Мини ветрогенератор, уменьшенная модель для опыта
Эту уменьшенную модель ветрогенератора автор строил для того, чтобы получить больше опыта и практике в создании аксиальных генераторов и понять суть его возможностей и принцип работы.
Материалы и инструменты, которые использовались автором для создания опытного образца ветрового генератора:
1) круглые неодимовые магниты 24 шт. размером 20 на 5 мм
2) трубы различных диаметров
3) сварочный аппарат
4) дисковая пила
5) бетонная свая от высоковольтной опоры длинной 3 метра
6) эпоксидная смола
7) ступица от мотоблока
8) фанера
9) электролобзик
10) провод толщиной 0.5 мм
11) дюралюминиевая труба
Рассмотрим основные этапы и сам процесс изготовления данного вида ветрового генератора.
Изначально у автора была идея переделать один из авто-генераторов так, чтобы он подходил в качестве генератора для будущего ветряка. Это довольно удобная схема, которая не требует особых трудозатрат для создания ветряка, но автор все же решил рассмотреть и другие варианты. Для того, чтобы узнать больше о различиях конструкций генераторов и ветряков автор прочитал большое количество статей и форумов посвященных альтернативной энергии и созданию ветряков. Оценив свои возможности, он решил попробовать иную схему создания ветряка отличную от первоначальной задумки.
Причиной тому послужило то, что аксиальный ветрогенератор не намного сложнее в изготовлении чем переделка автомобильного генератора, но имеет преимущество в отсутствии залипаний, которые присутствуют у генераторов с железными статорами. Таким образом автор решился на постройку опытного образца ветряка со статором на неодимовых магнитах.
Для начала автор решил собрать мачту, на которую в последующем будет помещен генератор, так как это одна из наиболее простых для сборки частей конструкций будущего ветряка. Матча делалась из труб разных диаметров, которые сваривались между собой в мачту общей высотой около 12 метров. В качестве основания мачты автор решил использовать бетонную сваю от высоковольтной опоры. Общая длина сваи была около трех метров и автор решил закопать ее на 2 м в грунт, по его расчетам этого должно быть достаточно, чтобы обеспечить надежность конструкции.
Затем начались работы над самим генератором.
У токаря были заказаны два диска диаметром 10.5 см и толщиной 5 мм под неодимовые магниты. так же были приобретены сами магниты в количестве 24 штук размером 20 на 5 мм. Таким образом на каждом из дисков должно размещаться по 12 магнитов. магниты клеились таким образом, чтобы чередовались полюса, после чего они были залиты эпоксидной смолов для придания большей прочности.
Затем из фанеры была вырезана форма для статора, а так же намотаны 12 катушек из провода 0.5 мм. Катушки содержали по 60 витков и соединялись последовательно в одну фазу. Толщина катушек, так же как и статора составила 4 мм. После чего автор закрепил катушки на диске фанеры и приступил к заливке статора эпоксидной смолой. делалось это следующим образом: для начала на квадрат из фанеры была постелена вощеная бумага, так как к ней не пристает эпоксидная смола. Затем был уложен квадрат фанеры с вырезанным кругом под статор, а в центр круга помещен еще небольшой кружок.
Для того, чтобы усилить прочность и избежать трещин статора, автор вырезал кольцо из стеклоткани и уложи его по краю круга статора. После чего были выложены катушки и сделаны канавки для вывода проводов катушек. После чего залил все это эпоксидной смолой поместил сверху еще один круг из стеклоткани, опять залил смолой и накрыл вощеной бумагой. После чего вся конструкция была зажата сверху еще одним листом фанеры, на которую были уложены грузы.
В таком виде конструкция пролежала до полного остывания эпоксидной смолы.
Тем временем, пока статор застывал, автор решил сделать защиту от ветра для будущего генератора. Защиту от ветра автор решил делать по стандартной технике увода хвоста. Для этого было приварено крепление для хвоста, а штырь по вертикале отклонен на 20 градусов, а по горизонтали на 120 градусов относительно самого генератора. Таким образом, хвост был сделан складывающимся,а генератор смещен относительно оси. Подобная конструкция обеспечивает то, что при сильном ветре винт давит на генератор и смещает его в сторону, а хвост поднимается вверх, обеспечивая защиту конструкции от сильного ветра.
На следующем фото можно подробнее рассмотреть конструкцию статора с дисками. Диски были установлены таким образом, чтобы они притягивались друг к другу чередующимися полюсами магнитов.
После извлечения из формы получился вот такой статор, вышло ровно и красиво, все катушки статора соединены последовательно в одну фазу:
Винт для ветряка автор решил сделать двухлопастной конструкции. В качестве материалов для изготовления лопастей автор использовал дюралюминиевую трубу диаметром 220 мм, которая раньше была частью полевой поливалки. Причем диаметр самого винта получился около 1 м. Лопасти вырезались при помощи электролобзика, причем таким образом, чтобы получилась цельная конструкция из двух лопастей. После чего в их центре было просверлено отверстие для крепления к генератору. Для того, чтобы достаточно хорошо отцентровать и откалибровать винт, автор подвешивал его на нитку через центральное отверстие и добивался горизонтального положения, по необходимости стачивая лишнее.
Здесь ветрогенератор вблизи:
Вид с тыла ветряка:
Мачта поднимается при помощи использования ручной лебедки. На хорошем ветру генератор выдавал до 3 А на аккумулятор 12 В.
Источник Доставка новых самоделок на почту
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Аксиальный ветряк из подручных материалов
Наткнулся на интересный блог по альтернативке. Автор сайта делится своими самоделками. В этой статье приведу процесс создания аксиального ветряка. Вся стилистика и нюансы автора сохранены.
Раньше у меня уже были попытки изготовления самодельного ветрогенератора, но тогда это были просто эксперименты чтобы понять и посмотреть как это все работает. Первые поделки были в 2001 и 2002 годах, но потом эта тема была благополучно заброшена, а все детали от ветрогенераторов со временем были утрачены или проданы.
Теперь мне захотелось сделать более качественный и надежный ветрогенератор из подручных материалов. Мне не нужна была большая мощность и много энергии. Но хотелось иметь надежный ветрогенератор чтобы на обычном ветру он стабильно вырабатывал 30-40 ватт/ч электроэнергии.
От старых ветрогенераторов у меня сохранились 10 катушек, там намотано примерно по 60 витков проводом 1.5мм. Эти катушки я решил применить для этого генератора. После недолгих поисков дешевых магнитов их удалось приобрести всего по 1,5$ за штуку, в количестве 20шт. Генератор будет однофазный, 10 катушек и на каждую катушку по два магнита на дисках ротора.
Изготовление ветрогенератора начал с рамы, так сказать основы ветрогенератора. Ветряк решил сделать как и все по классической схеме со складывающимся хвостом. Нашел у себя куски профильной трубы из которой сварил раму со смещением ветроголовки относительно поворотной оси. От старого прицепа нашел ступицу, которую применил. Просверлил отверстие и вставил вал оси, далее приварил с обоих сторон.
Далее на фото можно видеть как сделано крепление для хвоста и на сколько смещена от центра ось вращения генератора. Ось генератора приварена не совсем горизонтально. Я ее немного задрал в верх, примерно на 2-3 градуса, это чтобы лопасти были подальше от мачты, ведь при сильном ветре они сильно прогибаются и могут побиться о мачту.
Штырь для хвоста приварен под углом 45 градусов относительно оси вращения винта, по вертикали отклонение на 20 градусов. Потом готовый хвост просто одевается на этот штырь. Когда ветрогенератор на ветру, то хвост смотрит в сторону, так-как ось вращения винта смещена от центра, таким образом достигается баланс, но если ветер становился сильнее, то винт уходит в сторону и хвост складывается. Обычно трудно точно рассчитать хвост, его лучше потом подогнать под нужный ветер смотря когда он начинает складываться. Площадь хвоста должна быть 20% от ометаемой площади винта.
Далее из металла были выточены два диска будущего ротора под магниты. Для дисков я вырезал две восьмиугольные заготовки, которые отнес к своим знакомым и они их них выточили мне на токарном станке два диска. Потом на дисках были размечены и просверлены отверстия для крепления.
Статор изготавливался тоже уже по отработанной всеми схеме. Из фанеры вырезается заготовка, потом кладутся и спаиваются катушки между собой. Если вы делаете как я, однофазный генератор, то катушки между собой соединяются так, конец первой с концом второй катушки, а начало второй с началом третьей , и конец третьей с концом четвертой и т.д. Если перепутать соединение катушек, то генератор работать не будет. Для трехфазного катушки в фазах соединяются в одном направлении, то-есть все катушки каждой из трех фаз конец с началом.
Вот моя заготовка для заливки статора, стыки и всю форму я промазал клеем ПВА, просто под рукой не оказалось ничего другого. Лучше форму смазывать например вазелином, жиром, воском, в общем тем что не позволит полиэфирной смоле прилипнуть к форме, иначе потом будет трудно выковырять статор из формы.
Чтобы катушки не куда не сдвинулись я их закрепил на красный скотч, потом аккуратно залил приготовленную смолу и сверху притянул крышкой, которая у меня осталась после вырезания круга в фанере под статор.
Как смола полностью отвердела я извлек статор и сразу решил собрать генератор и проверить что получилось. Сначала покрутил руками без диодного моста, удалось руками раскрутить генератор до 15 вольт. Результат осень обрадовал, потом собрал диодный мост и уже измерения делал по постоянному току. От руки до 15 вольт так-же, ток короткого замыкания от руки до 5А, генератор сильно сопротивляется, но результат превзошел все ожидания и оказался мощнее.
Пробовал крутить руками и заряжать аккумулятор, удалось получить ток зарядки до 1.1А, это где то при 300об/м, значит на ветру будет гораздо больше так-как винт легко должен раскручивается до 1000 об/м при наличие хорошего ветра.
Так-же чтобы магниты не по-отлетали с дисков я их тоже залил, но уже эпоксидной смолой. Чтобы было хорошее сцепление смолы с металлом диски были еще раз зачищены. Магниты на дисках должны чередоваться полюсами, и два диска должны притягиваться, то-есть магниты на дисках на против друг друга должны быть противоположными полюсами и притягиваться.
Лопасти изготовил из сосновой доски, решил сделать на этот раз быстроходные лопасти. Ранее я делал и ставил на свои ветряки много лопастей с большими углами относительно ветра. У них получался большой крутящий момент, но очень маленькие обороты. Теперь я сделал три лопасти с углом всего 3 градуса. У них низкий стартовый момент, но он не важен так как генератор не имеет залипаний и легко начинает вращаться. Зато у лопастей большая быстроходность, это значит что генератор будет крутится на больших оборотах.
Вот ветрогенератор уже наконец собран и установлен на мачту. Как видно на фото труба одета на трубу, это самый простой вариант. Провод пустил снаружи без всяких токосьемных колец. Потом пущу его внутри трубы. После установки сразу-же подсоединил ветрогенератор напрямую к аккумулятору через амперметр. Ветер в этот день был небольшой и ток зарядки доходил до 5А. Но потом ветер стал сильней и ток бывало переваливал за 10А.
Нашел новый амперметр со шкалой до 30А, в сильные порывы ветра стрелка отклонялась практически до конца. Ниже как-раз запечетлен момент когда ток зарядки составил 28А. Ток может быть значительно больше, но срабатывает защита от сильного ветра и винт отворачивается от него и сбрасывает мощность и обороты.
Конструкция крепкая и можно защиту сделать на срабатывание на более сильных ветрах, но провод катушек тонковат и будет сильно греться, поэтому лучше так не делать чтобы не перегрелся статор и не расплавился лак в катушках и смола.
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.Отличный пример работы ветряного генератора: ветрогенератор своими руками
Эта модель ветряного генератора – отличное наглядное пособие для демонстрации работы ветряных двигателей. Модель простая, легко монтируется и служит отличной тренировкой перед сборкой более масштабной турбины.
В школе такую модель мини ветрогенератора можно использовать для демонстрации преобразования энергии. В этой модели раскрыты механическая энергия, энергия ветра и света.
Также этот самодельный ветрогенератор красиво смотрится из-за света диодов.
Шаг 1: Материалы
Маркировочная ручка, двигатель, красный диод, деревянная или пластиковая пластина, Т-образный тройник для ПВХ труб 1.9х1.3х1.3 см (3/4х1/2х1/2 дюйма), разборная муфта 1,3 см (1/2 дюйма), термоклей, дрель со сверлами, лопасти, 1,3 см (1/2 дюйма) фланец, ножницы для ПВХ труб, кернер, уплотнительное кольцо, рулетка, 30,5 см кусок ПВХ трубы 1,35 см (полудюймовая труба), ну, и ветер.
На самом деле, схема ветрогенератора легкая в изготовлении своими руками. Мотор можно вытащить из старого видеомагнитофона или DVD-плеера. Крыльчатку можно сделать из ложек и крышки от пластиковой бутылки. Если нет ножниц для ПВХ труб, можно взять обычную ножовку.
Шаг 2: Сборка
Отмерьте на ПВХ трубе участки 2,5 см и 13 см, сделайте отметки.
Отрежьте куски трубы по меткам.
У вас должны получиться три отрезка трубы – 2,5 см, 12,7 см и 15,2 см.
Шаг 3: Этап 2
- Наденьте уплотнительное кольцо на вал двигателя.
- Приложите двигатель к верхней перекладине ПВХ тройника.
- Держа двигатель так, чтобы уплотнительное кольцо было сразу за краем тройника, отметьте на тройнике конец мотора.
- В этом месте будем сверлить отверстие.
Шаг 4: Этап 3
Убедитесь, что отметка находится строго по центру перекладины тройника.
Кернером сделайте углубление в отмеченном месте.
В этом углублении сверло не будет сбиваться.
Просверлите отверстие такого диаметра, чтобы в него проходил диод.
Шаг 5: Этап 4
Возьмите красный диод и двигатель.
Длинная ножка диода – плюс, короткая ножка – минус.
Длинную ножку диод прикрепите к плюсовому контакту двигателя.
Короткую ножку соедините с отрицательным контактом двигателя.
Для соединения с проводами в пластинах контактов сделаны крохотные отверстия, вот в них и закрепите ножки диода.
Чтобы закрепить соединение, согните пластины контактов или ножки диода.
Шаг 6: Проверка
Наденьте крыльчатку на вал двигателя и сильно подуйте на нее.
Диод загорелся?
Если да, то приступайте к следующему шагу.
Если нет, подуйте посильнее. Попробуйте поменять полярность диода.
Шаг 7: Этап 5
Осторожно, под углом, вставьте двигатель с диодом в широкий конец тройника.
Когда диод покажется в отверстии, выровняйте двигатель, чтобы диод вышел в отверстие.
Шаг 8: Этап 6
Удерживая двигатель на месте, добавьте по кругу термоклей.
Шаг 9: Этап 7
Отложите тройник с двигателем в сторону, пока клей высохнет.
Возьмите разборную муфту и разъедините ее на части.
Уберите уплотнительное кольцо.
Это сделает вращение ветряка легче.
Шаг 10: Этап 8
Вставьте отрезок трубы 2,5 см в верхнюю часть муфты. На фото показано, какая именно часть верхняя.
Нажмите на отрезок трубы, чтобы он плотно сел в фитинге.
Шаг 11: Этап 9
Другой конец трубы вставьте в тройник с пропеллером в нижнее отверстие.
Аккуратно надавите, чтобы труба плотно села в отверстии тройника.
Шаг 12: Этап 10
В свободное отверстие тройника вставьте отрезок трубы 15,2 см.
В нижнее отверстие разборной муфты вставьте кусок трубы 12,7 см, аккуратно нажмите, чтобы трубы плотно сели в фитингах.
Шаг 13: Заключение
На конец 15 см трубы нанесите термоклей.
На клей положите кусок пластика и прижмите его.
Дайте клею высохнуть.
Шаг 14: Наслаждайтесь!
По желанию можно затянуть или ослабить разборную муфту.
Если хотите, все детали можно склеить.
Для законченного вида турбину можно покрыть краской.
Самодельный мини ветрогенератор | Строительный портал
Маленькие ветрогенераторы для дома
Энергия ветра — это экологически чистая, неисчерпаемая энергия. Для преобразования энергии ветра в электрическую энергию служат ветряные электростанции (мельницы, ветрогенераторы).
Ветряные мельницы используемые для выработки электрической энергии бывают разных размеров. Большие ветрогенераторы, которые обычно используются на ветряных фермах (электростанциях), могут вырабатывать большое количество электричества — сотни мегаватт, которым можно обеспечивать сотни домов. Небольшие ветряки, которые вырабатывают не больше 100 кВт электроэнергии, используются в частных домах, фермах, подсобных хозяйствах и т.п., служат источником дополнительной электроэнергии, способствуют уменьшению оплаты за основной источник электроэнергии.
Очень маленькие ветряки, мощность которых составляет 20-500 Вт, используются для подзарядки аккумуляторов и др. сферах, где не требуется большое количество электроэнергии.
Небольшие ветроэлектростанции будут экономически эффективны, если будут соблюдены следующие условия:
- ветер в вашем месторасположении дует стабильно и много дней в году;
- есть достаточно места для установки ветряка;
- местными властями разрешена установка ветряков;
- ваши затраты на электроэнергию высоки;
- вы не подключены к питающей сети или она находится далеко от вас;
- вы готовы инвестировать деньги в ветрогенератор;
- во избежание проблем с соседями, ветряк должен находится не ближе чем 250-300м к ним.
Требования к ветру
Будет ли ваш ветряк для дома экономически целесообразным — больше всего зависит от качества ветра. В большинстве случаев, среднегодовая скорость ветра в 4.0-4.5 м/с (14.4-16.2 км/ч) является тем минимумом, чтобы ветрогенератор был экономически выгоден. В анализе ветра вам помогут сайты, где представлены карты ветров России и других стран.
Также, вам может помочь местная метеорологическая станция, где вы можете посмотреть архив данных по силе ветра. Но следует обратить внимание на расположение станции, т.к. различные препятствия — деревья, строения, возвышенности могут стать причиной искаженных данных о ветре.
Для более точной оценки ветра в вашей местности вам необходимо приобрести устройства измеряющие скорость ветра. Особенно это актуально, если ваша местность холмистая или имеет необычный ландшафт.
Наиболее важной деталью в приборе для измерения скорости ветра является анемометр. Он состоит из чашечной (или лопастной) вертушки укреплённой на оси, которая соединена с измерительным механизмом. Лопасти анемометра вращаются и вырабатывают сигнал, пропорциональный скорости ветра. При покупке анемометра не будет лишним приобрести устройство, записывающее показания с него, а также трипод, кронштейн и т.п., где он будет монтироваться.
Существуют более дорогие цифровые устройства для измерения скорости ветра. Там также используется анемометр, но данные поступают в компьютер, где они обрабатываются и запоминаются. В последнее время данные устройства становятся все более популярными и дешевыми. Пример данных о скорости ветра, снимаемых и отображаемых в реальном времени вы можете посмотреть на сайте gdeduet.ru
Неважно какой измерительный инструмент вы используете для оценки скорости ветра, но хотя бы минимум один раз в год вы должны сравнивать ваши данные с другими. Также важно измерительно оборудование размещать достаточно высоко, чтобы избежать турбулентности, которая создается деревьями, строениями и другими препятствиями. Наиболее оптимальным размещением измерительного прибора является его размещение на уровне центра ротора ветрогенератора.
Место для размещения ветрогенератора
Большое значение имеет место, где вы собираетесь разместить ваш ветряк. Помните, что не следует его размещать вблизи деревьев, домов и т.п., т.к. вы не получите полной отдачи от ветряка.
Также учитывайте что:
- сила ветра всегда больше на вершине холмов, у береговой линии, в степях, в местах где нет деревьев и строений.
- деревья могут расти, а ветряк — нет.
- необходимо заранее информировать соседей о ваших планах, во избежании проблем с ними в будущем.
- желательно поставить ветряк на достаточном расстоянии от соседей. Обычно достаточно 250-300м.
Не ожидайте, что ваша ветроэлектростанция будет все время вырабатывать достаточное количество электроэнергии. Скорость ветра в одном и том же месте может сильно различаться и как следствие будет и различаться количество вырабатываемой электроэнергии. И если сила ветра будет меняться в пределах 10%, то вырабатываемая электроэнергия будет изменяться в пределах 25%!
Типы ветрогенераторов
Существует 2 основных типа ветрогенераторов: с горизонтальной осью вращения и вертикальной. Горизонтальные ветряки должны быть направлены по ветру. Для этого, в их конструкции предусмотрен так называемый «хвост».
Вертикальные ветрогенераторы работают в любом направлении ветра, но требует больше наземного пространства, т.к. необходимо предусмотреть растяжки для устойчивости ветряка.
Компоненты ветроэлектростанции
Основные компоненты типичной ветряной электростанции показаны на рисунке ниже.
Они включают в себя:
- ротор с лопастями, которые имеют аэродинамическую форму.
- редуктор или коробка передач, которые согласует скорость вращения между ротором и генератором. Маленькие ветряки (до 10 кВт) обычно не имеют редуктора.
- защитный кожух, который защищает от внешних воздействий редуктор, генератор, электронику и другие компоненты ветрогенератора.
- хвост ветряка — необходим для его поворота по ветру.
Для ветрогенераторов с горизонтальной осью вращения необходима мачта (вертикальные ветряки обычно устанавливаются прямо на земле).
Мачты бывают различных видов: на растяжках (которые жестко закреплены), поворотная мачта на растяжках (может подниматься и опускаться для обслуживания и ремонта), свободно-стоящая мачта без растяжек (они тяжелые, но зато занимают не так много места на земле).
Очень важным факторов является высота мачты. Энергия ветра пропорциональна скорости ветра в третей степени (в кубе). Т.о. если скорость ветра удвоилась, то энергия ветра возрастет в 8 раз (2х2х2=8) (Рисунок 6). Скорость ветра увеличивается с высотой, т.е. увеличивая высоту мачты можно сильно увеличить энергоэффективность ветряка.
Рекомендуемая высота установки 24-37 метров. Устанавливать ветряк на меньшей высоте — то же самое, что расположить солнечные батареи в тени.
На всякий случай просмотрите местное законодательство на предмет ограничений на высоту мачты для ветроэлектростанций. Используйте конструкцию мачты, одобренной производителем ветряка, иначе вы можете потерять гарантию на него. Обязательно заземлите мачту и предусмотрите молниеотвод.
Для электробезопасности необходимо использовать разъединители и автоматические выключатели. Они также обеспечат безопасный доступ к ветряку для его обслуживания и модернизации.
Также могут понадобиться другие компоненты ветроэлектростанции. Аккумуляторы — смогут накапливать излишки электроэнергии от ветряка. Но, поскольку аккумуляторы используют постоянный ток, то для преобразования его в переменный необходим инвертор.
Если дом, ферма или хозяйство подключены к общей системе энергообеспечения, то в ветренные дни излишек энергии можно продавать электросетям (неактуально для нашей страны). А когда ветер слабый и электроэнергии ветряка не хватает, то нужно будет покупать электроэнергию от общей электросети.
Стоимость ветрогенератора
Стоимость небольшого ветряка $2000-$8000 за 1 кВт. Однако, это только 12-48% от стоимость всех компонентов ветряной электростанции: инверторы, аккумуляторы, зарядные устройства, АВР и т.п.
Но большой плюс ветрогенератора в том, что однажды купив его, вам больше практически ни за что не прийдется платить, кроме планового техобслуживания.
Производительность ветрогенератора обычно описывается производителем как график зависимости выходной мощности к скорости ветра.
Одной из проблем при выборе и сравнении ветрогенераторов является отсутствие единного стандарта измерения выходной мощности.
Производители сами выбирают при какой скорости ветра указывать выходную мощность. Возьмем к примеру «Wind-o-matic» и «Mighty-wind» — у обоих заявленная мощность 1000 Ватт. Но у «Wind-o-matic» это мощность при скорости ветра 5 м/с, в то время как у «Mighty-wind» это мощность при 10 м/с. Вследствии того, что энергия ветра пропорциональна скорости ветра в кубе, то ветряк выдающий 1 кВт при при 10 м/с, даст только 1/8 от максимальной мощности при 5 м/с.
Т.о. при скорости ветра 5 м/с «Wind-o-matic» будет выдавать честные 1000 кВт, в то время как «Mighty-wind» всего 125 Ватт!
Более правильным является сравнение ветрогенераторов по площади и размеру лопастей. Чем больше площадь, тем больше энергии может вырабатывать ветряк. При удвоении площади солнечных батарей — мощность увеличивается вдвое. Также и в ветрогенераторе — при увеличении площади лопастей возрастает выходная мощность.
Если вы не знаете площадь лопастей ветряка, то вы можете сравнивать по диаметру ротора. Незначительное увеличение диаметра ротора ведет к значительному увеличению отдаваемой электроэнергии от ветрогенератора (см. рисунок ). Значения указанные на рисунке являются ориентировочными и на них опираться не следует, т.к. генерируемая мощность ветряка зависит от множества других факторов.
Выбор размера ветрогенератора
Для определения подходящего размера ветряка для начала посмотрите сколько электроэнергии вы потребляете в месяц. Затем полученное значение умножьте на 12 месяцев.
Примерное количество электроэнергии вырабатываемое ветряком вы можете получить по формуле:
AEO = 1.64 * D*D * V*V*V
Где: AEO — электроэнергия за год (кВт*ч/год), D — диаметр ротора (в метрах), V — среднегодичная скорость ветра (м/сек)
Т.о. вы можете выбрать оптимальный размер ветрогенератора, вырабатывающий необходимую мощность для вашего дома или хозяйства. И возможно сэкономить на покупке.
Отношения с соседями
Многие люди требуют бережного отношения к окружающим их вещам: ландшафту, виду, исторически местам, тишине, соседям и т.п.
Антананариво
Обязательно переговорите с соседями о ваших планах установить ветроэлектростанцию. Также вы должны понимать, что людям свойственен страх перед чем-то новым и неизвестным.
Многие люди думают, что ветряки наносят вред птицам. Но на самом деле раздвижные двери более опасные для птиц, чем небольшие ветряки. Также ветрогенераторы оказывают ничтожное влияние на радио и телевизионное вещание. Лопасти всех современных ветряков сделаны из стекловолокна или дерева. Эти материалы прозрачны для электромагнитных волн.
Шум
Соседи не приемлят шум от ветрогенератора. Прежде чем установить ветроэлектростанцию, ознакомьте ваших соседей с теми шумами, которые она может производить:
- аэродинамические шумы — возникают из-за потоков воздуха производимыми лопастями. Шумы увеличиваются со скоростью вращения ротора. Иногда из-за воздушных турбулентностей, некоторые виды лопастей могут издавать свистящий звук.
- механические шумы — могут возникать в других компонентах ветряка (генератор, редуктор и т.п.)
Сколько шума может производить ветроэлектростанция?
В 250-ти метрах, от типичной ветроэлектростанции уровень звукового давления составляет приблизительно 45 дБ. Небольшие ветряки производят не больше шума, чем кондиционеры.
Лопасти небольшого ветряка вращаются со средней скоростью 175-500 оборотов в минуту, максимум 1150 об/мин. Большие ветряки вращаются с постоянной скоростю 50-15 об/мин
Обслуживание
Ветроэлектростанции требуется постоянное техническое обслуживание — регулярные осмотры, смазка трущихся частей и т.п. Ежегодно проверяйте болтовые соединения и электрические контакты, подтягивайте их, если необходимо. Также проверяйте ваш ветряк на наличие коррозии и натяженность растяжек мачты.
Если лопасти сделаны из дерева, то наносите краску для защиты. На кромки лопастей наклейте прочную ленту для защиты от абразивной пыли и летающих насекомых. Если краска растрескается, а пленка отклеится, то незащищенное дерево быстрее прийдет в негодность. Влажность, проникшая в дерево лопастей, может вызвать дисбаланс ротора. Ежегодно проверяйте лопасти ветряка.
После 10 лет эксплуатации лопасти и подшипники должны быть заменены. При правильной установке и эксплуатации ветроэлектростанция может прослужить 30 и более лет. Правильное обслуживание также минимизирует уровень шума от вашего ветряка.
Безопасность
Все ветрогенераторы имеют максимальную скорость вращения ветра, выше которой они не могут работать. Когда скорость ветра превышает это значение, то в ветрогенераторе должен сработать тормозной механизм не допускающий превышения критического значения.
При использовании ветряка в холодных районах, необходимо позаботиться о проблеме обледенения, а также размещать аккумуляторный блок в изолированном месте.
Установка ветряка на крышу здания не рекомендуется. Но если он маленькой мощности (до 1 кВт), то можно сделать и исключение. Дело в том, что ветрогенератор может давать вибрацию, которая может передаваться на поверхность, на которой он установлен.
Перевод: Колтыков А.В. для сайта cxem.net