Генератор водорода для отопления своими руками
Давно уже прошли те времена, когда загородный дом можно было обогреть лишь одним способом — сжигая в печке дрова или уголь. Современные отопительные приборы используют различные виды топлива и при этом автоматически поддерживают комфортную температуру в наших жилищах. Природный газ, дизель или мазут, электричество, гелио- и геотермальное тепло — вот неполный список альтернативных вариантов. Казалось бы — живи и радуйся, да вот только постоянный рост цен на топливо и оборудование вынуждает продолжать поиски дешёвых способов отопления. А вместе с тем неиссякаемый источник энергии — водород, буквально лежит у нас под ногами. И сегодня мы поговорим о том, как использовать в качестве горючего обычную воду, собрав генератор водорода своими руками.
Устройство и принцип работы генератора водорода
Заводской генератор водорода представляет собой внушительный агрегат
Использовать водород в качестве топлива для обогрева загородного дома выгодно не только по причине высокой теплотворной способности, но и потому, что в процессе его сжигания не выделяется вредных веществ.
Схема работы лабораторного электролизёра
Этот способ получения летучего газа заключается в том, что в воду на небольшом расстоянии друг от друга помещаются две металлические пластины, подключённые к источнику высокого напряжения. При подаче питания высокий электрический потенциал буквально разрывает молекулу воды на составляющие, высвобождая два атома водорода (HH) и один — кислорода (O). Выделяющийся газ назвали в честь физика Ю. Брауна. Его формула — HHO, а теплотворная способность — 121 МДж/кг. Газ Брауна горит открытым пламенем и не образует никаких вредных веществ. Главное достоинство этого вещества в том, что для его использования подойдёт обычный котёл, работающий на пропане или метане. Заметим только, что водород в соединении с кислородом образует гремучую смесь, поэтому потребуются дополнительные меры предосторожности.
Схема установки для получения газа Брауна
Генератор, предназначенный для получения газа Брауна в больших количествах, содержит несколько ячеек, каждая из которых вмещает в себя множество пар пластин-электродов. Они установлены в герметичной ёмкости, которая оборудована выходным патрубком для газа, клеммами для подключения питания и горловиной для заливки воды. Кроме того, установка оборудуется защитным клапаном и водяным затвором.
Водородная топливная ячейка Стенли Мейера
Выход из сложившейся ситуации нашёл американский учёный Стенли Мейер. Его установка использовала не мощный электрический потенциал, а токи определённой частоты. Изобретение великого физика состояло в том, что молекула воды раскачивалась в такт изменяющимся электрическим импульсам и входила в резонанс, который достигал силы, достаточной для её расщепления на составляющие атомы. Для такого воздействия требовались в десятки раз меньшие токи, чем при работе привычной электролизной машины.
Видео: Топливная ячейка Стенли Мейера
За своё изобретение, которое могло бы освободить человечество от кабалы нефтяных магнатов, Стенли Мейер был убит, а труды его многолетних изысканий пропали неизвестно куда. Тем не менее сохранились отдельные записи учёного, на основании которых изобретатели многих стран мира пытаются строить подобные установки. И надо сказать, небезуспешно.
Преимущества газа Брауна как источника энергии
- Вода, из которой получают HHO, является одним из наиболее распространённых веществ на нашей планете.
- При сгорании этого вида топлива образуется водяной пар, который можно обратно конденсировать в жидкость и повторно использовать в качестве сырья.
- В процессе сжигания гремучего газа не образуется никаких побочных продуктов, кроме воды. Можно сказать, что нет более экологичного вида топлива, чем газ Брауна.
- При эксплуатации водородной отопительной установки выделяется водяной пар в количестве, достаточном для поддержания влажности в помещении на комфортном уровне.
Вам также может быть интересен материал о том, как соорудить самостоятельно газовый генератор: https://aqua-rmnt.com/otoplenie/kotly/gazogenerator-na-drovakh-dlya-otopleniya-doma-svoimi-rukami.html
Область применения
Сегодня электролизёр — такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела — всё определяло удобство и практичность.
- Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
- Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
- Снижение токсичности и повышение эффективности старых котельных.
- Использование портативных установок получения HHO для бытовых нужд — приготовления пищи, получения тёплой воды и т. д.
- Разработка принципиально новых, мощных и экологичных силовых установок.
Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить — их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.
Видео: Как правильно обустроить водородное отопление
Что необходимо для изготовления топливной ячейки дома
Приступая к изготовлению водородной топливной ячейки, надо обязательно изучить теорию процесса образования гремучего газа. Это даст понимание происходящего в генераторе, поможет при настройке и эксплуатации оборудования. Кроме того, придётся запастись необходимыми материалами, большинство из которых будет нетрудно найти в торговой сети. Что же касается чертежей и инструкций, то мы постараемся раскрыть эти вопросы в полном объёме.
Проектирование водородного генератора: схемы и чертежи
Самодельная установка для получения газа Брауна состоит из реактора с установленными электродами, ШИМ-генератора для их питания, водяного затвора и соединительных проводов и шлангов. В настоящее время существует несколько схем электролизёров, использующих в качестве электродов пластины или трубки. Кроме того, в Сети можно найти и установку так называемого сухого электролиза. В отличие от традиционной конструкции, в таком аппарате не пластины устанавливаются в ёмкость с водой, а жидкость подаётся в зазор между плоскими электродами.
В работе можно использовать чертежи и схемы рабочих электролизёров, которые можно адаптировать под собственные условия.
Выбор материалов для строительства генератора водорода
Для изготовления топливной ячейки практически никаких специфичных материалов не требуется. Единственное, с чем могут возникнуть сложности, так это электроды. Итак, что надо подготовить перед началом работы.
- Если выбранная вами конструкция представляет собой генератор «мокрого» типа, то понадобится герметичная ёмкость для воды, которая одновременно будет служить и корпусом реактора. Можно взять любой подходящий контейнер, главное требование — достаточная прочность и газонепроницаемость. Разумеется, при использовании в качестве электродов металлических пластин лучше использовать прямоугольную конструкцию, к примеру, тщательно загерметизированный корпус от автомобильного аккумулятора старого образца (чёрного цвета). Если же для получения HHO будут применяться трубки, то подойдёт и вместительная ёмкость от бытового фильтра для очистки воды. Самым же лучшим вариантом будет изготовление корпуса генератора из нержавеющей стали, например, марки 304 SSL.
Электродная сборка для водородного генератора «мокрого» типа
При выборе «сухой» топливной ячейки понадобится лист оргстекла или другого прозрачного пластика толщиной до 10 мм и уплотнительные кольца из технического силикона.
- Трубки или пластины из «нержавейки». Конечно, можно взять и обычный «чёрный» металл, однако в процессе работы электролизёра простое углеродистое железо быстро корродирует и электроды придётся часто менять. Применение же высокоуглеродистого металла, легированного хромом, даст генератору возможность работать длительное время. Умельцы, занимающиеся вопросом изготовления топливных ячеек, длительное время занимались подбором материала для электродов и остановились на нержавеющей стали марки 316 L. К слову, если в конструкции будут использоваться трубки из этого сплава, то их диаметр надо подобрать таким образом, чтобы при установке одной детали в другую между ними был зазор не более 1 мм. Для перфекционистов приводим точные размеры:
— диаметр внешней трубки — 25.317 мм;
— диаметр внутренней трубки зависит от толщины внешней. В любом случае он должен обеспечивать зазор между этими элементами равный 0.67 мм.От того, насколько точно будут подобраны параметры деталей водородного генератора, зависит его производительность
- ШИМ-генератор.
Правильно собранная электрическая схема позволит в нужных пределах регулировать частоту тока, а это напрямую связано с возникновением резонансных явлений. Другими словами, чтобы началось выделение водорода, надо будет подобрать параметры питающего напряжения, поэтому сборке ШИМ-генератора уделяют особое внимание. Если вы хорошо знакомы с паяльником и сможете отличить транзистор от диода, то электрическую часть можно изготовить самостоятельно. В противном случае можно обратиться к знакомому электронщику или заказать изготовление импульсного источника питания в мастерской по ремонту электронных устройств.
Импульсный блок питания, предназначенный для подключения к топливной ячейке, можно купить в Сети. Их изготовлением занимаются небольшие частные компании в нашей стране и за рубежом.
- Электрические провода для подключения. Достаточно будет проводников сечением 2 кв. мм.
- Бабблер. Этим причудливым названием умельцы обозвали самый обычный водяной затвор.
Для него можно использовать любую герметичную ёмкость. В идеале она должна быть оборудована плотно закрывающейся крышкой, которая при возгорании газа внутри будет мгновенно сорвана. Кроме того, рекомендуется между электролизёром и бабблером устанавливать отсекатель, который будет препятствовать возвращению HHO в ячейку.
Конструкция бабблера
- Шланги и фитинги. Для подключения генератора HHO понадобятся прозрачная пластиковая трубка, подводящий и отводящий фитинг и хомуты.
- Гайки, болты и шпильки. Они понадобятся для крепления частей электролизёра между собой.
- Катализатор реакции. Для того чтобы процесс образования HHO шёл интенсивнее, в реактор добавляют гидроксид калия KOH. Это вещество можно без проблем купить в Сети. На первое время будет достаточно не более 1 кг порошка.
- Автомобильный силикон или другой герметик.
Заметим, что полированные трубки использовать не рекомендуется. Наоборот, специалисты рекомендуют обработать детали наждачной бумагой для получения матовой поверхности. В дальнейшем это будет способствовать увеличению производительности установки.
Инструменты, которые потребуются в процессе работы
Прежде чем приступить к постройке топливной ячейки, подготовьте такие инструменты:
- ножовку по металлу;
- дрель с набором свёрл;
- набор гаечных ключей;
- плоская и шлицевая отвёртки;
- угловая шлифмашина («болгарка») с установленным кругом для резки металла;
- мультиметр и расходомер;
- линейка;
- маркер.
Кроме того, если вы будете самостоятельно заниматься постройкой ШИМ-генератора, то для его наладки потребуется осциллограф и частотомер. В рамках данной статьи мы этот вопрос поднимать не будем, поскольку изготовление и настройка импульсного блока питания лучше всего рассматривается специалистами на профильных форумах.
Обратите внимание на статью, в которой приведены другие источники энергии, которую можно использовать для обустройства отопления дома: https://aqua-rmnt.
com/otoplenie/alt_otoplenie/alternativnye-istochniki-energii.html
Инструкция: как сделать водородный генератор своими руками
Для изготовления топливной ячейки возьмём наиболее совершенную «сухую» схему электролизёра с использованием электродов в виде пластин из нержавеющей стали. Представленная ниже инструкция демонстрирует процесс создания водородного генератора от «А» до «Я», поэтому лучше придерживаться очерёдности действий.
Схема топливной ячейки «сухого» типа
- Изготовление корпуса топливной ячейки. В качестве боковых стенок каркаса выступают пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Надо понимать, что размер аппарата напрямую влияет на его производительность, однако, и затраты на получение HHO будут выше. Для изготовления топливной ячейки оптимальными будут габариты устройства от 150х150 мм до 250х250 мм.
- В каждой из пластин просверливают отверстие под входной (выходной) штуцер для воды. Кроме того, потребуется сверление в боковой стенке для выхода газа и четыре отверстия по углам для соединения элементов реактора между собой.
Изготовление боковых стенок
- Воспользовавшись угловой шлифовальной машиной, из листа нержавеющей стали марки 316L вырезают пластины электродов. Их размеры должны быть меньше габаритов боковых стенок на 10 – 20 мм. Кроме того, изготавливая каждую деталь, необходимо оставлять небольшую контактную площадку в одном из углов. Это понадобится для соединения отрицательных и положительных электродов в группы перед их подключением к питающему напряжению.
- Для того чтобы получать достаточное количество HHO, нержавейку надо обработать мелкой наждачной бумагой с обеих сторон.
- В каждой из пластин сверлят два отверстия: сверлом диаметром 6 — 7 мм — для подачи воды в пространство между электродами и толщиной 8 — 10 мм — для отвода газа Брауна. Точки сверлений рассчитывают с учётом мест установки соответствующих подводящих и выходного патрубков.
Вот такой комплект деталей необходимо подготовить перед сборкой топливной ячейки
- Начинают сборку генератора. Для этого в оргалитовые стенки устанавливают штуцеры подачи воды и отбора газа.
Места их присоединений тщательно герметизируют при помощи автомобильного или сантехнического герметика.
- После этого в одну из прозрачных корпусных деталей устанавливают шпильки, после чего начинают укладку электродов.
Укладку электродов начинают с уплотняющего кольца
Обратите внимание: плоскость пластинчатых электродов должна быть ровной, иначе элементы с разноимёнными зарядами будут касаться, вызывая короткое замыкание!
- Пластины нержавеющей стали отделяют от боковых поверхностей реактора при помощи уплотнительных колец, которые можно сделать из силикона, паронита или другого материала. Важно только, чтобы его толщина не превышала 1 мм. Такие же детали используют в качестве дистанционных прокладок между пластинами. В процессе укладки следят, чтобы контактные площадки отрицательных и положительных электродов были сгруппированы в разных сторонах генератора.
При сборке пластин важно правильно ориентировать выходные отверстия
- После укладки последней пластины устанавливают уплотнительное кольцо, после чего генератор закрывают второй оргалитовой стенкой, а саму конструкцию скрепляют при помощи шайб и гаек.
Выполняя эту работу, обязательно следят за равномерностью затяжки и отсутствием перекосов между пластинами.
При финальной затяжке обязательно контролируют параллельность боковых стенок. Это позволит избежать перекосов
- При помощи полиэтиленовых шлангов генератор подключают к ёмкости с водой и бабблеру.
- Контактные площадки электродов соединяют между собой любым способом, после чего к ним подключают провода питания.
Собрав несколько топливных ячеек и включив их параллельно, можно получить достаточное количество газа Брауна
- На топливную ячейку подают напряжение от ШИМ-генератора, после чего производят настройку и регулировку аппарата по максимальному выходу газа HHO.
Для получения газа Брауна в количестве, достаточном для отопления или приготовления пищи, устанавливают несколько генераторов водорода, работающих параллельно.
Видео: Сборка устройства
Видео: Работа конструкции «сухого» типа
Навигация по записям
Как сделать водородный котел отопления своими руками?
Уже давно прошло время, когда обогрев частного загородного дома осуществлялся только лишь сжиганием в печи дров ли угля. Нынешние отопительные агрегаты используют различные виды топлива. Но постоянный рост цен на топливо, вынуждает идти на поиски более дешевых вариантов отопления. Но буквально у нас под носом лежит неиссякаемый источник энергии – водород. И в данной статье мы расскажем, как в качестве топлива можно использовать обычную воду, собрав водородный котел отопления своими руками.
Конструкция и принцип работы водородного генератора
Применение водорода в виде топлива для обогрева жилища – довольно заманчивая идея, ведь его теплотворность составляет 33,2 кВт/м3, в то время как у природного газа она всего 9,3кВт/м3, а это более чем в 3 раза. Теоретически добыть водород можно из воды, для того чтобы его потом сжечь в котле, можно воспользоваться водородным генератором для отопления дома.
Как энергоноситель с водородом ничто не может сравниться, а его запасы практически бесконечны. Как уже говорилось выше, при сгорании водород выделяет очень много тепловой энергии, намного больше, чем любое углеродосодержащее топливо. Вместо вредных выбросов в атмосферу, которые выделяются при использовании природного газа, водород, сгорая, образует обычную воду в виде пара. Только есть одна проблема, данный элемент не встречается в природе в чистом виде, а только в соединении с другими веществами.
Одним из таких соединений является обычная вода, которая представляет собой окисленный водород. Для того чтобы расщепить на составляющие ее элементы многие ученые потратили не один год. И не безрезультатно, техническое решение по выделению из воды ее составляющих все же было найдено. Это так называемая химическая реакция электролиза, в результате которой вода распадается на кислород и водород, получаемую смесь прозвали гремучим газом или газом Брауна.
Ниже можно увидеть схему водородного генератора (электролизера), который работает от электричества:
Электролизеры поставлены на серийное производство и служат для газопламенных (сварочных) работ. Ток определенной частоты и силы подается на группы металлических пластин, которые погружены в воду. Из-за протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром.
Для того чтобы отделить газы от пара все пропускается через сепаратор, после которого подается на горелку. Чтобы предотвратить обратный удар и взрыв, на подаче монтируется клапан, который пропускает горючее только в одну сторону.
Водородная установка для обогрева жилища включает в себя следующие составляющие: котел и трубы диаметром 25-32 мм (1-1,25 дюймов). Трубы можно установить дома своими руками, но необходимо выполнить одно условие – после каждого разветвления диаметр должен уменьшаться.
Диаметр уменьшается по следующему принципу – труба D32, труба D25. После разветвления – D20, и последней монтируется труба D16. При соблюдении этого условия водородная горелка будет работать качественно и эффективно.
Для того чтобы следить за уровнем воды и своевременно подпитывать ею устройство, в конструкции есть специальный датчик, который отдает команду в нужный момент и вода впрыскивается в рабочее пространство электролизера. Для того чтобы давление не подпрыгивало до критической точки внутри сосуда, агрегат оборудуется аварийным выключателем и сбросным клапаном. Для обслуживания генератора водорода, необходимо только время от времени добавлять воду и все.
Преимущества водородного отопления
У водородного отопления есть несколько серьезных достоинств, которые влияют на распространенность системы:
- Экологически чистые системы. Единственный побочный продукт, который выбрасывается в атмосферу во время работы – вода в парообразном состоянии. Что никоим образом не вредит окружающей среде.
- Водород в системе отопления работает без применения огня. Тепло образуется из-за каталитической реакции. При соединении водорода с кислородом, образуется вода. Из-за этого идет большое выделение тепла. Сам поток тепла, температура которого равняется около 40оС, идет в теплообменник. Для системы теплый пол – это идеальный температурный режим.
- Довольно скоро отопление на водороде своими руками сможет вытеснить традиционные системы, тем самым освободив человечество от добычи других видов топлива – нефти, газа, угля и дров.
- Минимальный срок службы – 15 лет.
- КПД отопления частного дома водородом может достигать 96%.
Добыча водорода – это вполне доступный процесс. Все, на что необходимо будет тратиться это электричество. А при использовании генератора отопления включить в работу системы еще и солнечные батарею, то траты на электроэнергию можно свести к минимуму. Исходя из этого, можно заключить что, эта система наиболее экологически чистая и эффективная для отопления жилища.
Как собрать генератор водорода собственноручно?
Зачастую котел, работающий на водороде, используется для обогрева полов. Эти системы в наше время встречаются самой разной мощности. Мощность котлов бывает самая разная, начиная от 27Вт и до бесконечности. Можно взять один очень мощный котел для обогрева сразу всего дома, а можно несколько небольших. Устанавливаются они своими силами, но, как сделать водородный генератор своими руками?
Прежде чем начать сооружать топливную ячейку необходимо иметь под руками следующие инструменты:
- ножовку по металлу;
- дрель с набором свёрл;
- набор гаечных ключей;
- плоская и шлицевая отвёртки;
- угловая шлифмашина («болгарка») с установленным кругом для резки металла;
- мультиметр и расходомер;
- линейка;
- маркер.
Более того, если вы решите самостоятельно заниматься сооружением ШИМ-генератора, то для его настройки понадобятся осциллограф и частотомер.
Для того чтобы изготовить водородный генератор для отопления частного дома рассмотрим абсолютно «сухую» схему электролизера с применением электродов из пластин нержавеющей стали.
Представленная ниже инструкция показывает процесс конструирования водородного генератора:
- Сооружение корпуса топливной ячейки. Роль боковых стенок каркаса играют пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Стоит заметить, что он размеров агрегата напрямую зависит его производительность, но и затраты на получение ННО будут намного выше. Для сооружения топливной ячейки оптимальными являются габариты от 150×150 мм до 250×250 мм.
- В каждой из платин сверлятся отверстия под входной и выходной штуцера для воды. Кроме этого, необходимо сверление в боковой стенке для выхода газа и четыре отверстия по углам для того чтобы соединить элементы реактора между собой.
- С помощью болгарки из листа нержавейки марки 316L, вырезают пластины электродов. Они по размеру должны быть меньше стенок на 10-20 мм. Более того, при изготовлении каждой детали, в одном из углов необходимо оставлять небольшую контактную площадку. Это необходимо для того чтобы соединить отрицательные и положительные электроды в группы перед их подключением к питанию.
- Для получения необходимого количества ННО, нержавейку необходимо обработать мелкой наждачной бумагой с двух сторон.
- В каждой пластине сверлятся два отверстия: сверлом чей диаметр должен быть 6-7 мм – для подачи в пространство между электродами воды и диаметром 8-10 мм – для отвода газа Брауна. Точки сверления рассчитывают с учетом мест монтажа соответствующих подводящих и выходного патрубков.
- Приступают к сборке генератора. Для этого в оргалитовые стенки монтируют штуцеры служащие для подачи воды и отбора газа. Места их присоединений тщательнейшим образом герметизируют автомобильным или сантехническим герметиком.
- После этого одну из прозрачных корпусных деталей устанавливают на шпильки, после этого укладывают электроды. Укладка электродов должна начинаться с уплотнительного кольца. Обратите внимание: плоскость электродов должна быть абсолютно ровной, в противном случае элементы с разноименными зарядами будут касаться, что вызовет короткое замыкание!
- Пластины нержавейки отделяют от боковых поверхностей реактора с помощью уплотнительных колец, изготовленных из силикона, паронита или других материалов. Важно чтобы он был не толще 1 мм. Подобные детали используют как дистанционные прокладки между пластинами. В процессе укладки следят, чтобы контактные площадки разноименных электродов были сгруппированы по разные стороны генератора.
- После того как уложена последняя пластина устанавливают уплотнительное кольцо, после чего генератор закрывается второй оргалитовой стенкой, а саму конструкцию соединяют с помощью гаек и шайб. Делая эту работу, внимательно следите за равномерностью затяжки и отсутствием перекосов между пластинами.
- С помощью полиэтиленовых шлангов генератор подключается к емкости с водой и бабблеру.
- Контактные площадки электродов соединяются между собой любым методом, после чего к ним подводят провода питания.
- На топливную ячейку подается напряжение от ШИМ-генератора, после чего приступают к настройке и регулировке аппарата по максимальному выходу газа ННО.
Для того чтобы получить газ Брауна в необходимом количестве которое будет достаточным для приготовления пищи и отопления, устанавливают несколько генераторов водорода которые работают параллельно.
Рекомендации по эксплуатации котла на водороде
- Самостоятельно модернизировать подобное оборудование, даже при наличии подробного и профессионального инженерного чертежа – категорически запрещается. Это может поспособствовать вероятности утечки водородной смеси из генератора в открытое пространство, что довольно опасно.
- Рекомендуется смонтировать специальные датчики температурного режима внутри теплообменника, это даст возможность следить за вероятным превышением уровня температуры нагрева воды.
- В саму конструкцию горелки можно включить запорную арматуру, которая будет подключена непосредственно к самому датчику температуры. Необходимо также обеспечить нормированное охлаждение котла.
- И наконец, на чем необходимо сделать особое ударение это безопасность. Необходимо помнить о том, что смесь водорода и кислорода не зря назвали гремучей. ННО это опасное химическое соединение, которое при небрежном обращении может повлечь взрыв. Следуйте правилам безопасности и будьте предельно аккуратны в экспериментах с водородом.
При правильном обращении водородный котел может прослужить не 15 лет, как это обычно положено, а 20 или даже 30. Однако помните, что чем больше мощность котла, тем больше расход электроэнергии!
пошаговая инструкция. Как собрать водородный генератор своими руками
Одним из самых удобных и практичных способов получения водорода, и его дальнейшего, разумного применения является водородный генератор, так называемая водородная горелка. Но получение водорода в домашних условиях довольно опасное занятие потому прислушайтесь к описанному совету.
Самодельный водородный генератор:
Основу водородной горелки составляет водородный генератор, который представляет собою своеобразную ёмкость с водой и пластинами из нержавеющей стали. Конструкция и подробное описание водородного генератора можно без особых усилий найти на других сайтах, потому я не стану тратить печатные символы на это. Я хочу передать весьма важные тонкости, которые будут вам очень полезны, если вы соберётесь делать водородную горелку своими руками.
Рисунок №1 – Структурная схема водородной горелки
Суть водородной горелки заключается в получении водорода путём электролиза воды. Вы должны понимать, что в электролизёр (емкость с водой и электродами) и потому, нельзя наливать туда что попало, я рекомендую использовать дистиллированную воду, однако читал, что для более эффективного электролиза добавляют ещё каустическую соду (пропорций не знаю).
Мой электролизёр собран из нержавеющих пластин, резиновых прокладок, и двух толстых пластин оргстекла, и внешне всё это выглядит так:
Рисунок №2 – Электролизёр
Электролизёр необходимо заполнять водою ровно наполовину для соблюдения техники безопасности, следите за уровнем жидкости, так как с его снижением меняются электрические параметры и интенсивность выделения водорода!
Но прежде чем потратить кучу времени и материалов на сборку электролизёра, позаботитесь о блоке питания к нему. Мой электролизёр, к примеру, потребляет ток около 6А, при напряжении 8В.
Металлические пластины (электроды) соединены при помощи припаянной к ним толстой медной проволоки, и толстых медных проводов (около 4мм сечение).
Рисунок №3 – Как подсоединить провода
Так же вы должны понимать, что всё должно быть герметично соединено и хорошо заизолировано, короткое замыкание пластин и искра недопустимо!!!
Рисунок №4 – Изоляция пластин
На самом деле есть масса разного рода конструкций электролизёра потому я не хочу на нем фокусировать ваше внимание, хотя он и является самой основной и трудоёмкой деталью для водородной горелки, само по себе он не очень важен (вам подойдёт любая его конструкция).
При работе с водородной горелкой следует:
Если вы собрались делать водородную горелку, то будьте осторожны! Водород очень взрывоопасен!!! При сборке и работе с водородной горелкой, есть много жизненно важных тонкостей. Обратите внимание на мои советы – я это реально проделывал и знаю что говорю.
В самодельной водородной горелке обязательно должно быть согласованно давление водорода, и защита от обратного взрыва, хорошая герметичность и изоляция!
Дело в том, что при работе водородной горелкой, для электролиза вы используете блок питания. И пока он включён, водород выделяется примерно с одинаковой интенсивностью (по мере работы она может падать, так как вода испаряется и меняется плотность тока между пластинами электродов), потому не приступайте к работе, не ознакомившись предварительно с устройством горелки.
Как правильно пользоваться водородной горелкой:
Во-первых прежде всего, всегда работайте в средствах индивидуальной защиты (обязательно наденьте на лицо защитный щиток или очки), во-вторых соблюдайте правила пожарной безопасности. В-третьих, следите за уровнем воды в электролизёре, и интенсивностью горения пламени.
Поджигать пламя нужно не сразу, дайте водороду вытеснить остатки кислорода (у меня это занимает около десяти минут, в зависимости от интенсивности выделения и объёма сосудов с водяным затвором и предохранителем А, Б рис.1)
Обязательно держите около себя ёмкость с водою – она вам понадобится, что бы потушить пламя горелки, когда закончите работу. Для этого, вам просто необходимо направить кончик иглы с пламенем под воду и тем самым перекрыть огню кислород. ВСЕГДА СНАЧАЛА ТУШИТЕ ПЛАМЯ А ПОТОМ ВЫКЛЮЧАЙТЕ ПИТАНИЕ ГЕНЕРАТОРА – ИНАЧЕ ВЗРЫВ НЕМЕНУЕМ.
Водяной затвор и предохранитель:
Обратите ваше внимание на рисунок №1 – там есть две ёмкости (Я обозначил их А и Б), ну и иголка от одноразового шприца (В), всё это соединено трубками от капельниц.
В первую емкость (А) необходимо наливать воду, это водяной затвор. Он необходим для того что бы взрыв не добрался до электролизёра (если он рванёт то это будет как осколочная граната).
Рисунок №5 – Водяной затвор
Обратите внимание, в крышке водяного затвора есть два соединителя (я всё это приспособил от медицинской капельницы), оба они герметично вклеены в крышку при помощи эпоксидного клея. Одна трубка длинная, по ней водород с генератора должен поступать под воду, булькать, и через второе отверстие идти по трубке к предохранителю (Б).
Рисунок №6 – Предохранитель
В ёмкость с предохранителем вы можете наливать как воду (для большей надёжности) так и спирт (пары спирта повышают температуру горения пламени).
Сам предохранитель делается так: Вам необходимо проделать в крышке отверстие диаметром 15 мм, и отверстия для винтиков.
Рисунок №7 – Как выглядят отверстия в крышке
Также вам понадобится две толстых шайбы (если потребуется, то надо расширить внутренний диаметр шайбы при помощи круглого напильника) две водопроводных прокладки и фольгу от шоколадки или обыкновенный воздушный шарик.
Рисунок №8 – Эскиз защитного клапана
Собирается он достаточно просто, вам необходимо просверлить четыре соосных отверстия в железных шайбах крышке и прокладках. Сначала необходимо припаять болты к верхней шайбе, это легко можно сделать при помощи мощного паяльника и активного флюса.
Рисунок №9 – Шайба с винтиками
Рисунок №10 – Припаянные к шайбе винтики
После того как вы припаяли винтики вам необходимо надеть на шайбу одну резиновую прокладку и непосредственно ваш клапан. Я использовал тонкую резинку от лопнувшего воздушного шарика (это гораздо удобнее чем надевать тонкую фольгу), хотя фольга, тоже подходит довольно удачно, по крайней мере, когда я испытывал свою водородную горелку на предмет взрывоопасности, то в клапане была именно фольга.
Рисунок №11 – Надеваем прокладку и защитную резинку
Потом надеваем вторую прокладку и можно вставлять защиту в отверстия, проделанные в крышке.
Рисунок № 12 – Готовый клапан
Рисунок №13 – Элементы защиты
Вторая шайба и гайки нужны, что бы герметично и крепко зафиксировать защиту, закручивая гайки (посмотрите на рисунок №6).
Поймите правильно и примите к сведенью, нельзя пренебрегать правилами техники безопасности, особенно когда работаете со взрывоопасными газами. А такое нехитрое приспособление может спасти вас от неприятных неожиданностей. Работает защита по принципу «где тонко – там и рвётся», взрывом выбивает защитную плёнку (фольгу или резинку), и взрывная сила не идёт в электролизёр, к тому же этому препятствует ещё и водяной затвор. Поверьте на слово, если взорвётся электролизер, то мало вам не покажется:)!!!
Рисунок №14 – Взрыв
Следует понимать что аварийная ситуация обязательно неминуема. Дело в том, что пламя горит на выходе форсунки, (в качестве которой достаточно неплохо подходит иголка от одноразового шприца) только потому, что создается давление газа (давление согласовано).
Рисунок № 15 – Форсунка из шприца, на пьедестале
К примеру, вы работаете вашей горелкой и вот вырубило свет, поверьте! Вы не успеете отскочить от горелки, пламя моментально пойдёт обратно по трубке и прогремит взрыв защитного клапана (он и нужен что бы рванул он а не электролизёр) – это вполне нормально, когда горелка самодельная – будьте бдительны и осторожны, держитесь подальше от водородной горелки и надевайте средства индивидуальной защиты!
Лично я не в большом восторге от водородной горелки, я и попробовал её сделать только по тому, что у меня уже был готовый электролизёр. Во-первых, это очень опасно, во-вторых не очень эффективно (я говорю о своей водородной горелке а не о горелках в целом) расплавить ею то что я хотел не удалось. И потому если вам пришла в голову идея сделать такого типа горелку задайте себе вполне рациональный вопрос «а оно того стоит», так как собрать электролизёр с нуля это достаточно хлопотное дело, а ещё нужен мощный блок питания такой что бы хватало для согласования давления водорода и диаметра выходной форсунки. Потому, «лишь бы было» я вам её делать не рекомендую, а только если она вам действительно нужна.
Живую и мертвую воду получить довольно легко. Проще всего провести электролиз в стакане воды с помощью двух карандашей, проводков и трех батареек. Такой «домашний» электролиз прекрасно описывает О. Ольгин в своей книге «Опыты без взрывов».
«Возьмите чайный стакан, расширяющийся кверху. Приготовьте фанерный кружок и прижмите его к стенке стакана в 3–4 см выше дна. В кружке заранее просверлите два отверстия (или вырежьте в нем по диаметру прорезь), неподалеку шилом проколите два отверстия: через них будут проходить проводки.
В большие отверстия или в прорезь вставьте два карандаша длиной 5–6 см, очиненные с одного конца. Карандаши, точнее, их грифели, будут служить электродами.
На неочиненных концах карандашей сделайте зарубки, чтобы обнажились грифели, и примотайте к ним оголенные концы проводков. Проводки скрутите и тщательно обмотайте изоляционной лентой; чтобы изоляция была совсем надежной, лучше всего спрятать проводки в резиновых трубках. Все детали прибора готовы, остается только собрать его, то есть вставить кружок с электродами внутрь стакана.
Поставьте стакан на тарелку, налейте в него до краев воду и добавьте раствор соды Na 2 CO 3 из расчета 2–3 чайные ложки на стакан воды. Таким же раствором заполните две пробирки. Одну из них закройте большим пальцем, переверните вверх дном и погрузите в стакан так, чтобы в нее не попал ни один пузырек воздуха. Под водой наденьте пробирку на электрод-карандаш. Точно так же поступите со второй пробиркой.
Батарейки – числом не менее трех – нужно соединить последовательно, «плюс» одной к «минусу» другой, а к крайним батарейкам подсоединить проводки от карандашей. Сразу начнется электролиз раствора. Положительно заряженные ионы водорода Н+ направятся к отрицательно заряженному электроду – катоду, присоединят там электрон и превратятся в газ – водород. Когда у карандаша, подсоединенного к «минусу», соберется полная пробирка водорода, ее можно вынуть и, не переворачивая, поджечь газ. Он загорится с характерным звуком. У другого электрода, положительного (анода), выделится кислород. Наполненную им пробирку закройте пальцем под водой, выньте из стакана, переверните, внесите тлеющую лучинку – она загорится.
Итак, из воды Н 2 О получился и водород Н 2 , и кислород О 2 ; а для чего же сода? Для ускорения опыта. Чистая вода плохо проводит электрический ток, электрохимическая реакция идет в ней слишком медленно.
С тем же прибором можно поставить еще один опыт – электролиз насыщенного раствора поваренной соли NaCl . В этом случае одна пробирка наполнится бесцветным водородом, а другая – желто-зеленым газом. Это хлор, который образуется из поваренной соли. Хлор легко отдает свой заряд и первым выделяется на аноде.
Пробирку с хлором закройте пальцем под водой, переверните и встряхните, не отнимая пальца. В пробирке образуется раствор хлора – хлорная вода. У нее сильные отбеливающие свойства. Например, если добавить хлорную воду к бледно-синему раствору чернил, то он обесцветится».
Это описание простейшего бездиафрагменного электролизера и простейшего процесса электролиза. Нас же интересует не то, что выделится на аноде или катоде, а то, что произойдет в воде при электролизе, что в ней изменится и что сделает из обыкновенной воды лечебное средство, помогающее при многих заболеваниях.
Хотя аппарат для получения живой и мертвой воды довольно прост, не стоит его делать самим.
Вот авторитетное мнение специалиста по этому поводу: «Приготовление активированной воды в самодельных установках с электродами из нержавеющей стали чревато серьезной опасностью для здоровья тех, кто пытается такую воду пить. Нержавеющая сталь, подавляющее большинство металлов и сплавов не стойки к анодному растворению.
При пропускании электрического тока электроды, изготовленные из этих материалов, растворяются, и ионы никеля, хрома, ванадия, молибдена переходят в воду, отравляя ее. При изготовлении электроактиваторов, предназначенных для медицинских исследований, обычно используют стойкие материалы. В частности, для изготовления анодов – никель или титан, катодов – платину, сверхчистый графит. Для диафрагм берут пористый фторопласт или керамику».
Таким образом, вывод один: электролизер надо купить. Если вы захотите приобрести аппарат – загляните в конец книги, в приложение. Там представлены аппараты-электролизеры различных фирм – на любой вкус: от простых и дешевых до дорогих, с компьютерным управлением.
ВНИМАНИЕ! Все инструкции по применению активированных растворов рассчитаны на аппараты, описанные в конце книги, и не подходят для других аппаратов!
Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.
Генератор водорода: устройство и его принцип работы
Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.
Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.
Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.
Водяной двигатель имеет такое устройство:
- Генератор водородного типа, где и происходит электролиз;
- Горелка, она устанавливается в самой топке;
- Котел, он выполняет функцию теплообменника.
На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.
Водородный генератор: его достоинства и недостатки
Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.
Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.
Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.
Водородный реактор имеет свои преимущества:
- Работает на воде;
- Экономит электричество;
- Является экологически чистым;
- Высокий КПД;
- Простота обслуживания.
Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.
Самодельный водородный генератор: пошаговая инструкция
Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.
Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.
Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.
Инструкция изготовления:
- Из листа нержавейки вырезаем 16 одинаковых пластин.
- Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
- Противоположный угол обязательно спиливаем.
- Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
- Стягиваем всю конструкцию гайками, получается батарея.
- Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
- Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.
Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.
Электролизер для автомобиля: виды катализаторов
Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.
Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.
Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.
Существует несколько видов катализаторов:
- Цилиндрические;
- С открытыми пластинами или их еще называют сухими;
- С раздельными ячейками.
Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.
При котором жидкость или, иначе говоря, электролит, распадается на положительные и отрицательные ионы. Происходит это под воздействием электрического тока. Каким же образом протекает данный процесс?
Электролиз воды происходит из-за того, что электрический ток, проходя через электролит, вызывает реакцию на электродах, на которых и оседают положительные и отрицательные ионы. На отрицательно заряженном электроде (катоде) оседают катионы, соответственно, на положительном (аноде) — анионы. Электролит может состоять из воды, в которую добавлена кислота или же представляет собой раствор солей. Распад солей на металл и кислотный остаток возникает после того, как через электролит пропускается электрический ток. Заряженный положительным электричеством металл подходит к катоду (отрицательно заряженному электроду), именно этот металл и называется катионом. Кислотный остаток, отрицательно заряженный, стремится к аноду (положительно заряженному электроду), и называется анионом. Электролиз дает возможность получения из солей хорошо очищенных элементов, благодаря чему находит широкое применение в разнообразных отраслях современной промышленности.
Электролиз воды жизненно необходим сегодня, когда тысячи предприятий применяют воду для отдельных этапов своего производства. Объясняется это тем, что после большинства процессов, которые выполняются на предприятиях, вода после использования превращается в опасную для людей и живой природы жидкость. Электролиз воды служит для очистки сточных вод, которые не должны попадать в землю или же в источники чистой воды. Эти сточные воды необходимо очищать для того, чтобы не допустить экологическую катастрофу, риск которой и так уже достаточно высокий во многих регионах России.
Сегодня существует несколько методов электролиза воды. К ним относится электроэкстракция, электрокоагуляция и электрофлотация. Электролиз воды, применяемый для очистки сточных вод, производится в электролизерах. Это специальные сооружения, в которых разлагаются на металлы, кислоты и другие вещества, относящиеся к категории неорганического происхождения. Особенно важно проводить очистку сточных вод на вредных производствах, таких как предприятия химической промышленности, там, где ведутся работы с медью и свинцом, а также на комбинатах, выпускающих краски, лаки, эмали. Безусловно, это далеко не дешевый способ очистки воды при помощи электролиза, но затраты, связанные с очисткой воды, не идут ни в какие сравнения со здоровьем человека и заботой об окружающей среде.
Интересный факт, но можно осуществить электролиз воды в домашних условиях. Этот процесс не займет много времени и средств и даст возможность для и водорода. В емкость с водой, в которой предварительно растворена соль, (соли необходимо взять не менее ¼ объема воды), опускаются два электрода. Их можно сделать из любого металла. Электроды подключаются к источнику питания с силой тока не менее 0,5 А. На одном из электродов образуются пузыри, что и говорит о том, что электролиз воды в домашних условиях проходит успешно. Данным способом можно получить едкий натрий, хлор и другие химические элементы, в зависимости от того, из чего состоит электролит. Плазменный электролиз воды применяют в плазмотеплолизерах. Это новейшее современное устройство, работающее в режимах плазменного электролиза воды и ее непосредственного нагрева до определенных температур. Плазменный электролиз воды дает возможность для получения новых видов энергии, в которой с каждым днем все больше нуждается человечество. Энергия, которую можно будет получать из воды, даст возможность для создания новых, безопасных и эффективных видов источников энергии. Явления плазменного электролиза воды еще не изучены до конца, но они имеют огромные перспективы и поэтому интенсивно изучаются современными учеными.
Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.
Что такое электролизер, его характеристики и применение
Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.
Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).
Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:
Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.
- Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
- Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
- Концентрация электролита и его тепловой баланс.
- Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
- Применение катализаторов процесса и т.д.
Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).
Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.
Устройство и подробный принцип работы
Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.
Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.
Рисунок 4. Конструкция простого электролизераВ результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.
Виды электролизеров
Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.
Сухие
Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.
Проточные
С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».
Рис 5. Конструкция проточного электролизера
Принцип работы устройства следующий:
- входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
- в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
- электролит возвращается в гидролизную ванну через трубу «Е».
Мембранные
Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.
Рис 6. Электролизер мембранного типаОсновная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.
Диафрагменные
В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.
Пояснение:
- Выход для кислорода.
- U-образная колба.
- Выход для водорода.
- Анод.
- Катод.
- Диафрагма.
Щелочные
Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.
На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:
- Можно использовать железные электроды.
- Не выделяются вредные вещества.
Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.
Электролизер для получения водорода: чертежи, схема
Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.
Рис. 8. Устройство водородной горелки
Пояснение:
- Сопло горелки.
- Резиновые трубки.
- Второй водяной затвор.
- Первый водяной затвор.
- Анод.
- Катод.
- Электроды.
- Ванна электролизера.
На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.
Рис. 9. Блок питания электролизной горелки
На мощный выпрямитель нам понадобятся следующие детали:
- Транзисторы: VT1 – МП26Б; VT2 – П308.
- Тиристоры: VS1 – КУ202Н.
- Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
- Конденсаторы: 0,5 мкФ.
- Переменные резисторы: R3 -22 кОм.
- Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
- PA1 – амперметр со шкалой измерения не менее 20 А.
Краткая инструкция по деталям к электролизеру.
Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.
Рис. 10. Чертеж электролизера для водородной горелкиЗаметим, что обслуживание такого устройства и управление им не вызывает трудностей.
Электролизер для автомобиля своими руками
В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.
Упрощенная схема электролизера для автомобиля
По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.
Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.
Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.
Электролизер своими руками для отопления дома
Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.
Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.
На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.
Обзор производителей электролизеров
Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).
Рекомендуем также
Контроллер для сварочного электролизера
Схема мощного контроллера для электролизной сварки водородно-кислородной смесью (газом Брауна) приведена в этой статье. Контроллер предназначен для регулирования мощности сварки и слежения за уровнем жидкости в баке электролизера и давлением. Мощность аппарата в данном исполнении — примерно 8 кВт и зависит только от мощности выходных тиристоров и конструктивного исполнения реактора.
Схема электролизера представлена на рисунках ниже, по клику можно скачать пдф:
Схема для монтажа на плате:
Схема для монтажа на корпусе:
На транзисторах Q7, Q8 и оптопаре U7 построен детектор перехода через 0. На диоде D1 и конденсаторе C4 собрана схема для питания датчиков. S1 и S2 — датчики давления и уровня жидкости соответственно. Потенциометром RV1 регулируется мощность электролиза. Джамперы JMP1 и JMP2 служат для изменения конфигурации устройства в момент загрузки или в процессе работы. Светодиоды с кодом MYF (желтые) служат для индикации предупреждений. Светодиоды с кодом MRE (красные) служат для индикации ошибок (срабатывание датчиков, отсутствие синхроимпульсов).
Данная схема проектировалась для гибкого управления работой электролизера в коммерческом аппарате, в том числе для контроля длительности его работы, для возможности конфигурирования с компьютера, для управления максимальным углом открытия тиристоров (так как при угле больше, чем 70-75% от полупериода прирост выделения газа пропадает, а потребляемая мощность растет). По умолчанию максимальный угол открытия тиристоров равен 60% от полупериода, что принято за 100% рабочей мощности, отображаемой на индикаторе.
Прошивку для микроконтроллера электролизера можно скачать тут.
В данной прошивке обработка датчиков давления и уровня отсутствует. Также отсутствует контроль времени работы и логирование ошибок. Прошивка базовая, только для работы.
В данной прошивке можно изменить максимальный угол открытия тиристоров путем одновременого замыкания обоих джамперов и выставления потенциометром на индикаторе желаемого значения в процентах от длительности полупериода. При размыкании джамперов отображаемое значение будет запомнено как процент открытия тиристоров относительно длительности полупериода и принят за 100% регулируемой мощности.
Также при замыкании одного или второго джампера отдельно принудительно открывается один из тиристоров. Это сделано для проверки работоспособности соответсвующих цепей.
Конструктив
Печатная плата.
Можно скачать четреж платы в ПДФ. В файле каждый слой на отдельной странице.
На плате смонтирована схема, приведенная на первом рисунке.
Остальные детали
Схема, приведенная на втором рисунке монтируется в корпусе прибора. Выпрямительный мост и тиристоры требуют хорошего теплоотвода. Их нужно устанавливать на радиаторы и желательно с вентилятором. Для получения заявленных 8кВт мост желательно поставить 200-амперный. Если же большая мощность не нужна, то можно даже убрать один тиристор из схемы. Они управляются параллельно. Блок питания PS1 используется любой на 12-15 вольт и током, достаточным для питания вентиляторов, если вы будете использовать 12-вольтовые вентиляторы.
Испытывать контроллер при первых пусках можно на мощных лампах накаливания (300 Вт и более).
Фото собранного контроллера:
Дальнейшее развитие.
Программу для компьютера для конфигурирования контроллера и соответствующую прошивку можно запросить здесь через форум, кому интересно. Но эта прошивка сырая и требует отлова багов.
Обработку датчиков планируется вернуть в следующей версии.
Готовую плату предыдущей версии (нужно перепаять 2 проводника) можно купить запросом через форум, оставив свои контакты. (Есть 2 штуки.)
Генератор газа Брауна
Сгорание топлива в двигателях внутреннего сгорания происходит не эффективно. В лучшем случае, в двигателе автомобиля сгорает лишь 40% топлива, остальные 60% – догорают в выхлопной трубе.
Генератор газа Брауна (этот газ еще называют: гремучий газ, коричневый газ, HHO газ, водяной газ, гидроген, ди-гидроксид, гидроксид, зеленый газ, клейн газа, оксигидроген) предназначен для выработки газа, который используется для интенсификации процесса горения в двигателях внутреннего сгорания. За счет явлений интенсификации горения достигается существенная экономия топлива и прирост мощности двигателя. Еще одним преимуществом этой системы является снижение вредных выбросов двигателем, способствует улучшению экологии.
Экономия бензина происходит из за лучшего горения бензина. Обычно, только около 15% доступной энергии бензина, преобразуется в механическую энергию в двигателе внутреннего сгорания. Дополнение газом Брауна приводит к лучшему сгоранию топлива и позволяет извлечь доступную энергию из бензина, преобразовать в механическую энергию, что не нарушает законы термодинамики.
Комплект состоит из электролизера (HHO generator), нового процессорного оптимизатора (EFIE) SD-04, модулятора тока М1-02 (PWM), колбы и фильтра.
1л газа в минуту. 9В 9A
Теория Газа Брауна заключается в том, что Газ Брауна – смесь двухатомных и атомарных молекул водорода и кислорода. Самый простой способ получить Газ Брауна состоит в том, чтобы использовать электролизер, который использует электричество, чтобы расщепить воду на ее элементы водород и кислород. В момент расчепления воды водород и кислород находятся в атомарном состоянии, это – H для водорода и O для кислорода.
При нормальном электролизе водород и кислород с атомарного состояния переходят в бинарное. Бинарное означает, что водород сформировал валентные связи и образовал молекулу h3, а кислород – O2. Двухатомное состояние обладает более низким энергетическим состоянием молекул.
Чтобы расщепить воду путем электролиза необходимо 442,4 килокалории на Моль. Это эндотермическая реакция (поглощение энергии). Если уменьшить образование бинарных молекул, тогда наш электролит не нагрелся бы, потому что не происходила бы экзотермическая реакция, которая вызывала бы повышение температуры.
Также произошло бы увеличение объема газа, произведенного при электролизе за счет того что молекулы были бы атомарными. С одного литра воды выходит 1866,6 литров Газа Брауна. При нормальном двухатомном состоянии h3:O2 выходит 933,3 литра. Если предположить, что нам удалось добыть достаточное количество атомарной смеси H и O для сжигания в газовой горелке, то температура пламени была бы существенно выше чем при обычном сжигании водорода.
Таким образом мы бы получили «горячее» пламя, потому что не расходовалась бы энергия на раскол h3 и O2.
Если бы H и O непосредственно участвовали в синтезе воды, то у нас были бы (для четырех молей H и двух молей O) 442,4 килокалории доступной энергии, вместо 115,7 килокалорий доступными при 2h3:O2.
Эта дополнительная энергия может объяснить некоторые странные эффекты Газа Брауна, такие как плавление вольфрама, образование чистых как будто проделанных лазером отверстий в дереве, металле и керамике. Температура моно-атомного Газа Брауна выше в 3.8 раза традиционной смеси h3 и O2.
- Полная автоматизация процесса;
- Автоматическая стабилизация параметров;
- Автоматическое управление выработкой газа под потребности двигателя;
- Быстродействующая самовосстанавливающаяся защита;
- Простая и понятная сигнализация о плотности электролита и работоспособности;
- Очистка газа от нежелательных примесей;
- Все необходимое для монтажа в комплекте;
- Плавный пуск и автоматическое отключение на неработающем двигателе;
- Для инжекторных автомобилей система комплектуется модулем, способным точно поддерживать заданный состав топливной смеси;
Принцип работы Генератора газа Брауна
Генератор газа Брауна Е-HIBRIDCAR состоит из электролизера (электроды изготовлены из специальной марочной кислотостойкой нержавеющей стали, прошедшую электрохимическую обработку), циркуляционного резервуара, системы управления (модулятора), оптимизатора топливной смеси (для инжекторных авто). Способ выделения газа основан на явлении электролиза воды. Циркуляционный резервуар предназначен для отделения газа от воды, а так же снабжения газогенератора электролитом.
В электролизере протекает химическая реакция электролиза с выделением водорода и кислорода (газ Брауна) из специального электролита, состоящего из дисциллированой воды и катализатора. Химическая формула нашего катализатора такова, что он не выделяется с газом, а остаётся в воде, что исключает вероятность попадания его в двигатель. Образовавшийся газ выходит по трубке из верхнего штуцера электролизёра и направляется в отдельную ёмкость — «водяной затвор», заходя с нижней её части, там очищается от пены и поднимается над уровнем воды в виде газа, откуда следует через влагоулавливающий фильтр и через обратный клапан в воздушный коллектор и далее в камеру сгорания. Так же из «водяного затвора» вода поступает по второй трубке через нижний штуцер обратно в электролизёр, таким образом происходит циркуляция жидкости по системе.
В результате сгорания газа образуется сухой водяной пар, который в свою очередь, очищает клапанно-поршневую группу от нагара, улучшает теплообен между седлом и клапаном, что способствует увеличению ресурса двигателя. Так же уменьшается загрязнение масла в двигателе и увеличивается межсервисный пробег.
Управление выработкой газа производится модулятором (PWM), в зависимости от частоты вращения коленчатого вала и температуры электролизера. Модулятор представляет собой интеллектуальное электронное устройство, которое позволяет ипользовать резонансные явления в электролизере.
Благодаря особому способу модуляции тока достигается максимальная производительность системы. Так же предусмотрено снижение энергопотребления и выработки газа при снижении оборотов коленчатого вала, эта функция предотвращает разряд аккумулятора и разгружает электрогенератор автомобиля. На современных автомобилях снижение энергопотребления на холостых оборотах так же влечет некоторое
снижение расхода топлива так как выработке электоэнергии сопутствует увеличение подачи топлива в двигатель, которое используется для поддержания номинальной частоты вращения коленчатого вала.
Так как процесс сгорания топлива с газом Брауна улучшается, для максимальной экономии топлива в двигатель желательно корректировать топливную смесь в сравнении с обычным режимом без ущерба мощности. В связи с этим нами был разработан оптимизатор соотношения топливной смеси. Оптимизатор способствует выводу двигателя в наиболее оптимальный режим при работе с газом Брауна, благодаря чему может быть достигнута максимально возможная экономичность. Для коррекции топливной смеси можно применять и ЧИП тюнинг.
Каждый литр воды расширяется на 1866 литров горючего газа. Вам не нужно будет возить с собой баллон с газом, а всего литр воды в емкости под капотом! Одного литра воды хватает на 30 — 40 часов езды.
Система Е-HIBRIDCAR может дополнительно комплектоваться и другими системами экономии топлива, увеличивающими результат.
Номинальный выход газа *-2 л/мин
Максимальный ограничиваемый потребляемый ток *- 25 А
Диапазон автоматического регулирования потребляемой мощности и выхода газа — 10 … 100%
Рабочая частота модулятора- 0,5 … 3 КГц
Диапазон автоматического регулирования потребляемой мощности при превышении максимальной рабочей температуры- 0 … 100%
Диапазон автоматического регулирования потребляемой мощности при превышении максимальной рабочей температуры электролизёра- 0 …. 100%
Максимальная рабочая ограничиваемая температура электролизёра- 80 оС
Защита от короткого замыкания в электролизере- есть (50 или 90А)
Плавный пуск- 10 секунд
Стабилизация тока электролизёра- есть
* – Параметры устанавливается при настройке в зависимости от типа двигателя
Генератор газа Брауна ЭХО-450
- Применение: генератор водорода (HHO генератор), пригодных для автомобилей с двигателями до 2000 куб
- Рабочее напряжение: 12 В — 14 В
- Потребляемая мощность: 20 — 40 А
- Добыча газа Браун: 72-90 литров в час.
- Экономия топлива: 15% — 30%
- Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).
Генератор газа Брауна ЭХО-750
- Применение: генератор водорода (HHO генератор), пригодных для автомобилей с двигателями от 2000 до 3000 куб.см
- Рабочее напряжение: 12 В — 14 В
- Потребляемая мощность: 20 — 40 А
- Добыча газа Браун: 90-120 литров в час.
- Экономия топлива: 15% — 30%
- Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).
Генератор газа Брауна ЭХО-1000
- Применение: генератор водорода (HHO генератор), пригодных для автомобилей с двигателями более 3000 куб.см
- Рабочее напряжение: 12 В — 14 В
- Потребляемая мощность: 20 — 40A
- Добыча газа в Браун: 120-200 литров в час.
- Экономия топлива: 15% — 30%
- Замораживание электролитом: -25 градусов по Цельсию
- Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).
HHOгенератор HC12V-PRO-4E
- HHO генератор HC12V-PRO-4E является универсальным — для автомобилей с 1000 до 4000 куб.
- Подходит для автомобилей, микроавтобусов, грузовых автомобилей, сельскохозяйственной и строительной техники
- Исключительная электрическая эффективность водородной ячейки.
- Высокая надежность и долговечность — для транспортных средств, проходящих более 200 километров в день в городах и вне городов.
- Генератор Газа Брауна управляется очень точным „Процессорнным контролером с PWM”.
- Ток которой потребляет водородная ячейка регулируется в зависимости от оборотов автомобиля.
- Защита от перегрузки генератора тока – вьключает водородную ячейку, если одновременно работают многиеэлектрические приборы в автомобиле.
- Водородный генератор включается после запуска двигателя и достиженияоборотов, при которых начинаетсязарядка аккумулятора.
- Тепловая защита на двух уровнях — первое включение принудительного охлаждения электроники при перегрев,второе полное отключение водородную ячейку при перегрева.
- Продления срока службы генератора HHO по крайней мере в три раза благодаря работе процесса управления.
- Автоматический долив воды в генератор водорода для автомобилей с большими двигателями (бак загружается только один раз в 3000 км).
- Во время работы, поддерживать низкой концентрации электролита и, следовательно, продливает жизнь водородной ячейки.
Это наш Процессорнный контролер PWM.Он будетуправлять работой водородной ячейки. Положительный полюс кконтроллеру прервается черезреле, которое замыкает сеть только тогда, когда двигатель работает. Процессорнныйконтролер PWM контролирует обороты двигателя и в зависимость от оборотов подаетса различный по величине ток кводородной ячейке и таким образом регулирует производство газа Брауна и разгружает генератор тока.На холостых потребляетса ток 5-8А а при увеличение оборотов примерно 2000 об. Подается ток 20А к водородной ячейке.
Это самой нижний класс из професионалной серии генераторы водорода.Он предназначен для автомобилей,микроавтобусов и небольших грузовиков с двигателями до 4000 куб. Для больших двигателей предлагаем комплект, который может питать двигатель с более чем 20000 литров.
Производство Болгария. Гарантия: 24 месяцев (в зависимости от условий эксплуатации).
% PDF-1.5 % 1 0 объект / MarkInfo> / Метаданные 2 0 R / PageLayout / OneColumn / Страницы 3 0 R / StructTreeRoot 4 0 R / Тип / Каталог >> эндобдж 5 0 obj > эндобдж 2 0 obj > транслировать 2016-01-18T09: 31: 39Z2016-01-18T09: 31: 30Z2016-01-18T09: 31: 39ZAcrobat PDFMaker 11 для Worduuid: e2f6e600-2642-439d-b8df-8fb324e3363auuid: e9d06c1f-3ef703-493f 2 application / pdf
Какой самый простой способ сгенерировать ШИМ без микроконтроллера?
Треугольник волна.Компаратор. Порог контроля. Это основной способ сделать это.
Однако, если вы хотите управлять сервоприводом для хобби, это не лучший способ. Рабочий цикл варьируется от 5% до 10% (ширина импульса от 1 мс до 2 мс за период 20 мс), что является коротким, и, скорее всего, вы захотите контролировать его с некоторой точностью. В треугольнике 5V \ $ _ {PP} \ $ вы должны изменять порог компаратора в диапазоне от 4,5 до 4,75 В. Любое отклонение, и вы не сможете управлять сервоприводом во всем его диапазоне. Это требует точных компонентов.Кроме того, для генератора треугольных сигналов нужны 2 операционных усилителя, а также компаратор … Есть способ получше.
Сначала сгенерируйте прямоугольную волну 50 Гц. Самый простой способ:
Для 74HC1G14 резистор 250к \ $ \ Omega \ $ и конденсатор 100 нФ дадут вам период 20 мс.
Подайте прямоугольный сигнал в MMV (моностабильный мультивибратор). Вы можете сделать это с помощью LM555 или использовать логическое устройство, такое как 74HC123A. Если вы используете последний, время импульса определяется \ $ R_ {EXT} \ $ и \ $ C_ {EXT} \ $:
\ $ T = R_ {EXT} \ times C_ {EXT} \ $
Время в \ $ \ mu \ $ s, R в k \ $ \ Omega \ $ и C в nF.
Чтобы получить длительность импульса от 1 мс до 2 мс, вы используете C = 100 нФ и R = 10k \ $ \ Omega \ $ последовательно с потенциометром 10k \ $ \ Omega \ $.
Я мог бы сделать это с двумя LM555, но мне нужно больше внешних компонентов.
редактировать (о микроконтроллерах)
Я согласен с Олином (см. Комментарии), что исключение микроконтроллера недальновидно (Олин сказал «глупо»). Было время, когда разработка микроконтроллера была сложной, но сегодня это уже не так.Вы также можете получить интерфейс программирования за несколько евро. Тогда решение будет выглядеть настолько простым, что никакое неконтроллерное решение не сможет с ним конкурировать: вы берете ATTiny5 (Олин берет PIC10F220) в SOT23-6. Подключите развязывающий конденсатор к разъемам питания, а потенциометр — ко входу АЦП. Вот и все! 3 (три) компонента. Преобразовать показания АЦП в выходной сигнал ширины импульса настолько просто, что это почти нелепо даже для начинающего программиста.
Как только вы начнете работать с ними, вы обнаружите, что микроконтроллеры часто предлагают более простое и гибкое решение, чем с другими ИС или дискретными компонентами.
примечание
Из вашего другого вопроса я вижу, что вы или используете микроконтроллеры. Почему вы хотите избежать их здесь?
6.9: ШИМ-контроллер мощности — Workforce LibreTexts
ДЕТАЛИ И МАТЕРИАЛЫ
- Четыре батареи по 6 В
- Один конденсатор, электролитический 100 мкФ, 35 Вт постоянного тока (каталог Radio Shack № 272-1028 или аналог)
- Один конденсатор, 0,1 мкФ, неполяризованный (каталог Radio Shack № 272-135)
- Одна микросхема таймера 555 (каталожный номер Radio Shack 276-1723)
- Двойной операционный усилитель, рекомендуется модель 1458 (каталожный номер Radio Shack 276-038)
- Один силовой транзистор NPN — (каталог Radio Shack № 276-2041 или аналог)
- Три выпрямительных диода 1N4001 (каталожный номер Radio Shack 276-1101)
- Один потенциометр 10 кОм, линейный конус (каталог Radio Shack № 271-1715)
- Один резистор 33 кОм
- Автомобильный задний фонарь на 12 В
- Детектор звука с наушниками
ПЕРЕКРЕСТНЫЕ ССЫЛКИ
Уроки электрических цепей , том 3, глава 8: «Операционные усилители»
Уроки электрических цепей , том 2, глава 7: «Сигналы переменного тока смешанной частоты»
ЦЕЛИ ОБУЧЕНИЯ
- Как использовать таймер 555 как нестабильный мультивибратор
- Как использовать операционный усилитель в качестве компаратора
- Как использовать диоды для падения нежелательного постоянного напряжения
- Как управлять мощностью нагрузки с помощью широтно-импульсной модуляции
СХЕМА
ИЛЛЮСТРАЦИЯ
ИНСТРУКЦИИ
В этой схеме используется таймер 555 для генерации пилообразного напряжения на конденсаторе, а затем этот сигнал сравнивается с постоянным напряжением, обеспечиваемым потенциометром, используя операционный усилитель в качестве компаратора.Сравнение этих двух сигналов напряжения дает прямоугольный сигнал на выходе операционного усилителя, рабочий цикл которого изменяется в зависимости от положения потенциометра. Этот сигнал переменного рабочего цикла затем управляет базой силового транзистора, включая и выключая ток через нагрузку. Частота колебаний 555 намного выше, чем способность нити накала лампы к термическому циклу (нагрев и охлаждение), поэтому любое изменение рабочего цикла или ширины импульса влияет на управление общей мощностью, рассеиваемой нагрузкой с течением времени.
Управление электрической мощностью через нагрузку посредством ее быстрого включения и выключения и изменения времени включения известно как широтно-импульсная модуляция или PWM . Это очень эффективное средство управления электрической мощностью, поскольку управляющий элемент (силовой транзистор) рассеивает сравнительно небольшую мощность при включении и выключении, особенно по сравнению с потерянной мощностью, рассеиваемой реостатом в аналогичной ситуации. Когда транзистор находится в состоянии отсечки, его рассеиваемая мощность равна нулю, потому что через него нет тока.Когда транзистор насыщен, его рассеивание очень мало, потому что между коллектором и эмиттером падает небольшое напряжение, пока он проводит ток.
PWM — это концепция, которую легче понять путем экспериментов, чем чтения. Было бы неплохо просматривать напряжение конденсатора, напряжение потенциометра и формы выходных сигналов операционного усилителя на одном (трехканальном) осциллографе, чтобы увидеть, как они соотносятся друг с другом и с мощностью нагрузки. Однако у большинства из нас нет доступа к осциллографу с тремя трассами, а тем более к любому осциллографу вообще, поэтому альтернативный метод — замедлить генератор 555 настолько, чтобы эти три напряжения можно было сравнить с простым вольтметром постоянного тока.Замените конденсатор 0,1 мкФ на конденсатор емкостью 100 мкФ или больше. Это замедлит частоту колебаний как минимум в тысячу раз, что позволит вам измерить напряжение конденсатора , медленно нарастающее со временем , и переход выходного сигнала операционного усилителя с «высокого» на «низкий», когда напряжение конденсатора становится равным. больше, чем напряжение потенциометра. При такой низкой частоте колебаний мощность нагрузки не будет пропорциональна, как раньше. Вместо этого лампа будет включаться и выключаться через определенные промежутки времени.Не стесняйтесь экспериментировать с конденсаторами или резисторами других номиналов, чтобы ускорить колебания настолько, чтобы лампа никогда не включалась и не выключалась полностью, а «дросселировалась» за счет быстрых импульсов включения и выключения транзистора.
Когда вы изучите схему, вы заметите два операционных усилителя , подключенных параллельно. Это сделано для обеспечения максимального выходного тока на базовом выводе силового транзистора. Один операционный усилитель (половина микросхемы 1458 IC) может быть не в состоянии обеспечить достаточный выходной ток, чтобы довести транзистор до насыщения, поэтому два операционных усилителя используются в тандеме.Это следует делать только в том случае, если операционные усилители, о которых идет речь, защищены от перегрузки, как это делают операционные усилители серии 1458. В противном случае возможно (хотя и маловероятно), что один операционный усилитель может включиться раньше другого, и повреждение возникнет в результате короткого замыкания двух выходов (один управляет «высоким», а другой — «низким» одновременно). Встроенная защита от короткого замыкания, предлагаемая 1458, позволяет напрямую управлять базой силового транзистора без необходимости в токоограничивающем резисторе.
Три последовательно соединенных диода, соединяющие выходы операционных усилителей с базой транзистора, предназначены для падения напряжения и обеспечения отключения транзистора, когда выходы операционных усилителей становятся «низкими». Поскольку операционный усилитель 1458 не может полностью переключать свое выходное напряжение до потенциала земли, а только с точностью до 2 В от земли, прямое соединение операционного усилителя с транзистором означало бы, что транзистор никогда не отключится полностью. При добавлении трех последовательно соединенных кремниевых диодов уменьшается примерно 2.1 В (0,7 В умножить на 3), чтобы обеспечить минимальное напряжение на базе транзистора, когда выходы операционного усилителя становятся «низкими».
Интересно послушать выходной сигнал операционного усилителя через аудиодетектор, поскольку потенциометр регулируется во всем диапазоне его движения. Регулировка потенциометра не влияет на частоту сигнала, но сильно влияет на рабочий цикл. Обратите внимание на разницу в качестве тона или тембра , поскольку потенциометр изменяет рабочий цикл от 0% до 50% до 100%.Изменение рабочего цикла приводит к изменению гармонического содержания формы волны, что делает звучание тона другим.
Вы можете заметить особую уникальность звука, слышимого через наушники-детектор, когда потенциометр находится в центральном положении (рабочий цикл 50% — мощность нагрузки 50%), по сравнению с подобием звука чуть выше или ниже 50% рабочего цикла. . Это связано с отсутствием или наличием четных гармоник. Любая форма сигнала, которая является симметричной выше и ниже ее центральной линии, например прямоугольная волна с коэффициентом заполнения 50%, не содержит четных гармоник, а только нечетных.Если рабочий цикл ниже или выше 50%, форма сигнала , а не будет демонстрировать эту симметрию, и будут гармоники с четными номерами. Присутствие этих четных гармонических частот может быть обнаружено человеческим ухом, поскольку некоторые из них соответствуют октавам основной частоты и, таким образом, более естественно «вписываются» в тональную схему.
ШИМ HHO
PWM HHO означает широтно-импульсный модулятор (или широтно-импульсную модуляцию)
Что такое ШИМ HHO?
ШИМ — это относительно недавний метод, который стал применяться в последних электронных переключателях питания.Модуляторы ширины импульса занимаются большим разнообразием приложений, от измерения и связи до управления мощностью и преобразованием.
Широтно-импульсный модулятор работает, передавая данные в виде серии импульсов. Передаваемая информация кодируется по ширине этих импульсы для управления мощностью, передаваемой на нагрузку.
Они работают, переключая напряжение на нагрузку с соответствующим рабочим циклом; выход будет поддерживать напряжение на желаемом уровне.Настоящий ШИМ — это электронный переключатель, который включается и выключается с чрезвычайно высокой скоростью, изменяя процент времени включения и времени выключения.
На нагрузке он кажется гладким, потому что он такой быстрый, как наше зрение едва может уловить мерцание люминесцентной лампы, даже если он полностью выключается и снова включается 120 раз в секунду. Рабочий цикл ШИМ — это процент времени включения и выключения.
Преимущества ШИМ для генераторов водорода
У вашего электролизера (или генератора водорода) есть несколько преимуществ при использовании ШИМ для HHO.Неважно, насколько эффективен ваш генератор HHO, все они нагреваются, чем дольше работают. Если бы вы запустили двигатель в течение 8 часов подряд, к концу за восемь часов ваш генератор, вероятно, будет в три раза теплее, чем когда вы его запустили.
Обеспечение охлаждения системы HHO является главным приоритетом. Если вы этого не сделаете, у вас начнутся проблемы с массивом.
ШИМ будет поддерживать ваш средний ток на уровне, позволяя вашей системе HHO работать прохладно и плавно.
Вы также сможете получить газообразный водород «Орто» с помощью качественного ШИМ и электролизера. Газ Орто HHO примерно в 3-4 раза больше более горючий, чем параводород. Это намного лучшее качество газа HHO, поскольку он обеспечивает повышение эффективности сгорания.
Все становится плохо, когда качество усилителя настолько низкое, что энергия, необходимая для производства hho газа превышает количество полученного КПД, и / или страдает процентное содержание орто-водородного газа.Наши PWM HHO сделаны из качественных деталей и поставляются с очень простыми инструкциями по установке со схемами.
Ниже приведены видеоролики, демонстрирующие, насколько легко работают наши ЖК-дисплеи с ШИМ.
Функция постоянного тока ШИМ
ШИМ с измерением напряжения
Регулировка частоты ШИМ
Ввод кодов — широтно-импульсный модулятор
Пожалуйста, не пытайтесь менять коды, если вы не обратились в службу технической поддержки.DIY самодельный контроллер импульсов мощности
В этом устройстве используется встроенная схема генератора сигналов с широтно-импульсной модуляцией для запуска силового полевого МОП-транзистора.
Схема отлично подходит для управления мощностью, подаваемой на такие устройства, как вентилятор, светодиоды или даже трансформаторы и катушки. Регулируя ширину импульса, вы можете легко управлять скоростью вентилятора без ущерба для крутящего момента.
Используемый транзистор не критичен, но обычно следует использовать что-то с номинальными значениями напряжения и тока, подходящими для вашего приложения. У нас есть ряд доступных MOSFET и IGBT. Схема будет работать от источника постоянного тока 6–12 В, а выход может быть выполнен в виде «открытого коллектора» для переключения более высокого напряжения.
Не хотите собрать эту схему DIY PWM самостоятельно? Ознакомьтесь с нашим ассортиментом передовых генераторов импульсов
На этой принципиальной схеме для простоты показана нагрузка (катушка, двигатель и т. Д.), Подключенная к тому же источнику питания, что и остальная часть схемы.Если вам нужно переключить более высокое напряжение, положительный разъем нагрузки можно просто подключить к внешнему источнику питания.
Если цепь будет использоваться с индуктивными нагрузками, к нагрузке следует подключить небольшой конденсатор. Они часто уже установлены на небольших двигателях постоянного тока. Дополнительный компонент, такой как варистор или «диод свободного хода», также рекомендуется, если генератор импульсов управляет высоковольтными трансформаторами обратного хода, такими как катушки зажигания.
Два потенциометра VR1 и VR2 используются для управления частотой и рабочим циклом выхода.VR1 регулирует скорость, с которой C1 заряжается для изменения частоты, в то время как VR2 действует как делитель потенциала, позволяя подавать определенное напряжение на инвертирующий вход IC2. Это напряжение используется для управления шириной импульса на выходе. Выходной рабочий цикл или ширина импульса устройства также могут контролироваться внешним напряжением, например микроконтроллерами или аналоговым сигналом. Источник аналогового напряжения можно просто подключить к инвертирующему входу вместо выхода VR2.
Характеристики и характеристики
- Вход от 9 до 15 В, 10 А
- Выходная мощность — от 9 до 15 В постоянного тока, прямоугольная форма
- Выход с открытым коллектором позволяет использовать отдельный источник напряжения для импульсов.
- Независимое управление частотой и шириной импульса / скважностью
- Частота регулируется в диапазоне от 0 Гц до 125 кГц (C1 необходимо изменить для полного диапазона)
- Ширина импульса полностью регулируется от 0% до 100%
У нас есть несколько таких генераторов импульсов, предназначенных для использования с трансформаторами высокого напряжения, которые доступны на странице киберсхем. Они высокого качества, готовые к монтажу на печатной плате, включая большой радиатор и вентилятор, защиту от перегрузки и противоэдс.индуктивная защита. Эти устройства довольно эластичны и идеально подходят для любителей и экспериментов из-за широкого спектра потенциальных применений и долговечности для работы с различными грузами. Если у вас есть случайные трансформаторы или вы делаете свои собственные катушки, эти импульсные модуляторы мощности идеально подходят для тестирования и управления ими.
Не хочешь собрать самому? Ознакомьтесь с нашими передовыми схемами импульсного управления. Купите наш замечательный PWM-OCXI прямо сейчас!
Как сгенерировать ШИМ с использованием таймера 555 IC
Что такое ШИМ?
ШИМ (широтно-импульсная модуляция) — важная особенность каждого современного микроконтроллера из-за его потребности в управлении многими устройствами почти во всех областях электроники. PWM широко используется для управления двигателем, освещением и т. Д. Иногда нам не требуется микроконтроллер в наших приложениях, и если нам нужно сгенерировать PWM без микроконтроллера, мы предпочитаем некоторые микросхемы общего назначения, такие как операционные усилители, таймеры. , генераторы импульсов и т. д. Итак, в этом руководстве мы собираемся создать «Цепь генерации ШИМ с использованием прецизионного таймера 555 IC »
Ядром этой схемы является ИС прецизионного таймера NE555. ИС имеет частоту колебаний от 670 до 680 Гц.Здесь этот таймер NE555 работает в режиме нестабильного мультивибратора. Астабильный мультивибратор — это автономный генератор, который непрерывно переключается между двумя своими нестабильными состояниями. При отсутствии внешнего сигнала транзисторы попеременно переключаются из состояния отсечки в состояние насыщения с частотой, которую определяют постоянные времени RC цепи связи. Если эти постоянные времени равны (R и C равны), то прямоугольная волна будет генерироваться с частотой 1 / 1,4 RxC. Следовательно, нестабильный мультивибратор также является генератором импульсов или генератором прямоугольных импульсов, что полностью соответствует требованиям широтно-импульсной модуляции (ШИМ).
Компоненты оборудования
[inaritcle_1]555 Распиновка таймера
Цепь генератора ШИМ
Рабочее пояснение
Нестабильное устройство таймера 555 создает прямоугольную волну с максимальным и минимальным временем. Соотношение этих времен можно изменять, изменяя R1, R2 и C1. Здесь, в этой схеме, мы контролируем выходную частоту сигнала ШИМ с помощью потенциометра 10 кОм и конденсатора 100 нФ.
Здесь мы использовали потенциометр 10 кОм вместо постоянного резистора, чтобы изменить рабочий цикл выходного сигнала. C1 Конденсатор (100 нФ), заряжающийся через диод D1 и разряд через диод D2 , будет генерировать сигнал ШИМ на выходном контакте таймера 555.
Приложения
- ШИМ используется в телекоммуникациях для кодирования.
- Он также используется для таких приложений, как управление двигателями постоянного тока, клапанами, насосами, гидравликой и другими механическими деталями.
- Системные платы компьютеров требуют сигналов ШИМ, которые контролируют тепло, выделяемое на плате. В вентилятор встроен 4-контактный разъем PWM, который помогает отводить тепло от материнской платы.
Как сгенерировать ШИМ с помощью IC 555 (изучено 2 метода)
IC 555 — чрезвычайно полезное и универсальное устройство, которое можно применять для настройки многих полезных схем в области электроники. Одна очень полезная особенность этой ИС — ее способность генерировать импульсы ШИМ, размеры которых можно изменять или обрабатывать в соответствии с потребностями приложения или схемы.Что такое ШИМ?
В основном ШИМ используется для определения размеров или подстройки выходного напряжения или мощности конкретной нагрузки в соответствии с индивидуальными требованиями или требованиями приложения.
Это цифровой способ управления мощностью, который более эффективен, чем аналоговые или линейные методы.
Существует множество примеров, иллюстрирующих эффективное использование ШИМ для управления заданными параметрами.
Используется для управления скоростью двигателей постоянного тока, в инверторах для управления среднеквадратичным значением выходного переменного тока или для создания модифицированных выходных синусоидальных сигналов.
Его также можно увидеть в источниках питания SMPS для точного регулирования выходного напряжения.
Он также применяется в схемах драйверов светодиодов для включения функции затемнения светодиодов.
Он широко используется в топологиях понижающего / повышающего напряжения для получения повышенных или пониженных напряжений без использования громоздких трансформаторов.
Таким образом, в основном его можно использовать для настройки выходного параметра в соответствии с нашими собственными предпочтениями.
Означает ли это, что при таком большом количестве интересных вариантов применения этот метод может быть слишком сложным или дорогостоящим в настройке?
Ответ однозначно нет. Фактически, это может быть очень просто реализовано с использованием одной микросхемы LM555.
Существует два основных способа использования IC 555 для генерации выходного сигнала широтно-импульсной модуляции. В первом методе используется только одна микросхема IC 555 и несколько связанных частей, таких как диоды, потенциометр и конденсатор.Второй метод заключается в использовании стандартной моностабильной конфигурации IC 555 и использовании внешнего сигнала модуляции.
IC 555 PWM с использованием диодов
Первый метод является наиболее простым и эффективным, в котором используется конфигурация, показанная ниже:
Видео демонстрация
Работа двух диодных схем IC 555 PWM довольно просто. Фактически, это стандартный нестабильный мультивибратор, за исключением независимого управления периодом включения / выключения выхода.
Как мы знаем, время включения схемы ШИМ IC 555 определяется временем, которое требуется ее конденсатору для зарядки на уровне 2/3 напряжения постоянного тока через резистор на выводе № 7, а время выключения определяется временем разряда конденсатора. конденсатор ниже 1/3 Vcc через сам вывод №7.
В приведенной выше простой схеме ШИМ эти два параметра могут быть независимо установлены или зафиксированы с помощью потенциометра и пары бифуркационных диодов.
Левосторонний диод, катод которого подключен к выводу № 7, разделяет время выключения, в то время как правый диод, анод которого подключен к выводу № 7, разделяет время включения выхода ИС.
Когда рычаг ползунка потенциометра находится ближе к левому диоду, это вызывает уменьшение времени разряда из-за более низкого сопротивления на пути разряда конденсатора. Это приводит к увеличению времени включения и уменьшению времени выключения IC PWM.
И наоборот, когда ползунок потенциометра находится ближе к правому диоду, это вызывает уменьшение времени включения из-за снижения сопротивления потенциометра на пути зарядки конденсатора. Это приводит к увеличению периода выключения и уменьшению периодов включения выходных ШИМ ИС.
2) IC 555 PWM с использованием внешней модуляции
Второй метод немного сложнее, чем описанный выше, и требует внешнего переменного постоянного тока на выводе № 5 (управляющий вход) IC для реализации пропорционально изменяющейся ширины импульса на выходе IC. .
Давайте изучим следующую простую конфигурацию схемы:
Распиновка IC 555
На схеме показана схема IC 555, подключенная к простому моностабильному режиму мультивибратора. Мы знаем, что в этом режиме ИС может генерировать положительный импульс на выводе №3 в ответ на каждый отрицательный сигнал запуска на выводе №2.
Импульс на выводе №3 сохраняется в течение некоторого заданного периода времени в зависимости от значений Ra и C. Мы также можем видеть, что выводы №2 и №5 назначены как входы синхронизации и модуляции соответственно.
Выходной сигнал берется с обычного контакта №3 микросхемы.
В приведенной выше простой конфигурации IC 555 полностью настроен для генерации требуемых импульсов ШИМ, ему просто требуется прямоугольный импульс или тактовый вход на его выводе № 2, который определяет выходную частоту, и переменный вход напряжения на выводе # 5, амплитуда или уровень напряжения которого определяют ширину импульса на выходе.
Импульсы на выводе №2 генерируют соответственно чередующиеся треугольные волны на выводе №6 / 7 ИС, ширина которых определяется компонентами синхронизации RA и C.
Эта треугольная волна сравнивается с мгновенной мерой напряжения, приложенного к выводу № 5, для измерения импульсов ШИМ на выходе вывода № 3.
Проще говоря, нам просто нужно подать последовательность импульсов на вывод №2 и переменное напряжение на выводе №5 для достижения требуемых импульсов ШИМ на выводе №3 ИС.
Амплитуда напряжения на выводе № 5 будет непосредственно отвечать за усиление или ослабление выходных импульсов ШИМ, или просто толще или тоньше.
Напряжение модуляции может быть сигналом очень слабого тока, но оно даст желаемые результаты.
Например, предположим, что мы подаем прямоугольный сигнал частотой 50 Гц на вывод № 2 и постоянное напряжение 12 В на вывод № 5, результат на выходе будет показывать ШИМ со среднеквадратичным значением 12 В и частотой 50 Гц.
Для уменьшения среднеквадратичного значения нам просто нужно понизить напряжение на выводе №5. Если мы изменим его, результатом будет переменная ШИМ с различными значениями RMS.
Если это изменяющееся среднеквадратичное значение применяется к каскаду драйвера МОП-транзистора на выходе, любая нагрузка, поддерживаемая МОП-транзистором, также будет реагировать с соответствующим изменением высоких и низких результатов.
Если двигатель подключен к МОП-транзистору, он будет реагировать с различной скоростью, лампа с различной интенсивностью света, а инвертор с модифицированными эквивалентами синусоидальной волны.
Форма выходного сигнала
Вышеупомянутое обсуждение можно увидеть и проверить на приведенной ниже иллюстрации формы сигнала:
Самая верхняя форма волны представляет собой напряжение модуляции на выводе № 5, выпуклость в форме волны представляет возрастающее напряжение и наоборот.
Вторая форма волны представляет собой равномерный тактовый импульс, приложенный к выводу №2.Это просто для того, чтобы позволить ИС переключаться на определенной частоте, без которой ИС не смогла бы работать как устройство генератора ШИМ.