Простой генератор звуковой частоты – Схема.Простой звуковой генератор . схемы начинающим радиолюбителям

Генератор звуковой частоты | Практическая электроника

Что такое генератор звука и с чем его едят? Итак, давайте первым делом определимся со значением слова “генератор”. Генераторот лат. generator – производитель. То есть объясняя домашним языком, генератор – это устройство, которое производит что-либо. Ну а что такое звук? Звук – это колебания, которые может различить наше ухо. Кто-то пёрнул, кто-то икнул, кто-то кого то послал – все это звуковые волны, которые слышит наше ухо. Нормальный человек может слышать колебания в диапазоне частот от 16 Гц и до 20 Килогерц.  Звук до 16 Герц называют инфразвуком, а звук более 20 000 Герц – ультразвуком.

Из всего вышесказанного можно сделать вывод, что генератор звука – это устройство, которое излучает какой-либо звук. Все элементарно и просто 😉 А почему бы его нам не собрать? Схему в студию!

Как мы видим, моя схема состоит из:

– конденсатора емкостью 47 наноФарад

– резистора 20 Килоом

– транзисторов КТ315Г и КТ361Г, можно с другими буквами или вообще какие-нибудь другие маломощные

– маленькая динамическая головка

– кнопочка, но можно сделать и без нее.

На  макетной пл ате все это выглядит примерно вот так:

А вот и транзисторы:

Слева – КТ361Г, справа – КТ315Г.  У  КТ361 буква находится посередине  на корпусе, а у 315 – слева.

Эти транзисторы являются комплиментарными парами друг другу.

А вот и видео:

Частоту звука можно менять, меняя значение резистора или конденсатора. Также частота увеличивается, если повышать напряжение питания. При 1,5 Вольт частота будет ниже, чем при 5 Вольтах. У меня на видео напряжение выставлено 5 Вольт.

Знаете в чем еще прикол? У девчат диапазон восприятия звуковых волн намного больше, чем у парней. Например, парни могут слышать до 20 Килогерц, а девчата уже даже до 22 Килогерц. Этот звук настолько писклявый, что он очень сильно действует на нервы. Что я хочу этим сказать?)) Да да, почему бы нам не подобрать такие номиналы резистора или конденсатора, чтобы девчата слышали этот звук, а парни нет? Прикиньте, сидите вы на парах, врубаете свою шарманку и смотрите на недовольные рожи одногруппниц (классниц). Для того, чтобы настроить прибор, нам конечно понадобится девочка, которая помогла бы услышать этот звук. Не все девчата также воспринимают этот высокочастотный звук. Но самый-самый прикол в том, что невозможно узнать, откуда идет звучание))).  Только если что, я вам это не говорил).

Генератор Ужасных Звуков (ГУЗ)


На вкус и цвет товарищей нет. Насчет звуков человечество тоже определилось и хорошо оделяет благами сочинителей и извлекателей музыкальных приятностей. Слух развит не у всех, а вот сомнений во всеобщей врождённой способности издавать нечто неприятное для окружающих, нет ни у кого, хотя это и заблуждение.

Предлагаемый Генератор Ужасных Звуков (ГУЗ) «заводит» детей в возрасте 4…12 лет. Нагло-деструктивный смысл игры состоит в подборе максимально неблагозвучной комбинации частот.

Сочетание нескольких частот всегда можно оценить по шкале прекрасно — ужасно. Развитость любого восприятия определяется его рабочим диапазоном. Рафинированные эстеты и ценители туалетного фольклора в общении одинаково занудны. Любители сладенького и солёненького потеряны для кулинарии. А что думает ваш пёс о великой французской парфюмерии лучше с собачьего не переводить.

Из опыта сосуществования с ГУЗ.
Это спорт: цель состязания практического смысла не имеет.
Это игра:

хотя бы и на нервах.
Это творчество: для победы нужен талант или хотя бы способности.
Это труд: умение развиваемо.
Это педагогика: и последние станут первыми.
Это отдых: для ума и тела, поскольку они не требуются.
Это наука: максигнусность ещё не найдена.
Это безобразие: оно заканчивается одновременно с батареями питания.

Генератор Ужасных Звуков (ГУЗ)
Генератор Ужасных Звуков (ГУЗ)
При всём разнообразии подходов к производству неприятных звуков их можно свести к двум структурным схемам. В любом случае есть набор отдельных генераторов звуковой частоты, подбором частот которых и достигают желаемого впечатления. Дальше можно либо объединить сигналы с выходов генераторов в один и использовать общий канал усиления и звуковоспроизведения, либо каждый из генераторов имеет свой усилитель и звуковой излучатель.

Простой генератор ужасных звуков

Синтезатор
В самом простом случае в качестве индивидуальных генераторов звука допустимо использовать простые импульсные генераторы. Для совместной работы желательно унифицировать характеристики их выходных сигналов. Здесь они меандры. Смесь из таких сигналов несколько улучшает восприятие на слух их взаимодействующих гармоник.

Генератор Ужасных Звуков (ГУЗ)
Здесь организованы два генераторных канала, каждый из которых состоит из перестраиваемого по частоте автогенератора на логических элементах и делителя частоты пополам на одноразрядном счетчике из D-триггера. После такого делителя всегда имеем чистый меандр.

На электрической схеме видно, что в выполнении функционально идентичных генераторов есть существенные отличия. Это вынужденная мера при их сборке из набора логических элементов одного корпуса микросхемы. Опыт показывает, что у одинаковых по схеме генераторов при настройке на близкие частоты возникает то, что называют слипание частот, затягивание, взамосинхронизация. Тогда регулятор частоты одного из них перестаёт действовать и в большом диапазоне копирует настройку другого.

Если у двух генераторов равные частоты получаются при существенно различных значениях времязадающих элементов (здесь R2,PR1,C1 и R3,PR2,C2), то такой опасности нет.

Хотя микросхемы хорошо работают в диапазоне питающих напряжений 3,5…15V, здесь они запитаны через параметрический стабилизатор (4,7V) на опорном диоде VD1. Его балластом являются резисторы R4, R5. Причём вместе с С3 они образуют двусторонний T-образный фильтр от помех.

Частота генераторов на логических элементах сильно зависит от напряжения питания. В автономных устройствах гальванические элементы со временем «садятся» и без стабилизации добытые гнусности будут улучшаться.

Указанные входные напряжения +7,8…+10V соответствуют стандартной семиэлементной гальванической батарее международного типоразмера 6F22, известной у нас по её первому (40 лет назад!) наименованию «Крона» или герметичной цилиндрической аккумуляторной батарее 7D-0,125.

Если у вас есть иные источники стабильного напряжения, можете смело их использовать, исключив элементы VD1, R3 и R4. С3 лучше оставить.

Акустика
Ужасть украшают децибелы. И самого себя попугать, и щедро поделится ими с окружающими. Тут два пути. Или используем усилители и акустику имеющейся бытовой аппаратуры, или делаем совершенно автономное устройство.

Первый путь прост, быстр в исполнении, эффективен в акустическом плане и привязывает соединительным шнуром группу малолетних экспериментаторов к одному месту, оставляя для взрослых весь остальной мир. Второй путь хорош, если взрослые объединены чем-то стационарным (столом, ТВ, диваном), а всё мешающее удаляется чем дальше за горизонт, тем лучше.

Во всех музыкальных центрах предусмотрены входы для подключения внешних источников стереосигнала (AUX). Есть аналогичные входы на компьютерных звуковых платах (AUX, LINE). Аудио входами оснащены все телевизоры (в основном пока монофоническими). Во всех случаях сигнал с одного выхода подаем на левый канал, со второго на правый. Собственно «ужасности» пространственное разделение звуков не мешает. Тем более не до эстетических переживаний соседям за стенкой.

Уровень выхода импульсных сигналов c синтезатора больше, чем требуется для обычного усилителя низкой частоты (Uinp = 0,2…1V, Rinp = 20…100kΩ), поэтому проблем с сопряжением не должно быть. Нужно лишь помнить, что на вход УНЧ нужно подавать переменный сигнал без постоянной составляющей, т.е. через разделительный конденсатор.

Генератор Ужасных Звуков (ГУЗ)
Схема сопряжения для одного канала. Триммер RP5 согласовывает выходной уровень сигнала с синтезатора и входной уровнень конкретного усилителя. Установите его так, чтобы регулятор громкости усилителя оптимально ей управлял.

Автономному генератору нужен свой звуковой усилитель. Выбираем их из необходимой мощности на выходе. Объединяем сигналы в один на простом резистивном микшере с возможностью раздельной регулировки выходного уровней звука для каждого из генераторных каналов.

О настройке
Регулировка частот от низких до высоких частот проводится изменением сопротивления настроечного резистора. Для получения комфортного ощущения равномерного изменения частоты от угла поворота ручки регулятора его характеристика должна быть логарифмической. Для отечественных элементов ей соответствует литера Б в конце наименования. Можно усовершенствовать (усложнив) настройку, поделив звуковой диапазон на два-три поддиапазона.

Для честной групповой игры (очень ценится!) совершенно необходима память настроек. Даже фиксации всего двух настроек достаточно для безупречного соревнования с любым числом игроков по олимпийской системе с выбыванием проигравшего. Одна из настроек хранит наиболее впечатляющую звуковую комбинацию на данный момент, а вторая используется для творческих изысканий претендента. Переводом переключателя всегда можно сравнить оба звука и выбрать худший. При выигрыше претендента его настройки фиксируются, а следующая попытка идёт с регуляторами низвергнутого с пьедестала.

Победа вожделенна и не стоит соблазнять возможностью чуть-чуть подправить звук лидера. Настройки нужно защищать от шустриков. В данном случае, простота электроники оставляет эту функцию конструктору корпуса. Годятся все варианты механическую блокировки или затруднение доступа к регуляторам сохраняемых настроек.
Хорошая зарекомендовала себя, например, жезловая защита, где в качестве регуляторов использованы подстроечные резисторы с коротким шлицом, не выступающими над лицевой панелью прибора, а в наличии есть только одна пара переставляемых утапливаемых ручек.

Генератор Ужасных Звуков (ГУЗ)
Синтезатор ужасных звуков. Корпус из алюминиевого профиля с боковыми козырьками хорошо защищают ручки от случайных касаний, а расположение регуляторов, относящихся к разным настройкам на противоположных сторонах делает попытки сбить настройки лидера уж очень явными. В среднем положении переключателя контроля А/В питание снимается.Генератор Ужасных Звуков (ГУЗ)
Две настройки в одном из генераторов. В положении переключателя «off» отдельной группой переключателя SA1 (не показана) питание выключается.

Конструкция

Генератор Ужасных Звуков (ГУЗ)
Разводка печати синтезатора. Стабилизатор питания (R3, R4, C3, VD1), необходимый только в ряде случаев, не показан. Настроечные резисторы RP1 и RP2 устанавливаются отдельно.
Шаг сетки 1,25 мм.Генератор Ужасных Звуков (ГУЗ)

— Не беспокойтесь, у нас самые ломкие игрушки!

В шутке, с учётом последнего пункта из «Опыта сосуществования«, много здравого смысла. Для сытости волков и целости овец идеальны квадратные батарейки на 9V («Крона», 6F22). При ёмкости в 200 мАч игра плавно замирает за 3…5 часов без перехода в фазу скандала со взрослыми. Время выяснено экспериментально для устройства со встроенным усилителем звука на 1,5 ватта. Несоответствие выходной мощности, ёмкости батареи и времени её использования кажущееся. Даже любители ужасов не слушают их постоянно и на максимальном уровне.

Когда с какофонией захочется покончить раз и навсегда, отметив этот перелом в буфете консерватории, перед физическим уничтожение ГУЗа вспомните, что вторичное использование — девиз эпохи.

Точно такие же устройства, отличающиеся только наименованием, используются для синтеза звуков в тонстудиях радио, кино, ТВ и театров для подбора гудков далёких паровозов, старинных автомобилей и т.д. Две чашечки в звонках механических телефонных аппаратов и дорогих будильниках, двойные серебристые рожки клаксонов автомобилей с каретными кузовами, парные свистки окутанных паром локомотивов, это способ получения «властных» звуков, в понимании европейцев с границы XIX-XX.

Выбор наиболее неприятного звука в игре происходит консенсусом, значит это свойство для людей объективно. Звук, как и любой другой стимул, воспринимается по контрасту. Если фон места музыкальный (дискотека, клуб), то лучшего сигнала для привлечения, переключения и фокусировки внимания, чем гадость, трудно придумать. В экстренных случаях важна только безусловность результата, а не правила приличия.

Генератор Ужасных Звуков (ГУЗ) Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Простой звуковой генератор — RadioRadar

Аудиотехника

Главная  Радиолюбителю  Аудиотехника



Простой генератор звуковой частоты собрать совсем несложно. Пригодиться он может для проведения тестирования любых звуковых цепей, к примеру, самодельной аппаратуры, или для игровых/обучающих целей («just-for-fun»). Звук, который будет издавать такой генератор – в большинстве случаев писк. Поэтому такой прибор еще часто называют «пищалкой».

Собрать «пищалку» можно несколькими способами. Опишем два самых простых.

Способ 1 — аналоговый

Схема выглядит так:

Рис. 1. Схема звукового генератора

Требуемые инструменты и материалы:

  • Материал для платы – подойдет небольшой кусок фольгированного текстолита.
  • Резак.
  • 2 комплементарных транзистора типа NPN и PNP. Мощность должна быть совсем небольшой. Примеры таких пар: 2SA1908 — 2SC5100; BD241C -пара BD242C; BC33740 и BC32740 и т.п.
  • Конденсатор емкостью от 10 до 100 фарад.
  • Маломощный динамик – новый или от любой техники, к примеру, от накладных наушников или слабеньких колонок.
  • Кнопка (можно использовать тумблер) – подойдет любая, от фонарика, испорченного джойстика и даже старого тетриса.
  • Батарейка – крона или пальчиковая. От мощности батарейки будет зависеть мощность генератора.
  • Подстроечный резистор номиналом не более 100-200 кОм.

Первым делом готовим плату – резаком проделываем на ней горизонтальные прорези так, чтобы полученные участки с проводником выполняли роль дорожек, как при травлении. Как альтернативу можно использовать макетную плату (она тоже не требует работы с реагентами, краской и т.п.).

Бывалые радиолюбители определенно смогут собрать такую схему даже без плат, путем простой пайки деталей между собой на весу (в этом случае лучше всего использовать в качестве соединителей провода в изоляционной оплетке).

Компоненты монтируются в любом удобном вам порядке.

Переменный резистор позволит вам «поиграться» с «пищалкой», меняя частоту генерации в определённых пределах (для более сложной генерации звуковых колебаний проектируются более сложные схемы).

Итоговый вариант может выглядеть так.

Рис. 2. Звуковой генератор в сборе

Если в доступе есть двубазовый транзистор (например, как КТ117), то схема становится еще проще.

Рис. 3. Схема с двубазовым транзистором

Способ 1.1 – расширенный для дверного звонка

Если конечной целью использования генератора звука является функционал дверного звонка, то при минимальном количестве исходных элементов можно получить «трели канарейки», собрав схему ниже.

Рис. 4. Схема звукового генератора

Даже ее можно спаять «на весу» без использования печатной или макетной платы.

Способ 2 — с использованием микросхем («цифровой»)

Как бы это ни казалось странным, но простой звуковой генератор можно сделать и из микросхем.

В качестве «простой» микросхемы можно использовать К155ЛА3 (как аналог К555ЛА3 или другие, работающие по логике двух «и-не»).

Фактически, схема представляет собой слегка переделанный генератор тактовых импульсов (ГТИ). Итоговая схема выглядит следующим образом.

Рис. 5. Итоговая схема

Частоты звуковых колебаний здесь могут подстраиваться резистором R1 (второй регулирует величину выходного сигнала) в пределах 500 Гц – 5 кГц.

Все указанные логические элементы (DD1.1-DD1.4) фактически представлены в одном корпусе микросхемы, то есть для сборки вам понадобится только 4 детали (микросхема, 2 резистора и конденсатор).

Способ 2.1 – «странные звуки»

На базе все той же микросхемы, можно сгенерировать целую «какофонию» звуков. Это может быть и мычание быка, и кваканье, и мяуканье, и даже «уканье» кукушки.

Схема будет иметь следующий вид.

Рис. 6. Схема звукового генератора

Добавляются несколько резисторов и транзистор. Получается своего рода симбиоз аналоговой и цифровой схемы.

В качестве микросхемы здесь используется К176ЛА7, однако могут подойти и другие аналоги (например, из серии К561).

Автор: RadioRadar

Дата публикации: 22.12.2017

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


ПРОСТОЙ ГЕНЕРАТОР ЗВУКА НА МИКРОСХЕМЕ

   Такое устройство будет очень полезно при испытаниях звуковых цепей усилителей ресиверов, телевизоров и другой промышленной и самодельной аппаратуры. Схема генератора приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 145-146 в 8-м издании), с незначительными изменениями.

Схема генератора ЗЧ

ПРОСТОЙ ГЕНЕРАТОР ЗВУКА НА МИКРОСХЕМЕ - схема электрическая

   Генератор собран на микросхеме К155ЛА3 (можно использовать К555ЛА3), которая представляет собой 4 элемента 2И-НЕ. Непосредственно генератор образуют последовательно соединенные логические элементы DD1.1, DD1.2, DD1.3, включенные инверторами. Конденсатор C1, емкостью 0,47 мкФ, создает положительную обратную связь между выходом DD1.2 и входом DD1.1. В принципе, сигнал можно снимать с выхода DD1.3, элемент DD1.4 просто их инвертирует. Частоту импульсов можно менять резистором переменным R1. Резистор R2 служит регулятором уровня выходного сигнала. Сопротивление резистора R1 680 Ом, R2 10 кОм, переменные резисторы могут быть любого типа. При указанных в схеме параметрах радиодеталей, частоту импульсов можно менять в пределах 500 – 5000 Гц. Диод VD1 служит для защиты от подачи питания неправильной полярности, в качестве него подойдет любой маломощный диод, например Д220. Схема смонтирована на небольшой макетной плате. Но благодаря малому количеству деталей можно выполнить схему навесным монтажом.

Генератор в сборе

ПРОСТОЙ ГЕНЕРАТОР ЗВУКА НА МИКРОСХЕМЕ

   Штатное напряжение питания микросхем К155 и К555 составляет 5 В, но генератор работоспособен при питании схемы от «квадратной» батареи напряжением 4,5 В (батарея типа 3336 по старой номенклатуре), падение напряжения на диоде VD1 не влияет на работоспособность устройства. Устройство можно использовать для проверки работы усилителей звуковой частоты.

Генератор звуковой частоты на LM324. Прибор и игрушка


Это простой генератор импульсов для тестовых или учебных целей. В схеме используется дешёвый и распространённый операционный усилитель LM324, а частота генерации управляется с помощью потенциометра. Чип LM324 не очень быстродействующий, поэтому верхняя частота будет ограничена. Форма сигнала прямоугольная.

Содержание / Contents

Вот так выглядит схема, отрисованная и промоделированная в программе-симуляторе LTspice фирмы Linear.

Диапазон частот, при ёмкости C1 = 33 nF, составляет примерно от 10 Гц до 6 кГц. Если установить C1 = 10 nF, диапазон расширится вверх до 11 кГц, но пострадает форма сигнала. Четкий прямоугольник будет больше похоже на треугольник.Размах сигнала на выходе генератора составляет 5В.
Например, на 160 Гц осциллограмма выглядит следующим образом:
Печатная плата простая, конструкция отлично подходит для повторения начинающими.

Плата рассчитана на установку резисторов 0,25Вт, керамического конденсатора, подстроечного резистора (под отвертку). Для экспериментов желательно установить панельку под ОУ. Это позволит попробовать в работе другие, например, более быстродействующие микросхемы.Если заменить триммер обычным потенциометром и вынести его на проводах с платы для удобства «накручивания», добавить простейший усилитель на транзисторе (схемка — набросок), то получится занимательная звуковая игрушка.
Генератор звуковой частоты на LM324. Прибор и игрушка
R1 — 10 kOhm
R2 — 100 kOhm
R3 — 100 kOhm
R4 — 10 kOhm
R5 — 12 kOhm
R6 — 10 kOhm
C1 — 33 nF
POT1 — 1 MOhm
U1 — LM324
P1 — клеммники • Simple Pulse Generator using LM324 opamp — вдохновившая меня заметка на английском.
• Linear Technology’s Design Simulation and Device Models — кладовая бесплатных прог от Линеар.

Спасибо за внимание!

Камрад, смотри полезняхи!

Генератор звуковой частоты на LM324. Прибор и игрушка

Игорь Котов (Datagor)

Россия, Сибирь, г.Новокузнецк

Основатель, владелец и главный редактор Журнала практической электроники datagor.ru.
Founder, owner and chief editor of datagor.ru.

 

Пробники- генераторы | Кое-что из радиотехники

   Существуют пробники, формирующие сигналы звуковой (ЗЧ), промежуточной (ПЧ) или радиочастоты, а также комбинированные пробники.


   На Рис.1 изображена схема пробника-генератора собранный на двух транзисторах по схеме несимметричного мультивибратора. Частота его основных колебаний около 1 кГц. Иначе говоря он предназначен для проверки, например, усилителей ЗЧ. Однако благодаря импульсному характеру сигнала и применению высокочастотных транзисторов, помимо основной частоты выходное напряжение мультивибратора содержит большое число гармонических составляющих – спектр выходного сигнала пробника-генератора простирается до 8 МГц.
   Выходное сопротивление пробника низкое, что позволяет проверять им как высокоомные, так и низкоомные цепи конструкций.
   Транзисторы могут быть, кроме указанных на схеме, другие высокочастотные, соответствующей структуры.
   Детали пробника-генератора монтируют на плате из текстолита. Щупом ХР1 служит отрезок толстого медного провода, который впаивают в плату. Щуп ХР2 – зажим ” крокодил”, соединённый с платой многожильным монтажным проводом в изоляции.
   Проверяя радиоустройство, щуп ХР2 генератора подключают к общему проводу (или шасси) конструкции, а щупом ХР1 касаются входных или выходных цепей каскадов. Когда же дойдёте до высокочастотных входных каскадов, не обязательно подключать щуп ХР2 – сигнал будет поступать на проверяемые каскады за счёт ёмкостной связи между щупом и общим проводом устройства. Если проверяете радиоприёмник с магнитной антенной, достаточно приблизить к ней щуп ХР1.


   Подобный пробник может быть собран на одной цифровой интегральной микросхеме (Рис.2), содержащей в корпусе четыре элемента 2И-НЕ. На двух из них (DD1.1 и DD1.2) собран генератор ЗЧ, вырабатывающий колебания частотой 1000 Гц, а на оставшихся (DD1.3 и DD1.4) – генератор сигналов радиочастоты (РЧ), частота которых составляет 232 кГц. ( половина стандартной промежуточной частоты вещательных приёмников ). В итоге на выходе пробника получаются радиочастотные колебания, промодулированные сигналом звуковой частоты. Причём выходное напряжение содержит спектр радиочастотных колебаний, состоящих из частот, кратных 232 кГц. Поэтому пробником можно проверять как каскады ПЧ радиоприёмников, так и каскады РЧ в диапазонах длинных средних и коротких волн. Амплитуда выходного сигнала пробника при сопротивлении нагрузки более 100 Ом составляет около 0,1 В, потребляемый от источника питания ток не превышает 30 мА.
   Пробник питается от источника GB1, которым может быть батарея “Крона”, аккумулятор 7Д-0,1 или подобным, напряжением 9 В. Поскольку микросхема рассчитана на работу от напряжения 5 В, в пробнике стоит стабилизатор на стабилитроне VD1 и балластном резисторе R5. Применение стабилизатора позволило не только снизить напряжение до нужного значения, но и добиться устойчивой работы пробника при снижении напряжения источника до 6 В.
   Подбором резистора R2 ( если это необходимо ) устанавливают частоту колебаний генератора РЧ равной 232 кГц. Щуп ХР1 ( медный провод диаметром 1,5 и длинной 50 мм ) припаивают к точке соединения выводов резисторов R3, R4 и надевают на щуп резиновую поливинилхлоридную трубку такой длинны, чтобы оголённый конец щупа составил 5 … 6 мм. Щуп ХР2 ( зажим “крокодил” ) соединяют с общим проводом пробника многожильным монтажным проводом в изоляции.
   Пробник не имеет отдельного выключателя питания и начинает работать сразу после подключения к разъёму батареи или аккумулятора.
   Работать с пробником просто. Подключив зажим к шасси ( или к общему проводу ) проверяемого устройства, касаются щупом входных и выходных цепей исследуемого каскада. Если каскад исправен, в динамической головке ( или громкоговорителе ) будет слышен сигнал низкого тона.
Т. к. сигнал пробника достаточно большой и может перегрузить входные каскады радиоприёмника, иногда целесообразно отключать зажим от шасси или включать между щупом и проверяемыми цепями конденсатор небольшой ёмкости ( нужно подбирать экспериментально ). При проверке только низкочастотных каскадов, желательно шунтировать выход пробника ( или проверяемую цепь ) конденсатором ёмкостью 1000 … 2000 пФ, чтобы снять радиочастотную составляющую сигнала.


  Подобный пробник можно собрать на транзисторах ( Рис.3 ). Он также выдаёт сигналы промежуточной и звуковой частоты, но выходной сигнал не прямоугольной а синусоидальной формы.
  Пробник состоит из двух генераторов. Транзистор VT1 совместно с обмоткой I трансформатора ТР1 и конденсаторами С1, С2 образуют генератор ЗЧ – он собран по схеме с ёмкостной обратной связью. Колебания генератора ЗЧ будут и на обмотке II трансформатора, включённой в цепь питания транзистора VT2, – на нём собран генератор промежуточной частоты (ПЧ) . Поэтому колебания генератора ПЧ будут модулированы. Выходной сигнал генератора ЗЧ и глубину модуляции регулируют переменным резистором R2, а выходной сигнал генератора ПЧ устанавливают переменным резистором R6. Частота генератора ЗЧ составляет примерно 1 кГц, а генератор ПЧ – 465±2 кГц
   Тот или иной сигнал подаётся на щупы ХР2 и ХР3 пробника через переключатель SA1.
В пробнике можно использовать транзисторы серий КТ301, КТ306, КТ312, КТ315 со статическим коэффициентом передачи тока не менее 50. Переменный резистор R2 совмещён с выключателем питания. Трансформатор ТР1 – выходной от малогабаритных ( “карманных”) транзисторных радиоприёмников типа “Нейва” и подобных. В качестве обмотки I используется половина высокоомной первичной обмотки.
   Пьезокерамический фильтр ZQ1 может быть ФП1П-011 – ФП1П- 017. Переключатель рода работ SA1 – МТ-1. Источник питания G1 – элемент 332, 343 или дисковый аккумулятор Д-01
Щупом ХР3, как и в предыдущей конструкции, служит отрезок толстого медного провода с заострённым концом, а щупом ХР2 – зажим “крокодил”, к которому подпаян многожильный монтажный провод достаточной длинны с вилкой ХР1 на конце её вставляют в гнездо XS1.
   Для налаживания пробника движок резистора R2 устанавливают в верхнее по схеме положение, а резистор R6 – в нижнее. В разрыв обмотки I ( т. е. в цепь питания первого каскада – на транзисторе VT1 ) включают миллиамперметр на 1 мА. Подбором резистора R3 устанавливают ток равный 0,5 мА. Затем миллиамперметр включают в разрыв провода обмотки II, и подбором резистора R5 устанавливают ток примерно 0,4 мА.
   Далее желательно измерить частоты генератора ПЧ и проверить устойчивость работы при подключении его к низкоомным цепям проверяемого устройства. Устойчивой работы добиваются подбором конденсатора С5 ( от 10 до 36 пФ )

ИСТОЧНИК: Б. С. Иванов “В ПОМОЩЬ РАДИОКРУЖКУ”, Москва, “Радио и связь”, 1990г, стр.15 – 19.

Похожее

Каталог радиолюбительских схем

Радиолюбительские измерения и измерительные приборы.

  • Генераторы
  • Генераторы(обзор).
    Генераторы специалтных сигналов
    1. ГЕНЕРАТОР ПАЧЕК ЧАСТОТ. В.Карлин
    2. Прибор для регулировки магнитофонов. ЛЕКСИНЫ, С.БЕЛЯКОВ
    3. НИЗКОЧАСТОТНЫЙ ИЗМЕРИТЕЛЬ АЧХ. С. ПЕРМЯКОВ
    Генераторы сигналов НЧ
    1. Генератор-пробник.
    2. Генератор сигналов ЗЧ. Е.НЕВСТРУЕВ
    3. Генераторы со стабильной амплитудой
    4. Генератор ЗЧ. Л. АНУФРИЕВ
    5. Универсальный генератор НЧ.
    6. Генератор сигналов с малым коэффициентом гармоник. Н.Шиянов
    7. ЦИФРО-АНАЛОГОВЫЙ ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР ЗВУКОВОЙ ЧАСТОТЫ. Ю.В.Сафонов
    8. Генератор “розового” шума.
    Цифровые формирователи сигналов НЧ
    1. ФОРМИРОВАТЕЛЬ СИНУСОИДАЛЬНОГО СИГНАЛА.
    2. ЦИФРО-АНАЛОГОВЫЙ ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР ЗВУКОВОЙ ЧАСТОТЫ.
    3. ЦИФРОВЫЕ ГЕНЕРАТОРЫ СИГНАЛОВ.
    4. ЦИФРОВОЙ ГЕНЕРАТОР СИНУСОИДАЛЬНОГО НАПРЯЖЕНИЯ.
    Функциональные генераторы сигналов НЧ
    1. Широкодиапазонный функциональный генератор. А.ИШУТИНОВ
    2. ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР. И.БОРОВИК
    3. Функциональный генератор на одном ОУ. И.НЕЧАЕВ
    4. УНИВЕРСАЛЬНЫЙ ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР А.МАТЫКИН
    Комбинированные генераторы сигналов
    1. ПРОСТОЙ ГЕНЕРАТОР СИГНАЛОВ НЧ И ВЧ. В.УГОРОВ
    2. КОМБИНИРОВАННЫЙ ГЕНЕРАТОР СИГНАЛОВ. Л.ИГНАТЮК
    3. УНИВЕРСАЛЬНЫЙ ГЕНЕРАТОР-ПРОБНИК А.СЛИНЧЕНКОВ
    Генераторы сигналов ВЧ
    1. ПРОСТОЙ ШИРОКОПОЛОСНЫЙ ГЕНЕРАТОР СИГНАЛОВ ВЧ
    2. Простейший сигнал-генератор на одном стабилитроне. 300 практических советов
    3. Простой сигнал-генератор
    4. Сигнал-генератор. М.Павловский.
    5. СТАБИЛЬНЫЙ ГЕНЕРАТОР ВЧ. О.БЕЛОУСОВ
    6. Кварцевый калибратор. С.БИРЮКОВ.
    Генераторы качающейся частоты.
    1. ГЕНЕРАТОР КАЧАЮЩЕЙСЯ ЧАСТОТЫ Б.Иванов
    2. ГЕНЕРАТОР КАЧАЮЩЕЙСЯ ЧАСТОТЫ. 3…30 МГц
    3. Генератор качающейся частоты. част.: 5,5; 5,5; 9,0 МГц (кач.: 1…50 кГц)
    4. ПРИСТАВКА К ОСЦИЛЛОГРАФУ ДЛЯ НАБЛЮДЕНИЯ АЧХ. ГУН 10Гц…100кГц
    Генераторы импульсных сигналов
    1. Генераторы импульсов.
    2. ШИРОКОДИАПАЗОННЫЙ ГЕНЕРАТОР ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ. Э.Медякова, С.Дюдин
    3. МНОГОКАНАЛЬНЫЙ ГЕНЕРАТОР ЛОГИЧЕСКИХ УРОВНЕЙ. Ю.Гризанс (на базе PC)
    4. Генератор импульсов с широким диаппазоном частот.
    Генераторы телевизионных сигналов
    1. Прибор для проверки телевизоров. 300 практических советов
    2. Генератор телевизионных сигналов. Хлюпин Н.П.
    3. Кодер PAL. Хлюпин Н.П.
    4. «DENDY» — генератор телевизионных испытательных сигналов. С. РЮМИК
    5. Генератор ТИС. Р.КАГАРМАНОВ
  • Вольтметры
  • Вольтметры(обзор).
    Совсем простые вольтметры и не очень. Авометры.
    1. Как правильно проверить микроамперметр или миллиамперметр.
    2. ПРОСТЕЙШИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ С ИСПОЛЬЗОВАНИЕМ В КАЧЕСТВЕ ИНДИКАТОРА НЕОНОВЫХ ЛАМП
    3. ПРОСТЕЙШИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ С ИСПОЛЬЗОВАНИЕМ В КАЧЕСТВЕ ИНДИКАТОРА ЛАМП НАКАЛИВАНИЯ
    4. Вольтметр на светодиоде
    5. Высоковольтный пробник Ю.Каранда
    6. ПРОСТОЙ ТЕСТЕР. А.НЕМИЧ
    7. МНОГОПРЕДЕЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРИБОР СО СТРЕЛОЧНЫМ ИНДИКАТОРАМ
    8. Вольтметр постоянного тока с растянутыми шкалами
    9. УНИВЕРСАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРИБОР НА ТРАНЗИСТОРАХ
    10. УНИВЕРСАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРИБОР НА ТРАНЗИСТОРАХ с линейной шкалой сопротивлений.
    11. ВОЛЬТОММЕТР НА ПОЛЕВЫХ ТРАНЗИСТОРАХ. О.Корженееич
    12. Малогабаритный мультиметр. В.Снежко
    13. Цифровой вольтометр с автоматическим выбором предела измерения. В.ЦИБИН
    14. Мультиметр на БИС. Л.АНУФРИЕВ
    Миливольтметры постоянного тока
    1. Милливольтметр постоянного тока. Н.ОРЛОВ
    2. ВОЛЬТОММЕТР НА ОУ. М. ДОРОФЕЕВ
    3. ЦИФРОВОЙ ВОЛЬТМЕТР на базе IBM PC.
    4. Простой транзисторный вольтомметр. 300 практических советов
    5. Милливольтметр с высоким входным сопротивлением.
    6. Милливольтметр постоянного тока.
    Миливольтметры постоянного и переменного тока
    1. Простой высокочастотный милливольтметр. 300 практических советов
    2. Милливольтметр постоянного и переменного токов и омметр с линейной шкалой.
    3. ВОЛЬТМЕТР С “РАСТЯНУТОЙ” ШКАЛОЙ
    4. Милливольтнаноамперметр. Б.АКИЛОВ
    5. Вольтметр на операционном усилителе. В.ЩЕЛКАНОВ
    Миливольтметры переменного тока
    1. МИКРОВОЛЬТМЕТР. И.БОРОВИК (На микросхеме К548УН1)
    2. ВОЛЬТМЕТР С УЛУЧШЕННОЙ ЛИНЕЙНОСТЬЮ. В.ХВАЛЫНСКИЙ
    3. Милливольтметр. Г.МИКИРТИЧАН
    4. Милливольтметр — Q-метр. И.Прокопьев
    5. Высокочастотный милливольтметр. Б.СТЕПАНОВ
    6. Линейный вольтметр переменного тока. В. ОВСИЕНКО
    7. ГЕТЕРОДИННЫЙ ИНДИКАТОР РЕЗОНАНСА
    8. ГЕТЕРОДИННЫЙ ИНДИКАТОР РЕЗОНАНСА 2…150МГц
    9. ГЕТЕРОДИННЫЙ ИНДИКАТОР РЕЗОНАНСА. И.А.Доброхотов
    10. УСОВЕРШЕНСТВОВАННЫЙ ГИР. В.ДЕМЬЯНОВ
    11. Волномер — простой индикатор напряженности поля
    Среднеквадратичные вольтметры
    1. Среднеквадратичный милливольтметр. Н.Сухов
    2. Простой среднеквадратичный. Б. ГРИГОРЬЕВ
    Автомобильные вольтметры
    1. Вольтметр с точностью 0,1 В. В. Баканов, Э. Качанов
    2. Высокоточный вольтметр с растянутой шкалой 10-15В
    3. Многоуровневый индикатор напряжения.
    4. АВТОМОБИЛЬНЫЙ ПРОБНИК-ИНДИКАТОР.
    5. АВТОМОБИЛЬНЫЙ ПРОБНИК-ИНДИКАТОР С ДИСКРЕТНОСТЬЮ 1 В.
  • Осциллографы
  • Осциллографы для начинающих
    1. Осциллограф… без трубки
    2. Простой осциллограф.
    3. ПРОСТОЙ ЭЛЕКТРОННОЛУЧЕВОЙ ОСЦИЛЛОГРАФ-ПРОБНИК.
    4. ОСЦИЛЛОГРАФИЧЕСКИЙ ПРОБНИК. Н.СЕМАКИН
    5. ДЕМОНСТРАЦИОННЫЙ ОСЦИЛЛОГРАФ В.ЗАДОРОЖНЫИ
    6. ДЕМОНСТРАЦИОННЫЙ ОСЦИЛЛОГРАФ В.ЧЕРНЯШЕВСКИЙ
    7. ДЕМОНСТРАЦИОННЫЙ ОСЦИЛЛОГРАФ Б.Портной
    8. Телевизор в качестве осциллографа.
    Осциллографы на электронных лампах
    1. Ламповый осциллограф. Н.Козьмин
    2. Любительский осциллограф. Д.Атаев
    3. Простой осциллограф. 300 практических советов
    4. ПРОСТОЙ ОСЦИЛЛОГРАФ
    Осциллографы на полупроводниках.
    1. ОСЦИЛЛОГРАФ РАДИОЛЮБИТЕЛЯ. В.СЕМЕНОВ
    2. ПРИБОР КОМБИНИРОВАННЫЙ ДЛЯ РАДИОЛЮБИТЕЛЯ КПР «СУРА»сервисное описание.
    3. МАЛОГАБАРИТНЫЙ ОСЦИЛЛОГРАФ. А. Кузнецов
    4. Осциллографический пробник
    5. Логический щуп — осциллограф Н.Заец.
    6. Осциллографический пробник А.Саволюк
    7. РАДИОЛЮБИТЕЛЬСКИЙ УНИВЕРСАЛЬНЫЙ ЭЛЕКТРОННОЛУЧЕВОЙ ОСЦИЛЛОГРАФ.
    8. НИЗКОЧАСТОТНЫЙ ОСЦИЛЛОГРАФ. С. Максимов
    9. ТРАНЗИСТОРНЫЙ ОСЦИЛЛОГРАФ. А. Балаба
    10. ДВУХКДНАЛЬНЫИ ОСЦИЛЛОГРАФ. Д. Вундцеттель
    Приставки к осциллографам
    1. Осциллограф — целая измерительная лаборатория входного контроля. 300 практических советов
    2. Приставка к осциллографу для наблюдения характеристик транзисторов (характериограф). 300 практических советов
    3. Приставка к осциллографу для измерения частотных характеристик. И.НЕЧАЕВ
    4. Преобразователь частоты для осциллографа.
    5. Двухканальная осциллографическая приставка к ПК.
    6. Приставка к осциллографу. Снятие характеристик п/п устройств
    7. ПРИСТАВКА К ОСЦИЛЛОГРАФУ ДЛЯ НАБЛЮДЕНИЯ РЕЗОНАНСНЫХ КРИВЫХ.
    8. ПРИСТАВКА К ОСЦИЛЛОГРАФУ ДЛЯ НАБЛЮДЕНИЯ АЧХ. ГУН 10Гц…100кГц
    9. ВЧ ПРИСТАВКА К ОСЦИЛЛОГРАФУ. Преобразователь ВЧ частоты для НЧ осциллографа
    10. Два луча из одногоА.Проскурин
    11. Цифровой мультиплексор на восемь входов. А.В.Кравченко
    12. Каскады узлов широкополосного осциллографа. А.Саволюк
    Цифровые осциллографы
    1. Универсальный многоканальный АЦП УМ-АЦП1. Т.Носов
    2. ИМПУЛЬСНЫЙ МАТРИЧНЫЙ ОСЦИЛЛОГРАФ. В.СЕРГЕЕВ
    3. МИНИАТЮРНЫЙ ОСЦИЛЛОГРАФИЧЕСКИЙ ПРОБНИК.
    4. Щуп-осциллограф В.РУБАШКА
    5. Логический анализатор-приставка к осциллографу. С.МАХОТА
    6. КОМПЬЮТЕРНЫЙ ОСЦИЛОГРАФ. В.Сафонников.
    7. Осциллограф на базе звуковой карты (SB)
    8. Цифровой осциллограф.
    9. КОМПЬЮТЕРНЫЙ ПРОГРАМНЫЙ ОСЦИЛОГРАФ.ZIP-архив 90 кБ.
  • Цифровые измерительные устройства.
    1. МИКРОСХЕМА КР572ПВ5
    2. ЦИФРОВОЙ МУЛЬТИМЕТР
    3. ЦИФРОВОЙ ИЗМЕРИТЕЛЬ ЕМКОСТИ
    4. ЦИФРОВОЙ ИЗМЕРИТЕЛЬ RCL
    5. Цифровая шкала генератора ЗЧ. В.Власенко
    6. ЦИФРОВОЙ ИНДИКАТОР НАПРЯЖЕНИЯ. С. КУЛЕШОВ
    7. ПОДКЛЮЧЕНИЕ ЦАП К РАЗЪЕМУ LPT. С. КУЛЕШОВ
    8. ЛОГИЧЕСКИЙ АНАЛИЗАТОР НА БАЗЕ КОМПЬЮТЕРА. А. ШРАЙБЕР
    9. Цифровой вольтометр с автоматическим выбором предела измерения. В.ЦИБИН
    10. Мультиметр на БИС. Л.АНУФРИЕВ
  • Частотомеры
  • Цифровые
    1. Частотомер — приставка к компьютеру.
    2. Частотомер. (на 176 серии)
    3. КАРМАННЫЙ ЦИФРОВОЙ ЧАСТОТОМЕР. Б.Колобов
    4. Малогабаритный частотомер — цифровая шкала с ЖКИ дисплеем до 200 МГц.
    5. Малогабаритный частотомер-цифровая шкала до 200 МГц с ЖКИ дисплеем. И.Максимов
    6. Малогабаритный частотомер — цифровая шкала с ЖКИ дисплеем 100 кГц — 1500 МГц.
    7. Частотомер — цифровая шкала с ЖКИ. Н.Хлюпин
      Ниже три статьи об одной конструкции Д. Богомолова, но с разных источников. Пусть будут. Они несколько разнятся.
    8. Частотомер (1Гц — 50 мГц). Д.Богомолов
    9. ЧАСТОТОМЕР НА МИКРОКОНТРОЛЛЕРЕ. Д.БОГОМОЛОВ
    10. ЧАСТОТОМЕР НА МИКРОКОНТРОЛЛЕРЕ. Д.БОГОМОЛОВ
    11. ЧАСТОТОМЕР НА PIC-КОНТРОЛЛЕРЕ. Д.ЯБЛОКОВ,В.УЛЬРИХ
    12. Частотомер. А.ГРИЦЮК
    13. ПОРТАТИВНЫЙ ЧАСТОТОМЕР. Я.ТОКАРЕВ
    14. ПОРТАТИВНЫЙ ЧАСТОТОМЕР 2. В. ГУРЕВИЧ
    15. МАЛОГАБАРИТНЫЙ ЧАСТОТОМЕР. С.ПУЗЫРЬКОВ
    16. МАЛОГАБАРИТНЫЙ ЧАСТОТОМЕР. В.Скрыпник
    17. ЧАСТОТОМЕР (до 2 МГц). М.Овечкин
    18. Измерение частоты сигналов с большим периодом. И.КОСТРЮКОВ
    19. ЦИФРОВОЙ ЧАСТОТОМЕР. С.БИРЮКОВ
    20. ПРЕДВАРИТЕЛЬНЫЙ ДЕЛИТЕЛЬ. С.БИРЮКОВ
    21. Простой частотомер из Китайского приёмника. В.К.
    22. УКВ частотомер… из радиоприемника. Н.Большаков
    23. СВЧ-ДЕЛИТЕЛЬ ДЛЯ ЧАСТОТОМЕРА. В.ФЕДОРОВ
    24. ВЧ-делитель ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТ. В.ФЕДОРОВ
    Аналоговые
    1. НЧ ЧАСТОТОМЕР НА ИНТЕГРАЛЬНЫХ СХЕМАХ.
    2. Комбинированный частотомер. И.НЕЧАЕВ
    3. АНАЛОГОВЫЙ ЧАСТОТОМЕР С АВТОМАТИЧЕСКИМ ВЫБОРОМ ПРЕДЕЛА ИЗМЕРЕНИЯ. Ю.Гриев
  • Измерители годности и параметров радиоэлементов, номиналов L, R, C Измерители(обзор).
  • Измеритель ёмкости и индуктивности. Е.Терентьев
  • Прибор для измерения ёмкости. С.Кучин
    1. Простой логический зонд (щуп-индикатор). 300 практических советов
    2. Простой малогабаритный универсальный испытательный прибор для проверки радиоэлементов. 300 практических советов
    3. Простой испытатель транзисторов любой проводимости. 300 практических советов
    4. Простой испытатель тиристоров. 300 практических советов
    5. Прибор для проверки транзисторов без выпайки из схемы. 300 практических советов
    6. Простой испытатель кварцев. 300 практических советов
    7. Измеритель ёмкости и индуктивности. Е.Терентьев
    8. Простой измерительный мост RC на одном транзисторе. 300 практических советов
    9. ИЗМЕРИТЕЛЬ ЕМКОСТИ НА ЛОГИЧЕСКОЙ МИКРОСХЕМЕ.
    10. ЦИФРОВОЙ ИЗМЕРИТЕЛЬ ЕМКОСТИ. А. Уваров
    11. Измерение емкости электролитических конденсаторов
    12. Измеритель R, C, L на микросхемах. В.ЛАВРИНЕНКО
    13. Измеритель емкости варикапов.
    14. Малогабаритный мультиметр.
  • Другие
    1. Простой детонометр.
    2. Простой детонометр. Н.СУХОВ
    3. Детонометр. Н.Шиянов,С.Филиппов
    4. Детонометр. Часть I. Н.СУХОВ
    5. Детонометр. Часть II. Н.СУХОВ
    6. КАК УСТАНОВИТЬ СКОРОСТЬ ЛЕНТЫ. Н. Шиянов
    7. ВЗВЕШИВАЮЩИЙ ФИЛЬТР. Б.ГРИГОРЬЕВ
    8. ФИЛЬТР ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МАГНИТОФОНА. М.ГАНЗБУРГ,А.ЦАПОВ
    9. ФИЛЬТРЫ ДЛЯ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ГАРМОНИК.
    10. Измеритель нелинейных искажений.
    11. Измеритель нелинейных искажений Алексеева.
    12. Пассивный режектор для измерения малого коэффициента гармоник. Эдуард Семенов
    13. Радиолюбительские измерения.
    14. Измерение параметров усилителя звуковой частоты.
    15. Настройка и измерение параметров высокочастотной части радиоприемника.
    16. ИЗМЕРЕНИЕ НЕСИНУСОИДАЛЬНЫХ ТОКОВ
    17. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
    18. Ультразвуковое измерение дальности на MSP430.
    19. Эхолот.
    20. Фазометр. Н.СТРЕЛЬЧУК
    21. ИЗМЕРИТЕЛЬ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ. В. Трусов
    22. ИЗМЕРИТЕЛЬ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ. А.Лиепиньш,Я.Сиксна
    23. ХАРАКТЕРИОГРАФ. В. Тарасов
    24. МОНИТОР ДЛЯ КОНТРОЛЯ ЛИНЕЙНОСТИ УСИЛИТЕЛЯ ПЕРЕДАТЧИКА. В.Скрыпник
    25. ФАЗОЧАСТОТНЫЙ ИНДИКАТОР НАСТРОЙКИ. А.ЗАЗНОБИН,Г.ЮДИН
    26. ЦИФРОВОЙ ИНДИКАТОР НАПРЯЖЕНИЯ. С.КУЛЕШОВ
    27. Простой логический зонд (щуп-индикатор). 300 практических советов
    28. ЛОГИЧЕСКИЙ ПРОБНИК С ОДНИМ СВЕТОДИОДОМ.
    29. ЛОГИЧЕСКИЙ ПРОБНИК С ДВУМЯ СВЕТОДИОДАМИ.

    Дальше.


    ВНИМАНИЕ НАВИГАЦИЯ!

  • Вся информация разбита на тематические подкаталоги.
  • Каждый подкаталог имеет свою заглавную страницу.
  • Выбранная тема открывается в специальном окне данного подкаталога, которое после просмотра может быть закрыто.
    Не закрывайте заглавных страниц подкапталогов, а если это случилось перейдите на «СОДЕРЖАНИЕ» в верхнем или нижнем банерах.
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *