; B — ориентация молекул вдоль силовых линий поля;
    C — поляризация молекулы; D — удлиннение молекулы; E — разрыв ковалентной связи; F — освобождение газов.

    Оптимальный выход газа достигается в резонансной схеме. Частота подбирается равной резонансной частоте молекул. Для изготовления пластин конденсатора отдается предпочтение нержавеющей стали марки T-304, которая не взаимодействует с водой, кислородом и водородом. Начавшийся выход газа управляется уменьшением эксплуатационных параметров. Поскольку резонансная частота фиксирована, производительностью можно управлять с помощью изменения импульсного напряжения, формы или количества импульсов.

    Повышающая катушка намотана на обычном тороидальном ферритовом сердечнике 1.50 дюйма в диаметре и 0.25 дюйма толщиной. Первичная катушка содержит 200 витков 24 калибра, вторичная 600 витков 36 калибра. Диод типа 1N1198 служит для выпрямления переменного напряжения. На первичную обмотку подаются импульсы скважности 2. Трансформатор обеспечивает повышение напряжения в 5 раз, хотя оптимальный коэффициент подбирается практическим путем. Дроссель содержит 100 витков калибра 24, в диаметре 1 дюйм.

    В последовательности импульсов должен быть короткий перерыв. Через идеальный конденсатор ток не течет. Рассматривая воду как идеальный конденсатор, убеждаемся, что энергия не будет расходоваться на нагрев воды. Реальная вода обладает некоторой остаточной проводимостью, обусловленной наличием примесей. Лучше, если вода в ячейке будет химически чистой. Электролит к воде не добавляется. В процессе электрического резонанса может быть достигнут любой уровень потенциала. Как отмечалось выше, емкость зависит от диэлектрической проницаемости воды и размеров конденсатора. В примере схемы два концентрических цилиндра 4 дюймов длиной составляют конденсатор. Расстояние между поверхностями цилиндров 0.0625 дюйма. Резонанс в схеме был достигнут при импульсе 26 вольт, приложенном к первичной обмотке.

    В любой резонансной схеме при достижении резонанса ток минимален, а выходное напряжение максимально. Расчет резонансной частоты традиционный. Вторую индуктивность подстраивают в зависимости от чистоты воды так, чтобы потенциал, приложенный к воде, был постоянен. Расход воды контролируется любым подходящим способом. Настройка аппарата несложна для квалифицированного специалиста.

    Диод 1N1198 можно заменить на NTE5995 или ECG5994. Это импульсные диоды на 40 ампер 600 вольт (40 А — куда столько?!, похоже это была перестраховка во время начальных экспериментов).

    Нержавеющая сталь T304 великолепна, но но другие типы должны работать так же. T304 просто более доступна. Внешняя трубка подгоняется под размер 3/4 дюйма 16 калибра (толщина стенки 0.06 дюйма), длиной 4 дюйма. Внутренняя трубка диаметром 1/2 дюйма 18 калибра (стенка 0.049 дюйма, это приблизительный размер для этой трубки, фактический калибр не может быть вычислен из патентной документации, но этот размер должен работать), 4 дюйма длиной.

    Вам потребуется присоединить два проводника к трубкам. Используйте для этого нержавеющие стержни и бескислотный припой! Вы должны также предусмотреть, чтобы трубки были разделены. Это можно сделать с помощью небольшого куска пластика. Он не должен препятствовать свободному прохождению воды.

Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом — сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и — вот неполный список альтернативных вариантов. Казалось бы — живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии — водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.

Устройство и принцип работы генератора водорода

Заводской генератор водорода представляет собой внушительный агрегат

Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ. Как все помнят из школьного курса химии, при окислении двух атомов водорода (химическая формула H 2 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется в три раза больше тепла, чем при сгорании природного газа. Можно сказать, что равных водороду среди других источников энергии нет, поскольку его запасы на Земле неисчерпаемы — мировой океан на 2/3 состоит из химического элемента H 2 , да и во всей Вселенной этот газ наряду с гелием является главным «строительным материалом». Вот только одна проблема — для получения чистого H 2 надо расщепить воду на составляющие части, а сделать это непросто. Учёные долгие годы искали способ извлечения водорода и остановились на электролизе.

Схема работы лабораторного электролизёра

Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один — кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула — HHO, а теплотворная способность — 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.

Схема установки для получения газа Брауна

Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором. Благодаря им устраняется возможность распространения обратного пламени. Водород горит только на выходе из горелки, а не воспламеняется во все стороны. Многократное увеличение полезной площади установки позволяет извлекать горючее вещество в количествах, достаточных для различных целей, включая обогрев жилых помещений. Вот только делать это, используя традиционный электролизёр, будет нерентабельно. Проще говоря, если потраченное на добычу водорода электричество напрямую использовать для отопления дома, то это будет намного выгоднее, чем топить котёл водородом.

Водородная топливная ячейка Стенли Мейера

Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.

Преимущества газа Брауна как источника энергии

  • Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
  • При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
  • В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
  • При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.

Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор:

Область применения

Сегодня электролизёр — такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела — всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд — приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить — их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Видео: Как правильно обустроить водородное отопление

Что необходимо для изготовления топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами. Отказ от традиционной схемы позволяет значительно уменьшить габариты топливной ячейки.

Электрическая схема ШИМ-регулятора Схема единичной пары электродов, используемых в топливной ячейке Мейера Схема ячейки Мейера Электрическая схема ШИМ-регулятора Чертёж топливной ячейки
Чертёж топливной ячейки Электрическая схема ШИМ-регулятора Электрическая схема ШИМ-регулятора

В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.

Выбор материалов для строительства генератора водорода

Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.

  1. Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование — достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.

    Электродная сборка для водородного генератора «мокрого» типа

    При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.

  2. Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
    — диаметр внешней трубки — 25.317 мм;
    — диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.

    От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность

  3. ШИМ-генератор. Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.

    Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.

  4. Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
  5. Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор. Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.

    Конструкция бабблера

  6. Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
  7. Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
  8. Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
  9. Автомобильный силикон или другой герметик.

Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.

Инструменты, которые потребуются в процессе работы

Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.

Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома:

Инструкция: как сделать водородный генератор своими руками

Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.

Схема топливной ячейки «сухого» типа

  1. Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
  2. В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.

    Изготовление боковых стенок

  3. Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
  4. Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
  5. В каждой из пластин сверлят два отверстия: сверлом диаметром 6 — 7 мм — для подачи воды в пространство между электродами и толщиной 8 — 10 мм — для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.

    Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки

  6. Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа. Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
  7. После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.

    Укладку электродов начинают с уплотняющего кольца

    Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

  8. Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.

    При сборке пластин важно правильно ориентировать выходные отверстия

  9. После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек. Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.

    При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов

  10. При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
  11. Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.

    Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна

  12. На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.

Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

Видео: Сборка устройства

Видео: Работа конструкции «сухого» типа

Отдельные моменты использования

Прежде всего, хотелось бы отметить, что традиционный метод сжигания природного газа или пропана в нашем случае не подойдёт, поскольку температура горения HHO превышает аналогичные показатели углеводородов в три с лишним раза. Как вы сами понимаете, такую температуру конструкционная сталь долго не выдержит. Сам Стенли Мейер рекомендовал использовать горелку необычной конструкции, схему которой мы приводим ниже.

Схема водородной горелки конструкции С. Мейера

Вся хитрость этого устройства заключается в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь поднимается по каналу 63 и одновременно осуществляет процесс эжекции, увлекая за собой наружный воздух через регулируемые отверстия 13 и 70. Под колпаком 40 задерживается некоторое количество продуктов горения (водяного пара), которое по каналу 45 попадает в колонку горения и смешивается с горящим газом. Это позволяет снизить температуру горения в несколько раз.

Второй момент, на который хотелось бы обратить ваше внимание — жидкость, которую следует заливать в установку. Лучше всего использовать подготовленную воду, в которой не содержатся соли тяжёлых металлов. Идеальным вариантом является дистиллят, который можно приобрести в любом автомагазине или аптеке. Для успешной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта примерно одна столовая ложка порошка на ведро воды.

В процессе работы установки важно не перегревать генератор. При повышении температуры до 65 градусов Цельсия и более электроды аппарата будут загрязняться побочными продуктами реакции, из-за чего производительность электролизёра уменьшится. Если же это всё-таки произошло, то водородную ячейку придётся разобрать и удалить налёт при помощи наждачной бумаги.

И третье, на чём мы делаем особое ударение — безопасность. Помните о том, что смесь водорода и кислорода не случайно назвали гремучей. HHO представляет собой опасное химическое соединение, которое при небрежном обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Только в этом случае «кирпичик», из которого состоит наша Вселенная, принесёт тепло и комфорт вашему дому.

Надеемся, статья стала для вас источником вдохновения, и вы, засучив рукава, приступите к изготовлению водородной топливной ячейки. Разумеется, все наши выкладки не являются истиной в последней инстанции, однако, их вполне можно использовать для создания действующей модели водородного генератора. Если же вы хотите полностью перейти на этот вид отопления, то вопрос придётся изучить более детально. Возможно, именно ваша установка станет краеугольным камнем, благодаря которому закончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.

В данной статье поговорим про импульсный генератор для ячейки Мэйера.

Изучая элементную базу электронных плат, на которых были собраны все устройства входящие в состав сложной установки, применяемой Мэйером в водородном генераторе, установленном им на автомобиль, я собрал «главную часть» устройства – импульсный генератор.

Все электронные платы выполняют в Ячейке определённые задачи.

Электронная часть мобильной установки генератора водорода Мэйера состоит из двух полноценных устройств, оформленных в виде двух независимых блоков. Это блок управления и контроля ячейки, вырабатывающей кислородно-водородную смесь и блок управления и контроля за подачей этой смеси в цилиндры двигателя внутреннего сгорания. Фотография первого представлена ниже.

Блок управления и контроля за работой ячейки состоит из устройства вторичного питания обеспечивающего все платы модуля энергией и одиннадцати модулей – плат, состоящих из генераторов импульсов, схем контроля и управления. В этом же блоке, за платами импульсных генераторов находятся импульсные трансформаторы. Один из одиннадцати комплектов: плата импульсного генератора и импульсного трансформатора используется конкретно только для одной пары трубок Ячейки. А поскольку пар трубок одиннадцать, то и генераторов тоже одиннадцать.

.

Судя по фотографиям, импульсный генератор собран на простейшей элементной базе цифровых логических элементов. Принципиальные схемы, публикуемые на различных сайтах, посвящённых Ячейке Мэйера, по принципу работы не так далеки от её оригинала, за исключением одного – они упрощены и работают бесконтрольно. Другими словами, импульсы подаются на трубки-электроды до той поры, пока не наступит «пауза», которую по своему усмотрению оперативно с помощью регулировки устанавливает конструктор схемы. У Мэйера «пауза» формируется только тогда, когда сама Ячейка, состоящая из двух трубок, сообщит что пора бы эту паузу сделать. Имеется регулировка чувствительности схемы контроля, уровень которой устанавливается оперативно с помощью регулировки. Кроме того, имеется оперативная регулировка длительности «паузы» — времени, в течение которого на ячейку не поступают импульсы. В схеме генератора Мэйера предусмотрена автоматическая регулировка «паузы» в зависимости от необходимости количества вырабатываемого газа. Эта регулировка осуществляется по сигналу, поступающему от блок управления и контроля за подачей топливной смеси в цилиндры ДВС. Чем быстрее вращается двигатель внутреннего сгорания, тем больше расход кислородно-водородной смеси и тем короче «пауза» у всех одиннадцати генераторов.

На переднюю панель генератора Мэйера выведены шлицы подстроечных резисторов осуществляющих регулировку частоты импульсов, длительности паузы между пачками импульсов и ручной установки уровня чувствительности схемы контроля.

Для репликации опытного импульсного генератора нет необходимости в автоматическом контроле потребности газа и автоматическом регулировании «паузы». Это упрощает электронную схему импульсного генератора. Кроме того, современная электронная база более развита, чем была 30 лет назад, поэтому при наличии более современных микросхем, нет смысла использовать простейшие логические элементы, которые ранее использовал Мэйер.

В настоящей статье публикуется схема импульсного генератора, собранного мной, воссоздающего принцип работы генератора ячейки Мэйера. Это не первая моя конструкция импульсного генератора, до неё было ещё две более сложных схемы, способных генерировать импульсы различной формы, с амплитудной, частотной и временной модуляцией, схемами контроля тока нагрузки в цепях трансформатора и самой Ячейки, схемами стабилизации амплитуд импульсов и формы выходного напряжения на Ячейке. В результате исключения, по моему мнению «ненужных» функций получилась простейшая схема, очень похожая на схемы, публикуемые на различных сайтах, но отличающаяся от них наличием схемы контроля тока Ячейки.

Как и в других публикуемых схемах, в ячейке имеются два генератора. Первый является генератором – модулятором, формирующим пачки импульсов, а второй генератором импульсов. Особенностью схемы является то, что первый генератор — модулятор работает не в режиме автогенератора, как у других разработчиков схем Ячейки Мейера, а в режиме ждущего генератора. Модулятор работает по следующему принципу: На начальном этапе он разрешает работу генератора, а по достижении непосредственно на пластинах Ячейки определённой амплитуды тока, происходит запрет генерации.

В мобильной установке Мэйера в качестве импульсного трансформатора используется тонкий сердечник, а количество витков всех обмоток огромное. Ни в одном патенте не указаны ни размеры сердечника, ни количество витков. В стационарной установке у Мэйера замкнутый торроид с известными размерами и количеством витков. Именно его и решено было использовать. Но поскольку тратить энергию впустую на намагничивание в однотактной схеме генератора это – расточительство, было решено использовать трансформатор с зазором, взяв за основу ферритовый сердечник от строчного трансформатора ТВС-90 применяемого в транзисторных чёрно-белых телевизорах. Он наиболее подходит под параметры, указанные в патентах Мэйера для стационарной установки.

Принципиальная электрическая схема Ячейки Мэйера в моём исполнении представлена на рисунке.

.

Никакой сложности в конструкции генератора импульсов нет. Он собран на банальных микросхемах – таймерах LM555. По причине того, что генератор экспериментальный и неизвестно какие токи нагрузки нас могут ожидать, для надёжности в качестве выходного транзистора VT3 используется IRF.

Когда ток Ячейки достигнет определённого порога, при котором происходит разрыв молекул воды, необходимо сделать паузу в подаче импульсов на Ячейку. Для этого служит кремниевый транзистор VT1 — КТ315Б, который запрещает работу генератора. Резистор R13 «Ток срыва генерации» предназначен для установки чувствительности схемы контроля.

Переключатель S1 «Длительность грубо» и резистор R2 «Длительность точно» являются оперативными регулировками длительности паузы между пачками импульсов.

В соответствии с патентами Мэйера трансформатор имеет две обмотки: первичная содержит 100 витков (для 13 вольт питания) провода ПЭВ-2 диаметром 0,51 мм, вторичная содержит 600 витков провода ПЭВ-2 диаметром 0,18 мм.

При указанных параметрах трансформатора оптимальная частота следования импульсов – 10 кГц. Катушка индуктивности L1 намотана на картонной оправке диаметром 25 мм, и содержит 100 витков провода ПЭВ-2 диаметром 0,51 мм.

Теперь, когда вы всё это «проглотили», произведём разбор полётов этой схемы. С данной схемой я не применял дополнительных схем повышающих выход газа, потому что в мобильной Ячейке Мэйера их не наблюдается, конечно не считая лазерной стимуляции. Или я забыл сходить со своей Ячейкой к «бабке – шептунье», чтобы она нашептала высокую производительность Ячейки, или не правильно выбрал трансформатор, но КПД установки получился очень низкий, а сам трансформатор сильно нагревался. Учитывая, что сопротивление воды мало, сама Ячейка не способна выступать в качестве накопительного конденсатора. Ячейка просто не работала по тому «сценарию» который описывал Мэйер. Поэтому я добавил в схему дополнительный конденсатор С11. Только в этом случае на осциллограмме выходного напряжения появилась форма сигнала, с выраженным процессом накопления. Почему я поставил его не параллельно Ячейке, а через дроссель? Схема контроля тока ячейки должна отслеживать резкое повышение этого тока, а конденсатор будет препятствовать этому своим зарядом. Катушка уменьшает влияние С11 на схему контроля.

Я использовал простую воду из под крана, использовал и свежее дистиллированную. Как я только не извращался, но затраты энергии при фиксированной производительности были в три — четыре раза выше, чем напрямую от аккумулятора через ограничительный резистор. Сопротивление воды в ячейке настолько мало, что повышение импульсного напряжения трансформатором, с лёгкостью гасилось на малом сопротивлении, заставляя магнитопровод трансформатора сильно нагреваться. Возможно, предположить, что вся причина в том, что я использовал трансформатор на феррите, а в мобильной версии Ячейки Мэйера стоят трансформаторы, у которых сердечник почти отсутствует. Он больше выполняет функцию каркаса. Не трудно понять, что Мэйер компенсировал малую толщину сердечника большим количеством витков, тем самым увеличив индуктивность обмоток. Но сопротивление воды от этого не увеличится, поэтому и напряжение, о котором пишет Мэйер, не поднимется до описываемого в патентах значения.

С целью повышения КПД я решил «выкинуть» из схемы трансформатор, на котором происходит потеря энергии. Принципиальная электрическая схема Ячейки Мэйера без трансформатора представлена на рисунке.

.

Так как индуктивность катушки L1 очень маленькая, я так же исключил её из схемы. И «о чудо» установка стала выдавать сравнительно высокий КПД. Я провёл эксперименты и пришел к выводу, что на заданный объём газа установка затрачивает ту же самую энергию, что и при электролизе постоянным током, плюс-минус погрешность измерений. То есть я наконец собрал установку, в которой не происходит потерь энергии. Но зачем она нужна, если напрямую от аккумулятора точно такие же затраты энергии?

Завершение

Завершим тему очень маленького сопротивления воды. Сама Ячейка не способна работать в качестве накопительного конденсатора потому, что вода, которая выступает в качестве диэлектрика конденсатора, быть им не может – она проводит ток. Для того, чтобы над ней совершался процесс электролиза – разложения на кислород и водород, она должна быть проводящей. Получается неразрешимое противоречие, которое возможно разрешить только по одному пути: Отказаться от версии «Ячейка-конденсатор». Накопления в Ячейке подобно конденсатору происходить не может, это Миф! Если учитывать площадь обкладок конденсатора образованного поверхностями трубок, то даже при воздушном диэлектрике ёмкость ничтожно мала, а здесь в качестве диэлектрика выступает вода со своим малым активным сопротивлением. Не верите? Возьмите учебник физики и посчитайте ёмкость.

Можно предположить, что накопление происходит на катушке L1, но этого также не может быть по той причине, что её индуктивность также очень мала для частоты порядка 10 кГц. Индуктивность трансформатора на несколько порядков выше. Можно даже задуматься над тем, зачем её с малой индуктивностью вообще «воткнули» в схему.

Послесловие

Кто-то скажет, что всё чудо в бифилярной намотке. В том виде, в каком она представлена в патентах Мэйером, толку от неё не будет. Бифилярная намотка применяется в защитных фильтрах питания, не одного и того же проводника, а противоположных по фазе и предназначена для подавления высоких частот. Она даже имеется во всех без исключения блоках питания компьютеров и ноутбуков. А для одного и того же проводника, бифилярная намотка делается в проволочном резисторе, для подавления индуктивных свойств самого резистора. Бифилярная намотка может использоваться в качестве фильтра, защищающего выходной транзистор, не пропускающего мощные СВЧ-импульсы в схему генератора, подаваемые от источника этих импульсов непосредственно на Ячейку. Кстати и катушка L1 является отличным фильтром для СВЧ. Первая схема импульсного генератора, которая использует повышающий трансформатор – правильная, только чего-то не хватает между транзистором VT3 и самой Ячейкой. Этому я посвящу следующую статью.

В данной статье поговорим про историю появления ячейки Мэйера и подробно расскажем как работает ячейка Мэйера.

Прошло уже достаточно много времени, после изобретения двигателя на воде, или так называемой, «топливной ячейки» американца Стэнли (Стива) Мэйера (Мейера, или Майера) — как изобретателя только не называют. Кто случайно не знает, поясню: Ячейка Мейера – устройство, расходующее малое количество электрической энергии (фактически «на халяву»), и производящее из обыкновенной воды большое количество водородно-кислородной смеси. В попытках разобраться, как работает ячейка Мэйера, в настоящее время, «бьется» большое количество умов. Кто то, даже заявляет, что ему удалось реализовать этот «генератор водорода», но как то это делается украдкой, да и потом ничего не происходит: Мы, почему то не пересаживаемся на автомобили, работающие на воде, потому что их попросту нет. Я так же интересуюсь этой проблемой, проводил эксперименты с ячейкой Мэйера, поэтому предлагаю разобраться в этом вместе.

Как знать, может быть, мои советы Вам помогут, и вскоре Вы заявите, что Ваш автомобиль на воде поехал. Почему не я? В анналы истории я не рвусь, на ближайшие половину года — год основная моя работа занимает много времени и кроме того, у меня нет условий позволяющих воссоздать ячейку Мэйера в «ближайшее время». Что, по моему мнению, необходимо и как вообще работает ячейка Мэйера Мы с Вами будем разбираться вместе. Об этом, Вы прочтёте в последующих статьях.

Для того, кто желает увидеть видеоматериал сделанный самим Мэйером и его друзьями, тот может перейти на страничку Книги, программы и видеоматериал для бесплатного скачивания , на которой имеются ссылки на большое количество видеофильмов от демонстраций, до конференций, а также другой материал от автора Ячейки — Стенли Мэйера.

Перед изложением материала, хочу акцентировать внимание на следующем:

Эксперименты с водородом чрезвычайно опасны, Вы осуществляете их на свой страх и риск! Скорость сгорания водорода на несколько порядков выше скорости сгорания любых других видов углеводородного топлива и их паров. А смесь водорода с кислородом — так называемая «Гремучая смесь» не просто горит, а взрывается с огромной силой. Учитывая определённые сложности в изготовлении установки по разложению воды на составляющие, я осознаю, что простой школяр установку сам не сделает. Поскольку Вы взрослые люди, за Ваши действия, я ответственности не несу, и кроме того, заявляю, что если Вы не имеете достаточных знаний, навыков и умений обеспечивающих Вашу безопасность, то категорически не рекомендую Вам заниматься практическим изготовлением установок по выделению водорода.

Настоящая статья предназначена для того, чтобы развеять Ваши фантазии и невежество, которые в бесчисленном количестве появляются на различных форумах. Смешно выглядят публикуемые на различных сайтах радиосхемы Ячеек Мэйера, которые должны расходовать минимум энергии для получения резонанса воды. Это грамотно исполненные схемы, на самом деле «работающие», но абсолютно все они работают по принципу обыкновенного Электролизёра! Какой резонанс, какое накопление? Полный бред!!!

Почему ячейку Мэйера сделал только он сам, а другие не смогли?

Начнём с того, что существует версия, которая не вызовет ни у кого её отрицания. В мире есть «очень маленькая» кучка людей с «очень огромными» возможностями, это – нефтяные магнаты – владельцы мировых запасов топлива. Им бы очень не хотелось терять свои миллиарды миллиардов, которые они практически «на халяву» кладут к себе в карман выкачивая «кровь Земли». Фактически они живут за счёт всего человечества. Это Вы и я исправно платим им большие деньги, заправляя свой автомобиль, за то, что по сути им не должно принадлежать. И для того, чтобы этот процесс наполнения карманов не останавливался, они предпринимают всё, чтобы никто не придумал альтернативный источник энергии, превосходящий нефтепродукты. Есть, конечно, Атом, но от него быстро «откидывают лапти», поэтому Атом для нефти не конкурент. У нефтяных баронов трудится не одна сотня смышленых мальчиков, в том числе и хакеров, которые «продвинутую» информацию из средств массовой информации, в том числе интернета удаляют. Эти мальчики о совести и о том, что из-за плохой экологии «человечество на грани вымирания» не задумываются, бароны им исправно платят за работу. Поэтому до нас доходят только вершки знаний, а истина находится в корешках. Мало того, необходимая информация подменяется ложной, используя которую, мы никогда ничего не создадим во благо человечества, если «хозяева мира» этого не захотят.

Да и вообще, надо соображать, двигатель на воде это — крах мировой экономической системы. Если цены на нефть резко упадут, произойдёт революция 1917-го года, только в мировом масштабе. Потому, что нефтедоллар определяет цены на другие товары. По началу, год — два будет переоценка всего, в магазинах ничего не будет, а на свалках «завал». Кто то может сказать, что это лирика в защиту «буржуев».

А теперь приступим к существу вопроса! Как работает ячейка Мэйера? Я проведу анализ того, что написано в статье «Вода вместо бензина» , которая имеется в большом количестве экземпляров на разных сайтах. Отдельные моменты я буду опровергать, а интересные моменты статьи — выделять. Позже, я проанализирую на мой взгляд, действительно важные моменты статьи, которые указывают на то, что существует большая вероятность изготовления ячейки Мэйера своими руками. Стоит отметить, что патенты Мэйера написаны на «техническом» английском языке. Любой знаток «обыкновенного» английского языка не сможет правильно перевести его патенты на русский язык. Посетители сайта могут бесплатно скачать патенты Стэнли Мэйера с Депозита по ссылке . А мы, тем временем, приступаем к анализу «русскоязычного перевода»!

1. Обычный электролиз воды требует тока, измеряемого в амперах, ячейка Мэйер производит тот же эффект при миллиамперах.

Оценим эту фразу с учётом большинства тех схем, которые появлялись в интернете. Прибор, который измеряет ток, потребляемый от источника тока – обыкновенный амперметр постоянного тока, а после амперметра никаких сглаживающих конденсаторов нет. Учитывая, что импульсы, поступающие на электроды ячейки, кратковременны и имеют большую скважность, то амперметр, в силу инерционности рамки должен показывать ток не больше одной десятой от реально потребляемого тока, а то и меньше.

2. Обыкновенная водопроводная вода требует добавления электролита, например, серной кислоты, для увеличения проводимости, а ячейка Мэйера действует при огромной производительности с чистой водой.

Любой электролизёр с недистиллированной водой, при расстоянии между электродами 1-2 мм будет работать с огромной производительностью. Кроме того, в статье сначала пишется, что Мэйер использует водопроводную воду, а теперь пишут про чистую воду. Не соответствие. Вообще, у меня появилась мысль, что в статье много «полезного» вырезано, и много «запутывающего нам мозги» добавлено — это к слову о нефтяных баронах, и людях зарабатывающих на сенсациях.

3. Согласно очевидцам, самым поразительным аспектом клетки Мэйера было то, что она оставалась холодной, даже после часов производства газа.

При кратковременных импульсах – ничего поразительного.

4. Эксперименты Мэйера, которые он счел возможными представить к патентованию, заслужили серию патентов США, представленные под Секцией 101. Представление патента под этой секцией зависит от успешной демонстрации изобретения Патентному Рецензионному Комитету.

Мне приходилось представлять научную работу в известный Научно-исследовательский институт России (не буду его называть, чтобы, не принижать его авторитет, а он действительно авторитетный). В этой работе была куча недоработок, но она была высоко оценена. Её ещё потом отправляли на Всероссийский конкурс и за неё у меня даже медаль от министра образования есть. Работа была перспективной, но требовала времени, которого у меня не было, а сейчас она стала не актуальной. Кроме того, запатентовать можно что угодно. Мэйер, например, отдельно запатентовал свою ячейку и отдельно способ генерации водорода, отдельно патентовал и автомобильный двигатель на воде. Странный факт. Но может я не прав, и в Комитете сидели умные и внимательные мужи науки.

5. Мэйер использует внешнюю индуктивность, которая образует колебательный контур с емкостью ячейки, — чистая вода, по-видимому, обладает диэлектрической проницаемостью около 81 (в других статьях — «около 5»), — чтобы создать параллельную резонансную схему. Она возбуждается мощным импульсным генератором, который вместе с емкостью ячейки и выпрямительным диодом составляет схему накачки. Высокая частота импульсов производит ступенчато поднимающийся потенциал на электродах ячейки до тех пор, пока не достигается точка, где молекула воды распадается и возникает кратковременный импульс тока.

Здесь, говорится о каком то, колебательном контуре. Догадайтесь, на какой из приведённых схем изображён колебательный контур, левой или правой, а может найдёте схему накачки? Судя по приведённым схемам, контуром тут не пахнет, да и схемой накачки тоже.

Схемы накачки энергии известных в радиоэлектронике устройств как минимум имеют накопительную линию, состоящую из нескольких конденсаторов и дросселей. Есть и более простой способ «накачки», но об этом позже мы обязательно поговорим. А здесь, вообще ничего нет, кроме устройства разряда – пластин ячейки, которые, препятствуют вообще какому либо накоплению. Мало того, накопление в известных системах происходит постепенно, а потом происходит кратковременный разряд. А здесь, описывается, что-то другое, совершенно не понятное классической науке.

6. Стэнли Мэйер, успешно разлагает обыкновенную водопроводную воду на составляющие элементы посредством комбинации высоковольтных импульсов, при среднем потреблении тока, измеряемого всего лишь миллиамперами.

Смотри пункт 1.

7. Мэйер отказался прокомментировать подробности, которые бы позволили ученым воспроизвести и оценить его «водяную ячейку». Однако, он представил достаточно детальное описание американскому Патентному Бюро, чтобы убедить их, что он может обосновать его заявку на изобретение.

Совсем странный факт. Мэйер что, решил стать «водяным магнатом»? Почему отказался? Любитель носить патент, хвалиться его обложкой, но никому не показывать? Патент тогда ценен, когда его владелец получает от его реализации дивиденды!

8. Как заявляет Мэйер, — выход газа увеличивался, когда электроды сдвигались более близко, и уменьшался, когда они отодвигались.

В любом электролизёре при уменьшении расстояния между пластинами, производительность газа увеличивается.

9. Вторая ячейка содержала 9 ячеек с двойными трубками из нержавеющей стали и производила намного больше газа.

А вот на этот факт я прошу обратить внимание. Предполагаю, именно здесь кроется вся загадка ячейки.

10. Практическая демонстрация ячейки Мэйера является существенно более убедительной, чем псевдо-научный жаргон, который использован для объяснения.

Коперфильд тоже убедительно демонстрировал свои фокусы, а в качестве объяснений, так же как и Мэйер, использовал псевдо-научный жаргон (объяснял всё «магией»).

11. Изобретатель лично говорил об искажении и поляризации молекулы воды, приводящему к самостоятельному разрыву связи, под действием градиента электрического поля, резонанса в пределах молекулы, который усиливает эффект.

На это так же, как и в пункте 9, прошу обратить внимание, об этом поговорим позже.

12. Он также заявил, что фотонное стимулирование пространства реактора светом лазера посредством оптоволокна увеличивает производство газа.

При определённой частоте лазерного генератора, он действительно может усиливать резонанс молекул используя гармоники частот (деление и умножение).

13. Подбирают частоту импульсов, поступающих на конденсатор, соответствующую собственной частоте резонанса молекулы.

Написано одно, а представленные схемы и чертежи не способны работать на частоте резонанса молекул воды, но о возможности такой реализации тоже напишем позже (как по пунктам 9 и 11).

14. Повышающая катушка намотана на обычном тороидальном ферритовом сердечнике 1.50 дюйма в диаметре и 0.25 дюйма толщиной. Первичная катушка содержит 200 витков 24 калибра, вторичная 600 витков 36 калибра. Трансформатор обеспечивает повышение напряжения в 5 раз, хотя оптимальный коэффициент подбирается практическим путем.

При указанном количестве витков первичной и вторичной обмоток, напряжение повысится ровно в 3 (три) раза, а не 5 (пять), это скажет любой радиомастер. С таким описанием, Вы долго будете разбираться, как же работает ячейка Мэйера. О том, как рассчитывается коэффициент трансформации, можете прочитать в статье «Силовой трансформатор. Расчёт трансформатора «. А кто-то не знает, как работает трансформатор? Отвечу, это знает любой мастер: «Ууууууууууу…..».

15. Реальная вода обладает некоторой остаточной проводимостью, обусловленной наличием примесей. Идеально, если вода в ячейке будет химически чистой. Электролит к воде не добавляется.

Химически чистая вода это – дистиллированная вода! А сначала говорили о водопроводной!

16. Два концентрических цилиндра 4 дюймов длиной составляют конденсатор. Расстояние между поверхностями цилиндров 0.0625 дюйма.

Запоминайте размеры, мы к ним ещё вернёмся вместе с пунктами 9, 11 и 13.

17. Расчет резонансной частоты традиционный. Вторую индуктивность подстраивают в зависимости от чистоты воды так, чтобы потенциал, приложенный к воде, был постоянен.

Какой «традиционный» расчёт? Авторов статьи учили рассчитывать резонанс колебательного контура состоящего из конденсатора, катушки и полупроводникового диода? Таких «традиционных» контуров не бывает! Подробно о традиционных расчётах читайте в статье «Колебательный контур. Резонанс «. И вообще, под какую резонансную частоту подстраивать?

18. Внешняя трубка подгоняется под размер 3/4 дюйма 16 калибра (толщина стенки 0.06 дюйма), длиной 4 дюйма. Внутренняя трубка диаметром 1/2 дюйма 18 калибра (стенка 0.049 дюйма, это приблизительный размер для этой трубки, фактический калибр не может быть вычислен из патентной документации, но этот размер должен работать), 4 дюйма длиной.

Запоминайте размеры, мы к ним ещё вернёмся вместе с пунктами 9, 11 , 13 и 16.

19. Не указано, должна ли быть вода внутри трубки. Думается, что она там есть, но это совершенно не влияет на работу прибора.

А это как сказать, от этого может быть всё и зависит. Это у переписчика этой статьи не влияет! Вернёмся вместе с пунктами 9, 11 , 13, 16 и 18.

20. Частота не была напечатана, исходя из размера катушек и трансформатора, частота не превышает 50 Mhz. He упирайтесь в этот факт, это всего лишь моя догадка.

На основе чего автор догадывался о частоте, не превышающей 50 мегагерц? По парамерам катушек и трансформатора, без всяких вычислений, любой опытный радиолюбитель скажет, что частота не достигнет и 1 (одного) мегагерца. Автор статьи, как это он пишет сам, действительно попытался «догадаться», но получилось как в «Поле чудес» — играл но не угадал.

Теперь Вы, сами поняли, почему я сначала отнёсся к этой статье, как к очередному надувательству. Сейчас у меня противоположное мнение, но чтобы оно подтвердилось, необходимо всё «разложить по полочкам».

В следующей статье , мы с Вами «снимем с ушей лапшу» и раскроем то, что скрыто за выделенными в этой статье пунктами №№ 9, 11, 13, 16, 18, 19. А это именно то звено цепи загадок, которое нам предстоит раскрыть, чтобы ответить на вопрос: Как работает ячейка Мэйера?

Что собой представляет водородный генератор ? Это определенный прибор, который работает с помощью нескольких процессов. Во время своего действия он начинает перерабатывать воду и разлагает ее на водород и кислород. Водородный генератор многие изготавливают самостоятельно. Лучше всего для этого иметь опыт в работе с отопительными системами и изготовлении схожих приборов. В этом случае вы сделаете всё правильно, и не будете волноваться за работу своего генератора.

Как происходит отопление водородом

Отопление водородом – это достаточно практичная вещь. Такое отопление можно встретить внутри автомобиля, в месте, где стоит двигатель. Водород можно получать в больших объёмах. Это делает такой вид отопления всё более и более популярным в условиях, когда надо сберечь деньги и получить отопление в дом максимально эффективно.

Водородный способ отопления был изобретён в компании, которая находится в Италии. Выглядел аппарат как горелка. Получение выглядело иначе, чем сейчас. Способ является экологичным способом получения энергии. К тому же, практически бесшумным. Большое количество водорода сжигается при низкой температуре около 3000 градусов Цельсия. Такая температура поспособствовала изготавливать котлы для отопления водородом из обычных материалов.

Во время отопления водородом, водяной котёл или печь выпускает пар. Пар не приносит вреда человеческой жизни. Он безвредный. Для работы отопления водородом необходима только одна составляющая затрат – электричество. Однако, если поставить солнечные панели , которые будут получать солнечную энергию, то затраты можно снизить до минимальных значений, либо вовсе свести к нулю.

Отопление водородом чаще всего применяются для системы тёплых полов.


Процесс отопления можно представить в виде следующих этапов:

  • Вступление кислорода в реакцию с водородом;
  • Образование водяных молекул;
  • Выделение тепловой энергии;
  • Нагрев пола.

Тепловая энергия, которая выделяется во время реакции, нагревает воду до 40 градусов тепла. Это идеальная температура для технологии теплого пола.

Отопление водородом часто применяется в случаях, когда надо существенно сэкономить на использовании технологий теплого пола. Такой способ позволяет быстро согреть пол без существенных затрат. К тому же, если котёл будет питаться от солнечной энергии, то ваши затраты на обеспечение работы котла приблизятся к нулю.

Можно ли сделать водородный генератор своими руками

Сегодня можно найти в открытых источниках большой пласт информации о создании различных агрегатов. В том числе, и водородного генератора и его принцип работы. Если вы обладаете достаточными знаниями, навыками в конструировании такого рода устройств, то вы можете сделать его своими руками.

Чтобы собрать газогенератор, нужно знать его устройство. Топливные ячейки – это своего рода блок. Для их изготовления следует брать пластины из оргалита или оргстекла.

Представим этапы изготовления генератора:

  • Создание топливных ячеек;
  • Создание отверстий, чтобы дать проход воде;
  • Вырезаем электродные пластины;
  • Обрабатываем нержавеющую сталь наждачкой;
  • Сверлим отверстия для воды между электродами, чтобы отвести газ Брауна ;
  • Собираем генератор;
  • Вставляем шпильки и укладываем электроды;
  • Отделяем от реактора пластины нержавейки уплотнительными кольцами;
  • Закрываем генератор оргалитовой стенкой;
  • Скрепляем конструкцию шайбами и гайками;
  • Подключаем генератор шлангами к ёмкости с водой;
  • Соединяем контактные площадки между собой;
  • Подключаем провод питания;
  • Даём напряжение на топливную ячейку.

При конструировании водородного генератора стоит учитывать, что плоскость электродов должна быть ровной, во избежание короткого замыкания.

Следуя вышеприведённому алгоритму, вы сможете изготовить генератор самостоятельно. И тогда водный генератор будет способен расщепить автоподстройкой частоты необходимые частицы для получения энергии.

Водородный генератор можно сделать самостоятельно. Если у вас есть технические знания и опыт в области конструирования подобных устройств, то сделать генератор для вас будет расплюнуть. Делайте всё согласно схемам, чертежам, смотрите руководство по самостоятельному изготовлению, читайте подробное описание и тогда вы сможете сконструировать самодельный электрогенератор для тепла своими руками из доступных деталей, как для легковых авто, так и для домашнего использования. Электрохимический прибор отлично осуществит обогрев как настоящая печка.

Из чего изготавливается электролизер своими руками: чертежи

Чтобы изготовить электролизер своими руками быстро и без лишних проблем, то стоит воспользоваться чертежами. Они помогут вам точнее понять схему и устройство изделия, чтобы сделать его самостоятельно.

Электролизная часть должна быть изготовлена из нержавеющей стали. Можете даже использовать старый лист стали. Покупать новый лист не стоит. Определим список материалов, которые понадобятся при изготовлении.

Пластины в электролизере должны быть двух видов: положительная и отрицательная.

Для изготовления электролизера вам понадобится несколько деталей:

  • Лист нержавейки;
  • Болты, гайки и шайбы;
  • Труба;
  • Штуцеры;
  • Ёмкость на 1,5 литра;
  • Фильтр для проточной воды;
  • Обратный клапан для воды.


Данные материалы понадобятся вам при изготовлении электролиза. В процессе конструирования изделия, следует чётко придерживаться чертежей. Следует заранее в них разобраться, чтобы знать, где все составляющие элементы конструкции.

Сделать гидролизер самостоятельно можно с помощью разных компонентов, вам может и не потребоваться сварка, конечно если вы не будете делать сварочный или ацетиленовый резак, а вот электронный компонент buz350, аккумулятор и батарея которые вырабатывают достаточное количество Джо. Они, для подключения вам могут понадобиться. Если вам нужно много мощности, то можно использовать аккумулятор, который имеет мотоцикл Питер или Вуд, кстати, очень часто такое приспособление работает на спирту, что упрощает задачу. Так что такая добыча водорода будет упрощенной. Для мощных установок, может быть использована машина употребляющая дизель, а точнее ее ДВС.

Для грамотного изготовления электролиза, используйте чертежи. Они помогут вам сделать установку правильной. Заранее посмотрите список материалов и средств, которые могут вам понадобиться во время создания электролиза. Удачи при изготовлении!

Что такое газ Брауна

Во время работы водородный генератор создаёт водород. Но на выходе мы получаем не чистый водород, а его модификацию. Это и есть газ Брауна. Он необходим для воспроизведения энергии и обозначается как HHO. Часто люди хотят отапливать свой дом, применяя оксиводород.

Газ Брауна или Стенли получают из воды. Это осуществляется с помощью метода электролиза или резонанса. Данное топливо всё чаще пробуют использовать для отопления частного дома и жилых помещений. Формула гремучего газа в чём-то схожа с формулой газа Брауна.

Генераторы, которые выделяют такой газ, можно купить, либо изготовить самостоятельно.

Для самостоятельного получения газа вам необходимо:

  • Трубки из ферросплавной нержавейки;
  • Регулятор для настройки мощности элемента нагрева;
  • Осушитель;
  • Источник питания на 12 В.

Стоит отметить, что трубки из нержавейки должны быть разных диаметров.

Газ Брауна – это модификация водородного газа. Именно его мы получаем на выходе, когда используем водородный генератор в быту. Газ можно применять для технологии теплого пола. Так ваши ноги всегда будут в тепле. При этом, затраты на содержания генератора, крайне малы.

Как выбрать водородный котел

Водородный котёл – это самый необходимый элемент для водородного генератора. Без него ваш агрегат не будет работать. Водородный котел можно сделать самостоятельно. Однако многие владельцы дачных участков и домов, где используются теплые полы, рекомендуют котел покупать.

Чтобы выбрать водородный котел, надо обращать внимание на базовые характеристики:

  • Мощность;
  • Количество контуров;
  • Объём потребляемой энергии.

Также стоит обращать внимание на производство. Чем популярнее марка – тем лучше.

Это три основные параметры, по которым можно определить, насколько перед вами эффективный котёл с высоким КПД.

Если вы собираетесь отапливать весь дом – покупайте самые большие котлы. Если нет, то стоит остановиться на маленьком котле. Подходите к выбору котла внимательно. Это самый важный элемент в водородном генераторе. Выбирайте качественные котлы только популярных марок, и тогда ваш генератор прослужит вам много лет.

Насколько эффективна ячейка Мейера

Ячейка Мейера – это топливная ячейка. Элемент, который тратит малый объём электроэнергии, создавая большое количество водородно-кислородной смеси из обычной воды. Преимущества ячейки очевидны. Именно поэтому её применяют в водородных генераторах.


3 главные преимущества ячейки Майера:

  • Малое потребление;
  • Высокая эффективность от чистой воды;
  • Ячейка остаётся холодной даже после часовом создании газа.

Ячейка Мейера применяется вместо обычного электролиза.

За счёт малого потребления и высокой эффективности, ячейка получила широкое применение в создании водородного генератора в домашних условиях. Установка затрачивается малое количество энергии. При этом, даже от чистой воды, она способна производить огромное количество газа, оставаясь холодной.

Ячейка Мейера гораздо эффективнее электролиза. Она изготавливается из нержавейки, требует мало затрат, но при этом на выходе мы получаем большой объём газа. Для работы её необходимо погружать в воду. Если вы хотите получить большое количество газа, то следует использоваться именно ячейку Мейера.

Авто на воде своими руками: чертежи (видео)

Водородный генератор – это очень полезное устройство для тех, кто хочет сэкономить на электроэнергии и получить максимально эффективный агрегат, с помощью которого можно производить газ для системы теплых полов. При использовании генератора, вы будете обеспечены теплым полом на долгое время.

Генератор водорода своими руками

Генератор водорода для системы обогрева: собираем действующую установку собственными руками

Давно уже ушли те времена, когда дом за городской чертой можно было нагреть лишь одним способом — сжигая в печке дрова или уголь. Современные дизайн радиаторы применяют разные варианты топлива и при этом автоматично поддерживают хорошую температуру в наших жилищах. Сетевой газ, дизель или мазут, электричество, гелио- и геотермальное тепло — вот неполный перечень других вариантов. Кажется — живи и радуйся, да вот только постоянный рост расценок на горючее и оборудование принуждает искать дальше недорогих вариантов теплоснабжения. А одновременно с тем неиссякаемый энергетический источник — водород, буквально лежит у нас под ногами. И сейчас мы побеседуем про то, как применять в качестве горючего привычную воду, собрав генератор водорода собственными руками.

Устройство и рабочий принцип генератора водорода

Заводской генератор водорода собой представляет впечатляющий аппарат

Задействовать водород в качестве топлива для обогревания дома загородного выгодно не только по причине большой теплотворной способности, но и благодаря тому, что в процессе его сжигания не выделяется вредоносных веществ. Как все помнят из школьного курса химии, при окислении 2-ух атомов водорода (химическая формула h3 – Hidrogenium) одним атомом кислорода, образуется молекула воды. При этом выделяется втрое больше тепла, чем при горении сетевого газа. Необходимо заявить, что равных водороду среди прочих источников энергии нет, так как его залежи на Земля безграничны — мировой океан на 2/3 состоит из элемента химии h3, да и во всей Вселенной этот газ наряду с гелием считается основным «стройматериалом». Вот лишь одна проблема — для получения чистого h3 нужно расщепить воду на составляющие части, а выполнить это сложно. Учёные долгое время искали способ извлечения водорода и остановились на электролизе.

Рабочая схема лабораторного электролизёра

Данный вариант получения летучего газа состоит в том, что в воду на маленьком расстоянии друг от друга помещаются две пластины из металла, подключённые к источнику большого напряжения. При подаче питания большой электрический потенциал буквально рвет молекулу воды на составляющие, высвобождая два атома водорода (HH) и один — кислорода (O). Выдиляющийся газ назвали в честь физика Ю. Брауна. Его формула — HHO, а теплотворная способность — 121 МДж/кг. Газ Брауна горит открытым пламенем и не образовывает никаких вредоносных веществ. Главное положительное качество данного вещества в том, что для его применения подходит традиционный котёл, действующий на пропане или метане. Заметим лишь, что водород в соединении с кислородом образовывает гремучую смесь, благодаря этому понадобятся добавочные меры предосторожности.

Установочная схема для получения газа Брауна

Генератор, который предназначен для получения газа Брауна в значимых количествах, имеет несколько ячеек, любая из которых в себя вмещает много пар пластин-электродов. Они установлены в герметичной ёмкости, которая оснащена выходным отрезком трубы для газа, клеммами для подсоединения питания и горловиной для заливки воды. Более того, установка оснащается защитным клапаном и сифоном. Благодаря им устраняется возможность распространения обратного пламени. Водород горит исключительно на выходе из горелки, а не загорается во все стороны. Неоднократное увеличение полезной площади установки позволяет извлекать горючее вещество в количестве, достаточных для разных целей, включая обогрев помещений для жилья. Вот только делать это, применяя обычный электролизёр, будет невыгодно. Говоря откровенно, если потраченное на добычу водорода электричество прямо применять для отопления дома, то это будет очень выгодно, чем топить котёл водородом.

Водородная топливная ячейка Стенли Мейера

Выход из получившейся ситуации нашёл американский учёный Стенли Мейер. Работа по его установке применила не мощный электрический потенциал, а токи определённой частоты. Открытие великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в отклик, который достигал силы, достаточной для её расщепления на составляющие атомы. Для подобного влияния требовались в десятки раз меньшие токи, чем во время работы привычной электролизной машины.

Видео: Топливная ячейка Стенли Мейера

За своё открытие, которое могло бы высвободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий исчезли неизвестно куда. Все таки сбереглись некоторые записи учёного, на основе которых изобретатели многих стран мира пытаются возводить такие же установки. И нужно сказать, небезуспешно.

Плюсы газа Брауна как энергетического источника

  • Вода, из которой получают HHO, считается одним из наиболее распространённых веществ на нашей планете.
  • При горении данного вида топлива образуется пар перегретый, который можно обратно конденсировать в жидкость и еще раз применять в качестве сырья.
  • В процессе сжигания гремучего газа не появляется никаких побочных продуктов, не считая воды. Необходимо заявить, что нет более экологического вида топлива, чем газ Брауна.
  • При эксплуатировании водородной отопительной установки выделяется пар перегретый в количестве, достаточном для поддержки влаги в помещении на комфортном уровне.

Сфера использования

Сегодня электролизёр — такое же обыкновенное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные резервные электростанции применялись сварщиками, так как носить за собой установку весом только пару килограмм было более проще, чем переместить очень большие кислородные и ацетиленовые балоны. При этом высокая энергоёмкость агрегатов важного значения не имела — все определяло удобство и функциональность. Сейчас использование газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, так как применение HHO имеет много плюсов.

  • Уменьшение расхода горючего на автотранспорте. Существующие автомобильные резервные электростанции водорода дают возможность применять HHO как добавку к обычному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно достигнуть 20 – 25 % снижения использования углеводородов.
  • Экономия топлива на тепловых электрических станциях, применяющих газ, уголь или мазут.
  • Снижение токсичности и увеличение эффективности устаревших котельных установок.
  • Неоднократное снижение цены отопления домов для жилья за счёт полной или частичной замены классических видов топлива газом Брауна.
  • Применение портативных установок получения HHO для домашних потребностей — приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, выстроеный с применением «Технологии водяных топливных ячеек» С. Мейера (а собственно так назывался его трактат) можно приобрести — их изготовлением занимается много компаний в Америке, Китае, Болгарии и прочих государствах. Мы же рекомендуем сделать водородный генератор своими силами.

Видео: Как правильно оборудовать водородное теплоснабжение

Что нужно для производства топливной ячейки дома

Приступая к изготовлению водородной топливной ячейки, нужно в первую очередь выучить теорию процесса образования гремучего газа. Это даст осознание происходящего в генераторе, сможет помочь при настройке и эксплуатации оборудования. Более того, нужно будет запастись нужными материалами, многие из которых будет несложно найти в торговле. Что касается чертежей и руководств, то мы попытаемся открыть данные вопросы в полном объёме.

Проектирование водородного генератора: схемы и чертежи

Рукодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, сифона и соединительных проводов и шлангов. Сейчас существует несколько схем электролизёров, применяющих в качестве электродов пластины или трубки. Более того, в Сети можно отыскать и установку как говорят иначе сухого электролиза. В отличии от классической конструкции, в таком аппарате не пластины монтируются в ёмкость с водой, а жидкость подаётся в просвет между плоскими электродами. Отказ от классической схемы дает возможность существенно сделать меньше габариты топливной ячейки.

В работе можно применять чертежи и схемы рабочих электролизёров, которые можно приспособить под свои условия.

Выбор строительных материалов генератора водорода

Для производства топливной ячейки фактически никаких специфичных материалов не потребуется. Единственное, с чем могут появиться трудности, так это электроды. Итак, что нужно приготовить перед тем как приступить к работе.

    Если подобранная вами конструкция собой представляет генератор «мокрого» типа, то потребуется герметическая ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, основное требование — необходимая прочность и газонепроницаемость. Конечно, во время использования в качестве электродов пластин из металла лучше применять конструкцию прямоугольной формы, например, тщательно загерметизированный корпус от аккумулятора для автомобиля старого типа (чёрного цвета). Если же для получения HHO будут использоваться трубки, то подходит и вместительная ёмкость от бытового водяного фильтра. Самым же прекрасным вариантом будет изготовление корпуса генератора из нержавейки, к примеру, марки 304 SSL.

Электродная сборка для водородного генератора «мокрого» типа

Во время выбора «сухой» топливной ячейки потребуется лист акрилового стекла или иного поликарбоната толщиной до 10 мм и уплотнительные кольца из технического силикона.

Трубки или пластины из «нержавеющей стали». Разумеется, можно взять и традиционный «чёрный» металл, однако во время работы электролизёра обычное углеродистое железо быстро корродирует и электроды нужно будет часто менять. Использование же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать продолжительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, продолжительное время занимались выбором материала для электродов и остановились на нержавейки марки 316 L. Кстати, если в конструкции будут применяться трубки из данного сплава, то их диаметр нужно выбрать поэтому, чтобы во время установки одной детали в иную между ними был просвет не больше 1 мм. Для перфекционистов приводим правильные размеры:
— диаметр внешней трубки — 25.317 мм;
— диаметр внутренней трубки зависит от толщины внешней. Во всяком случае он должен давать просвет между такими элементами равный 0.67 мм.

От того, как точно будут выбраны параметры деталей водородного генератора, зависит его продуктивность

Импульсный блок питания, предназначенный для подсоединения к топливной ячейке, можно приобрести в Сети. Их изготовлением занимаются маленькие приватные компании у нас в государстве и за границей.

  • Электропровода для подсоединения. Будет достаточно проводников сечением 2 кв. мм.
  • Бабблер. Этим необычным наименованием умельцы обозвали наиболее привычный сифон. Для него можно применять любую непроницаемую ёмкость. Лучше всего она обязана быть оснащена плотно закрывающегося крышкой, которая при возгорании газа в середине будет очень быстро сорвана. Более того, рекомендуется между электролизёром и бабблером ставить отсекатель, который станет мешать возвращению HHO в ячейку.
  • Стоит сказать, что полированные трубки задействовать не рекомендуется. Наоборот, эксперты советуют обработать детали шлифовальной бумагой для получения поверхности с матовым эффектом. В последующем это будет помогать увеличению продуктивности установки.

    Инструменты, которые понадобятся во время работы

    Перед тем как приступить к постройке топливной ячейки, подготовьте подобные инструменты:

    • ножовку по металлу;
    • дрель с набором свёрл;
    • комплект рожковых ключей;
    • плоская и шлицевая отвёртки;
    • болгарка («углошлифовальная машинка») с установленным кругом для нарезания металла;
    • мультиметр и расходомер;
    • линейка;
    • маркер.

    Также, если вы будете своими силами заниматься постройкой ШИМ-генератора, то для его наладки понадобится осциллограф и частотомер. В рамках этой статьи мы данный вопрос приподнимать не станем, так как изготовление и настройка импульсного трансформатора прекраснее всего рассматривается профессионалами на профильных форумах.

    Внимание свое обратите на публикацию, в которой показаны иные источники энергии, которую можно применять для обустройства домашнего отопления: https://aqua-rmnt.com/otoplenie/alt_otoplenie/alternativnye-istochniki-energii.html

    Инструкция: как выполнить водородный генератор собственными руками

    Для производства топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с применением электродов в виде пластин из нержавейки. Предоставленная ниже инструкция показывает созидательный процесс водородного генератора от «А» до «Я», благодаря этому лучше держаться очерёдности действий.

    Схема топливной ячейки «сухого» типа

    1. Изготовление корпуса топливной ячейки. В качестве стенок находящихся по бокам каркаса выступают пластины оргалита или акрилового стекла, нарезанные по размерам грядущего генератора. Нужно понимать, что размер аппарата влияет напрямую на его продуктивность, но, и расходы на получение HHO будут выше. Для производства топливной ячейки хорошими будут размеры устройства от 150хсто пятьдесят миллиметров до 250х250 мм.
    2. В любой из пластин сверлят отверстие под входной (выходной) патрубок для соединения для воды. Более того, понадобится сверление в боковой стенке для выхода газа и 4-ре отверстия в углах для соединений компонентов реактора между собой.

    Изготовление стенок находящихся по бокам

    Вот подобный комплект деталей нужно приготовить перед сборкой топливной ячейки

    Укладку электродов начинают с уплотняющего кольца

    Необходимо обратить свое внимание: поверхность пластинчатых электродов обязана быть очень ровной, иначе детали с разноимёнными зарядами будут касаться, вызывая короткое замыкание!

    Пластины нержавейки разделяют от боковых поверхностей реактора с помощью уплотнительных колец, которые можно создать из силикона, паронита или иного материала. Важно только, чтобы его толщина не была больше 1 мм. Аналогичные детали применяют в качестве дистанционных подкладок между пластинами. В процессе укладки следят, чтобы контактные площадки положительных и отрицательных электродов были сгруппированы в различных сторонах генератора.

    При собирании пластин важно правильно ориентировать отверстия для выхода

    При окончательной затяжке в первую очередь контролируют параллельность стенок находящихся по бокам. Это даст возможность избежать перекосов

    Собрав несколько топливных ячеек и включив их параллельно, можно получить большое количество газа Брауна

    Для получения газа Брауна в количестве, достаточном для отапливания или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.

    Видео: Сборка устройства

    Видео: Работа конструкции «сухого» типа

    Некоторые моменты применения

    В первую очередь, хочется подчеркнуть, что обычный способ сжигания сетевого газа или пропана в нашем случае не подходит, так как температура горения HHO превосходит похожие свойства углеводородов в три с лишним раза. Как вы поймите, подобную температуру конструкционная сталь долго не удержит. Сам Стенли Мейер рекомендовал задействовать горелку оригинальной конструкции, схему которой мы приводим ниже.

    Схема водородной горелки конструкции С. Мейера

    Вся уловка данного устройства состоит в том, что HHO (на схеме обозначено цифрой 72) проходит в камеру сжигания через вентиль 35. Горящая водородная смесь подымается по каналу 63 и в тоже время выполняет процесс эжекции, увлекая за собой внешний воздух через регулирующиеся отверстия 13 и 70. Под колпаком 40 задерживается определенное количество продуктов згорания (пара на воде), которое по каналу 45 проникает в колонку горения и перемешивается с горящим газом. Это дает возможность уменьшить температуру горения в пару раз.

    Второй момент, на который хочется обратить ваше внимание — жидкость, которую следует заливать в установку. Наиболее оптимально применять подготовленную воду, в которой не содержатся соли тяжёлых металлов. Оптимальным вариантом считается дистиллят, который можно купить в абсолютно любом автомобильном магазине или аптеке. Для удачной работы электролизёра в воду добавляют гидроксид калия KOH, из расчёта приблизительно одна столовая ложка порошка на ведро воды.

    Во время работы установки важно не нагревать генератор. Как только температура увеличивается до 65 градусов по Цельсию и более электроды аппарата будут загрязняться побочными продуктами реакции, благодаря чему продуктивность электролизёра станет меньше. Если же это всё-таки случилось, то водородную ячейку нужно будет разобрать и удалить налёт с помощью шлифовальной бумаги.

    И третье, на чём мы делаем особенное ударение — безопасность. Нужно помнить, что смесь водорода и кислорода не просто так назвали гремучей. HHO собой представляет небезопасное химическое соединение, какое при плохом обращении может привести к взрыву. Соблюдайте правила безопасности и будьте особенно аккуратны, экспериментируя с водородом. Лишь в данном варианте «кирпичик», из которого состоит наша Галактика, принесёт тепло и комфорт вашему дому.

    Правила безопасности нужно соблюдать не только во время монтажа водородного генератора. При собирании и эксплуатации биореактора тоже необходимо быть очень аккуратным, так как биогаз взрывоопасен. Подробно о данном типе установке читайте в следующей публикации: https://aqua-rmnt.com/otoplenie/alt_otoplenie/kak-poluchit-biogaz.html.

    Надеемся, публикация стала для вас источником воодушевления, и вы, засучив рукава, приступайте к изготовлению водородной топливной ячейки. Конечно, все наши выкладки не считаются истиной в последней инстанции, однако, их вполне можно применять для создания работающей модели водородного генератора. Если же вы желаете полностью перейти на такой вид теплоснабжения, то вопрос нужно будет выучить намного подробнее. Возможно, собственно ваша установка станет основа, благодаря ему окончится передел энергетических рынков, а дешёвое и экологичное тепло войдёт в каждый дом.

    Как выполнить водородный генератор

    Применение водорода в качестве энергоносителя для обогревания дома – идея очень привлекательная, ведь его теплотворная способность (33.2 кВт / м3) превосходит более чем в 3 раза показатель сетевого газа (9.3 кВт / м3). В теории, чтобы извлечь горючий газ из воды с дальнейшим сжиганием его в котле, можно применять водородный генератор для отапливания. Про то, что из данного может выйдет и как выполнить данное устройство собственными руками, будет рассказано в сегодняшней статье.

    Рабочий принцип генератора

    Как носитель энергии водород на самом деле не имеет себе равных, а залежи его фактически безграничны. Как мы уже сказали, при сжигании он выделяет большое количество энергии тепла, несравненно большее, чем любое углеводородное горючее. Заместь вредных соединений, выбрасываемых в атмосферу во время использования сетевого газа, при возгорании водорода образуется обыкновенная вода в виде пара. Одна беда: данный элемент химии не попадается в природе в свободном виде, только в соединении с другими веществами.

    Одно из подобных соединений – обыкновенная вода, которая собой представляет полностью окисленный водород. Над ее расщеплением на составные детали работали многие ученые мужи на протяжении долгих лет. Не скажешь, что безрезультатно, ведь техническое решение по разделению воды все же было обнаружено. Смысл его – в химреакции электролиза, благодаря которой происходит расщепление воды на кислород и водород, получившуюся смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

    Электролизеры производятся серийно и предназначаются для газопламенных (сварочных) работ. Ток конкретной силы и частоты подается на группы пластин из металла, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с паром перегретым. Для его отделения газы пропускаются через сепаратор, после этого подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче ставится клапан, пропускающий горючее исключительно в одну сторону.

    Для контроля за уровнем воды и своевременной подпитки конструкцией имеется специализированный измеритель, по сигналу которого выполняется ее впрыск в пространство для работы электролизера. За превышением давления в середине сосуда наблюдает аварийный выключатель и сбросной клапан. Обслуживание водородного генератора состоит в периодическом добавлении воды, и на этом все.

    Водородное теплоснабжение: миф или реальность?

    Генератор для работ по сварке – это на текущий момент единственное использование на практике электролитическому расщеплению воды. Задействовать его для отапливания дома нецелесообразно и вот почему. Расходы источников энергии при газопламенных работах не очень важна, основное, что сварщику не надо таскать тяжеленные балоны и возиться со шлангами. Иное дело – теплоснабжение дома, где каждая копейка на счёту. И здесь водород проигрывает всем существующим сейчас видам топлива.

    Важно. Расходы электрической энергии на выделение горючего из воды способом электролиза будут намного больше, чем гремучий газ сумеет выделить при сжигании.

    Серийные сварочные резервные электростанции стоят очень дорого, так как в них применяются катализаторы процесса электролиза, в их состав входит платина. Можно создать водородный генератор собственными руками, но его результативность будет еще меньше, чем у производственного. Получить горючий газ вам точно получится, но навряд ли его хватит на обогрев хотя бы одной комнаты больших размеров, не то что всего дома. А если и хватит, тогда нужно будет платить очень большие счета за электричество.

    Чем расходовать время и усилия на получение бесплатного топлива, которого нет a priori, легче сделать собственными руками простой котел галан. Будьте уверены, что так вы израсходуете намного меньше энергии с большей пользой. Тем не менее, домашние специалисты – энтузиасты всегда могут испытать собственные силы и собрать дома электролизер, с целью провести эксперименты и удостовериться во всем самолично. Один из аналогичных экспериментов показан на видео:

    Как сделать генератор

    Масса интернет-ресурсов публикуют всевозможные схемы и чертежи генератора для получения водорода, но они все работают с одним принципом. Мы предложим для вас чертеж обычного устройства, взятый из научно-популярной литературы:

    Тут электролизер собой представляет группу пластин из металла, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже сделаны из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для газоподачи в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и собирать смесь водорода с кислородом, чтобы подавать его под давлением.

    Совет. Электролитические пластины для генератора необходимо делать из нержавейки, легированной титаном. Он послужит добавочным катализатором реакции расщепления.

    Пластины, что служат электродами, могут быть произвольного размера. Но нужно понимать, что продуктивность аппарата зависит от их поверхностные площади. Чем большее количество электродов получится использовать в процессе, тем лучше. И плюс ко всему ток который потребляется будет выше, это необходимо учесть. К концам пластин припаиваются провода, ведущие к источнику электричества. Тут тоже есть экспериментальное поле: можно подать на электролизер различное напряжение при помощи регулируемого трансформатора.

    В качестве электролизера можно задействовать контейнер из пластика от фильтра для воды, поместив в него электроды из нержавеющих трубок. Изделие хорошо тем, что его легко покрывать герметиком от внешней среды, выводя трубку и провода через отверстия в крышке. Иное дело, что этот рукодельный водородный генератор обладает низкой работоспособностью благодаря небольшой площади электродов.

    Заключение

    На текущий момент нет хорошей и эффектной технологии, позволяющей осуществить водородное теплоснабжение приватного дома. Те резервные электростанции, что встречаются в продаже, могут удачно использоваться для отделки металлов, однако не для изготовления горючего для котла. Попытки организовать аналогичный обогрев приведут к большому расходу электрической энергии, не считая расходов на оборудование.

    Водородный генератор собственными руками: рабочий принцип устройства, схемы и описание сборочного процесса

    Водородный генератор (электролизер) это прибор, действующий за свет 2-ух процессов: физического и химического.

    Во время работы под влиянием электротока вода разлагается на кислород и водород. Этот процесс называется электролиз. Электролизер очень распространен среди наиболее известных видов водородных генераторов.

    Как устроен прибор

    Электролизер имеет несколько металлических пластин, погруженных в герметическую емкость с дистиллированной водой.

    Сам корпус имеет клеммы, чтобы подсоединять источник питания и есть втулка, через какую выводится газ.

    Работу прибора можно описать так: электроток пропускается через дистиллированную воду между пластинами с различными полями (у одной — анод, у другой — катод), расщепляет её на кислород и водород.

    В зависимости от площади пластин электроток имеет собственную силу, если площадь большая, то и тока по воде проходит много и больше выделяется газа. Схема подсоединения пластин поочередная, в первую очередь плюс, потом минус и так дальше.

    Электроды рекомендуется делать из нержавейки, какая в процессе электролиза не вступает в реакцию с водой. Главное найти нержавеющую сталь хорошего качества. Между электродами лучше выполнить расстояние небольшими, но таким образом, чтобы пузырьки газа легко между ними передвигались. Крепеж лучше сделать из соответствующего металла, что и электроды.

    В рассматриваемом варианте устройство в себя включает 16 пластин, находятся они один от одного в границах 1 мм.

    Благодаря тому, что пластины имеют довольно немалую поверхностную площадь и толщину, можно будет пропустить через данное устройство высокие токи, однако нагрева металла не случится. Если обмерить на воздухе емкость электродов, то она будет составлять 1nF, данный комплект применяет до 25А в обыкновенной воде из водомерного узла.

    Для сбора водородного генератора собственными руками можно задействовать контейнер пищевой, так как его пластик термоустойчив. Потом необходимо в контейнер опустить электроды для сбора газа с разъемами изолированными герметично, крышкой и остальными соединениями.

    Если применять контейнер из металла, то чтобы не было короткого замыкания, электроды крепят на пластике. С обеих сторон медных и латунных соединителей монтируются два разъема (соединитель – устанавливать, собирать) для извлечения газа. Разъемы контактные и фитинги необходимо прочно зафиксировать, используя герметик из силикона.

    Сделать газогенератор также можно дома. Методика детально изложена тут: https://teplo.guru/pechi/piroliznye/gazogenerator-svoimi-rukami.html

    Соблюдение мер безопасности

    Электролизер это устройство очень высокой опасности.

    Благодаря этому при его изготовлении, монтирования и работы в первую очередь необходимо соблюдение как общих, так и специализированных мер безопасности.

    Специализированные меры включают следующие пункты:

    • следует контролировать концентрацию смеси водорода с кислородом, в целях недопущения взрыва;
    • если уровень жидкости не просматривается в смотровом окне водородного генератора, то его применять нельзя;
    • в ходе выполнения ремонта необходимо убедиться, что в конечной точке системы как таковой отсутствует водород;
    • противопоказано применение открытого огня, электрических приборов с функцией нагрева и переносных ламп напряжением более 12 вольт рядом с электролизером;
    • в рабочий период с электролитом следует себя уберечь, применяя средства защиты (специальная защитная одежда, перчатки и очки).

    Рекомендации профессионалов

    Профессиональные мастера думают, что делать самодельные водородные резервные электростанции для машин дома опасное занятие.

    Они объясняют это тем, что электролизер для авто имеет непростую и небезопасную систему устройств.

    Заниматься изготовлением подобных агрегатов необходимо, используя особенные материалы и реагенты.

    Если все же решили своими силами сделать автомобильный гидролизер, то обязательно необходимо оборудовать его барботером – это специализированный водяной клапан. При его применении существенно повысится безопасность при вождении автомобиля.

    Переменный ток можно получить из земли и воздуха своими силами. Подробности в данной заметке: https://teplo.guru/elektrichestvo/besplatnoe-elektrichestvo.html

    Домашнее отопление газом Брауна

    Рабочая схема водородного генератора. (Для увеличения нажмите)

    Водород считается очень распространенным элементом химии, благодаря этому выгодно с точки зрения экономии его применять.

    Для большинства хозяев домов и дач часто появляется вопрос, как получить «чистую» и недорогую энергию для нужд в бытовых задачах и целях. Ответ можно отыскать в подобных инновациях, как водогенератор для отапливания дома.

    Ученые мужи, благодаря собственным разработкам, дали возможность многим задействовать данное устройство для получения газа. Установка способна вырабатывать водород (газ Брауна) и этот газ будет использован для получения энергии.

    Можно это соединение представить химической формулой, как hho. Данный газ можно получить из воды при помощи способа электролиза. Имеется множество примеров в жизни, когда люди хотят собственный дом обогревать оксиводородом. Но чтобы такой вид топлива приобрел востребовательность, нужно в первую очередь обучиться получать его (газ Брауна) в домашних условиях.

    До этого времени нет технологии водородного теплоснабжения приватного дома, которая была бы достаточно хорошей.

    Маленькие детали организации домашнего отопления газом Брауна рассмотрены тут: https://teplo.guru/sistemy/otoplenie-gazom-brauna.html

    Посмотрите видео, в котором бывалый клиент разъясняет, как выполнить водородный генератор собственными руками:

    отопление водородом в гараже


    Навигация по записям

    Как сделать водородный котел отопления своими руками?

    Уже давно прошло время, когда обогрев частного загородного дома осуществлялся только лишь сжиганием в печи дров ли угля. Нынешние отопительные агрегаты используют различные виды топлива. Но постоянный рост цен на топливо, вынуждает идти на поиски более дешевых вариантов отопления. Но буквально у нас под носом лежит неиссякаемый источник энергии – водород. И в данной статье мы расскажем, как в качестве топлива можно использовать обычную воду, собрав водородный котел отопления своими руками.

    Конструкция и принцип работы водородного генератора

    Применение водорода в виде топлива для обогрева жилища – довольно заманчивая идея, ведь его теплотворность составляет 33,2 кВт/м3, в то время как у природного газа она всего 9,3кВт/м3, а это более чем в 3 раза. Теоретически добыть водород можно из воды, для того чтобы его потом сжечь в котле, можно воспользоваться водородным генератором для отопления дома.

    Как энергоноситель с водородом ничто не может сравниться, а его запасы практически бесконечны. Как уже говорилось выше, при сгорании водород выделяет очень много тепловой энергии, намного больше, чем любое углеродосодержащее топливо. Вместо вредных выбросов в атмосферу, которые выделяются при использовании природного газа, водород, сгорая, образует обычную воду в виде пара. Только есть одна проблема, данный элемент не встречается в природе в чистом виде, а только в соединении с другими веществами.

    Одним из таких соединений является обычная вода, которая представляет собой окисленный водород. Для того чтобы расщепить на составляющие ее элементы многие ученые потратили не один год. И не безрезультатно, техническое решение по выделению из воды ее составляющих все же было найдено. Это так называемая химическая реакция электролиза, в результате которой вода распадается на кислород и водород, получаемую смесь прозвали гремучим газом или газом Брауна.

    Ниже можно увидеть схему водородного генератора (электролизера), который работает от электричества:

    Электролизеры поставлены на серийное производство и служат для газопламенных (сварочных) работ. Ток определенной частоты и силы подается на группы металлических пластин, которые погружены в воду. Из-за протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром.

    Для того чтобы отделить газы от пара все пропускается через сепаратор, после которого подается на горелку. Чтобы предотвратить обратный удар и взрыв, на подаче монтируется клапан, который пропускает горючее только в одну сторону.

    Водородная установка для обогрева жилища включает в себя следующие составляющие: котел и трубы диаметром 25-32 мм (1-1,25 дюймов). Трубы можно установить дома своими руками, но необходимо выполнить одно условие – после каждого разветвления диаметр должен уменьшаться.

    Диаметр уменьшается по следующему принципу – труба D32, труба D25. После разветвления – D20, и последней монтируется труба D16. При соблюдении этого условия водородная горелка будет работать качественно и эффективно.

    Для того чтобы следить за уровнем воды и своевременно подпитывать ею устройство, в конструкции есть специальный датчик, который отдает команду в нужный момент и вода впрыскивается в рабочее пространство электролизера. Для того чтобы давление не подпрыгивало до критической точки внутри сосуда, агрегат оборудуется аварийным выключателем и сбросным клапаном. Для обслуживания генератора водорода, необходимо только время от времени добавлять воду и все.

    Преимущества водородного отопления

    У водородного отопления есть несколько серьезных достоинств, которые влияют на распространенность системы:

    1. Экологически чистые системы. Единственный побочный продукт, который выбрасывается в атмосферу во время работы – вода в парообразном состоянии. Что никоим образом не вредит окружающей среде.
    2. Водород в системе отопления работает без применения огня. Тепло образуется из-за каталитической реакции. При соединении водорода с кислородом, образуется вода. Из-за этого идет большое выделение тепла. Сам поток тепла, температура которого равняется около 40оС, идет в теплообменник. Для системы теплый пол – это идеальный температурный режим.
    3. Довольно скоро отопление на водороде своими руками сможет вытеснить традиционные системы, тем самым освободив человечество от добычи других видов топлива – нефти, газа, угля и дров.
    4. Минимальный срок службы – 15 лет.
    5. КПД отопления частного дома водородом может достигать 96%.

    Добыча водорода – это вполне доступный процесс. Все, на что необходимо будет тратиться это электричество. А при использовании генератора отопления включить в работу системы еще и солнечные батарею, то траты на электроэнергию можно свести к минимуму. Исходя из этого, можно заключить что, эта система наиболее экологически чистая и эффективная для отопления жилища.

    Как собрать генератор водорода собственноручно?

    Зачастую котел, работающий на водороде, используется для обогрева полов. Эти системы в наше время встречаются самой разной мощности. Мощность котлов бывает самая разная, начиная от 27Вт и до бесконечности. Можно взять один очень мощный котел для обогрева сразу всего дома, а можно несколько небольших. Устанавливаются они своими силами, но, как сделать водородный генератор своими руками?

    Прежде чем начать сооружать топливную ячейку необходимо иметь под руками следующие инструменты:

    • ножовку по металлу;
    • дрель с набором свёрл;
    • набор гаечных ключей;
    • плоская и шлицевая отвёртки;
    • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
    • мультиметр и расходомер;
    • линейка;
    • маркер.

    Более того, если вы решите самостоятельно заниматься сооружением ШИМ-генератора, то для его настройки понадобятся осциллограф и частотомер.

    Для того чтобы изготовить водородный генератор для отопления частного дома рассмотрим абсолютно «сухую» схему электролизера с применением электродов из пластин нержавеющей стали.

    Представленная ниже инструкция показывает процесс конструирования водородного генератора:

    1. Сооружение корпуса топливной ячейки. Роль боковых стенок каркаса играют пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Стоит заметить, что он размеров агрегата напрямую зависит его производительность, но и затраты на получение ННО будут намного выше. Для сооружения топливной ячейки оптимальными являются габариты от 150×150 мм до 250×250 мм.
    2. В каждой из платин сверлятся отверстия под входной и выходной штуцера для воды. Кроме этого, необходимо сверление в боковой стенке для выхода газа и четыре отверстия по углам для того чтобы соединить элементы реактора между собой.
    3. С помощью болгарки из листа нержавейки марки 316L, вырезают пластины электродов. Они по размеру должны быть меньше стенок на 10-20 мм. Более того, при изготовлении каждой детали, в одном из углов необходимо оставлять небольшую контактную площадку. Это необходимо для того чтобы соединить отрицательные и положительные электроды в группы перед их подключением к питанию.
    4. Для получения необходимого количества ННО, нержавейку необходимо обработать мелкой наждачной бумагой с двух сторон.
    5. В каждой пластине сверлятся два отверстия: сверлом чей диаметр должен быть 6-7 мм – для подачи в пространство между электродами воды и диаметром 8-10 мм – для отвода газа Брауна. Точки сверления рассчитывают с учетом мест монтажа соответствующих подводящих и выходного патрубков.
    6. Приступают к сборке генератора. Для этого в оргалитовые стенки монтируют штуцеры служащие для подачи воды и отбора газа. Места их присоединений тщательнейшим образом герметизируют автомобильным или сантехническим герметиком.
    7. После этого одну из прозрачных корпусных деталей устанавливают на шпильки, после этого укладывают электроды. Укладка электродов должна начинаться с уплотнительного кольца. Обратите внимание: плоскость электродов должна быть абсолютно ровной, в противном случае элементы с разноименными зарядами будут касаться, что вызовет короткое замыкание!
    8. Пластины нержавейки отделяют от боковых поверхностей реактора с помощью уплотнительных колец, изготовленных из силикона, паронита или других материалов. Важно чтобы он был не толще 1 мм. Подобные детали используют как дистанционные прокладки между пластинами. В процессе укладки следят, чтобы контактные площадки разноименных электродов были сгруппированы по разные стороны генератора.
    9. После того как уложена последняя пластина устанавливают уплотнительное кольцо, после чего генератор закрывается второй оргалитовой стенкой, а саму конструкцию соединяют с помощью гаек и шайб. Делая эту работу, внимательно следите за равномерностью затяжки и отсутствием перекосов между пластинами.
    10. С помощью полиэтиленовых шлангов генератор подключается к емкости с водой и бабблеру.
    11. Контактные площадки электродов соединяются между собой любым методом, после чего к ним подводят провода питания.
    12. На топливную ячейку подается напряжение от ШИМ-генератора, после чего приступают к настройке и регулировке аппарата по максимальному выходу газа ННО.

    Для того чтобы получить газ Брауна в необходимом количестве которое будет достаточным для приготовления пищи и отопления, устанавливают несколько генераторов водорода которые работают параллельно.

    Рекомендации по эксплуатации котла на водороде

    1. Самостоятельно модернизировать подобное оборудование, даже при наличии подробного и профессионального инженерного чертежа – категорически запрещается. Это может поспособствовать вероятности утечки водородной смеси из генератора в открытое пространство, что довольно опасно.
    2. Рекомендуется смонтировать специальные датчики температурного режима внутри теплообменника, это даст возможность следить за вероятным превышением уровня температуры нагрева воды.
    3. В саму конструкцию горелки можно включить запорную арматуру, которая будет подключена непосредственно к самому датчику температуры. Необходимо также обеспечить нормированное охлаждение котла.
    4. И наконец, на чем необходимо сделать особое ударение это безопасность. Необходимо помнить о том, что смесь водорода и кислорода не зря назвали гремучей. ННО это опасное химическое соединение, которое при небрежном обращении может повлечь взрыв. Следуйте правилам безопасности и будьте предельно аккуратны в экспериментах с водородом.

    При правильном обращении водородный котел может прослужить не 15 лет, как это обычно положено, а 20 или даже 30. Однако помните, что чем больше мощность котла, тем больше расход электроэнергии!

    пошаговая инструкция. Как собрать водородный генератор своими руками

    Одним из самых удобных и практичных способов получения водорода, и его дальнейшего, разумного применения является водородный генератор, так называемая водородная горелка. Но получение водорода в домашних условиях довольно опасное занятие потому прислушайтесь к описанному совету.

    Самодельный водородный генератор:

    Основу водородной горелки составляет водородный генератор, который представляет собою своеобразную ёмкость с водой и пластинами из нержавеющей стали. Конструкция и подробное описание водородного генератора можно без особых усилий найти на других сайтах, потому я не стану тратить печатные символы на это. Я хочу передать весьма важные тонкости, которые будут вам очень полезны, если вы соберётесь делать водородную горелку своими руками.


    Рисунок №1 – Структурная схема водородной горелки

    Суть водородной горелки заключается в получении водорода путём электролиза воды. Вы должны понимать, что в электролизёр (емкость с водой и электродами) и потому, нельзя наливать туда что попало, я рекомендую использовать дистиллированную воду, однако читал, что для более эффективного электролиза добавляют ещё каустическую соду (пропорций не знаю).

    Мой электролизёр собран из нержавеющих пластин, резиновых прокладок, и двух толстых пластин оргстекла, и внешне всё это выглядит так:


    Рисунок №2 – Электролизёр

    Электролизёр необходимо заполнять водою ровно наполовину для соблюдения техники безопасности, следите за уровнем жидкости, так как с его снижением меняются электрические параметры и интенсивность выделения водорода!

    Но прежде чем потратить кучу времени и материалов на сборку электролизёра, позаботитесь о блоке питания к нему. Мой электролизёр, к примеру, потребляет ток около 6А, при напряжении 8В.

    Металлические пластины (электроды) соединены при помощи припаянной к ним толстой медной проволоки, и толстых медных проводов (около 4мм сечение).


    Рисунок №3 – Как подсоединить провода

    Так же вы должны понимать, что всё должно быть герметично соединено и хорошо заизолировано, короткое замыкание пластин и искра недопустимо!!!


    Рисунок №4 – Изоляция пластин

    На самом деле есть масса разного рода конструкций электролизёра потому я не хочу на нем фокусировать ваше внимание, хотя он и является самой основной и трудоёмкой деталью для водородной горелки, само по себе он не очень важен (вам подойдёт любая его конструкция).

    При работе с водородной горелкой следует:

    Если вы собрались делать водородную горелку, то будьте осторожны! Водород очень взрывоопасен!!! При сборке и работе с водородной горелкой, есть много жизненно важных тонкостей. Обратите внимание на мои советы – я это реально проделывал и знаю что говорю.

    В самодельной водородной горелке обязательно должно быть согласованно давление водорода, и защита от обратного взрыва, хорошая герметичность и изоляция!

    Дело в том, что при работе водородной горелкой, для электролиза вы используете блок питания. И пока он включён, водород выделяется примерно с одинаковой интенсивностью (по мере работы она может падать, так как вода испаряется и меняется плотность тока между пластинами электродов), потому не приступайте к работе, не ознакомившись предварительно с устройством горелки.

    Как правильно пользоваться водородной горелкой:

    Во-первых прежде всего, всегда работайте в средствах индивидуальной защиты (обязательно наденьте на лицо защитный щиток или очки), во-вторых соблюдайте правила пожарной безопасности. В-третьих, следите за уровнем воды в электролизёре, и интенсивностью горения пламени.

    Поджигать пламя нужно не сразу, дайте водороду вытеснить остатки кислорода (у меня это занимает около десяти минут, в зависимости от интенсивности выделения и объёма сосудов с водяным затвором и предохранителем А, Б рис.1)

    Обязательно держите около себя ёмкость с водою – она вам понадобится, что бы потушить пламя горелки, когда закончите работу. Для этого, вам просто необходимо направить кончик иглы с пламенем под воду и тем самым перекрыть огню кислород. ВСЕГДА СНАЧАЛА ТУШИТЕ ПЛАМЯ А ПОТОМ ВЫКЛЮЧАЙТЕ ПИТАНИЕ ГЕНЕРАТОРА – ИНАЧЕ ВЗРЫВ НЕМЕНУЕМ.

    Водяной затвор и предохранитель:

    Обратите ваше внимание на рисунок №1 – там есть две ёмкости (Я обозначил их А и Б), ну и иголка от одноразового шприца (В), всё это соединено трубками от капельниц.

    В первую емкость (А) необходимо наливать воду, это водяной затвор. Он необходим для того что бы взрыв не добрался до электролизёра (если он рванёт то это будет как осколочная граната).


    Рисунок №5 – Водяной затвор

    Обратите внимание, в крышке водяного затвора есть два соединителя (я всё это приспособил от медицинской капельницы), оба они герметично вклеены в крышку при помощи эпоксидного клея. Одна трубка длинная, по ней водород с генератора должен поступать под воду, булькать, и через второе отверстие идти по трубке к предохранителю (Б).


    Рисунок №6 – Предохранитель

    В ёмкость с предохранителем вы можете наливать как воду (для большей надёжности) так и спирт (пары спирта повышают температуру горения пламени).

    Сам предохранитель делается так: Вам необходимо проделать в крышке отверстие диаметром 15 мм, и отверстия для винтиков.


    Рисунок №7 – Как выглядят отверстия в крышке

    Также вам понадобится две толстых шайбы (если потребуется, то надо расширить внутренний диаметр шайбы при помощи круглого напильника) две водопроводных прокладки и фольгу от шоколадки или обыкновенный воздушный шарик.


    Рисунок №8 – Эскиз защитного клапана

    Собирается он достаточно просто, вам необходимо просверлить четыре соосных отверстия в железных шайбах крышке и прокладках. Сначала необходимо припаять болты к верхней шайбе, это легко можно сделать при помощи мощного паяльника и активного флюса.


    Рисунок №9 – Шайба с винтиками
    Рисунок №10 – Припаянные к шайбе винтики

    После того как вы припаяли винтики вам необходимо надеть на шайбу одну резиновую прокладку и непосредственно ваш клапан. Я использовал тонкую резинку от лопнувшего воздушного шарика (это гораздо удобнее чем надевать тонкую фольгу), хотя фольга, тоже подходит довольно удачно, по крайней мере, когда я испытывал свою водородную горелку на предмет взрывоопасности, то в клапане была именно фольга.


    Рисунок №11 – Надеваем прокладку и защитную резинку

    Потом надеваем вторую прокладку и можно вставлять защиту в отверстия, проделанные в крышке.


    Рисунок № 12 – Готовый клапан
    Рисунок №13 – Элементы защиты

    Вторая шайба и гайки нужны, что бы герметично и крепко зафиксировать защиту, закручивая гайки (посмотрите на рисунок №6).

    Поймите правильно и примите к сведенью, нельзя пренебрегать правилами техники безопасности, особенно когда работаете со взрывоопасными газами. А такое нехитрое приспособление может спасти вас от неприятных неожиданностей. Работает защита по принципу «где тонко – там и рвётся», взрывом выбивает защитную плёнку (фольгу или резинку), и взрывная сила не идёт в электролизёр, к тому же этому препятствует ещё и водяной затвор. Поверьте на слово, если взорвётся электролизер, то мало вам не покажется:)!!!


    Рисунок №14 – Взрыв

    Следует понимать что аварийная ситуация обязательно неминуема. Дело в том, что пламя горит на выходе форсунки, (в качестве которой достаточно неплохо подходит иголка от одноразового шприца) только потому, что создается давление газа (давление согласовано).


    Рисунок № 15 – Форсунка из шприца, на пьедестале

    К примеру, вы работаете вашей горелкой и вот вырубило свет, поверьте! Вы не успеете отскочить от горелки, пламя моментально пойдёт обратно по трубке и прогремит взрыв защитного клапана (он и нужен что бы рванул он а не электролизёр) – это вполне нормально, когда горелка самодельная – будьте бдительны и осторожны, держитесь подальше от водородной горелки и надевайте средства индивидуальной защиты!

    Лично я не в большом восторге от водородной горелки, я и попробовал её сделать только по тому, что у меня уже был готовый электролизёр. Во-первых, это очень опасно, во-вторых не очень эффективно (я говорю о своей водородной горелке а не о горелках в целом) расплавить ею то что я хотел не удалось. И потому если вам пришла в голову идея сделать такого типа горелку задайте себе вполне рациональный вопрос «а оно того стоит», так как собрать электролизёр с нуля это достаточно хлопотное дело, а ещё нужен мощный блок питания такой что бы хватало для согласования давления водорода и диаметра выходной форсунки. Потому, «лишь бы было» я вам её делать не рекомендую, а только если она вам действительно нужна.

    Живую и мертвую воду получить довольно легко. Проще всего провести электролиз в стакане воды с помощью двух карандашей, проводков и трех батареек. Такой «домашний» электролиз прекрасно описывает О. Ольгин в своей книге «Опыты без взрывов».

    «Возьмите чайный стакан, расширяющийся кверху. Приготовьте фанерный кружок и прижмите его к стенке стакана в 3–4 см выше дна. В кружке заранее просверлите два отверстия (или вырежьте в нем по диаметру прорезь), неподалеку шилом проколите два отверстия: через них будут проходить проводки.

    В большие отверстия или в прорезь вставьте два карандаша длиной 5–6 см, очиненные с одного конца. Карандаши, точнее, их грифели, будут служить электродами.

    На неочиненных концах карандашей сделайте зарубки, чтобы обнажились грифели, и примотайте к ним оголенные концы проводков. Проводки скрутите и тщательно обмотайте изоляционной лентой; чтобы изоляция была совсем надежной, лучше всего спрятать проводки в резиновых трубках. Все детали прибора готовы, остается только собрать его, то есть вставить кружок с электродами внутрь стакана.

    Поставьте стакан на тарелку, налейте в него до краев воду и добавьте раствор соды Na 2 CO 3 из расчета 2–3 чайные ложки на стакан воды. Таким же раствором заполните две пробирки. Одну из них закройте большим пальцем, переверните вверх дном и погрузите в стакан так, чтобы в нее не попал ни один пузырек воздуха. Под водой наденьте пробирку на электрод-карандаш. Точно так же поступите со второй пробиркой.

    Батарейки – числом не менее трех – нужно соединить последовательно, «плюс» одной к «минусу» другой, а к крайним батарейкам подсоединить проводки от карандашей. Сразу начнется электролиз раствора. Положительно заряженные ионы водорода Н+ направятся к отрицательно заряженному электроду – катоду, присоединят там электрон и превратятся в газ – водород. Когда у карандаша, подсоединенного к «минусу», соберется полная пробирка водорода, ее можно вынуть и, не переворачивая, поджечь газ. Он загорится с характерным звуком. У другого электрода, положительного (анода), выделится кислород. Наполненную им пробирку закройте пальцем под водой, выньте из стакана, переверните, внесите тлеющую лучинку – она загорится.

    Итак, из воды Н 2 О получился и водород Н 2 , и кислород О 2 ; а для чего же сода? Для ускорения опыта. Чистая вода плохо проводит электрический ток, электрохимическая реакция идет в ней слишком медленно.

    С тем же прибором можно поставить еще один опыт – электролиз насыщенного раствора поваренной соли NaCl . В этом случае одна пробирка наполнится бесцветным водородом, а другая – желто-зеленым газом. Это хлор, который образуется из поваренной соли. Хлор легко отдает свой заряд и первым выделяется на аноде.

    Пробирку с хлором закройте пальцем под водой, переверните и встряхните, не отнимая пальца. В пробирке образуется раствор хлора – хлорная вода. У нее сильные отбеливающие свойства. Например, если добавить хлорную воду к бледно-синему раствору чернил, то он обесцветится».

    Это описание простейшего бездиафрагменного электролизера и простейшего процесса электролиза. Нас же интересует не то, что выделится на аноде или катоде, а то, что произойдет в воде при электролизе, что в ней изменится и что сделает из обыкновенной воды лечебное средство, помогающее при многих заболеваниях.

    Хотя аппарат для получения живой и мертвой воды довольно прост, не стоит его делать самим.

    Вот авторитетное мнение специалиста по этому поводу: «Приготовление активированной воды в самодельных установках с электродами из нержавеющей стали чревато серьезной опасностью для здоровья тех, кто пытается такую воду пить. Нержавеющая сталь, подавляющее большинство металлов и сплавов не стойки к анодному растворению.

    При пропускании электрического тока электроды, изготовленные из этих материалов, растворяются, и ионы никеля, хрома, ванадия, молибдена переходят в воду, отравляя ее. При изготовлении электроактиваторов, предназначенных для медицинских исследований, обычно используют стойкие материалы. В частности, для изготовления анодов – никель или титан, катодов – платину, сверхчистый графит. Для диафрагм берут пористый фторопласт или керамику».

    Таким образом, вывод один: электролизер надо купить. Если вы захотите приобрести аппарат – загляните в конец книги, в приложение. Там представлены аппараты-электролизеры различных фирм – на любой вкус: от простых и дешевых до дорогих, с компьютерным управлением.

    ВНИМАНИЕ! Все инструкции по применению активированных растворов рассчитаны на аппараты, описанные в конце книги, и не подходят для других аппаратов!

    Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.

    Генератор водорода: устройство и его принцип работы

    Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.

    Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.

    Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.


    Водяной двигатель имеет такое устройство:

    • Генератор водородного типа, где и происходит электролиз;
    • Горелка, она устанавливается в самой топке;
    • Котел, он выполняет функцию теплообменника.

    На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.

    Водородный генератор: его достоинства и недостатки

    Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.

    Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.

    Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.

    Водородный реактор имеет свои преимущества:

    • Работает на воде;
    • Экономит электричество;
    • Является экологически чистым;
    • Высокий КПД;
    • Простота обслуживания.

    Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.

    Самодельный водородный генератор: пошаговая инструкция

    Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.

    Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.

    Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.

    Инструкция изготовления:

    • Из листа нержавейки вырезаем 16 одинаковых пластин.
    • Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
    • Противоположный угол обязательно спиливаем.
    • Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
    • Стягиваем всю конструкцию гайками, получается батарея.
    • Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
    • Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.


    Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.

    Электролизер для автомобиля: виды катализаторов

    Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.

    Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.

    Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.

    Существует несколько видов катализаторов:

    • Цилиндрические;
    • С открытыми пластинами или их еще называют сухими;
    • С раздельными ячейками.

    Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.

    При котором жидкость или, иначе говоря, электролит, распадается на положительные и отрицательные ионы. Происходит это под воздействием электрического тока. Каким же образом протекает данный процесс?

    Электролиз воды происходит из-за того, что электрический ток, проходя через электролит, вызывает реакцию на электродах, на которых и оседают положительные и отрицательные ионы. На отрицательно заряженном электроде (катоде) оседают катионы, соответственно, на положительном (аноде) — анионы. Электролит может состоять из воды, в которую добавлена кислота или же представляет собой раствор солей. Распад солей на металл и кислотный остаток возникает после того, как через электролит пропускается электрический ток. Заряженный положительным электричеством металл подходит к катоду (отрицательно заряженному электроду), именно этот металл и называется катионом. Кислотный остаток, отрицательно заряженный, стремится к аноду (положительно заряженному электроду), и называется анионом. Электролиз дает возможность получения из солей хорошо очищенных элементов, благодаря чему находит широкое применение в разнообразных отраслях современной промышленности.

    Электролиз воды жизненно необходим сегодня, когда тысячи предприятий применяют воду для отдельных этапов своего производства. Объясняется это тем, что после большинства процессов, которые выполняются на предприятиях, вода после использования превращается в опасную для людей и живой природы жидкость. Электролиз воды служит для очистки сточных вод, которые не должны попадать в землю или же в источники чистой воды. Эти сточные воды необходимо очищать для того, чтобы не допустить экологическую катастрофу, риск которой и так уже достаточно высокий во многих регионах России.

    Сегодня существует несколько методов электролиза воды. К ним относится электроэкстракция, электрокоагуляция и электрофлотация. Электролиз воды, применяемый для очистки сточных вод, производится в электролизерах. Это специальные сооружения, в которых разлагаются на металлы, кислоты и другие вещества, относящиеся к категории неорганического происхождения. Особенно важно проводить очистку сточных вод на вредных производствах, таких как предприятия химической промышленности, там, где ведутся работы с медью и свинцом, а также на комбинатах, выпускающих краски, лаки, эмали. Безусловно, это далеко не дешевый способ очистки воды при помощи электролиза, но затраты, связанные с очисткой воды, не идут ни в какие сравнения со здоровьем человека и заботой об окружающей среде.

    Интересный факт, но можно осуществить электролиз воды в домашних условиях. Этот процесс не займет много времени и средств и даст возможность для и водорода. В емкость с водой, в которой предварительно растворена соль, (соли необходимо взять не менее ¼ объема воды), опускаются два электрода. Их можно сделать из любого металла. Электроды подключаются к источнику питания с силой тока не менее 0,5 А. На одном из электродов образуются пузыри, что и говорит о том, что электролиз воды в домашних условиях проходит успешно. Данным способом можно получить едкий натрий, хлор и другие химические элементы, в зависимости от того, из чего состоит электролит. Плазменный электролиз воды применяют в плазмотеплолизерах. Это новейшее современное устройство, работающее в режимах плазменного электролиза воды и ее непосредственного нагрева до определенных температур. Плазменный электролиз воды дает возможность для получения новых видов энергии, в которой с каждым днем все больше нуждается человечество. Энергия, которую можно будет получать из воды, даст возможность для создания новых, безопасных и эффективных видов источников энергии. Явления плазменного электролиза воды еще не изучены до конца, но они имеют огромные перспективы и поэтому интенсивно изучаются современными учеными.

    Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

    Что такое электролизер, его характеристики и применение

    Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

    Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

    Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:


    Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

    1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
    2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
    3. Концентрация электролита и его тепловой баланс.
    4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
    5. Применение катализаторов процесса и т.д.

    Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).


    Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

    Устройство и подробный принцип работы

    Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

    Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

    Рисунок 4. Конструкция простого электролизера

    В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

    Виды электролизеров

    Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

    Сухие

    Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

    Проточные

    С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


    Рис 5. Конструкция проточного электролизера

    Принцип работы устройства следующий:

    • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
    • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
    • электролит возвращается в гидролизную ванну через трубу «Е».

    Мембранные

    Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

    Рис 6. Электролизер мембранного типа

    Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

    Диафрагменные

    В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


    Пояснение:

    1. Выход для кислорода.
    2. U-образная колба.
    3. Выход для водорода.
    4. Анод.
    5. Катод.
    6. Диафрагма.

    Щелочные

    Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

    На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

    1. Можно использовать железные электроды.
    2. Не выделяются вредные вещества.

    Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

    Электролизер для получения водорода: чертежи, схема

    Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.


    Рис. 8. Устройство водородной горелки

    Пояснение:

    1. Сопло горелки.
    2. Резиновые трубки.
    3. Второй водяной затвор.
    4. Первый водяной затвор.
    5. Анод.
    6. Катод.
    7. Электроды.
    8. Ванна электролизера.

    На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.


    Рис. 9. Блок питания электролизной горелки

    На мощный выпрямитель нам понадобятся следующие детали:

    • Транзисторы: VT1 – МП26Б; VT2 – П308.
    • Тиристоры: VS1 – КУ202Н.
    • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
    • Конденсаторы: 0,5 мкФ.
    • Переменные резисторы: R3 -22 кОм.
    • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
    • PA1 – амперметр со шкалой измерения не менее 20 А.

    Краткая инструкция по деталям к электролизеру.

    Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

    Рис. 10. Чертеж электролизера для водородной горелки

    Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

    Электролизер для автомобиля своими руками

    В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.


    Упрощенная схема электролизера для автомобиля

    По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

    Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

    Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

    Электролизер своими руками для отопления дома

    Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

    Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

    На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

    Обзор производителей электролизеров

    Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

    Рекомендуем также

    Контроллер для сварочного электролизера

    Схема мощного контроллера для электролизной сварки водородно-кислородной смесью (газом Брауна) приведена в этой статье. Контроллер предназначен для регулирования мощности сварки и слежения за уровнем жидкости в баке электролизера и давлением. Мощность аппарата в данном исполнении — примерно 8 кВт и зависит только от мощности выходных тиристоров и конструктивного исполнения реактора.

    Схема электролизера представлена на рисунках ниже, по клику можно скачать пдф:

    Схема для монтажа на плате:

    Схема для монтажа на корпусе:

     На транзисторах Q7, Q8 и оптопаре U7 построен детектор перехода через 0. На диоде D1 и конденсаторе C4 собрана схема для питания датчиков. S1 и S2 — датчики давления и уровня жидкости соответственно. Потенциометром RV1 регулируется мощность электролиза. Джамперы JMP1 и JMP2 служат для изменения конфигурации устройства в момент загрузки или в процессе работы. Светодиоды с кодом MYF (желтые) служат для индикации предупреждений. Светодиоды с кодом MRE (красные) служат для индикации ошибок (срабатывание датчиков, отсутствие синхроимпульсов).

    Данная схема проектировалась для гибкого управления работой электролизера в коммерческом аппарате, в том числе для контроля длительности его работы, для возможности конфигурирования с компьютера, для управления максимальным углом открытия тиристоров (так как при угле больше, чем 70-75% от полупериода прирост выделения газа пропадает, а потребляемая мощность растет). По умолчанию максимальный угол открытия тиристоров равен 60% от полупериода, что принято за 100% рабочей мощности, отображаемой на индикаторе.

    Прошивку для микроконтроллера электролизера можно скачать тут.

     В данной прошивке обработка датчиков давления и уровня отсутствует. Также отсутствует контроль времени работы и логирование ошибок. Прошивка базовая, только для работы.

    В данной прошивке можно изменить максимальный угол открытия тиристоров путем одновременого замыкания обоих джамперов и выставления потенциометром на индикаторе желаемого значения в процентах от длительности полупериода. При размыкании джамперов отображаемое значение будет запомнено как процент открытия тиристоров относительно длительности полупериода и принят за 100% регулируемой мощности.

    Также при замыкании одного или второго джампера отдельно принудительно открывается один из тиристоров. Это сделано для проверки работоспособности соответсвующих цепей.

    Конструктив

     Печатная плата.

    Можно скачать четреж платы в ПДФ. В файле каждый слой на отдельной странице.

    На плате смонтирована схема, приведенная на первом рисунке.

    Остальные детали

    Схема, приведенная на втором рисунке монтируется в корпусе прибора. Выпрямительный мост и тиристоры требуют хорошего теплоотвода. Их нужно устанавливать на радиаторы и желательно с вентилятором. Для получения заявленных 8кВт мост желательно поставить 200-амперный. Если же большая мощность не нужна, то можно даже убрать один тиристор из схемы. Они управляются параллельно. Блок питания PS1 используется любой на 12-15 вольт и током, достаточным для питания вентиляторов, если вы будете использовать 12-вольтовые вентиляторы.

    Испытывать контроллер при первых пусках можно на мощных лампах накаливания (300 Вт и более).

    Фото собранного контроллера:

    Дальнейшее развитие.

    Программу для компьютера для конфигурирования контроллера и соответствующую прошивку можно запросить здесь через форум, кому интересно. Но эта прошивка сырая и требует отлова багов.

    Обработку датчиков планируется вернуть в следующей версии.

    Готовую плату предыдущей версии (нужно перепаять 2 проводника) можно купить запросом через форум, оставив свои контакты. (Есть 2 штуки.)

    Генератор газа Брауна

    Сгорание топлива в двигателях внутреннего сгорания происходит не эффективно. В лучшем случае, в двигателе автомобиля сгорает лишь 40% топлива, остальные 60% – догорают в выхлопной трубе.

    Генератор газа Брауна (этот газ еще называют: гремучий газ, коричневый газ, HHO газ, водяной газ, гидроген, ди-гидроксид, гидроксид, зеленый газ, клейн газа, оксигидроген) предназначен для выработки газа, который используется для интенсификации процесса горения в двигателях внутреннего сгорания. За счет явлений интенсификации горения достигается существенная экономия топлива и прирост мощности двигателя. Еще одним преимуществом этой системы является снижение вредных выбросов двигателем, способствует улучшению экологии.

    Экономия бензина происходит из за лучшего горения бензина. Обычно, только около 15% доступной энергии бензина, преобразуется в механическую энергию в двигателе внутреннего сгорания. Дополнение газом Брауна приводит к лучшему сгоранию топлива и позволяет извлечь доступную энергию из бензина, преобразовать в механическую энергию, что не нарушает законы термодинамики.

    Комплект состоит из электролизера (HHO generator), нового процессорного оптимизатора (EFIE) SD-04, модулятора тока М1-02 (PWM), колбы и фильтра.
    1л газа в минуту. 9В 9A

    Теория Газа Брауна заключается в том, что Газ Брауна – смесь двухатомных и атомарных молекул водорода и кислорода. Самый простой способ получить Газ Брауна состоит в том, чтобы использовать электролизер, который использует электричество, чтобы расщепить воду на ее элементы водород и кислород. В момент расчепления воды водород и кислород находятся в атомарном состоянии, это – H для водорода и O для кислорода.
    При нормальном электролизе водород и кислород с атомарного состояния переходят в бинарное. Бинарное означает, что водород сформировал валентные связи и образовал молекулу h3, а кислород – O2. Двухатомное состояние обладает более низким энергетическим состоянием молекул.

    Чтобы расщепить воду путем электролиза необходимо 442,4 килокалории на Моль. Это эндотермическая реакция (поглощение энергии). Если уменьшить образование бинарных молекул, тогда наш электролит не нагрелся бы, потому что не происходила бы экзотермическая реакция, которая вызывала бы повышение температуры.
    Также произошло бы увеличение объема газа, произведенного при электролизе за счет того что молекулы были бы атомарными. С одного литра воды выходит 1866,6 литров Газа Брауна. При нормальном двухатомном состоянии h3:O2 выходит 933,3 литра. Если предположить, что нам удалось добыть достаточное количество атомарной смеси H и O для сжигания в газовой горелке, то температура пламени была бы существенно выше чем при обычном сжигании водорода. 

    Таким образом мы бы получили «горячее» пламя, потому что не расходовалась бы энергия на раскол h3 и O2.

    Если бы H и O непосредственно участвовали в синтезе воды, то у нас были бы (для четырех молей H и двух молей O) 442,4 килокалории доступной энергии, вместо 115,7 килокалорий доступными при 2h3:O2.
    Эта дополнительная энергия может объяснить некоторые странные эффекты Газа Брауна, такие как плавление вольфрама, образование чистых как будто проделанных лазером отверстий в дереве, металле и керамике. Температура моно-атомного Газа Брауна выше в 3.8 раза традиционной смеси h3 и O2.

    1. Полная автоматизация процесса;
    2. Автоматическая стабилизация параметров;
    3. Автоматическое управление выработкой газа под потребности двигателя;
    4. Быстродействующая самовосстанавливающаяся защита;
    5. Простая и понятная сигнализация о плотности электролита и работоспособности;
    6. Очистка газа от нежелательных примесей;
    7. Все необходимое для монтажа в комплекте;
    8. Плавный пуск и автоматическое отключение на неработающем двигателе;
    9. Для инжекторных автомобилей система комплектуется модулем, способным точно поддерживать заданный состав топливной смеси;

    Принцип работы Генератора газа Брауна

    Генератор газа Брауна  Е-HIBRIDCAR состоит из электролизера (электроды изготовлены из специальной марочной кислотостойкой нержавеющей стали, прошедшую электрохимическую обработку), циркуляционного резервуара, системы управления (модулятора), оптимизатора топливной смеси (для инжекторных авто). Способ выделения газа основан на явлении электролиза воды. Циркуляционный резервуар предназначен для отделения газа от воды, а так же снабжения газогенератора электролитом.

    В электролизере протекает химическая реакция электролиза с выделением водорода и кислорода (газ Брауна) из специального электролита, состоящего из дисциллированой воды и катализатора. Химическая формула нашего катализатора такова, что он не выделяется с газом, а остаётся в воде, что исключает вероятность попадания его в двигатель. Образовавшийся газ выходит по трубке из верхнего штуцера электролизёра и направляется в отдельную ёмкость — «водяной затвор», заходя с нижней её части, там очищается от пены и поднимается над уровнем воды в виде газа, откуда следует через влагоулавливающий фильтр и через обратный клапан в воздушный коллектор и далее в камеру сгорания. Так же из «водяного затвора» вода поступает по второй трубке через нижний штуцер обратно в электролизёр, таким образом происходит циркуляция жидкости по системе. 

    В результате сгорания газа образуется сухой водяной пар, который в свою очередь, очищает клапанно-поршневую группу от нагара, улучшает теплообен между седлом и клапаном,  что способствует увеличению ресурса двигателя. Так же уменьшается загрязнение масла в двигателе и увеличивается межсервисный пробег.

    Управление выработкой газа производится модулятором (PWM), в зависимости от частоты вращения коленчатого вала и температуры электролизера. Модулятор представляет собой интеллектуальное электронное устройство, которое позволяет ипользовать резонансные явления в электролизере.

    Благодаря особому способу модуляции тока достигается максимальная производительность системы. Так же предусмотрено снижение энергопотребления и выработки газа при снижении оборотов коленчатого вала, эта функция предотвращает разряд аккумулятора и разгружает электрогенератор автомобиля. На современных автомобилях снижение энергопотребления на холостых оборотах так же влечет некоторое 
    снижение расхода топлива так как выработке электоэнергии сопутствует увеличение подачи топлива в двигатель, которое используется для поддержания номинальной частоты вращения коленчатого вала.

    Так как процесс сгорания топлива с газом Брауна улучшается, для максимальной экономии топлива в двигатель желательно корректировать топливную смесь в сравнении с обычным режимом без ущерба мощности. В связи с этим нами был разработан оптимизатор соотношения топливной смеси. Оптимизатор способствует выводу двигателя в наиболее оптимальный режим при работе с газом Брауна, благодаря чему может быть достигнута максимально возможная экономичность. Для коррекции топливной смеси можно применять и ЧИП тюнинг.

    Каждый литр воды расширяется на 1866 литров горючего газа. Вам не нужно будет возить с собой баллон с газом, а всего литр воды в емкости под капотом! Одного литра воды хватает на 30 — 40 часов езды.

    Система  Е-HIBRIDCAR может дополнительно комплектоваться и другими системами экономии топлива, увеличивающими результат.


    Номинальный выход газа *-2 л/мин
    Максимальный ограничиваемый потребляемый ток *- 25 А
    Диапазон автоматического регулирования потребляемой мощности и выхода газа — 10 … 100%
    Рабочая частота модулятора- 0,5 … 3 КГц
    Диапазон автоматического регулирования потребляемой мощности при превышении максимальной рабочей температуры- 0 … 100%
    Диапазон автоматического регулирования потребляемой мощности при превышении максимальной рабочей температуры электролизёра- 0 …. 100%
    Максимальная рабочая ограничиваемая температура электролизёра- 80 оС
    Защита от короткого замыкания в электролизере- есть (50 или 90А)
    Плавный пуск- 10 секунд
    Стабилизация тока электролизёра- есть

    * – Параметры устанавливается при настройке в зависимости от типа двигателя

    Генератор газа Брауна ЭХО-450

    1. Применение: генератор водорода (HHO генератор), пригодных для автомобилей с двигателями до 2000 куб
    2. Рабочее напряжение: 12 В — 14 В
    3. Потребляемая мощность: 20 — 40 А
    4. Добыча газа Браун: 72-90 литров в час.
    5. Экономия топлива: 15% — 30%
    6. Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).

    Генератор газа Брауна ЭХО-750

    1. Применение: генератор водорода (HHO генератор), пригодных для автомобилей с двигателями от 2000 до 3000 куб.см
    2. Рабочее напряжение: 12 В — 14 В
    3. Потребляемая мощность: 20 — 40 А
    4. Добыча газа Браун: 90-120 литров в час.
    5. Экономия топлива: 15% — 30%
    6. Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).

    Генератор газа Брауна ЭХО-1000

    1. Применение: генератор водорода (HHO генератор), пригодных для автомобилей с двигателями более 3000 куб.см
    2. Рабочее напряжение: 12 В — 14 В
    3. Потребляемая мощность: 20 — 40A
    4. Добыча газа в Браун: 120-200 литров в час.
    5. Экономия топлива: 15% — 30%
    6. Замораживание электролитом: -25 градусов по Цельсию
    7. Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).

    HHOгенератор HC12V-PRO-4E

    1. HHO генератор HC12V-PRO-4E является универсальным — для автомобилей с 1000 до 4000 куб.
    2. Подходит для автомобилей, микроавтобусов, грузовых автомобилей, сельскохозяйственной и строительной техники
    3. Исключительная электрическая эффективность водородной ячейки.
    4. Высокая надежность и долговечность — для транспортных средств, проходящих более 200 километров в день в городах и вне городов.
    5. Генератор Газа Брауна управляется очень точным „Процессорнным контролером с PWM”.
    6. Ток которой потребляет водородная ячейка регулируется в зависимости от оборотов автомобиля.
    7. Защита от перегрузки генератора тока – вьключает водородную ячейку, если одновременно работают многиеэлектрические приборы в автомобиле.
    8. Водородный генератор включается после запуска двигателя и достиженияоборотов, при которых начинаетсязарядка аккумулятора.
    9. Тепловая защита на двух уровнях — первое включение принудительного охлаждения электроники при перегрев,второе полное отключение водородную ячейку при перегрева.
    10. Продления срока службы генератора HHO по крайней мере в три раза благодаря работе процесса управления.
    11. Автоматический долив воды в генератор водорода для автомобилей с большими двигателями (бак загружается только один раз в 3000 км).
    12. Во время работы, поддерживать низкой концентрации электролита и, следовательно, продливает жизнь водородной ячейки.

    Это наш Процессорнный контролер PWM.Он будетуправлять работой водородной ячейки. Положительный полюс кконтроллеру прервается черезреле, которое замыкает сеть только тогда, когда двигатель работает. Процессорнныйконтролер PWM контролирует обороты двигателя и в зависимость от оборотов подаетса различный по величине ток кводородной ячейке и таким образом регулирует производство газа Брауна и разгружает генератор тока.На холостых потребляетса ток 5-8А а при увеличение оборотов примерно 2000 об. Подается ток 20А к водородной ячейке.

    Это самой нижний класс из професионалной серии генераторы водорода.Он предназначен для автомобилей,микроавтобусов и небольших грузовиков с двигателями до 4000 куб. Для больших двигателей предлагаем комплект, который может питать двигатель с более чем 20000 литров.

    Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).


    % PDF-1.5 % 1 0 объект / MarkInfo> / Метаданные 2 0 R / PageLayout / OneColumn / Страницы 3 0 R / StructTreeRoot 4 0 R / Тип / Каталог >> эндобдж 5 0 obj > эндобдж 2 0 obj > транслировать 2016-01-18T09: 31: 39Z2016-01-18T09: 31: 30Z2016-01-18T09: 31: 39ZAcrobat PDFMaker 11 для Worduuid: e2f6e600-2642-439d-b8df-8fb324e3363auuid: e9d06c1f-3ef703-493f 2 application / pdf

  • Студент-исследователь / Найджел Монк
  • Библиотека Adobe PDF 11.0D: 20160118093117 Университет Лафборо конечный поток эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > / Шрифт> / XObject> >> / Повернуть 0 / StructParents 0 / Вкладки / S / Тип / Страница / Аннотации [221 0 R] >> эндобдж 12 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 1 / Вкладки / S / Тип / Страница >> эндобдж 13 0 объект > / ExtGState> / Шрифт> / XObject> >> / Повернуть 0 / StructParents 2 / Вкладки / S / Тип / Страница >> эндобдж 14 0 объект > / ExtGState> / Шрифт> / XObject> >> / Повернуть 0 / StructParents 3 / Вкладки / S / Тип / Страница >> эндобдж 15 0 объект > / ExtGState> / Шрифт> / XObject> >> / Повернуть 0 / StructParents 4 / Вкладки / S / Тип / Страница >> эндобдж 16 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 5 / Вкладки / S / Тип / Страница >> эндобдж 17 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 6 / Вкладки / S / Тип / Страница >> эндобдж 18 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 7 / Вкладки / S / Тип / Страница >> эндобдж 19 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 8 / Вкладки / S / Тип / Страница >> эндобдж 20 0 объект > / ExtGState> / Шрифт> / XObject> >> / Повернуть 0 / StructParents 9 / Вкладки / S / Тип / Страница >> эндобдж 21 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 10 / Вкладки / S / Тип / Страница >> эндобдж 22 0 объект > / ExtGState> / Шрифт> / XObject> >> / Повернуть 0 / StructParents 11 / Вкладки / S / Тип / Страница >> эндобдж 23 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 12 / Вкладки / S / Тип / Страница >> эндобдж 24 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 13 / Вкладки / S / Тип / Страница >> эндобдж 25 0 объект > / Шрифт> >> / Повернуть 0 / StructParents 14 / Вкладки / S / Тип / Страница >> эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > эндобдж 40 0 объект > эндобдж 41 0 объект > эндобдж 42 0 объект > эндобдж 43 0 объект > эндобдж 44 0 объект > эндобдж 45 0 объект > эндобдж 46 0 объект > эндобдж 47 0 объект > эндобдж 48 0 объект > эндобдж 49 0 объект > эндобдж 50 0 объект > эндобдж 51 0 объект > эндобдж 52 0 объект > эндобдж 53 0 объект > эндобдж 54 0 объект > эндобдж 55 0 объект > эндобдж 56 0 объект > эндобдж 57 0 объект > эндобдж 58 0 объект > эндобдж 59 0 объект > эндобдж 60 0 объект > эндобдж 61 0 объект > эндобдж 62 0 объект > эндобдж 63 0 объект > эндобдж 64 0 объект > эндобдж 65 0 объект > эндобдж 66 0 объект > эндобдж 67 0 объект > эндобдж 68 0 объект > эндобдж 69 0 объект > эндобдж 70 0 объект > эндобдж 71 0 объект > эндобдж 72 0 объект > эндобдж 73 0 объект > эндобдж 74 0 объект > эндобдж 75 0 объект > эндобдж 76 0 объект > эндобдж 77 0 объект > эндобдж 78 0 объект > эндобдж 79 0 объект > эндобдж 80 0 объект > эндобдж 81 0 объект > эндобдж 82 0 объект > эндобдж 83 0 объект > эндобдж 84 0 объект > эндобдж 85 0 объект > эндобдж 86 0 объект > эндобдж 87 0 объект > эндобдж 88 0 объект > эндобдж 89 0 объект > эндобдж 90 0 объект > эндобдж 91 0 объект > эндобдж 92 0 объект > эндобдж 93 0 объект > эндобдж 94 0 объект > эндобдж 95 0 объект > эндобдж 96 0 объект > эндобдж 97 0 объект > эндобдж 98 0 объект > эндобдж 99 0 объект > эндобдж 100 0 объект > эндобдж 101 0 объект > эндобдж 102 0 объект > эндобдж 103 0 объект > эндобдж 104 0 объект > эндобдж 105 0 объект > эндобдж 106 0 объект > эндобдж 107 0 объект > эндобдж 108 0 объект > эндобдж 109 0 объект > эндобдж 110 0 объект > эндобдж 111 0 объект > эндобдж 112 0 объект > эндобдж 113 0 объект > эндобдж 114 0 объект > эндобдж 115 0 объект > эндобдж 116 0 объект > эндобдж 117 0 объект > эндобдж 118 0 объект > эндобдж 119 0 объект > эндобдж 120 0 объект > эндобдж 121 0 объект > эндобдж 122 0 объект > эндобдж 123 0 объект > эндобдж 124 0 объект > эндобдж 125 0 объект > эндобдж 126 0 объект > эндобдж 127 0 объект > эндобдж 128 0 объект > эндобдж 129 0 объект > эндобдж 130 0 объект > эндобдж 131 0 объект > эндобдж 132 0 объект > эндобдж 133 0 объект > эндобдж 134 0 объект > эндобдж 135 0 объект > эндобдж 136 0 объект > эндобдж 137 0 объект > эндобдж 138 0 объект > эндобдж 139 0 объект > эндобдж 140 0 объект > эндобдж 141 0 объект > эндобдж 142 0 объект > эндобдж 143 0 объект > эндобдж 144 0 объект > эндобдж 145 0 объект > эндобдж 146 0 объект > эндобдж 147 0 объект > эндобдж 148 0 объект > эндобдж 149 0 объект > эндобдж 150 0 объект > эндобдж 151 0 объект > эндобдж 152 0 объект > эндобдж 153 0 объект > эндобдж 154 0 объект > эндобдж 155 0 объект > эндобдж 156 0 объект > эндобдж 157 0 объект > эндобдж 158 0 объект > эндобдж 159 0 объект > эндобдж 160 0 объект > эндобдж 161 0 объект > эндобдж 162 0 объект > эндобдж 163 0 объект > эндобдж 164 0 объект > эндобдж 165 0 объект > эндобдж 166 0 объект > эндобдж 167 0 объект > эндобдж 168 0 объект > эндобдж 169 0 объект > эндобдж 170 0 объект > эндобдж 171 0 объект > эндобдж 172 0 объект > эндобдж 173 0 объект > эндобдж 174 0 объект > эндобдж 175 0 объект > эндобдж 176 0 объект > эндобдж 177 0 объект > эндобдж 178 0 объект > эндобдж 179 0 объект > эндобдж 180 0 объект > эндобдж 181 0 объект > эндобдж 182 0 объект > эндобдж 183 0 объект > эндобдж 184 0 объект > эндобдж 185 0 объект > эндобдж 186 0 объект > эндобдж 187 0 объект > эндобдж 188 0 объект > эндобдж 189 0 объект > эндобдж 190 0 объект > эндобдж 191 0 объект > эндобдж 192 0 объект > эндобдж 193 0 объект > эндобдж 194 0 объект > эндобдж 195 0 объект > эндобдж 196 0 объект > эндобдж 197 0 объект > эндобдж 198 0 объект > эндобдж 199 0 объект > эндобдж 200 0 объект / К 9 / П 132 0 R / Стр. K

    Какой самый простой способ сгенерировать ШИМ без микроконтроллера?

    Треугольник волна.Компаратор. Порог контроля. Это основной способ сделать это.

    Однако, если вы хотите управлять сервоприводом для хобби, это не лучший способ. Рабочий цикл варьируется от 5% до 10% (ширина импульса от 1 мс до 2 мс за период 20 мс), что является коротким, и, скорее всего, вы захотите контролировать его с некоторой точностью. В треугольнике 5V \ $ _ {PP} \ $ вы должны изменять порог компаратора в диапазоне от 4,5 до 4,75 В. Любое отклонение, и вы не сможете управлять сервоприводом во всем его диапазоне. Это требует точных компонентов.Кроме того, для генератора треугольных сигналов нужны 2 операционных усилителя, а также компаратор … Есть способ получше.

    Сначала сгенерируйте прямоугольную волну 50 Гц. Самый простой способ:

    Для 74HC1G14 резистор 250к \ $ \ Omega \ $ и конденсатор 100 нФ дадут вам период 20 мс.

    Подайте прямоугольный сигнал в MMV (моностабильный мультивибратор). Вы можете сделать это с помощью LM555 или использовать логическое устройство, такое как 74HC123A. Если вы используете последний, время импульса определяется \ $ R_ {EXT} \ $ и \ $ C_ {EXT} \ $:

    \ $ T = R_ {EXT} \ times C_ {EXT} \ $

    Время в \ $ \ mu \ $ s, R в k \ $ \ Omega \ $ и C в nF.

    Чтобы получить длительность импульса от 1 мс до 2 мс, вы используете C = 100 нФ и R = 10k \ $ \ Omega \ $ последовательно с потенциометром 10k \ $ \ Omega \ $.

    Я мог бы сделать это с двумя LM555, но мне нужно больше внешних компонентов.

    редактировать (о микроконтроллерах)
    Я согласен с Олином (см. Комментарии), что исключение микроконтроллера недальновидно (Олин сказал «глупо»). Было время, когда разработка микроконтроллера была сложной, но сегодня это уже не так.Вы также можете получить интерфейс программирования за несколько евро. Тогда решение будет выглядеть настолько простым, что никакое неконтроллерное решение не сможет с ним конкурировать: вы берете ATTiny5 (Олин берет PIC10F220) в SOT23-6. Подключите развязывающий конденсатор к разъемам питания, а потенциометр — ко входу АЦП. Вот и все! 3 (три) компонента. Преобразовать показания АЦП в выходной сигнал ширины импульса настолько просто, что это почти нелепо даже для начинающего программиста.

    Как только вы начнете работать с ними, вы обнаружите, что микроконтроллеры часто предлагают более простое и гибкое решение, чем с другими ИС или дискретными компонентами.

    примечание
    Из вашего другого вопроса я вижу, что вы или используете микроконтроллеры. Почему вы хотите избежать их здесь?

    6.9: ШИМ-контроллер мощности — Workforce LibreTexts

    ДЕТАЛИ И МАТЕРИАЛЫ

    • Четыре батареи по 6 В
    • Один конденсатор, электролитический 100 мкФ, 35 Вт постоянного тока (каталог Radio Shack № 272-1028 или аналог)
    • Один конденсатор, 0,1 мкФ, неполяризованный (каталог Radio Shack № 272-135)
    • Одна микросхема таймера 555 (каталожный номер Radio Shack 276-1723)
    • Двойной операционный усилитель, рекомендуется модель 1458 (каталожный номер Radio Shack 276-038)
    • Один силовой транзистор NPN — (каталог Radio Shack № 276-2041 или аналог)
    • Три выпрямительных диода 1N4001 (каталожный номер Radio Shack 276-1101)
    • Один потенциометр 10 кОм, линейный конус (каталог Radio Shack № 271-1715)
    • Один резистор 33 кОм
    • Автомобильный задний фонарь на 12 В
    • Детектор звука с наушниками

    ПЕРЕКРЕСТНЫЕ ССЫЛКИ

    Уроки электрических цепей , том 3, глава 8: «Операционные усилители»

    Уроки электрических цепей , том 2, глава 7: «Сигналы переменного тока смешанной частоты»

    ЦЕЛИ ОБУЧЕНИЯ

    • Как использовать таймер 555 как нестабильный мультивибратор
    • Как использовать операционный усилитель в качестве компаратора
    • Как использовать диоды для падения нежелательного постоянного напряжения
    • Как управлять мощностью нагрузки с помощью широтно-импульсной модуляции

    СХЕМА


    ИЛЛЮСТРАЦИЯ


    ИНСТРУКЦИИ

    В этой схеме используется таймер 555 для генерации пилообразного напряжения на конденсаторе, а затем этот сигнал сравнивается с постоянным напряжением, обеспечиваемым потенциометром, используя операционный усилитель в качестве компаратора.Сравнение этих двух сигналов напряжения дает прямоугольный сигнал на выходе операционного усилителя, рабочий цикл которого изменяется в зависимости от положения потенциометра. Этот сигнал переменного рабочего цикла затем управляет базой силового транзистора, включая и выключая ток через нагрузку. Частота колебаний 555 намного выше, чем способность нити накала лампы к термическому циклу (нагрев и охлаждение), поэтому любое изменение рабочего цикла или ширины импульса влияет на управление общей мощностью, рассеиваемой нагрузкой с течением времени.


    Управление электрической мощностью через нагрузку посредством ее быстрого включения и выключения и изменения времени включения известно как широтно-импульсная модуляция или PWM . Это очень эффективное средство управления электрической мощностью, поскольку управляющий элемент (силовой транзистор) рассеивает сравнительно небольшую мощность при включении и выключении, особенно по сравнению с потерянной мощностью, рассеиваемой реостатом в аналогичной ситуации. Когда транзистор находится в состоянии отсечки, его рассеиваемая мощность равна нулю, потому что через него нет тока.Когда транзистор насыщен, его рассеивание очень мало, потому что между коллектором и эмиттером падает небольшое напряжение, пока он проводит ток.

    PWM — это концепция, которую легче понять путем экспериментов, чем чтения. Было бы неплохо просматривать напряжение конденсатора, напряжение потенциометра и формы выходных сигналов операционного усилителя на одном (трехканальном) осциллографе, чтобы увидеть, как они соотносятся друг с другом и с мощностью нагрузки. Однако у большинства из нас нет доступа к осциллографу с тремя трассами, а тем более к любому осциллографу вообще, поэтому альтернативный метод — замедлить генератор 555 настолько, чтобы эти три напряжения можно было сравнить с простым вольтметром постоянного тока.Замените конденсатор 0,1 мкФ на конденсатор емкостью 100 мкФ или больше. Это замедлит частоту колебаний как минимум в тысячу раз, что позволит вам измерить напряжение конденсатора , медленно нарастающее со временем , и переход выходного сигнала операционного усилителя с «высокого» на «низкий», когда напряжение конденсатора становится равным. больше, чем напряжение потенциометра. При такой низкой частоте колебаний мощность нагрузки не будет пропорциональна, как раньше. Вместо этого лампа будет включаться и выключаться через определенные промежутки времени.Не стесняйтесь экспериментировать с конденсаторами или резисторами других номиналов, чтобы ускорить колебания настолько, чтобы лампа никогда не включалась и не выключалась полностью, а «дросселировалась» за счет быстрых импульсов включения и выключения транзистора.

    Когда вы изучите схему, вы заметите два операционных усилителя , подключенных параллельно. Это сделано для обеспечения максимального выходного тока на базовом выводе силового транзистора. Один операционный усилитель (половина микросхемы 1458 IC) может быть не в состоянии обеспечить достаточный выходной ток, чтобы довести транзистор до насыщения, поэтому два операционных усилителя используются в тандеме.Это следует делать только в том случае, если операционные усилители, о которых идет речь, защищены от перегрузки, как это делают операционные усилители серии 1458. В противном случае возможно (хотя и маловероятно), что один операционный усилитель может включиться раньше другого, и повреждение возникнет в результате короткого замыкания двух выходов (один управляет «высоким», а другой — «низким» одновременно). Встроенная защита от короткого замыкания, предлагаемая 1458, позволяет напрямую управлять базой силового транзистора без необходимости в токоограничивающем резисторе.

    Три последовательно соединенных диода, соединяющие выходы операционных усилителей с базой транзистора, предназначены для падения напряжения и обеспечения отключения транзистора, когда выходы операционных усилителей становятся «низкими». Поскольку операционный усилитель 1458 не может полностью переключать свое выходное напряжение до потенциала земли, а только с точностью до 2 В от земли, прямое соединение операционного усилителя с транзистором означало бы, что транзистор никогда не отключится полностью. При добавлении трех последовательно соединенных кремниевых диодов уменьшается примерно 2.1 В (0,7 В умножить на 3), чтобы обеспечить минимальное напряжение на базе транзистора, когда выходы операционного усилителя становятся «низкими».

    Интересно послушать выходной сигнал операционного усилителя через аудиодетектор, поскольку потенциометр регулируется во всем диапазоне его движения. Регулировка потенциометра не влияет на частоту сигнала, но сильно влияет на рабочий цикл. Обратите внимание на разницу в качестве тона или тембра , поскольку потенциометр изменяет рабочий цикл от 0% до 50% до 100%.Изменение рабочего цикла приводит к изменению гармонического содержания формы волны, что делает звучание тона другим.

    Вы можете заметить особую уникальность звука, слышимого через наушники-детектор, когда потенциометр находится в центральном положении (рабочий цикл 50% — мощность нагрузки 50%), по сравнению с подобием звука чуть выше или ниже 50% рабочего цикла. . Это связано с отсутствием или наличием четных гармоник. Любая форма сигнала, которая является симметричной выше и ниже ее центральной линии, например прямоугольная волна с коэффициентом заполнения 50%, не содержит четных гармоник, а только нечетных.Если рабочий цикл ниже или выше 50%, форма сигнала , а не будет демонстрировать эту симметрию, и будут гармоники с четными номерами. Присутствие этих четных гармонических частот может быть обнаружено человеческим ухом, поскольку некоторые из них соответствуют октавам основной частоты и, таким образом, более естественно «вписываются» в тональную схему.

    ШИМ HHO

    PWM HHO означает широтно-импульсный модулятор (или широтно-импульсную модуляцию)

    Что такое ШИМ HHO?

    ШИМ — это относительно недавний метод, который стал применяться в последних электронных переключателях питания.Модуляторы ширины импульса занимаются большим разнообразием приложений, от измерения и связи до управления мощностью и преобразованием.

    Широтно-импульсный модулятор работает, передавая данные в виде серии импульсов. Передаваемая информация кодируется по ширине этих импульсы для управления мощностью, передаваемой на нагрузку.

    Они работают, переключая напряжение на нагрузку с соответствующим рабочим циклом; выход будет поддерживать напряжение на желаемом уровне.Настоящий ШИМ — это электронный переключатель, который включается и выключается с чрезвычайно высокой скоростью, изменяя процент времени включения и времени выключения.

    На нагрузке он кажется гладким, потому что он такой быстрый, как наше зрение едва может уловить мерцание люминесцентной лампы, даже если он полностью выключается и снова включается 120 раз в секунду. Рабочий цикл ШИМ — это процент времени включения и выключения.

    Преимущества ШИМ для генераторов водорода

    У вашего электролизера (или генератора водорода) есть несколько преимуществ при использовании ШИМ для HHO.Неважно, насколько эффективен ваш генератор HHO, все они нагреваются, чем дольше работают. Если бы вы запустили двигатель в течение 8 часов подряд, к концу за восемь часов ваш генератор, вероятно, будет в три раза теплее, чем когда вы его запустили.

    Обеспечение охлаждения системы HHO является главным приоритетом. Если вы этого не сделаете, у вас начнутся проблемы с массивом.

    ШИМ будет поддерживать ваш средний ток на уровне, позволяя вашей системе HHO работать прохладно и плавно.

    Вы также сможете получить газообразный водород «Орто» с помощью качественного ШИМ и электролизера. Газ Орто HHO примерно в 3-4 раза больше более горючий, чем параводород. Это намного лучшее качество газа HHO, поскольку он обеспечивает повышение эффективности сгорания.

    Все становится плохо, когда качество усилителя настолько низкое, что энергия, необходимая для производства hho газа превышает количество полученного КПД, и / или страдает процентное содержание орто-водородного газа.Наши PWM HHO сделаны из качественных деталей и поставляются с очень простыми инструкциями по установке со схемами.


    Ниже приведены видеоролики, демонстрирующие, насколько легко работают наши ЖК-дисплеи с ШИМ.


    Функция постоянного тока ШИМ


    ШИМ с измерением напряжения


    Регулировка частоты ШИМ


    Ввод кодов — широтно-импульсный модулятор

    Пожалуйста, не пытайтесь менять коды, если вы не обратились в службу технической поддержки.


    DIY самодельный контроллер импульсов мощности

    В этом устройстве используется встроенная схема генератора сигналов с широтно-импульсной модуляцией для запуска силового полевого МОП-транзистора.

    Схема отлично подходит для управления мощностью, подаваемой на такие устройства, как вентилятор, светодиоды или даже трансформаторы и катушки. Регулируя ширину импульса, вы можете легко управлять скоростью вентилятора без ущерба для крутящего момента.

    Используемый транзистор не критичен, но обычно следует использовать что-то с номинальными значениями напряжения и тока, подходящими для вашего приложения. У нас есть ряд доступных MOSFET и IGBT. Схема будет работать от источника постоянного тока 6–12 В, а выход может быть выполнен в виде «открытого коллектора» для переключения более высокого напряжения.

    Не хотите собрать эту схему DIY PWM самостоятельно? Ознакомьтесь с нашим ассортиментом передовых генераторов импульсов

    На этой принципиальной схеме для простоты показана нагрузка (катушка, двигатель и т. Д.), Подключенная к тому же источнику питания, что и остальная часть схемы.Если вам нужно переключить более высокое напряжение, положительный разъем нагрузки можно просто подключить к внешнему источнику питания.

    Если цепь будет использоваться с индуктивными нагрузками, к нагрузке следует подключить небольшой конденсатор. Они часто уже установлены на небольших двигателях постоянного тока. Дополнительный компонент, такой как варистор или «диод свободного хода», также рекомендуется, если генератор импульсов управляет высоковольтными трансформаторами обратного хода, такими как катушки зажигания.

    Два потенциометра VR1 и VR2 используются для управления частотой и рабочим циклом выхода.VR1 регулирует скорость, с которой C1 заряжается для изменения частоты, в то время как VR2 действует как делитель потенциала, позволяя подавать определенное напряжение на инвертирующий вход IC2. Это напряжение используется для управления шириной импульса на выходе. Выходной рабочий цикл или ширина импульса устройства также могут контролироваться внешним напряжением, например микроконтроллерами или аналоговым сигналом. Источник аналогового напряжения можно просто подключить к инвертирующему входу вместо выхода VR2.

    Характеристики и характеристики

    • Вход от 9 до 15 В, 10 А
    • Выходная мощность — от 9 до 15 В постоянного тока, прямоугольная форма
    • Выход с открытым коллектором позволяет использовать отдельный источник напряжения для импульсов.
    • Независимое управление частотой и шириной импульса / скважностью
    • Частота регулируется в диапазоне от 0 Гц до 125 кГц (C1 необходимо изменить для полного диапазона)
    • Ширина импульса полностью регулируется от 0% до 100%

    У нас есть несколько таких генераторов импульсов, предназначенных для использования с трансформаторами высокого напряжения, которые доступны на странице киберсхем. Они высокого качества, готовые к монтажу на печатной плате, включая большой радиатор и вентилятор, защиту от перегрузки и противоэдс.индуктивная защита. Эти устройства довольно эластичны и идеально подходят для любителей и экспериментов из-за широкого спектра потенциальных применений и долговечности для работы с различными грузами. Если у вас есть случайные трансформаторы или вы делаете свои собственные катушки, эти импульсные модуляторы мощности идеально подходят для тестирования и управления ими.

    Не хочешь собрать самому? Ознакомьтесь с нашими передовыми схемами импульсного управления. Купите наш замечательный PWM-OCXI прямо сейчас!

    Как сгенерировать ШИМ с использованием таймера 555 IC

    Что такое ШИМ?

    ШИМ (широтно-импульсная модуляция) — важная особенность каждого современного микроконтроллера из-за его потребности в управлении многими устройствами почти во всех областях электроники. PWM широко используется для управления двигателем, освещением и т. Д. Иногда нам не требуется микроконтроллер в наших приложениях, и если нам нужно сгенерировать PWM без микроконтроллера, мы предпочитаем некоторые микросхемы общего назначения, такие как операционные усилители, таймеры. , генераторы импульсов и т. д. Итак, в этом руководстве мы собираемся создать «Цепь генерации ШИМ с использованием прецизионного таймера 555 IC »

    Ядром этой схемы является ИС прецизионного таймера NE555. ИС имеет частоту колебаний от 670 до 680 Гц.Здесь этот таймер NE555 работает в режиме нестабильного мультивибратора. Астабильный мультивибратор — это автономный генератор, который непрерывно переключается между двумя своими нестабильными состояниями. При отсутствии внешнего сигнала транзисторы попеременно переключаются из состояния отсечки в состояние насыщения с частотой, которую определяют постоянные времени RC цепи связи. Если эти постоянные времени равны (R и C равны), то прямоугольная волна будет генерироваться с частотой 1 / 1,4 RxC. Следовательно, нестабильный мультивибратор также является генератором импульсов или генератором прямоугольных импульсов, что полностью соответствует требованиям широтно-импульсной модуляции (ШИМ).

    Компоненты оборудования

    [inaritcle_1]
    555 Распиновка таймера

    Цепь генератора ШИМ

    Рабочее пояснение

    Нестабильное устройство таймера 555 создает прямоугольную волну с максимальным и минимальным временем. Соотношение этих времен можно изменять, изменяя R1, R2 и C1. Здесь, в этой схеме, мы контролируем выходную частоту сигнала ШИМ с помощью потенциометра 10 кОм и конденсатора 100 нФ.

    Здесь мы использовали потенциометр 10 кОм вместо постоянного резистора, чтобы изменить рабочий цикл выходного сигнала. C1 Конденсатор (100 нФ), заряжающийся через диод D1 и разряд через диод D2 , будет генерировать сигнал ШИМ на выходном контакте таймера 555.

    Приложения

    • ШИМ используется в телекоммуникациях для кодирования.
    • Он также используется для таких приложений, как управление двигателями постоянного тока, клапанами, насосами, гидравликой и другими механическими деталями.
    • Системные платы компьютеров требуют сигналов ШИМ, которые контролируют тепло, выделяемое на плате. В вентилятор встроен 4-контактный разъем PWM, который помогает отводить тепло от материнской платы.

    Как сгенерировать ШИМ с помощью IC 555 (изучено 2 метода)

    IC 555 — чрезвычайно полезное и универсальное устройство, которое можно применять для настройки многих полезных схем в области электроники. Одна очень полезная особенность этой ИС — ее способность генерировать импульсы ШИМ, размеры которых можно изменять или обрабатывать в соответствии с потребностями приложения или схемы.Что такое ШИМ?

    В основном ШИМ используется для определения размеров или подстройки выходного напряжения или мощности конкретной нагрузки в соответствии с индивидуальными требованиями или требованиями приложения.

    Это цифровой способ управления мощностью, который более эффективен, чем аналоговые или линейные методы.
    Существует множество примеров, иллюстрирующих эффективное использование ШИМ для управления заданными параметрами.

    Используется для управления скоростью двигателей постоянного тока, в инверторах для управления среднеквадратичным значением выходного переменного тока или для создания модифицированных выходных синусоидальных сигналов.

    Его также можно увидеть в источниках питания SMPS для точного регулирования выходного напряжения.
    Он также применяется в схемах драйверов светодиодов для включения функции затемнения светодиодов.

    Он широко используется в топологиях понижающего / повышающего напряжения для получения повышенных или пониженных напряжений без использования громоздких трансформаторов.

    Таким образом, в основном его можно использовать для настройки выходного параметра в соответствии с нашими собственными предпочтениями.

    Означает ли это, что при таком большом количестве интересных вариантов применения этот метод может быть слишком сложным или дорогостоящим в настройке?

    Ответ однозначно нет. Фактически, это может быть очень просто реализовано с использованием одной микросхемы LM555.

    Существует два основных способа использования IC 555 для генерации выходного сигнала широтно-импульсной модуляции. В первом методе используется только одна микросхема IC 555 и несколько связанных частей, таких как диоды, потенциометр и конденсатор.Второй метод заключается в использовании стандартной моностабильной конфигурации IC 555 и использовании внешнего сигнала модуляции.

    IC 555 PWM с использованием диодов

    Первый метод является наиболее простым и эффективным, в котором используется конфигурация, показанная ниже:

    Видео демонстрация

    Работа двух диодных схем IC 555 PWM довольно просто. Фактически, это стандартный нестабильный мультивибратор, за исключением независимого управления периодом включения / выключения выхода.

    Как мы знаем, время включения схемы ШИМ IC 555 определяется временем, которое требуется ее конденсатору для зарядки на уровне 2/3 напряжения постоянного тока через резистор на выводе № 7, а время выключения определяется временем разряда конденсатора. конденсатор ниже 1/3 Vcc через сам вывод №7.

    В приведенной выше простой схеме ШИМ эти два параметра могут быть независимо установлены или зафиксированы с помощью потенциометра и пары бифуркационных диодов.

    Левосторонний диод, катод которого подключен к выводу № 7, разделяет время выключения, в то время как правый диод, анод которого подключен к выводу № 7, разделяет время включения выхода ИС.

    Когда рычаг ползунка потенциометра находится ближе к левому диоду, это вызывает уменьшение времени разряда из-за более низкого сопротивления на пути разряда конденсатора. Это приводит к увеличению времени включения и уменьшению времени выключения IC PWM.

    И наоборот, когда ползунок потенциометра находится ближе к правому диоду, это вызывает уменьшение времени включения из-за снижения сопротивления потенциометра на пути зарядки конденсатора. Это приводит к увеличению периода выключения и уменьшению периодов включения выходных ШИМ ИС.

    2) IC 555 PWM с использованием внешней модуляции

    Второй метод немного сложнее, чем описанный выше, и требует внешнего переменного постоянного тока на выводе № 5 (управляющий вход) IC для реализации пропорционально изменяющейся ширины импульса на выходе IC. .

    Давайте изучим следующую простую конфигурацию схемы:

    Распиновка IC 555

    На схеме показана схема IC 555, подключенная к простому моностабильному режиму мультивибратора. Мы знаем, что в этом режиме ИС может генерировать положительный импульс на выводе №3 в ответ на каждый отрицательный сигнал запуска на выводе №2.

    Импульс на выводе №3 сохраняется в течение некоторого заданного периода времени в зависимости от значений Ra и C. Мы также можем видеть, что выводы №2 и №5 назначены как входы синхронизации и модуляции соответственно.

    Выходной сигнал берется с обычного контакта №3 микросхемы.

    В приведенной выше простой конфигурации IC 555 полностью настроен для генерации требуемых импульсов ШИМ, ему просто требуется прямоугольный импульс или тактовый вход на его выводе № 2, который определяет выходную частоту, и переменный вход напряжения на выводе # 5, амплитуда или уровень напряжения которого определяют ширину импульса на выходе.

    Импульсы на выводе №2 генерируют соответственно чередующиеся треугольные волны на выводе №6 / 7 ИС, ширина которых определяется компонентами синхронизации RA и C.

    Эта треугольная волна сравнивается с мгновенной мерой напряжения, приложенного к выводу № 5, для измерения импульсов ШИМ на выходе вывода № 3.

    Проще говоря, нам просто нужно подать последовательность импульсов на вывод №2 и переменное напряжение на выводе №5 для достижения требуемых импульсов ШИМ на выводе №3 ИС.

    Амплитуда напряжения на выводе № 5 будет непосредственно отвечать за усиление или ослабление выходных импульсов ШИМ, или просто толще или тоньше.

    Напряжение модуляции может быть сигналом очень слабого тока, но оно даст желаемые результаты.

    Например, предположим, что мы подаем прямоугольный сигнал частотой 50 Гц на вывод № 2 и постоянное напряжение 12 В на вывод № 5, результат на выходе будет показывать ШИМ со среднеквадратичным значением 12 В и частотой 50 Гц.

    Для уменьшения среднеквадратичного значения нам просто нужно понизить напряжение на выводе №5. Если мы изменим его, результатом будет переменная ШИМ с различными значениями RMS.

    Если это изменяющееся среднеквадратичное значение применяется к каскаду драйвера МОП-транзистора на выходе, любая нагрузка, поддерживаемая МОП-транзистором, также будет реагировать с соответствующим изменением высоких и низких результатов.

    Если двигатель подключен к МОП-транзистору, он будет реагировать с различной скоростью, лампа с различной интенсивностью света, а инвертор с модифицированными эквивалентами синусоидальной волны.

    Форма выходного сигнала

    Вышеупомянутое обсуждение можно увидеть и проверить на приведенной ниже иллюстрации формы сигнала:

    Самая верхняя форма волны представляет собой напряжение модуляции на выводе № 5, выпуклость в форме волны представляет возрастающее напряжение и наоборот.

    Вторая форма волны представляет собой равномерный тактовый импульс, приложенный к выводу №2.Это просто для того, чтобы позволить ИС переключаться на определенной частоте, без которой ИС не смогла бы работать как устройство генератора ШИМ.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *