Самовозбуждение асинхронного генератора: Асинхронный электрический генератор.Возбуждение асинхронного генератора – Асинхронный генератор с самовозбуждением

Содержание

Асинхронный электрический генератор.Возбуждение асинхронного генератора

Принцип работы асинхронного электрического генератора

Во всех случа­ях асинхронная электрическая машина потребляет из сети реактивную мощность, необходимую для создания магнитного поля. При автономной работе асинхронной электрической машины в генераторном режиме магнитное поле в воздушном зазоре создается в результате взаимодействия магнитной движущийся силы магнитной силы всех фаз и магнитной движущийся силы обмотки ротора. Характер распределения магнитной движущийся силы точ­но такой же, как и в асинхронном электрическом двигателе(АД) , он также определяет характер распределения магнитного поля на полюсном делении. В асинхронном генераторе этот поток весьма близок к си­нусоидальному и при вращении ротора индуцирует в фазах статора и в обмотке ротора ЭДС Е| и Е2, которые можно принять синусоидальными.
В отличие от асинхронного электрического двигателя в  асинхронном электрическом генераторе в данном случае ЭДС Е1 и Е2 являются активными, поддерживают ток в соответствующих цепях и в нагрузке, подклю­ченной к выходным зажимам.

В установившемся режиме работы основные соотношения для асинхронного электрического генератора с самовозбуждением определя­ются из схемы замещения. Основное отличие только в том, что к ее выводам подключено сопро­тивление нагрузки 2

Н = Кн +]ХН и конденсаторы для обеспечения само­возбуждения и регулирования на­пряжения при изменении нагрузки асинхронного электрического генератора  с сопротивлениями Хс = 1/соС и Хск = 1/соСк.
Как видно, напряжение при работе под нагрузкой изменяется как за счет падения напряжения на сопротивлениях r1 и х1, так и за счет сни­жения магнитного потока Фот , связанного с размагничивающим действи­ем магнитной движущийся силы  ротора. Если магнитная цепь асинхронного электрического генератора выполнена с достаточно силь­ным насыщением, то поток Фот остается почти постоянным и напряжение U1
при увеличении нагрузки изменяется в меньшей степени, а его внешняя характеристика получается более «жесткой».

Способы регулирования напряжения автономного асинхронного генератора. Самовозбуждение асинхронного электрического генератора

Особенности самовозбуждения асинхронного генератора. Асинхронный элетродвигатель, под­ключенный к трехфазной сети переменного тока, при частоте вращения ротора, больше, чем частота вращения поля статора, переходит в генера­торный режим и отдает в сеть активную мощность, потребляя из сети ре­активную мощность, необходимую для создания вращающегося магнитно­го поля взаимной индукции. Тормозной электромагнитный момент, дейст­вующий на роторе, преодолевается приводным двигателем — дизелем, гид­ротурбиной, ветродвигателем и т.п.
Для возбуждения  асинхронного электрогенератора необходимо наличие источника реактивной мощности — батареи конденсаторов или синхронно­го компенсатора, подключенных к обмотке статора. При этом почти есте­ственной представляется работа асинхронного генератора  при сверх синхронном скольжении, ко­гда скорость вращения ротора выше скорости вращающегося магнитного поля. Однако практически асинхронный генератор может возбуждаться при частоте вращения ротора, значительно меньшей синхронной, причем значения напряжения и частоты тока оказываются пропорциональными частоте вращения ротора и, кроме того, зависящими от схемы соединения конденсаторов. Так, в эксперименте ( по опытным данным гл. инж. Штефана А.М. (НК ЭМЗ, г. Н.Каховка)) конденсаторный асинхронный мотор-редуктор типа АИРУ112-М2 при соединении бата­реи конденсаторов емкостью 3×120 мкФ в «звезду» возбуждается при ско­рости п

р= 2133 об/мин с напряжением ГГф = 60 В и током фазы 1ф = 0,8 А, а при соединении тех же конденсаторов в «треугольник» напряжение  =52 В и ток 1ф = 1,4А возникают при скорости п
р
= 1265 об/мин.

Весьма интересное явление наблюдалось в асинхронном генераторе серии А ИМН 90-L4 при включении емкости 40 мкФ только в одну из трех фаз. В этом случае возбуждение асинхронного генератора наступило при скорости п2 = 1369 об/мин с параметрами U1ф = =209 В, I = 1,29 А, Г = 44 Гц. При емкости С = 60 мкФ, включенной в одну из фаз, параметры возбуждения асинхронного электрогенератора были равны: п2 — 1300 об/мин, U = 500 В, I = 6,4 А, Г = 124 Гц. При увеличении частоты вращения ротора до син­хронной (1500 об/мин) наблюдалось увеличение частоты тока до 400Гц. В некоторых случаях, наоборот, не удавалось добиться устойчивого возбуж­дения асинхронного генератора  даже при сверх синхронной частоте вращения ротора. Например, для намагниченных гладких стального массивного и шихтованного рото­ров самовозбуждения не возникало при любых величинах присоединенной емкости.

Для массивного стального ротора с тонким экраном из меди, а также для массивного стального зубчатого ротора с торцовыми медными конца­ми АГ устойчиво возбуждается при расчетном значении емкости. Асин­хронная машина с гладкими роторами из меди или алюминия возбуждает­ся без каких-либо дополнительных воздействий извне.

Таким образом, физические процессы самовозбуждения асинхронного генератора с пол­ным основанием можно отнести к недостаточно изученным, что связано, по нашему мнению, с преимущественным использованием до настоящего времени АМ в качестве двигателя, с разработкой для него теории, расчет­ных методик и проектирования, а для генераторного режима эти машины проектировались и выпускались достаточно редко.
В маломощных системах генерирования применяются, как правило, АМ, предназначенные для работы в двигательном режиме с конденсатор­ным возбуждением.

Описание процесса самовозбуждения на принципе остаточной намагниченности магнитной цепи.

Современные работы по са­мовозбуждению АГ с помощью статических конденсаторов по­строены на трех подходах. Один из них базируется на принципе остаточной намагниченности маг­нитной цепи машины, начальная ЭДС от которой затем усиливает­ся емкостным током в статоре . Рассмотрим этот подход.

Автономная работа асинхронного генератора в режиме самовозбуждения от потока остаточного намагничивания возмож­на, если к выводам обмотки статора подключить конденсаторы, необходи­мые как источник реактивной мощности от для возбуждения магнитного поля асинхронного электрогенератора, а при его работе на активно-индуктивную нагрузку эти конденсаторы должны служить источником реактивной мощности 0Н и для нагруз­ки.

Понравилось это:

Нравится Загрузка…

Похожее

Асинхронный генератор с самовозбуждением


⇐ ПредыдущаяСтр 77 из 101Следующая ⇒

Генераторный режим работы асинхронной машины рассматривался в § 24-5. При этом было выяснено, что асинхронный генератор потребляет реактивный намагничивающий ток для создания магнитного потока й поэтому должен работать параллельно с сетью переменного тока, к которой присоединены другие машины или установки (например, синхронные генераторы), способные снабжать

Рис. 29-6. Схема асинхронного генератора АГ с местной нагрузкой R и конденсаторной батареей С {а) и векторная диаграмма (б)

реактивным током асинхронные генераторы идругих потребителей. Наряду с этим асинхронный генератор может работать также л режиме самовозбуждения на отдельную сеть, получая реактивный ток возбуждения от конденсаторов, прнключаемых к зажимам асинхронного генератора.

‘Для выяснения некоторых положений рассмотрим схему рис. 29-6, на которой изображен асинхронный генератор АГ, работающий параллельно с сетью и потребляющий из нее реактивный (индуктивный) ток lL= / . Этот ток создает в генераторе магнитное поле, в то время как активный ток 1а, вырабатываемый генератором АГ, полностью потребляется местным Потребителем R. Приключим теперь к зажимам, генератора конденсаторы С такой емкости, чтобы потребляемый

Рис 29-7. Схема замещения самоВоз-буждающегося асинхронного генератора с нагрузкой Zatи емкостным сопротивлением конденсаторной батареи

хс

ими из сети емкостный ток /с по величине был равен току IL, Очевидно, что при этом потребляемый из сети ток

Рубильник Р можно поэтому отключить, и асинхронный генератор АГ будет работать на изолированную местную сеть с приемниками RnC. Так как при этом, с одной стороны, генератор продолжает потреблять ток IL = 1ш, а с другой стороны, конденсаторы продолжают потреблять ток /с = lh, то можно сделать следующие выводы:

1) источниками реактивного намагничивающего тока /м = /j. для генератора теперь являются конденсаторы;

2) утверждения «конденсатор потребляет из сети (или от асинхронного генератора) емкостный ток» и «конденсатор отдает в сеть (яля асинхронному генератору) индуктнвйый ток» равноценны; 3) равноценны также утверждения «асинхронная машина потребляет из сети индуктивный ток» и «асинхронная машина отдает в сеть емкостный ток».

В практике энергетических систем термины «реактивный ток» и «реактивная мощность» принято связывать с отстающим (индуктивным) током. При этом говорят, что конденсаторы отдают в сеть реактивный ток и, реактивную мощность и являются гейераторами реактивной мощности.

Из «казааиого следует, что при чисто активной нагрузке асинхронного генератора мощность конденсаторов должна равняться реактивной (намагничивающей) мощности генератора. Если же нагрузка будет иметь смешанный активно-индуктивный характер, то мощность конденсаторной батареи необходимо соответственно увеличить, чтобы она покрывала также реактивную мощность нагрузки. При смешай-ной активно-емкостной нагрузке требуется конденсаторная батарея меньшей мощности, а при определенных условиях эта батарея становится излишней.

Схема замещениа-асинхронного генератора с самовозбуждением при помощи конденсаторов и с нагрузкой ZSTизображена на рис. 29-7. На основании этой схемы могут быть найдеды все соотношения и величины, характеризующие режим работы генератора. В частности, на основе баланса реактивных мощностей с учетом потерь реактивной мощности в сопротивлениях хЛ, x’oiи хымождо определить необходимую мощность « необходимую емкость конденсаторов. Векторная диаграмма самого асинхронного генератора с самовозбуждением имеет обычный вид и не зависит от того, откуда генератор потребляет необходимую реактивную мощность.

Рис. 29-8. К выяснению условий самовозбуждения асинхронного генератора

Выяснив в общих чертах работу асинхронного генератора с самовозбуждением в установившемся режиме, рассмотрим процесс его самовозбуждения на холостом ходу (рис. 29-8), пренебрегая активными сопротивлениями.

Ввиду наличия потока остаточного намагничивания ротора асинхронной машины, при вращении ротора в обмотке статора индуктируется некоторая э д. с. £ост (рис. 29-8). Эта э. д. с. вызывает в конденсаторах ток 1′с, который, протекая по обмотке статора машины, усиливает его магнитный поток. В результате индуктируемая э. д. с. и ток конденсатора увеличиваются и т. д.

На рис. 29-8 зависимость индуктируемой в обмотке статора генератора э. д.с. £i от намагничивающего тока в этой обмотке /м или от тока конденсатора /с = /м изображена в виде кривой холостого хода или кривой намагничивания (жО1 + + хм)1сПрямая U =• хс1сопределяет зависимость напряжения конденсатора от его тока. Процесс самовозбуждения на рис. 29-8 условно изображен ступенчатой линией. Э. д. с. остаточного намагничивания вызывает в конденсаторе ток

Очевидно, что процесс самовозбуждения асинхронного генератора во многом аналогичен процессу самовозбуждения генератора постоянного тока (см. § 9-4).

Выше предполагалось, что первоначальный толчок тока статора при самовозбуждении возникает в результате действия потока остаточного намагничивания. Вместе с тем роль первоначального толчка может сыграть также ток разряда предварительно заряженной конденсаторной батареи, наводка тока внешним магнитным полем и флуктуация электронов в цепи обмотки статора. Последние две причины на практике часто оказываются недостаточно сильными для развития самовозбуждения.

Мощность конденсаторной батареи самовозбуждающегося асинхронного генератора достаточно велика (до 70—100% от номинальной мощности генератора), что делает установку дорогой. В связи с этим такие генераторы находят в настоящее время весьма ограниченное применение. Иногда явление самовозбуждения асинхронной машины с подключенными к ней конденсаторами используется для торможения асинхронных двигателей после отключения их от сети. Торможение при этом происходит за счет потерь, возникающих в самовозбужден-ной машине и приключенных к ней сопротивлениях.

Самовозбуждение асинхронной машины возможно также при включении конденсаторов во вторичную цепь, однако этот случай ввиду малой частоты в цепи ротора малоэкономичен.

§ 29-3. Асинхронные машины с массивным ротором

Ротор асинхронной машины можно изготовить из массивной стальной поковки и без пазов. В этом случае роль обмотки ротора играет сам массивный ротор, в котором вращающееся магнитное поле будет индуктировать токи.

Массивный ротор имеет большое преимущество в прочности. В связи с этим асинхронные двигатели на высокие скорости вращения (10 000—100 000 об/мин)

строятся с массивным ротором. Такие двигатели применяются в различных установках специального характера, в частности в гироскопических навигационных устройствах, и питаются током повышенной частоты (400—1000 гц).

Активное г2и индуктивное хлсопротивления массивного ротора ввиду сильно выраженного поверхностного эффекта значительно зависят от скольжения. Так, в случае / = 50 гц при пуске (s = 1) эквивалентная глубина проникновения токов в роторе составляет только около Змм, приs= 0,02 — около 20мм, npns = = 0,001 — около 100 мм. Поэтому при пуске сопротивление г2 весьма велико и хлмало, а с уменьшением скольжения сопротивление г2уменьшается и ха2 увеличивается. Вследствие подобного изменения параметров геометрическое место токов машины с массивным ротором имеет вид, изображенный на рис. 29-9 сплошной линией. Для сравнения там же

штриховой линией показана круго- fy^$=/

вая диаграмма асинхронного двигателя с постоянными- параметрами.

В результате сильного проявления поверхностного эффекта пусковой момент двигателя смассивным ротором достаточно велик ая= 1,5-V- 2,0). Однако двигатели малой и средней мощности с массивными роторами при /= 50гц имеют низкие к. п. д. и коэффициент мощности, так как при Рис. 29-9. Геометрическое место токов скольжении s = 0,02 -з- 0,05 глу- асинхронной машины с массивным ро-бина проникновения тока и потокатором

в сталь ротора мала, активное и

магнитное сопротивления ротора магнитному потоку велики, вследствие чего двигатель имеет большое номинальное скольжение и большой намагничивающий ток. С увеличением геометрических размеров машины, а также при увеличении номинальной скорости вращения рабочие характеристики двигателя улучшаются. Так, асинхронный двигатель с массивным ротором на / = 50 гц и Ря= = 20 000-з- 50 000 кет имел бы номинальное скольжение значительно менее 1%. В двигателях относительно небольшой мощности на высокие скорости вращения для улучшения рабочих характеристик иногда внешнюю поверхность массивного стального ротора покрывают медью. С этой же целью применяются медные кольца, прикрепленные к торцевым поверхностям массивного ротора. Роль этих колец аналогична торцовым короткозамыкающим кольцам беличьей клетки, и активное сопротивление ротора с такими кольцами уменьшается. Иногда на цилиндрической поверхности ротора выполняют также пазы, но без укладки в них обмотки. При этом площадь внешней рабочей поверхности ^ротора, нагруженной токами, увеличивается, что приводит к уменьшению активного сопротивления ротора.

§ 29-4. Линейные и дуговые асинхронные машины

Если представить себе, что обычный круглый статор асинхронного двигателя разрезан по осевой плоскости и выпрямлен в плоскость или разогнут по дуге большего радиуса, чем радиус исходного круглого статора, то получится статор линейной (рис. 29-10, о) или дуговой (рис. 29-10, б) асинхронной машины. Трехфазная обмотка такого статора создает в воздушном зазоре в пределах сердечника статора соответственно бегущее или вращающееся магнитное поле.

Движущаяся часть линейной машины называется бегуном, а движущаяся часть дуговой машины — ротором. Бегун и ротор могут иметь конструкцию, свойственную роторам нормальных короткозамкнутых асинхронных машин, т. е. иметь сердечники из листовой электротехнической стали и обмотку

Рис. 29-9. Геометрическое место токов асинхронной машины с массивным ротором

типа беличьей клетки, расположенную в пазах сердечника бегуна и ротора. Они могут быть изготовлены также массивными — из стали или чугуна, и в этом случае роль вторичной обмотки выполняет само тело бегуна или ротора.’ Линейную асинхронную машину можно выполнить также в виде двух статоров, обращенных друг к другу, и бегуном при этом служит проводящее тело, расположенное в зазоре между сердечниками статоров. Проводящее вторичное тело в виде шины может быть также неподвижным, а „статор» — находиться на движущемся экипаже. Такие устройства перспективны для высокоскоростного пассажирского транспорта.

Принцип действия рассматриваемых машин одинаков с принципом действия нормальных асинхронных машин: бегущее или вращающееся поле статора индуктирует в обмотке бегуна или ротора токи, в результате взаимодействия которых с магнитным полем возникают электромагнитные силы, действующие на бегун и ротор. В установившемся режиме скольжение бегуна или ротора относительно магнитного поля обычно невелико.

Особенностью дуговой машины является то, что ее скорость вращения не связана так жестко с числом пар полюсов р и частотой fi, как в нормальной асинхронной машине. Действительно, пусть статор .машины (рис. 29-10, 6) имеет р пар полюсов’ и занимает дугу с центральным углом а,-За один период тока вращающееся поле перемещается на 2т или на угол ajp, а в тече» ние одной секунды поле совершает

оборотов. Выбирая различные а, полу чаем различные скорости вращения. Щщ а = 2я имеем нормальную асинхронную машину с

«i=/i/P. об/сек.

P#c. 29-10, Линейная (а) я дуговая (б) асинхронные машины

Линейные асинхронные машины можно использовать для получения возвратно-поступательного движения. При этом производится периодическое пере* ключеиие обмотки статора (изменение чередования фаз) и. машина работает в циклическом режиме ускорения, движения и торможения. Такой режим в энергети; ческом отношении невыгоден, так как в течение каждого цикла работы при уско^ рении и торможении бегуна бесполезно теряется относительно большое количество-энергии в виде тепла, выделяемого в обмотках. Количество теряемой энергии тем больше, чем больше масса бегуна и его максимальная скорость. В связи с этим Явигатели возвратно-поступатального движения не получили заметного распространения. Применение линейных и дуговых асинхронных машин и родственных им магнитогидродинамическ’их машин (см, §29-5) в качестве электрических машин специального назначения расширяется.

В линейных и дуговых асинхронных машинах возникают краевые эффекты, вызванные ‘уем. что их статоры не» замкнуты в кольцо и имеют конечную длину. Вследствие этого энергетические показатели линейных и дуговых машин хуже» чем у нормальных асинхронных машин.

§ 29-5. Магнитогидродинамические машины переменного тока

Одной из разновидностей магнитогидродинамических машин переменного тока являются индукционные насосы для жидких металлов, которые подразделяются на линейные и винтовые [58].

Линейные индукционные насосы родственны линейным асинхронным машинам (см. § 29-4) и делятся на плоские и цилиндрические.

Плоские насосы (рис. 29-11) имеют обычно два индуктора, каждый из которых состоит из сердечник-а 1 и многофазной (обычно трехфазной) обмотки 2. Между индукторами находится плоский канал прямоугольного сеченияЗ с жидким металлом. Стенки канала в зависимости от свойств жидкого металла могут быть как металлическими, так и керамическими. Между стенками канала и индукторами в большинстве случаев имеется слой тепловой изоляции. Бегущее магнитное

Рис. 29-Я. Устройство плоского линейного индукционного насоса для жидких металлов

поле индукторов наводит в жидком металле токи, и вследствие взаимодействия этих токов с магнитным полем возникают электромагнитные силы, действующие на частицы жидкого металла. В результате развивается напор, и жидкий металл прихоцвт в движение по направлению движения поля с некоторым скольжением относительно его.

Цилиндрические насосы имеют канал кольцевого сечения, внутри которого расположен сердечник без обмотки, а снаружи — с обмоткой. Обмотка создает магнитное поле, бегущее вдоль оси канала.

Представление о винтов ом индукционном насосе можно получить, если предположить, что ротор асинхронного двигателя заторможен, зубцы ротора вместе с обмоткой срезаны и в зазоре, образовавшемся между внешним и внутренним сердечниками, навит винтовой канал.

Индукционные насосы находят применение в исследовательских, транспортных и промышленных установках с ядерными реакторами на быстрых нейтронах, в которых для отвода тевда используются жидкометаллические теплоносители (натрий, кадий, их сплавы и др.). Создаются также разные установки для металлургии и Литейного производства. Все виды индукционных насосов обратимы, и насосы могут работать в режиме асинхронного генератора, если по их каналам за счет внешнего источника прокачивать жидкий металл со скоростью выше скорости движения поля. Магнитогидродинамические генераторы с жидкими металлами, а также с парами жидких металлов имеют перспективы практического применения в разных энергетических установках, в том числе с ядерными реакторами [58]. Предложены различные конструктивные разновидности подобных генераторов. Однако на пути их создания имеются различные трудности, из которых можно отметить проблему разгона жидких металлов за счет содержащейся в них тепловой энергии.

§ 29-6. Асинхронный преобразователь частоты

Асинхронный преобразователь частоты (рис. 29-12) состоит из трехфазной асинхронной машины AM с фазным ротором и соединенного с ней приводного двигателя Д. Одна из обмоток асинхронной машины, например обмотка статора, приключается к первичной сети с частотой fltа вторичная обмотка питает вторичную сеть током частоты скольжения f2 = sfj.

Асинхронная машина AM работает либо в тормозном, режиме противовклю-чения, когда s > 1 и f2 > fi. либо в режиме двигателя, когда s < 1 и f2 > fv В двигательном режиме ротор AM вращается в направлении вращения поля, а в тормозном — против направления вращения поля. Генераторный режим работы AM в преобразователях частоты обычно не используется.

рели пренебречь потерями, то первичная мощность AM

Pi = Pbh>

а вторичная мощность, или мощность скольжения,

Механическая мощность, развиваемая двигателем Д, Pux = P2-Pi = (s-\)P1.

При s > 1, когда fi>f\, приводной двигатель Д работает в режиме двигателя и Рт> 0. При s > 1 двигатель Д работает в действительности в режиме генератора и Рмх < 0.

Приводным двигателем Д обычно служит асинхронный или синхронный двигатель. Если величину вторичной частоты необходимо регулировать, то возбуждение первичной обмотки AM частотой производится от вспомогательной синхронной или коллекторной машины с регулируемой частотой. Для этой же цели в качестве двигателя Д можно, использовать машину постоянного тока и регулировать скорость ее вращения. Если /а > fuто Р2 > Pi, и для облегчения работы контактных колец и щеток в качестве первичной обмотки с током частоты ^ используется обмотка ротора. В простейшем случае, когда регулирования величины частоты f2 не требуется, приводной синхронный или асинхронный двигатель Д и первичную обмотку AM можно питать от общей сети с промышленной частотой Д. При этом скорость вращения приводного двигателя и всего агрегата, если в случае использования асинхронного приводного двигателя, пренебречь его скольжением, равна


Рекомендуемые страницы:

Самовозбуждение генератора переменного тока

Генератор — устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.

здесь:
n — частота вращения магнитного поля (частота ЭДС).
n r — частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусст

АСИНХРОННЫЙ АВТОНОМНЫЙ ГЕНЕРАТОР

⇐ ПредыдущаяСтр 15 из 15

Асинхронная машина, подключенная к трехфазной сети переменного тока, при частоте вращения n2 > n1переходит в генераторный режим. При этом реактивную мощность, необходимую для возникновения вращающего магнитного поля, машина получает из сети. Можно также обеспечить работу асинхронной машины в качестве автономного генератора, если подавать в обмотку статора необходимую реактивную мощность от батареи конденсаторов.

В автономном асинхронном генераторе (рис. 2.71, а) к выходу генератора AГ, приводимого во вращение каким-либо первичным двигателем Д, параллельно нагрузке в каждую фазу подключают конденсатор С. При активной нагрузке реактивная мощность, поступающая от конденсатора, Qcдолжна быть равна реактивной (намагничивающей) мощности генератора Qр, необходимой для создания его магнитного потока. При смешанной активно-индуктивной нагрузке мощность Qcдолжна покрывать также реактивную мощность Qрн нагрузки. Схема замещения асинхронного генератора с конденсаторным возбуждением изображена на рис. 2.71, б.

 

Рис. 2.71 — Схема включения асинхронного генератора с конденсаторным возбуждением (а),

его схема замещения (б) и зависимость ЭДС от тока Iс

 

В рассматриваемом асинхронном генераторе возникает процесс самовозбуждения, как и в генераторе постоянного тока с параллельным возбуждением. Ввиду наличия в магнитной системе машины остаточного магнетизма при вращении ротора в обмотке статора индуцируется остаточная ЭДС Еост (рис. 2.71, в), которая создает в конденсаторах ток Iс. Этот ток, проходя по обмотке статора, усиливает его магнитный поток, в результате чего индуцируемая в генераторе ЭДС Еги ток конденсатора увеличиваются. Рассматриваемый процесс продолжается до тех пор (точка А), пока ЭДС Егне станет равной напряжению на конденсаторе Uc. Это условие можно выразить в виде равенства сопротивлений Х1 + Xm= Хс, где Хmиндуктивное сопротивление намагничивающего контура, уменьшающееся из-за насыщения магнитной цепи машины; Хс— емкостное сопротивление конденсатора. В ряде случаев начало процесса самовозбуждения генератора обеспечивается путем разряда на обмотку статора предварительно заряженной конденсаторной батареи.

Автономные асинхронные генераторы с конденсаторным возбуждением обычно выполняют с короткозамкнутой обмоткой ротора. Их используют главным образом на гидроэлектростанциях небольшой мощности, работающих без обслуживающего персонала.

 

Список литературы:

1. Копылов И.П. Электрические машины. – М.: Энергоиздат, 2004.

2. Брускин Д.Э., Зерохович А.Е., Хвостов В.С. Электрические машины. Т.1,2. – М.:, Высш. шк., 1987.

3. Токарев Б.Ф. Электрические машины, — М.: Энергоиздат, 1990.

4. Копылов И.П. Математическое моделирование энергетических машин. Учебник. – М.:, Высш. шк., 2001.

5. Гольдберг, Свириденко Я.С. Проектирование электрических машин. Учебник для ВТУзов. – М.:, Высш. шк., 2001.

6. Иванов-Смоленский А.В. Электрические машины. – М.:, Энергия, 1988.

7. Кацман М.М. Электрические машины. – М.: Энергоиздат, 1990.

8. Вольдек А.И. Электрические машины. – Л.: Энергия, 1984.

 

Учебное издание

Электрические машины переменного тока (для студентов форм обучения направления подготовки 6.090603 “Электрические системы электроснабжения”, 6.090605 “Светотехника и источники света”, 6.092204 “Электрический транспорт”)

 

 

Авторы: Марина Леонидовна Глебова,

Анатолий Иванович Кузнецов,

Игорь Тимофеевич Карпалюк,

Маргарита Васильевна Чернявская

 

 

Редактор: З.М. Москаленко

Корректор: З.И. Зайцева

 

План 2008, поз. 79

Подп. к печати Печать на ризографе. Тираж 200 экз. Формат 60 х 84 1/16 УСЛ. — печ. л. Зак. № _________ Бумага офисная. Уч.-изд.л.
61002, Харьков, ХНАМГ, ул. Революции, 12 Сектор оперативной полиграфии при ИВЦ ХНАГХ
61002, Харьков, ХНАМГ, ул. Революции, 12

 

[1] При изложении теории электрических машин переменного тока по аналогии с трансформатором приняты следующие обозначения: А, В, С — начала фаз; X, Y, Z — концы фаз.

[2] Принимается, что результирующий поток, создаваемый всеми фазными обмотками, имеет синусоидальную форму.




делаем из асинхронного двигателя своими руками на 220 В без переделки, отличия от синхронного, принцип работы и устройство

Асинхронный генератор – это прибор, посредством работы которого удается обеспечить промышленное оборудование, а также бытовые устройства электроэнергией. Данный тип агрегатов отличается простотой эксплуатации и удобной конструкцией.

Устройство

Генератор имеет простую структуру. Основными элементами устройства являются:

Первый представляет собой подвижную деталь, а второй элемент в процессе эксплуатации сохраняет свое положение. В агрегате не сразу удается заметить обмотки проволоки, для изготовления которой обычно задействуют медь. Однако обмотки есть, только выполнены они из алюминиевых стержней и отличаются улучшенными характеристиками.

Конструкция, образованная короткозамкнутыми обмотками, называется «беличья клетка».

Внутреннее пространство заполнено пластинами из стали, а сами стержни из алюминия впрессованы в пазы, предусмотренные в сердечнике подвижного элемента. На валу генератора расположен ротор, а сам он стоит на специальных подшипниках. Фиксацию элементов агрегата обеспечивают две крышки, зажимающие вал с двух сторон. Корпус выполнен из металлического материала. Некоторые модели дополнительно оснащены вентилятором для охлаждения устройства во время работы, а на корпусе располагаются ребра.

Преимуществом генераторов является возможность их использования в сети с напряжением как в 220 В, так и с более высокими показателями. Для правильного подключения агрегата необходимо выбрать подходящую схему.

Принцип работы

Главная задача генератора заключается в выработке электрической энергии посредством энергии механической:

  • ветровой;
  • гидравлической;
  • внутренней, преобразованной в механическую.

Когда ротор начинает вращаться, в его контуре образуются магнитные силовые линии. Они проходят через обмотки, предусмотренные в статоре, в результате чего возникает электродвижущая сила. Именно она является ответственной за появление тока в цепях. Происходит это за счет подключения к устройству активных нагрузок.

Важный момент, который следует учитывать для организации бесперебойной работы, заключается в отслеживании скорости вращения вала. Она должна быть больше по сравнению с частотой, с которой образуется переменный ток. Последний показатель задают полюса статора. Если говорить проще, то в процессе выработки электроэнергии требуется обеспечить несовпадение частот. Они должны отставать на величину скольжения ротора.

При вращении вала под воздействием внешнего импульса, полученного в результате задействования механической энергии, и остаточного магнетизма возникает собственная ЭДС устройства. В итоге оба поля – подвижное и неподвижное – взаимодействуют друг с другом в динамическом режиме.

Ток, полученный в АГ, имеет небольшие значения. Для повышения выходной мощности потребуется увеличение магнитной индукции.

Зачастую достичь этого помогают дополнительные статоры конденсаторов. Их подключают к выводам катушек и внимательно следят за показателями системы.

Сфера применения

Асинхронные генераторы пользуются популярностью, и среди преимуществ подобных станций выделяют:

  • устойчивость к перегрузкам и КЗ;
  • простую конструкцию;
  • небольшой процент нелинейных искажений;
  • стабильную работу за счет небольшого значения клирфактора;
  • стабилизацию напряжения на выходе.

При подключении генератор выделяет небольшой количество реактивного тепла, поэтому его конструкция не требует установки дополнительных охлаждающих устройств. Это позволяет выполнить надежную герметизацию внутренней полости агрегата для ее защиты от проникновения влаги, грязи или пыли.

За счет своих достоинств генераторы активно используются в качестве источников электричества в следующих сферах и областях:

  • транспортной;
  • промышленной;
  • бытовой;
  • сельскохозяйственной.

Также мощные агрегаты встречаются в автомастерских. Кроме того, их упрощенная конструкция позволяет использовать устройства в качестве источников электрической энергии. К ним подключают аппараты для сварки, а также с их помощью организуют подачу питания важным объектам здравоохранения.

Посредством работы генераторов такого типа удается в короткие сроки соорудить и запустить ветровые и гидроэлектростанции.

Таким образом, обеспечить себя энергией могут даже удаленные от центральных сетей поселки и хозяйства.

Чем отличается от синхронного?

Основным отличием генератора асинхронного типа от синхронного является измененная конструкция ротора. Во втором варианте ротор использует проволочные обмотки. Чтобы организовать вращательное движение вала и создать магнитную индукцию, агрегат задействует автономный источник питания, которым зачастую выступает генератор меньшей мощности. Его располагают параллельно той оси, на которой располагается ротор.

Плюс синхронного генератора заключается в образовании чистой электрической энергии. Кроме того, устройство без особого труда синхронизируется с другими подобными машинами, и это тоже различие.

Единственным недостатком считают восприимчивость к перегрузкам и КЗ. Дополнительно стоит отметить, что разница между двумя видами оборудования заключается и в цене. Синхронные агрегаты более дорогие по сравнению с устройствами асинхронного типа.

Что касается клирфактора, то у асинхронных агрегатов его показатель значительно ниже. Поэтому можно утверждать, что этот вид устройств вырабатывает чистый электрический ток без каких-либо загрязнений. За счет действия подобной машины удается обеспечить более надежную работу:

  • ИБП;
  • зарядных устройств;
  • телевизионных приемников нового поколения.

Запуск асинхронных моделей происходит быстро, однако требует увеличения пусковых токов, которые запускают вращение вала. Плюсом является то, что в процессе работы конструкция испытывает меньше реактивных нагрузок, за счет чего удалось улучшить показатели теплового режима. Кроме того, работа асинхронных генераторов более стабильная вне зависимости от того, с какой скоростью вращается подвижный элемент.

Виды

Существует несколько классификаций асинхронных генераторов. Они могут отличаться следующими факторами.

  • Типом ротора – вращающейся части конструкции. Сегодня выпускаемые агрегаты данного типа предусматривают в своей конструкции фазный или короткозамкнутый ротор. Первый оборудован индуктивной обмоткой, в качестве которой выступает изолированный провод. С его помощью и удается создать динамическое магнитное поле. Второй вариант – единая конструкция, имеющая цилиндрическую форму. Внутри нее расположены штыри, оборудованные двумя замыкающими кольцами.
  • Количеством рабочих фаз. Под ними подразумевают выходные или статорные обмотки, расположенные внутри устройства. Выходные при этом могут иметь одну фазу или три. Этот показатель определяет назначение генератора. Первый вариант доступен для эксплуатации при напряжении в 220 В, второй – 380 В.
  • Схемой включения. Выделяют несколько способов организации работы трехфазного генератора. Можно подключить катушки к устройству, применяя схему «звезда» или «треугольник». Также их можно разместить на полюсах неподвижного элемента – статора.

Дополнительно генераторы асинхронного типа классифицируют по наличию или отсутствию обмотки катушки самовозбуждения.

Схема подключения

Сегодня выпускают различные вариации асинхронного двигателя. Он может быть однофазным или иметь три фазы для подключения. В нем может быть предусмотрено несколько обмоток или выполнена модернизация конструкции ротора. Однако в любом случае схемы подключения устройства остаются неизменными.

Среди распространенных схем можно выделить следующие.

  • «Звезда». В этом случае необходимо взять концы обмоток статора и подключить их в одной точке. Способ подходит преимущественно для трехфазных генераторов, которые необходимо подсоединить к трехфазной линии по большему напряжению.
  • «Треугольник». Является следствием первого варианта, только подключение происходит последовательно. В результате получается, что конец первой обмотки соединяется с началом второй, конец второй – с началом третьей, и так далее. Плюс этого способа – в возможности образования максимальной мощности в процессе работы агрегата.
  • «Звезда-треугольник». Этот метод вобрал плюсы двух предыдущих. Он обеспечивает мягкий запуск и достижение большой мощности. Для подключения потребуется использование реле времени.

Примечательно, что многоскоростные генераторы тоже имеют свои способы подключения. В основном это комбинации схем «звезда» и «треугольник» в различной их модификации.

Каждый генератор подключается к системе посредством определенной схемы, которая определяет способ выработки электроэнергии. Любой из этих способов подразумевает рациональное размещение проводов обмоток неподвижного элемента между полюсами его сердечника, только при этом подключение этих проводов осуществляется по-разному.

Как сделать своими руками?

Для начала стоит уточнить, что с нуля создать асинхронную мобильную станцию не получится. Максимум, что можно сделать, – это изготовить ротор без переделки или модернизировать двигатель асинхронного типа в альтернативную конструкцию.

Для проведения работ по модернизации ротора достаточно запастись готовым статором от мотора и провести ряд экспериментов. Главная идея сборки самодельного генератора заключается в использовании неодимовых магнитов. С их помощью удастся обеспечить ротор необходимым количеством полюсов для выработки электрической энергии.

Посредством наклеивания магнитов на заготовку, которую предварительно необходимо посадить на вал, и соблюдения полярности и угла сдвига получится добиться нужного результата. Магнитов потребуется много, минимальное количество составляет 128 штук. Готовая конструкция ротора подгоняется к статору. При выполнении этой процедуры необходимо предусмотреть зазор между зубцами и магнитными полюсами ротора. Он должен быть минимальным.

Стоит отметить, что ввиду плоской поверхности магнитиков им потребуется шлифовка. Дополнительно элементы нужно будет обточить.

В процессе важно регулярно охлаждать конструкцию, чтобы предотвратить появление деформаций и утерю магнитных свойств. Если все сделано правильно, то генератор будет работать исправно.

В процессе создания асинхронного генератора может возникнуть только одна проблема. В домашних условиях трудно изготовить идеальную конструкцию ротора, поэтому если есть возможность воспользоваться токарным станком, то лучше ею не пренебрегать. Кроме того, на подгонку деталей и их доработку потребуется много времени.

Еще один вариант, с помощью которого можно получить генератор, – это преобразование асинхронного двигателя, используемого в автомобилях. Дополнительно следует приобрести электромагнит, мощность которого будет соответствовать требованиям по отношению к будущему оборудованию. Стоит отметить, что при поиске двигателя нужно учитывать, чтобы его мощность была на половину выше показателя, которого хочется добиться в генераторе.

Чтобы получить нужную конструкцию и организовать ее эффективную работу, потребуется приобрести 3 модели конденсаторов. Каждый элемент должен быть способен выдержать напряжение в 600 и более В.

Реактивная мощность генератора асинхронного типа имеет связь с емкостью конденсатора, поэтому вычислить ее можно по формуле. Стоит отметить, что при повышении нагрузки мощность генератора растет. Таким образом, чтобы добиться стабильного напряжения в сети, потребуется увеличить емкость конденсаторов.

Про принцип работы асинхронного генератора смотрите в следующем видео.

Возбуждение синхронных генераторов



Обмотки роторов синхронных генераторов получают питание от специальных источников постоянного тока, называемых возбудителями.

Мощность возбудителей составляет 0,3-1% мощности генератора, а номинальное напряжение — от 100 до 650 В. Чем мощнее генератор, тем обычно больше номинальное напряжение возбуждения.

Современные схемы возбуждения кроме возбудителя содержат большое количество вспомогательного оборудования. Совокупность возбудителя, вспомогательных и регулирующих устройств принято называть системой возбуждения.

Электрическое соединение возбудителя с обмоткой ротора генератора выполняется преимущественно при помощи контактных колец и щеток. Созданы и применяются бесщеточные системы возбуждения.

Системы возбуждения должны быть надежными и экономичными, допускать регулирование тока возбуждения в необходимых пределах, быть достаточно быстродействующими, а также обеспечивать потолочное возбуждение при возникновении аварии в сети.

Регулируя ток возбуждения, изменяют напряжение синхронного генератора и отдаваемую им в сеть реактивную мощность. Регулирование возбуждения генератора позволяет повысить устойчивость параллельной работы.

При глубоких снижениях напряжения, которые имеют место, например, при коротких замыканиях, применяется форсировка (быстрое увеличение) возбуждения генераторов, что способствует прекращению электрических качаний и сохранению устойчивости параллельной работы генераторов. Кроме того, быстродействующее регулирование и форсировка возбуждения повышают надежность работы релейной защиты и облегчают условия самозапуска электродвигателей собственных нужд электростанций.

Рис.1. Изменение напряжения возбуждения при форсировке

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V = 0,632(Uf,пот — Uf,ном) / Uf,номt1 (рис.1), и отношение потолочного напряжения к номинальному напряжению возбуждения Uf,пот / Uf,ном = kф — так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь kф≥2, а скорость нарастания возбуждения не менее 2 1/с. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 1/с для гидрогенераторов до 4 MBА включительно и не менее 1,5 1/с для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляется более высокое требование (kф=3-4, скорость нарастания возбуждения до 10Uf,ном в секунду).

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов 800-1000 МВт принято время 15 с, 1200 МВт — 10 с (ГОСТ533-85Е).

Системы возбуждения генераторов можно разделить на две группы: независимое возбуждение и самовозбуждение (зависимое возбуждение).

К первой группе относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом генератора. Вторую группу составляют системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы. К этой группе могут быть отнесены системы возбуждения с отдельно установленными электромашинными возбудителями, приводимыми во вращение электродвигателями переменного тока, которые получают питание от шин собственных нужд электростанций.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ. Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители. Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств — соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока — параллельно. Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Форсировочная группа при этом почти закрыта. В режиме форсировки возбуждения тиристоры FS2, питающиеся от полного напряжения вспомогательного генератора, открываются полностью и дают весь ток форсировки. Рабочая группа при этом запирается более высоким напряжением форсировочной группы.

Рассмотренная система имеет наибольшее быстродействие по сравнению с другими системами и позволяет получить kф>2. Системы независимого тиристорного возбуждения нашли широкое применение. Ранее, до освоения отечественной промышленностью производства тиристоров достаточной мощности, по аналогичным схемам выполнялись схемы ионного независимого возбуждения (ИН), где применялись ртутные вентили с сеточным управлением.

Все генераторы с рассмотренными выше возбудителями имеют специальную конструкцию для подвода тока к обмотке ротора. Она представляет собой контактные кольца на валу ротора, к которым ток подводится с помощью щеток. Такая контактная система недостаточно надежна. Этот недостаток особенно проявляется при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше).

Перспективной, особенно для турбогенераторов большой мощности, является система бесщеточного возбуждения, не обладающая указанными недостатками. В этой системе возбуждения, сущность которой поясняет рис.5, нет подвижных контактных соединений.

Рис.5. Принципиальная схема бесщеточного возбуждения генераторов

Источником энергии для питания обмотки ротора LG является вспомогательный синхронный генератор GE. Этот генератор выполнен по типу обратимых машин, т.е. обмотка переменного тока расположена на вращающейся части, а обмотка возбуждения неподвижна. Возбуждение генератора GE осуществляется от возбудителя GEA.

Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю. Выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.

Регулирование тока возбуждения в обмотке ротора LG производится изменением тока в обмотке возбуждения вспомогательного генератора LGE.

Вращающийся полупроводниковый преобразователь VD снаружи закрывается звукопоглощающим кожухом.

Система бесщеточного возбуждения интенсивно совершенствуется и является перспективной для генераторов всех типов, особенно для турбогенераторов большой мощности (300-1200 МВт).

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6. Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE. Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей — неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме. В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах. Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.



Самовозбуждение — Википедия

Материал из Википедии — свободной энциклопедии

Самовозбуждение  — возникновение электрических колебаний в электронной системе при отсутствии внешних воздействий. Самовозбуждение возникает из-за неустойчивости равновесия в системе. Это физическое явление, суть которого состоит в попадании выходного сигнала на вход усилителя. Этот сигнал снова усиливается и отображается на выходе, затем снова попадает на вход. Такое циклическое движение сигнала вызывает колебательный процесс на резонансной частоте системы. Данное явление может быть как нежелательным (ухудшающим характеристики аппаратуры), так и желательным, используемым для формирования гармонического сигнала в генераторах.

Способ возбуждения магнитного поля главных полюсов генераторов, при котором обмотка главных полюсов получает питание от обмотки якоря (ротора). (В отличие от самовозбуждения, при независимом возбуждении обмотки главных полюсов питают от постороннего источника тока.)

Наиболее часто самовозбуждение используется в генераторах постоянного тока. При пуске генератора с самовозбуждением начальный ток в обмотке возбуждения возникает за счёт ЭДС, наводимой в обмотке якоря остаточным магнитным полем главных полюсов. Для поддержания самовозбуждения необходимо, чтобы начальный ток усиливал это поле. Добавочный магнитный поток увеличивает ЭДС якоря и, как следствие, ток в обмотках главных полюсов. Однако из-за магнитного насыщения магнитопровода одинаковым приращениям увеличивающегося тока возбуждения соответствуют всё меньшие приращения магнитного потока. Процесс самовозбуждения продолжается до тех пор, пока ЭДС якоря превосходит падение напряжения в обмотке возбуждения. При определённой величине магнитного потока наступает электрическое равновесие, и дальнейшее повышение магнитного потока, ЭДС якоря и тока возбуждения прекращается. Самовозбуждение может осуществляться при величине сопротивления обмотки возбуждения, не превышающей известного предельного значения, зависящего от электрических параметров генератора.

Применяют самовозбуждение с параллельным, последовательным и смешанным (параллельно-последовательным) включением обмоток главных полюсов относительно обмотки якоря. Для создания остаточного магнитного потока в машине с самовозбуждением, по какой-либо причине утратившей остаточное намагничивание главных полюсов, по обмотке возбуждения пропускают ток нужного направления, который получают от постороннего источника.

  • Костенко М. П., Пиотровский Л. М., Электрические машины. 3 изд., ч. 1—2, Л., 1972—73.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *