Принцип действия генератора переменного тока кратко – «На каком принципе основана работа генераторов переменного тока?» – Яндекс.Знатоки

Содержание

Принцип действия генератора переменного тока

Закон индукции Фарадея лежит в основе электроэнергетики: на этом принципе действуют генераторы — источники электроснабжения промышленности и населения, трансформаторы. Простейший электрогенератор содержит вращающийся магнит (либо электромагнит) — ротор и неподвижную катушку статора (рис. 8). При вращении ротора в витках обмотки статора магнитный поток меняется по закону:, и возникает ЭДС индукции

,

обеспечивающая ток в нагрузке .

Принцип действия трансформатора

Трансформатор (рис.9) содержит ферромагнитный сердечник, на котором две обмотки, первичная с числом витков и вторичная с . К вторичной подключена нагрузкаR, к первичной — источник напряжения . В соответствии с законом Фарадея, вызывает рост магнитного потока

, (). Сердечник, имеющий большую магнитную проницаемость (μ=400÷10000), выполняет две функции. Во-первых, он концентрирует магнитный поток так, что поток через первичную и вторичную обмотки практически одинаков. Во-вторых, большое значение обеспечивает малый ток через первичную обмотку, когда нагрузка не подключена (ток холостого хода), т. е. снижает потери энергии при трансформации.

В соответствии с (5) на вторичной обмотке возникает напряжение , так что напряжение изменяется:

,

где — коэффициент трансформации.

Состав установки

В данной работе определяют взаимную индуктивность двух катушек (длинной катушки –

и короткой катушки –, которую надевают на катушкуL1 и могут перемещать вдоль ее оси). Схема установки представлена на рис.10. Питание одной из катушек (например ) осуществляется от генератора звуковой частоты, напряжение

(9)

с которого подается через резистор с сопротивленцем

. Вольтметр, расположенный на панели, измеряет действующее напряжение.

Сопротивление выбирается таким, чтобы выполнялось неравенство

(10)

где — индуктивность катушки

, — ее активное сопротивление. В этом случае силу тока, протекающего через катушку , можно определить по формуле

. (11)

Переменный ток в катушке создает ЭДС индукции в катушке :

. (12)

Для измерения в данной работе используют осциллограф. Амплитуда ЭДС индукции

, (13)

где ν — частота звукового генератора. Из (13) имеем

. (14)

Если поменять местами катушки L

1 и L2, то можно определить

(15)

Измерения

Собрать установку, состоящую из звукового генератора, электронного осциллографа и двумя соосно расположенными катушками и. Ознакомиться с работой звукового генератора и электронного осциллографа (см. описание), включить их в сеть 220 В, подготовить к работе.

Указания по технике безопасности

1. Приборы питаются от сети 220 В. Включение в сеть приборов должно проводиться только в присутствие лаборанта или преподавателя.

2. Все корпусные клеммы приборов должны быть надежно заземлены (для заземления должен применяться провод без изоляции).

3. Запрещается работать в помещении одному.

Задание 1

Измерение взаимной индуктивности М21 и М12 и исследование их зависимости от взаимного расположения катушек

1. Напряжение сигнала со звукового генератора установите в диапазоне 1-4 В, а его частоту — в пределах 30-200 кГц.

2. Подайте напряжение на катушку

, а ЭДС с катушки на осциллограф.

3. Установите подвижную катушку в крайнее положение. Перемещая ее в противоположное крайнее положение, через каждый сантиметр запишите значение ЭДС магнитной индукции в цепи катушки .

4. По формуле (14) рассчитайте М21. Данные измерений и вычислений занесите в табл.1.

5. Поменяв местами катушки и, повторите измерения по п.п. 1-4.

6. Постройте графики зависимости М21 и М12 как функции координаты z (z — расстояние между центрами катушек и).

Таблица 1

z, см

ε02, В

М21 Гн

z, см

ε01, В

M21, Гн

UД=

ν=

Задание 2

Определение М21 для различных напряжений питания

1. Поставьте катушку в среднее положение относительно катушки .

2. Установите частоту звукового генератора 104 Гц.

3. Изменяя напряжение UД в цепи катушки L1 снимите зависимость амплитуды ЭДС магнитной индукции от UД: ε02=f(UД). Измерения провести в интервале 0-5 В через 0,5 В.

4. По формуле (14) рассчитайте М21. Данные измерений и вычислений занесите в табл.2

Таблица 2

U0, В

ε02, В

М21, Гн

ν=

R=104 Ом

5. По данным табл. 2 найдите среднее значение М21.

Задание 3

Определение М21 для различных частот генератора

1. Поставьте катушку L1 в среднее положение относительно катушки L2.

2. Установите амплитуду напряжения звукового генератора 2 В.

3. Изменяя частоту генератора от 5 до 20 кГц (не менее 10 точек), снимите зависимость амплитуды ЭДС индукции ε02 от частоты подаваемого напряжения.

4. По формуле (14) рассчитайте М21. Данные измерений и вычислений занесите в табл.3.

Таблица 3

ν, Гц

ε02, В

М21, Гн

UД=

R=104 Ом

5. По данным табл. 3 найдите среднее значение М21.

6. Для одного из полученных значений М21 рассчитайте абсолютную и относительную погрешности ΔМ21 и ΔМ2121.

«На каком принципе основана работа генераторов переменного тока?» – Яндекс.Знатоки

Генератор переменного тока работает по такому принципу: для проводника с двумя выводами создается переменное магнитное поле, которое и генерирует электромагнитную силу. В качестве примера генератора переменного тока ниже приведена простейшая схема для пояснения принципа действия.

Как видите, на статоре намотаны три обмотки, а по центру находится ротор с двумя магнитными полюсами. При вращении ротора магнитные полюса попеременно оказывают магнитное воздействие на витки каждой обмотки. Соответственно, на начальном этапе приближения к обмотке магнитное поле наводит слабую электродвижущую силу, а с приближением магнитного полюса, ЭДС в обмотке будет нарастать до того момента, пока магнит не окажется непосредственно под обмоткой – это будет максимальный пик ЭДС.

Далее будет происходить уменьшение амплитуды, а при движении противоположного магнитного полюса будет генерироваться полуволна с противоположной амплитудой относительно оси.

Как видите на рисунке, данный процесс аналогичен для каждой из обмоток, которые физически смещены в пространстве на 120° друг относительно друга, отсюда и появляется смещение напряжения в трех фазах на 120° в электрической сети.Стоит отметить, что магнит может располагаться на статоре, внутри которого вращается ротор с намотанными на него обмотками. Но такая конструкция менее практична, поскольку с ротора нужно осуществлять скользящий контакт для токосъема.

Принцип действия генератора переменного тока

На практике используется несколько видов генераторов. Но каждый из них включает в себя одни и те же составные элементы. К ним относятся магнит, который создает соответствующее поле, и специальная проволочная обмотка, где создается электродвижущая сила (ЭДС). В простейшей модели генератора роль обмотки выполняет рамка, способная вращаться вокруг горизонтальной или вертикальной оси. Амплитуда ЭДС пропорциональна количеству витков, имеющихся на обмотке, и размаху колебаний магнитного потока.

Чтобы получить значительный по силе магнитный поток, в генераторах используют особую систему. Она состоит из пары стальных сердечников. Обмотки, которые создают переменное магнитное поле, помещают в пазы первого из них. Те витки, которые индуцируют ЭДС, укладывают в пазы второго сердечника.

Внутренний сердечник называют ротором. Он вращается вокруг оси вместе с имеющейся на нем обмоткой. Тот сердечник, который остается без движения, выполняет функцию статора. Чтобы сделать поток магнитной индукции наиболее сильным, а потери энергии минимальными, расстояние между статором и ротором стараются сделать как можно меньше.

Электродвижущая сила возникает в обмотках статора сразу после появления электрического поля, для которого характерны вихревые образования. Эти процессы порождаются изменением магнитного потока, которое наблюдается при ускоренном вращении ротора.

Ток от ротора подается в электрическую цепь при помощи контактов, имеющих вид элементов скольжения. Чтобы сделать это было легче, к концам обмотки присоединяют кольца, называемые контактными. К кольцам прижимаются неподвижные щетки, через которые и осуществляется связь между электрической цепью и обмоткой движущегося ротора.

В витках обмотки магнита, где создается магнитное поле, ток имеет сравнительно небольшую силу, если сравнивать его с тем током, который генератор отдает внешней цепи. По этой причине уже конструкторы первых генераторов решили отводить ток от обмоток, расположенных статично, а слабый ток к вращающемуся магниту подавать через контакты, обеспечивающие скольжение. В генераторах малой мощности поле создает магнит постоянного типа, который способен вращаться. Такая конструкция позволяет упростить всю систему и вовсе не использовать кольца и щетки.

Современный промышленный генератор электрического тока представляет собой массивное и громоздкое сооружение, которое состоит из металлических конструкций, изоляторов и медных жил. Размеры устройства могут составлять несколько метров. Но даже для такого солидного сооружения очень важно выдержать точные габариты деталей и зазоры между подвижными частями электрической машины.

На каком принципе основана работа генераторов переменного тока

Содержание:
  1. Составные части и узлы генератора
  2. Принцип действия генераторов
  3. Как работает трёхфазный генератор переменного тока

Среди многих электромеханических устройств следует особо отметить генераторы переменного тока, с помощью которых механическая энергия преобразуется в электрическую. Они получили широкое распространение в промышленности и других областях. Для того чтобы эксплуатация была наиболее оптимальной, необходимо знать, на каком принципе основана работа генераторов переменного тока. Всем известно, что в основе действия таких агрегатов лежит вращение магнитного поля. Это позволяет максимально упростить их конструкцию и вырабатывать потребное количество электроэнергии.

Составные части и узлы генератора

Основной функцией генератора переменного тока является преобразование механической энергии вращения в электрическое напряжение. Эти устройства могут достигать огромных размеров и использоваться для производства энергии на электростанциях. Маленькие агрегаты применяются не только в промышленности, но и в быту, например, в автомобилях или в качестве резервного источника питания.

Конструкция стандартного генератора состоит из двух основных частей: неподвижного элемента – статора и вращающейся части – ротора. Статор, изготовленный в виде полого цилиндра, содержит магнитную систему. Она представляет собой стальные листы, смонтированные в пакет. Внутри пластин имеются пазы с изоляцией из фторопластовой пленки или другого диэлектрика. Каждый паз содержит обмотку в виде катушки из медного провода, исполняющей роль одной фазы с параллельным или последовательным соединением витков.

Определенная часть катушки выступает из пазов и носит название лобового соединения. В каждой обмотке имеется вывод, соединяющийся в общей точке. На данном месте соединения выполняется изоляция, исключающая соприкосновение с корпусом и другими деталями. Подобное соединение известно, как «звезда», а снятие напряжения осуществляется со всех трех концов.

Вторая основная деталь – ротор, изготавливается в виде массивного стального сердечника и обмотки возбуждения. В большинстве конструкций вал находится в горизонтальном положении, однако на гидроэлектростанциях применяется вертикальное расположение. Охлаждение работающего генератора может быть водяным, воздушным, масляным или водородным.

Принцип действия генераторов

Работа генератора переменного тока основана на электромагнитной индукции. Для получения переменного напряжения требуется задействовать катушку с постоянным электрическим током. Под его воздействием в возбуждающей обмотке образуется магнитное поле. Схема дополняется стальной системой, имеющей полюса для подводки магнитного поля к катушкам. Данная система представляет собой уже рассмотренную статорную обмотку. При вращении ротора, катушки статора поочередно взаимодействуют с разноименными полюсами.

Силовая обмотка статора,как правило, неподвижна. Движение ротора осуществляется с помощью прикладываемой к нему механической энергии. Обычно используется сила ветра, воды, различные виды цепных или ременных передач, способных передавать энергию вращения.

Толчком к началу работы генератора служит подача напряжения к его обмотке возбуждения. Это приводит к созданию электромагнитного поля, которое осуществляет индукцию напряжения в катушках статора под действием вращающегося ротора. Если на обмотке возбуждения увеличивается напряжение, то напряжение автоматически повышается и на катушках статорной обмотки. При уменьшении напряжения происходит обратный процесс. Напряжения на катушку возбуждения может подавать сам генератор. Подобные конструкции относятся к категории самовозбуждающихся устройств.

Как работает трёхфазный генератор переменного тока

Генераторы тока: переменного и постоянного

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока  — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

В чем разница между постоянным и переменным током

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач. 

В чем конструктивная разница между генераторами

Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

Особенности конструкции генераторов переменного тока

Электростанция такого типа состоит из:
  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

В чем конструктивная разница между генераторами

Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока

Особенности конструкции генератора переменного тока

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.

Специфика синхронного устройства

Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

Асинхронным машинам характерны:

  • отсутствие электрической связи с ротором;
  • вращение якоря под воздействием остаточного механизма статора;
  • измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы генератора постоянного тока

Принцип работы электростанции прямого тока

Простейший  по конструкции генератор работает следующим образом:

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.

Принцип работы электростанции прямого тока

К преимуществам генераторов постоянного тока относят:

  • небольшой вес и компактность агрегата;
  • возможность использовать в экстремальных условиях;
  • отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы генератора переменного тока

Принцип работы электростанции переменного тока

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

Основные достоинства генераторов переменного тока

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

Плюсами использования генераторов переменного тока являются:

  • большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • выработка электроэнергии на низких скоростях вращения ротора;
  • проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • конструкция токосъемного узла отличается большей надежностью;
  • больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Где применяются генераторы постоянного и переменного тока

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники. 

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования. 

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.



Урок 43-3 Устройство и принцип работы генератора переменного тока

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = — Ф’ = — (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε0 = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС — электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Структурная схема генератора переменного тока.

Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Устройство и применение генератора переменного тока | EN-PROF.RU

 

Генератор переменного тока – это машина, которая преобразует механическую энергию в энергию электрическую на основании закона электромагнитной индукции. Проводник перемещается в магнитном поле, силовые линии поля пересекают проводник, в результате чего в проводнике инициируется движение электронов, что в свою очередь приводит к возникновению электродвижущей силы. Если к концам проводника подключить нагрузку, то в проводнике возникнет ток.

Переменным ток называется по той причине, что в течение времени он меняется по своей величине и направлению. При чем, изменения эти носят периодический (синусоидальный) характер. На графике это выглядит следующим образом:

Нулевая точка – это начало отсчета. Дальше показано, как ток изменяется во времени.

Устройство генератора переменного тока

Генератор состоит из проводника, намотанного на стальной магнитопровод (якорь) и системы магнитов – обыкновенных или электрических. Электрическая энергия снимается с якоря при помощи угольных щеток, прилегающих к кольцу, к которому в свою очередь присоединены концы проводника.

Якорь – подвижная (вращающаяся) часть генератора, статор – неподвижная, создающая магнитное поле.

Если магнитное поле в генераторе наводится электромагнитами, то в паре с ним работает еще один генератор – возбудитель. В возбудителе магнитное поле наводится обыкновенными магнитами.

В движение якорь приводится различными механическими средствами, в зависимости от применения. На электростанции – это турбины (паровые, водяные). В бытовых генераторах якорь вращается механической энергией, получаемой за счет двигателя внутреннего сгорания.

Область применения

Переменный ток широко распространен. На сегодняшний день на переменном токе работает почти вся бытовая техника и промышленность. Связано это с тем, что переменный ток передается на большие расстояния, с гораздо меньшими потерями, нежели постоянный. Также, переменный ток, легко преобразуется в постоянный с помощью диодных выпрямителей. Постоянный ток, преобразовать в переменный невозможно.

Генераторы переменного тока используются на всех электростанциях.

Промышленные электрогенераторы переменного тока используются для обеспечения аварийного автономного питания больниц, школ, детских садов, торговых и промышленных объектов. Также промышленные генераторные установки используются при строительстве новых объектов, это позволяет использовать электрооборудование на участках, где отсутствуют другие источники электроэнергии.

В бытовых дизельных и бензиновых установках для различных целей. Это и обеспечение автономного питания, в случае отключения линии электроэнергии, и ее получение в местах, где линия электропередач отсутствует.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *