Генератор на кварцевом резонаторе – Кварцевые Генераторы и Резонаторы — Электронные компоненты и Источники питания со склада и под заказ. Собственное производство Управляемых Источников питания

Содержание

Кварцевый генератор и кварцевые кристаллы: принцип работы и схемы

В данной статье мы подробно поговорим про кварцевый генератор, опишем принцип его работы, эквивалентную модель кварцевого кристалла, сравним с генератором Колпитца, а так же рассмотрим модель генератора Пирса. В конце статьи поговорим про микропроцессорные генераторы.

Описание и принцип работы

Некоторые из факторов, которые влияют на стабильность частоты генератора, как правило, включают в себя: изменения температуры, изменения нагрузки, а также изменения напряжения питания постоянного тока и многое другое.

Стабильность частоты выходного сигнала может быть значительно улучшена путем правильного выбора компонентов, используемых для резонансной цепи обратной связи, включая усилитель. Но есть предел стабильности, который можно получить из обычных контуров резервуаров LC и RC.

кварцевый  генератор

Чтобы получить очень высокий уровень стабильности генератора, кварцевый кристалл обычно используется в качестве устройства для определения частоты для создания осциллятора другого типа, известного как 

кварцевый генератор.

Когда источник напряжения подается на небольшой тонкий кусочек кристалла кварца, он начинает менять форму, создавая характеристику, известную как пьезоэлектрический эффект. Этот пьезоэлектрический эффект является свойством кристалла, посредством которого электрический заряд создает механическую силу, изменяя форму кристалла, и наоборот, механическая сила, приложенная к кристаллу, создает электрический заряд.

Затем пьезоэлектрические устройства могут быть классифицированы как преобразователи, поскольку они преобразуют энергию одного вида в энергию другого (электрическую в механическую или механическую в электрическую). Этот пьезоэлектрический эффект создает механические колебания или колебания, которые можно использовать для замены стандартной цепи LC- бака в предыдущих генераторах.

Существует множество различных типов кристаллических веществ, которые можно использовать в качестве осцилляторов, причем наиболее важными из них для электронных схем являются минералы кварца, что отчасти объясняется их большей механической прочностью.

Кристалл кварца, используемый в кварцевом генераторе, представляет собой очень маленький, тонкий кусок или пластину из резаного кварца с металлизацией двух параллельных поверхностей для обеспечения требуемых электрических соединений. Физический размер и толщина кусочка кварцевого кристалла строго контролируются, поскольку он влияет на конечную или основную частоту колебаний. Основная частота обычно называется характеристической частотой кристаллов.

После резки и формирования кристалл не может быть использован на любой другой частоте. Другими словами, его размер и форма определяют его основную частоту колебаний.

Характеристика или характерная частота кристаллов обратно пропорциональна его физической толщине между двумя металлизированными поверхностями. Механически вибрирующий кристалл может быть представлен эквивалентной электрической цепью, состоящей из низкого сопротивления R, большой индуктивности L и небольшой емкости C, как показано ниже.

Эквивалентная модель кварцевого кристалла

Эквивалентная модель кварцевого кристалла

Эквивалентная электрическая схема для кварцевого кристалла показывает последовательную RLC- схему, которая представляет механические колебания кристалла параллельно с емкостью Cp, которая представляет электрические соединения с кристаллом. Кварцевые генераторы имеют тенденцию работать в направлении своего «последовательного резонанса».

Эквивалентный импеданс кристалла имеет последовательный резонанс, где 

Cs резонирует с индуктивностью Ls на рабочей частоте кристаллов. Эта частота называется частотой серии кристаллов ƒs. Наряду с этой последовательной частотой существует вторая частотная точка, созданная в результате параллельного резонанса, создаваемого, когда Ls и Cs резонируют с параллельным конденсатором Cp.

Кристаллический импеданс против частоты

Кристаллический импеданс против частоты

Наклон импеданса кристаллов выше показывает, что по мере увеличения частоты на его клеммах, на определенной частоте взаимодействие между последовательным конденсатором Cs и индуктором Ls создается последовательный резонансный контур, снижающий импеданс кристаллов до минимума и равный

Rs. Эта частотная точка называется резонансной частотой кристаллов серии, а ниже ƒs кристалл является емкостным.

При увеличении частоты выше этой последовательной резонансной точки кристалл ведет себя как индуктор, пока частота не достигнет своей параллельной резонансной частоты ƒp. В этой частотной точке взаимодействие между последовательным индуктором Ls и параллельным конденсатором Cp создает параллельно настроенную цепь LC-емкости, и, таким образом, полное сопротивление поперек кристалла достигает своего максимального значения.

Тогда мы можем видеть, что кристалл кварца представляет собой комбинацию последовательных и параллельно настроенных резонансных контуров, колеблющихся на двух разных частотах с очень малой разницей между ними в зависимости от огранки кристалла. Кроме того, поскольку кристалл может работать как на последовательных, так и на параллельных резонансных частотах, схему кварцевого генератора необходимо настроить на одну или другую частоту, поскольку вы не можете использовать обе вместе.

Таким образом, в зависимости от характеристик схемы кристалл кварца может действовать как конденсатор, индуктор, последовательный резонансный контур или как параллельный резонансный контур, и чтобы продемонстрировать это более четко, мы также можем построить зависимость реактивного сопротивления кристаллов от частоты, как показано ниже.

Кристаллическая реактивность против частоты

Кристаллическая реактивность против частоты

Наклон реактивного сопротивления от частоты выше показывает, что последовательное реактивное сопротивление на частоте ƒs обратно пропорционально 

Cs, потому что ниже ƒs и выше ƒp кристалл кажется емкостным. Между частотами ƒs и ƒp кристалл кажется индуктивным, так как две параллельные емкости компенсируются.

Тогда формула для резонансной частоты ряда кристаллов ƒs имеет вид:

последовательная резонансная частота

Частота параллельного резонанса ƒp возникает, когда реактивное сопротивление последовательной ветви LC равно реактивному сопротивлению параллельного конденсатора Cp, и задается как:

Параллельная резонансная частота

Пример кварцевого генератора

Кристалл кварца имеет следующие значения: 

Rs = 6,4 ОмCs = 0,09972 пФ и Ls = 2,554 мГн. Если емкость на его клемме Cp измеряется при 28,68 пФ, рассчитайте основную частоту колебаний кристалла и его частоту вторичного резонанса.

Резонансная частота ряда кристаллов ƒ S

Резонансная частота ряда кристаллов

Параллельная резонансная частота кристалла ƒ P

Параллельная резонансная частота кристалла

Мы можем видеть, что разница между ƒs, основной частотой кристалла и ƒp невелика — около 18 кГц (10,005 МГц — 9,987 МГц). Однако в этом частотном диапазоне добротность

Q (коэффициент качества) кристалла является чрезвычайно высокой, поскольку индуктивность кристалла намного выше, чем его емкостные или резистивные значения. Добротность нашего кристалла на последовательной резонансной частоте определяется как:

Добротность кристалла на последовательной резонансной частоте

Тогда Q нашего кристалла, например, около 25000, из — за этой высокой Х L / R отношение. Коэффициент добротности большинства кристаллов находится в диапазоне от 20000 до 200000 по сравнению с хорошей цепью бака с хорошей настройкой LC, которую мы рассматривали ранее, которая будет намного меньше 1000. Это высокое значение добротности также способствует большей стабильности частоты кристалла на его рабочей частоте, что делает его идеальным для построения схем кварцевого генератора.

Итак, мы видели, что кварцевый кристалл имеет резонансную частоту, аналогичную частоте электрической цепи LC-бака, но с намного более высоким добротностью. Это связано главным образом с его низким последовательным сопротивлением Rs. В результате кварцевые кристаллы делают превосходный выбор компонентов для использования в генераторах, особенно в генераторах очень высокой частоты.

Типичные кварцевые генераторы могут колебаться в диапазоне частот от примерно 40 кГц до более 100 МГц в зависимости от конфигурации их схемы и используемого усилительного устройства. Разрез кристалла также определяет его поведение, поскольку некоторые кристаллы будут вибрировать с более чем одной частотой, создавая дополнительные колебания, называемые

обертонами.

Кроме того, если кристалл не имеет параллельной или однородной толщины, он может иметь две или более резонансных частот как с основной частотой, образующей так называемые, так и гармоники, такие как вторая или третья гармоники.

В целом, хотя основная частота колебаний для кварцевого кристалла намного более сильная или выраженная, чем у вторичных гармоник и вторичных гармоник вокруг него, так что это будет использоваться. На графиках выше мы видели, что схема эквивалентного кристалла имеет три реактивных компонента, два конденсатора и индуктор, поэтому есть две резонансные частоты, самая низкая — последовательная резонансная частота, а самая высокая — параллельная резонансная частота.

Мы видели в предыдущих уроках, что схема усилителя будет колебаться, если она имеет коэффициент усиления контура, больший или равный единице, и обратная связь положительна. В схеме кварцевого генератора

 генератор будет колебаться на основной параллельной резонансной частоте кристаллов, поскольку кристалл всегда хочет колебаться, когда на него подается источник напряжения.

Тем не менее, также возможно «настроить» кварцевый генератор на любую четную гармонику основной частоты (2-й, 4-й, 8-й и т.д.), и они обычно известны как гармонические генераторы, в то время как генераторы обертоновых колебаний вибрируют с нечетными кратными значениями основной частоты 3, 5, 11 и т.д.). Как правило, кварцевые генераторы, которые работают на обертонных частотах, используют их последовательные резонансные частоты.

Кварцевый генератор Колпитца

Цепи кварцевого генератора обычно строятся с использованием биполярных транзисторов или полевых транзисторов. Это связано с тем, что хотя операционные усилители могут использоваться во многих различных низкочастотных (≤100 кГц) осцилляторных схемах, операционные усилители просто не имеют полосы пропускания для успешной работы на более высоких частотах, подходящих для кристаллов выше 1 МГц.

Конструкция кварцевого генератора очень похожа на конструкцию генератора Колпитца, который мы рассматривали в предыдущем уроке, за исключением того, что схема резервуара LC, которая обеспечивает колебания обратной связи, была заменена кварцевым кристаллом, как показано ниже.

картинка-схема кварцевого генератора

Этот тип кварцевых генераторов разработан вокруг усилителя с общим коллектором (эмиттер-повторитель). Сеть резисторов R 1 и 2 устанавливает уровень смещения постоянного тока на базе, а эмиттерный резистор Eустанавливает уровень выходного напряжения. Резистор R 2 установлен как можно большим, чтобы предотвратить нагрузку на параллельно подключенный кристалл.

Транзистор 2N4265 представляет собой NPN-транзистор общего назначения, подключенный в конфигурации с общим коллектором, и способен работать на скоростях переключения, превышающих 100 МГц, значительно выше основной частоты кристаллов, которая может быть между 1 МГц и 5 МГц.

Вышеприведенная принципиальная схема контура генератора Колпитц-Кристалл показывает, что конденсаторы С1 и С2 шунтируют выход транзистора, что уменьшает сигнал обратной связи. Следовательно, коэффициент усиления транзистора ограничивает максимальные значения C1 и C2. Выходную амплитуду следует поддерживать низкой, чтобы избежать чрезмерного рассеивания мощности в кристалле, иначе он может разрушиться из-за чрезмерной вибрации.

Генератор Пирса

Другая распространенная конструкция кварцевого генератора — это модель Пирса. Генератор Пирса очень похож по конструкции на предыдущий генератор Колпитца и хорошо подходит для реализации схем кварцевого генератора, использующих кристалл как часть его цепи обратной связи.

Генератор Пирса — это, прежде всего, последовательный резонансно настроенный контур (в отличие от параллельного резонансного контура генератора Колпитца), который использует JFET для своего основного усилительного устройства, поскольку полевые транзисторы обеспечивают очень высокие входные импедансы с кристаллом, подключенным между стоком и затвором через конденсатор C1, так как показано ниже.

картинка-схема генератора Пирса

В этой простой схеме кристалл определяет частоту колебаний и работает на своей последовательной резонансной частоте, что дает путь с низким импедансом между выходом и входом. При резонансе наблюдается сдвиг фазы на 180 o , что делает обратную связь положительной. Амплитуда выходной синусоидальной волны ограничена максимальным диапазоном напряжения на выводе стока.

Резистор R1 управляет величиной обратной связи и возбуждением кристалла, в то время как напряжение на радиочастотном дросселе RFC меняется в течение каждого цикла. Большинство цифровых часов и таймеров используют генератор Пирса в той или иной форме, поскольку он может быть реализован с использованием минимума компонентов.

Наряду с использованием транзисторов и полевых транзисторов, мы также можем создать простой базовый параллельный резонансный кварцевый генератор, аналогичный по работе генератору Пирса, с использованием КМОП-инвертора в качестве элемента усиления. Основной кварцевый генератор состоит из одного инвертирующего логического элемента триггера Шмитта, такого как TTL 74HC19 или CMOS 40106, 4049, индуктивного кристалла и двух конденсаторов. Эти два конденсатора определяют величину емкости нагрузки кристаллов. Последовательный резистор помогает ограничить ток возбуждения в кристалле, а также изолирует выход инвертора от комплексного сопротивления, образованного конденсаторно-кристаллической сетью.

КМОП кристаллический генератор

КМОП кристаллический генератор

Кристалл колеблется на своей последовательной резонансной частоте. КМОП-инвертор изначально смещен в середину своей рабочей области резистором обратной связи R1. Это гарантирует, что точка Q инвертора находится в области высокого усиления. Здесь используется резистор со значением 1 МОм, но его значение не является критическим, если оно больше 1 МОм. Дополнительный инвертор используется для буферизации выходного сигнала генератора на подключенную нагрузку.

Инвертор обеспечивает 180 o фазового сдвига, а сеть кристаллических конденсаторов — дополнительные 180 o, необходимые для колебаний. Преимущество кварцевого генератора КМОП является то , что он всегда будет автоматически корректировать себя, чтобы поддерживать это 360 о фазовом сдвиге для колебаний.

В отличие от предыдущих кварцевых генераторов на транзисторной основе, которые генерировали синусоидальную форму выходного сигнала, поскольку генератор КМОП-инвертор использует цифровые логические элементы, выходной сигнал представляет собой прямоугольную волну, колеблющуюся между HIGH и LOW. Естественно, максимальная рабочая частота зависит от характеристик переключения используемого логического элемента.

Микропроцессорные кварцевые часы

Мы не можем закончить статью по кварцевым генераторам, не упомянув кое-что о микропроцессорных кварцевых часах. Практически все микропроцессоры, микроконтроллеры, PIC и процессоры, как правило, используют кварцевый генератор в качестве устройства определения частоты, чтобы генерировать их синхроимпульс, потому что, как мы уже знаем, кварцевые генераторы обеспечивают высочайшую точность и стабильность частоты по сравнению с резистором-конденсатором (RC) или индуктор-конденсатор, (LC) генераторы.

Тактовая частота процессора определяет, насколько быстро процессор может работать и обрабатывать данные с помощью микропроцессора, PIC или микроконтроллера с тактовой частотой 1 МГц, что означает, что он может обрабатывать данные внутренне один миллион раз в секунду за каждый тактовый цикл. Как правило, все, что нужно для получения тактовой формы сигнала микропроцессора, — это кристалл и два керамических конденсатора со значениями в диапазоне от 15 до 33 пФ, как показано ниже.

Микропроцессорный генератор

микропроцессорный генератор

Большинство микропроцессоров, микроконтроллеров и PIC имеют два вывода генератора, обозначенных OSC1 и OSC2, для подключения к внешней кварцевой кристаллической цепи, стандартной сети RC- генератора или даже керамическому резонатору. В микропроцессорных системах такого типа кварцевый генераторгенерирует последовательность непрерывных прямоугольных импульсов, основная частота которых контролируется самим кристаллом. Эта основная частота регулирует поток инструкций, управляющих процессором устройства. Например, мастер часов и системное время.

Кварцевый генератор | Практическая электроника

Кварцевый генератор

Что такое генератор? Генератор – это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание  “генератор электрической энергии, генератор частоты, генератор функций”  и тд.

Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе кварцевый резонатор. В основном  кварцевые генераторы бывают двух видов:

те, которые могут выдавать синусоидальный сигнал

и те, которые выдают прямоугольный сигнал

Чаще всего в электронике используется прямоугольный сигнал

Схема Пирса

Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца – это классический генератор Пирса, который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:

Пару слов о том как работает схема. В схеме  есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку

Кварцевый генератор

Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц  в 15.  Прививка набухала на пол руки))  И даже  один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно ;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд.  Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора ;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса ;-). Скажем так, “физическое ограничение”.

Первым делом нам надо подобрать катушку индуктивности. Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков

Весь процесс контролировал с помощью LC-метра, добиваясь номинала, как на схеме – 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился  вот такой индуктивности:

Транзистора у меня в загашнике не нашлось, и в местном радиомагазине его тоже не было. Поэтому, пришлось заказывать на Али. Кому интересно, брал здесь.

Его правильное название: транзистор полевой с каналом N типа.

Распиновка слева-направо: Сток – Исток – Затвор

Ну а дальше дело за малым. Собираем схемку:

Небольшое лирическое отступление.

Как вы видите, я пытался максимально сократить связи между радиоэлементами. Дело все в том, что все радиоэлементы имеют свои паразитные параметры. Чем длиннее их выводы, а также провода, соединяющие эти радиоэлементы в схеме, тем хуже будет работать схема, а то и вовсе “не зафурычит”. Да и вообще, схемы с кварцевым резонатором на печатных платах трассируют не просто так от балды. Здесь есть свои тонкие нюансы. Мельчайшие паразитные параметры могут испоганить весь сигнал на выходе такого генератора.

Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф OWON SDS6062

Первым  делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).

генерация колебаний

Не, ну а что вы хотели? Хотели увидеть идеальную синусоиду? Не тут-то было. Сказались паразитные параметры плохо собранной схемы и монтажа.

Внизу в левом углу осциллограф нам показывает частоту:

Кварцевый генератор

Как вы видите 32,77 Мегагерц.  Главное, что наш кварц живой и схемка работает!

Давайте возьмем кварц с частотой 27 Мегагерц:

Показания у меня прыгали. Заскринил, что успел:

Кварцевый генератор

Частоту тоже более-менее показал верно.

 Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма  кварца на 16 Мегагерц:

Кварцевый генератор

Осциллограф показал частоту ровнехонько 16 Мегагерц.

Здесь поставил кварц на 6 Мегагерц:

Кварцевый генератор

Ровно 6 Мегагерц

На 4 Мегагерца:

Кварцевый генератор

Все ОК.

Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит:

Сверху написано 1000 Килогерц = 1МегаГерц 😉

Смотрим осциллограмму:

Кварцевый генератор

Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером:

400 Герц погрешность для старенького советского кварца не очень и много. Но лучше, конечно, воспользоваться нормальным профессиональным частотомером 😉

Часовой кварц

С часовым кварцем кварцевый генератор по схеме Пирса отказался работать.

часовой кварц

“Что еще за часовой кварц?” – спросите вы.  Часовой кварц – это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 215. Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

к176ие5

Принцип работы этой микросхемы такой: после того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке  с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду. А как вы помните,  колебание один раз в секунду – это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название – часовой кварц.

В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (Real Time Clock) или в переводе с буржуйского Часы Реального Времени.

Схема Пирса для прямоугольного сигнала

Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать  мы будем только один инвертор:

Вот ее распиновка:

Кварцевый генератор

Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:

Кварцевый генератор

Ну как всегда всю картинку испортили паразитные параметры монтажа. Но, обратите внимание на частоту. Осциллограф почти верно ее показал с небольшой погрешностью. Ну оно и понятно, так как главная функция осциллографа отображать сигнал, а не считать частоту)

Кстати, вам эта часть схемы ничего не напоминает?

Кварцевый генератор

Не эта ли часть схемы используется для тактирования микроконтроллеров AVR?

Она самая! Просто недостающие элементы схемы уже есть в самом МК 😉

Плюсы кварцевых генераторов

Плюсы кварцевых генераторов частоты – это высокая частотная стабильность. В основном это 10-5 – 10-6 от номинала или, как часто говорят,  ppm (от англ. parts per million) — частей на миллион, то есть одна миллионная или числом 10-6. Отклонение частоты  в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10-7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц ( 10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус 😉 Думаю, вполне терпимо.

В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы,  достигают частотной стабильности  до 10-11 от номинала! Выглядят готовые модули примерно так:

кварцевые генераторы

или так

Кварцевый генераторкварцевый генератор 4 Мгц

Такие модули кварцевых генераторов в основном имеют 4 вывода.  Вот распиновка квадратного кварцевого генератора:

Кварцевый генератор

Давайте проверим один из них. На нем написано 1 МГц

Вот его вид сзади:

Вот его распиновка:

распиновка кварцевого генератора

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5  я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.

Кварцевый генератор

Ну прям загляденье!

Да и китайский генератор-частотомер показал точную частоту:

Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок.

Кварцевый генератор, частота которого стабилизирована кварцевым

Кварцевый генератор, частота которого стабилизирована кварцевым резонатором, является обязательным узлом для большинства современных приемников и трансиверов, а также для измерительных приборов. В этом обзоре приведены варианты возможного исполнения подобных генераторов па частоты от единиц до десятков мегагерц.

Кварцевый генераторКварцевый генератор

Прежде чем переходить к практическим схемам, отметим, что для широко распространенных кварцев основная рабочая частота обычно не превышает 10…15 МГц. Обусловлено это трудностями в изготовлении (при серийном производстве) очень тонких кварцевых пластин с высокой степенью параллельности рабочих сторон. Последнее, в частности, сильно влияет на моночастотность резонатора (отсутствие паразитных резонансов, особенно вблизи основной рабочей частоты).

Применительно кварцевый генератор наличие таких резонансов может привести к возбуждению резонатора не на той частоте, что указана на его корпусе, или к скачку частоты генератора при изменении внешних условий (температура, сопротивление нагрузки и т.п.). Если частота, указанная на корпусе кварцевого резонатора, выше 15 МГц, то с высокой степенью вероятности этот резонатор гармониковый, и его основная частота в три или даже в пять раз ниже “номинала”.

В кварцевый генератор, схема которого показана на рисунке, кварцевый резонатор возбуждается на основной частоте. Для его устойчивой работы сопротивление нагрузки (входное сопротивление следующего каскада) должно быть не менее 1 кОм. При этом высокочастотное напряжение на выходе генератора будет не менее 0,5 В (здесь и далее – эффективное значение). Номиналы конденсаторов С3, С4 и резистора R4 зависят от рабочей частоты кварцевого резонатора. Для полосы частот 1…3 МГц они должны быть соответственно 270 пФ, 180 пФ и 3,3 кОм; для 3…6 МГц – 180 пФ, 120 пФ и 3,3 кОм; для 6…10 МГц – 180 пФ, 120 пФ и 2,2 кОм; для 10…18 МГц – 150 пФ, 68 пФ и 1,2 кОм; для 18…21 МГц – 68 пФ, 33 пФ и 680 Ом.

Как принято говорить в таких случаях, при исправных деталях и безошибочном монтаже генератор настройки не требует (за исключением, быть может, некоторой коррекции рабочей частоты подстройкой конденсатора С2). Если при выполнении двух названных выше условий генератор все же не заработал, то единственной причиной этого может быть невысокая активность кварцевого резонатора. В этом случает его следует либо заменить на другой, либо попытаться “поиграться” с номиналами конденсаторов С3 и С4. В частности, может помочь изменение в ту или иную сторону отношения их емкостей.

На втором рисунке приведена схема кварцевый генератор, в котором кварцевый резонатор возбуждается на нечетных гармониках его основной рабочей частоты.

Схема кварцевый генераторСхема кварцевый генератор

Как и в предыдущем варианте, входное сопротивление следующего каскада должно быть не менее 1 кОм. Выходное напряжение – примерно 0,5 В. Для полосы частот 15…25 МГц емкости конденсаторов С2, С3 и С4 должны быть соответственно 100, 100 и 68 пФ; для 25…55 МГц – 100, 68 и 47 пФ; для 50…65 МГц – 68, 33 и 15 пФ. Катушку L1 наматывают проводом диаметром 0,3 мм на каркасе диаметром 5 мм. Она имеет подстроечник из карбонильного железа (диаметр – 4 мм). Для трех указанных выше полос рабочих частот число витков должно быть соответственно 15, 10 и 7.

Налаживают кварцевый генератор подстройкой катушки L1 по устойчивой генерации на третьей гармонике основной частоты кварцевого резонатора. Если этого не происходит при любом положении подстроечника, то следует подобрать число витков катушки или попробовать провести эту операцию, установив конденсатор С2 с большим или меньшим номиналом. Если же и эта операция не поможет, то скорее всего причиной является низкая активность кварцевого резонатора (см. выше). Следует заметить, что далеко не все резонаторы, устойчиво генерирующие на основной частоте, также устойчиво работают и на гармониках.

Подобный кварцевый генератор может обеспечить напряжение около 2В на высокоомной нагрузке (например, смесительный каскад на транзисторе с изолированным затвором) на более высокой частоте, если в цепь коллектора транзистора VT1 ввести полосовой фильтр, настроенный, например, на вторую гармонику рабочей частоты генератора (т.е. это будет генератор – удвоитель частоты на одном транзисторе). Катушки индуктивности L2 и L3 такого фильтра наматывают проводом диаметром 0,6 мм на каркасе диаметром 5 мм с двумя подстроечниками из карбонильного железа (диаметр 4 мм). Расстояние между катушками – 5 мм. Для полосы частот 60…90 МГц число витков должно быть 9, а для 90…130 МГц – 6. Номиналы конденсаторов С6, С7 фильтра – 33 и 22 пФ соответственно.

Кварцевый генератор, схема которого показана на рисунке, чуть посложнее – он содержит колебательный контур.

Кварцевый генератор схема посложнейКварцевый генератор схема посложней

Это даст сразу два преимущества. Во-первых, он имеет более высокую спектральную чистоту выходного сигнала. Во-вторых, он обеспечивает более высокий уровень выходного сигнала (около 1В на нагрузке 100 Ом). Для полосы частот 1…3МГц емкости конденсаторов С2, С5 и С6 соответственно равняются 470, 270 и 2000 пФ; для 3… 10 МГц – 330, 150 и 1500 пФ; для 10…30 МГц – 180. 47 и 330 пФ. Катушка L1 должна иметь при среднем положении подстроечника такую индуктивность, чтобы обеспечить с конденсатором С5 резонанс па рабочей частоте. Налаживают этот генератор по устойчивой генерации на основной частоте кварцевого резонатора или на ее третьей гармонике.

5.19. Генераторы с кварцевыми резонаторами

Активные фильтры и генераторы

Генераторы



От RC-генератора можно легко добиться стабильности порядка 0,1% при начальной точности установки частоты от 5 до 10%. Это вполне удовлетворительно для многих применений, таких, например, как мультиплексный индикатор карманного калькулятора, где цифры многозначного числа подсвечиваются одна за другой с быстрым чередованием (обычная часто – 1кГц). В каждый момент времени горит только одна цифра, но глаз видит все число. Ясно, что точность здесь не очень важна. Несколько лучше стабильность LC-генераторов — порядка 0.01% в течение разумного промежутка времени. Этого вполне достаточно для гетеродинов радиоприемников и телевизоров.

Для получения по-настоящему стабильных колебаний незаменимы кварцевые генераторы. В них используется кусочек кварца (искусственного — двуокись кремния), вырезанный и отшлифованный таким образом, что он имеет определенную частоту колебаний. Кварц представляет собой пъезоэлектрик (его деформация вызывает появление электрического потенциала, и наоборот), поэтому упругие колебания кристалла могут быть вызваны приложением электрического поля, а эти колебания в свою очередь генерируют напряжение на гранях кристалла. Помещая на поверхность кристалла контакты, можно превратить его в истинный схемный элемент, эквивалентный некоторой RLC-схеме, заранее настроенной на определенную частоту. В самом деле эквивалентная схема этого элемента содержит два конденсатора, дающих пару близко расположенных резонансных частот — последовательного и параллельного резонанса (рис. 5.47), отличающихся друг от друга не более чем на 1%. Результат этого эффекта — резкое изменение реактивного сопротивления с частотой (рис. 5.48). Высокая добротность Q кварцевого резонатора (обычно около 10000) и хорошая стабильность делают естественным его Рис. 5.48. применение как задающего элемента в генераторах и фильтрах с улучшенными параметрами. В схемах с кварцевыми резонаторами, как и в LC-генераторах, вводят положительную обратную связь и обеспечивают надлежащее усиление на резонансной частоте, что ведет к автоколебаниям.

генератор

Рис. 5.47.

генератор

Рис. 5.48.

На рис. 5.49 показаны некоторые схемы кварцевых генераторов. На рис. 5.49, а показан классический генератор Пирса, в котором используется обычный полевой транзистор (см. гл. 3). На рис. 5.49, б изображен генератор Колпитца с кварцевым резонатором вместо LC-контура. В схеме на рис. 5.49, в в качестве обратной связи используется сочетание биполярного n-p-n — транзистора и кварцевого резонатора. Остальные схемы генерируют выходной сигнал с логическими уровнями при использовании цифровых логических функций(рис 5.49, г и д).

генератор

Рис. 5.49. Схемы с кварцевыми резонаторами, а — генератор Пирса, б — генератор Колпитца.

На последней диаграмме показаны схемы кварцевых генераторов, построенные ИС МС12060/12061 фирмы Motorola. Эти микросхемы предназначены для использования, совместно с кварцевыми резонаторами, диапазона частот от 100 кГц до 20 МГц и спроектированы таким образом, что обеспечивают прекрасную стабильность частоты колебаний при тщательном ограничении его амплитуды с помощью встроенного амплитудного дискриминатора и схемотехнического ограничителя. Они обеспечивают формирование выходных колебаний как синусоидальной, так и прямоугольной формы (с ТТЛ и ЭСЛ логическими уровнями).

В качестве альтернативы, а именно в тех случаях, когда достаточно иметь выходное колебание только прямоугольной формы и не предъявляются предельные требования по стабильности, можно применять законченные модули кварцевых генераторов, которые обычно выпускаются в металлических DIP-корпусах. Они предлагают стандартный набор частот например, 1, 2, 4, 5 6, 8 10 16 и 20 МГц), а также «странные» частоты, которые обычно используются в микропроцессорных системах (например, частота 14,31818 МГц используется в видеоплатах. Эти «кварцевые модули тактовой частоты», как правило, обеспечивают точность (в диапазоне температур, напряжений источника питания и времени) только 0,01% (10-4), однако они дешевы (от 2 до 11 Долл.) и вам не приходится строить схему. Кроме того, они всегда дают устойчивые колебания, тогда как при создании собственного генератора этого не всегда удается добиться. Функционирование схем генераторов на кварцевых ректорах зависит от электрических свойств самого кристалла (таких, как последовательный или параллельный режим колебаний, эффективное последовательное сопротивление и емкость монтажа), которые не всегда полностью известны. Очень часто вы можете найти, что хотя ваш самодельный кварцевый генератор и возбуждается, но на частоте, которая не соответствует той, которая указана на кварцевом резонаторе. В наших собственных изысканиях в области схем дискретных кварцевых генераторов бывало всякое.

Кварцевые резонаторы выпускаются на диапазон от 10 кГц до 10 МГц, а у некоторых образцов высокие обертоны доходят до 250 МГц. Для каждой частоты нужен свой резонатор, но для наиболее употребительных частот резонаторы выпускаются серийно. Всегда легко достать резонаторы на частоты 100 кГц, 1, 2, 4, 5 и 10 МГц. Кварцевый резонатор на частоту 3.579545 МГц (стоящий меньше доллара) применяется в генераторе импульсов цветности телевизоров. Для электронных наручных часов нужна частота 32,768 кГц (или 215 Гц), и вообще, часто нужны частоты, равные 2 какой-то степени Гц. Кварцевый генератор можно регулировать в небольшом диапазоне с помощью последовательно или параллельно включенных конденсаторов переменной емкости (см. рис. 5.49, г). Благодаря дешевизне кварцевых резонаторов всегда имеет смысл рассмотреть возможность их применения в тех случаях, когда RС-релаксационные генераторы работают на пределе своих возможностей.

При необходимости стабильную частоту кварцевого генератора можно «подгонять» электрическим способом в небольших пределах с помощью варактора. Такая схема называется УНКГ (управляемый напряжением кварцевый генератор), при этом удается соединить прекрасную стабильность кварцевых генераторов с регулируемостью LC-генераторов. Покупка коммерческого УНКГ, вероятно, является наилучшим решением проблем, возникающих при собственном проектировании. Стандартные УНКГ обеспечивают максимальные отклонения центральной частоты от номинала порядка ±10-5 — ±10-4, хотя имеются образцы с более широким диапазоном (вплоть до ±10-3).

Без особых усилий можно с помощью кварцевого резонатора обеспечить стабильность частоты порядка нескольких миллионных долей в нормальном температурном диапазоне. Применяя схемы температурной компенсации, можно построить температурно-компенсированный кварцевый генератор (ТККГ) с несколько улучшенными параметрами. Как ТККГ, так и некомпенсированный генератор выпускаются в виде готовых модулей разными фирмами, например фирмами Biley, CTS Knights, Motorola, Reeves Hoffman, Statek и Vectron. Они бывают разных габаритов, иногда не больше корпуса DIP или стандартного корпуса для транзисторов ТО-5. Дешевые модели обеспечивают стабильность порядка 10-6 в диапазоне от 0 до 50°С, дорогие — порядка 10-7 в том же диапазоне.

Температурно-компенсированные генераторы. Чтобы получить сверхвысокую стабильность, может понадобиться кварцевый генератор, работающий в условиях постоянной температуры. Обычно для этих целей используется кристалл с практически нулевым температурным коэффициентом при несколько повышенной температуре (от 80° до 90 °С), а также термостат, который эту температуру поддерживает. Выполненные подобным образом генераторы выпускаются в виде небольших законченных модулей, пригодных для монтажа и включаемых в приборы, на все стандартные частоты. Типичным модулем генератора с улучшенными характеристиками служит схема 10811 фирмы Hewlett-Packard. Она обеспечивает стабильность порядка 10-11 в течение времени от нескольких секунд до нескольких часов при частоте 10 МГц.

Если температурная нестабильность снижена до очень малых значений, то начинают доминировать другие эффекты: «старение» кристалла (тенденция частоты к уменьшению с течением времени), отклонения питания от номинала, а также внешние влияния, например удары или вибрации (последнее представляет собой наиболее серьезные проблемы в производстве кварцевых наручных часов). Один из способов решения проблемы старения: в паспортных данных генератора указывается скорость снижения частоты — не более 5·10-10 в день. Эффект старения возникает частично из-за постепеннее снятия деформаций, поэтому через несколько месяцев с момента изготовления этот эффект имеет тенденцию к устойчивому снижению, по крайней мере для хорошо сделанных кристаллов. Взятый нами за образец генератор 10811 имеет величину эффекта старения не более 10-11 в день.

В тех случаях, когда стабильность термостатированных кристаллов уже недостаточна, применяются атомные стандарты частоты. В них используются микроволновые линии поглощения в рубидиевом газонаполненном элементе или частоты атомных переходов в пучках атомов цезия в качестве эталонов, по которым стабилизируется кварцевый резонатор. Таким образом можно получить точность и стабильность порядка 10-12. Цезиевый стандарт является официальным эталоном времени в США. Эти стандарты вместе с линиями передачи времени принадлежат Национальному бюро стандартов и Морской обсерватории. Как последнее средство для самых точных частот, где нужна стабильность порядка 10-14, можно предложить мазер на атомарном водороде. Последние исследования в области создания точных часов сосредоточиваются на технических приемах, использующих «охлажденные ионы», которые позволяют достигать даже еще лучшей стабильности. Многие физики считают, что можно достичь окончательной стабильности 10-18.


Схемы, не требующие пояснении


Кварцевые генераторы


Кварцевые генераторы

  Относительная нестабильность частоты автогенераторов, выполняемых на резонаторах в виде LC-контуров, обычно не ниже 10-3…10-4. Стабильность частоты генератора существенно зависит от добротности и стабильности колебательной системы. Добротность LC-контура обычно не выше 200…300. К современным радиопередатчикам и приемникам предъявляются более высокие требования по стабильности частоты. Обычно требуется долговременная относительная нестабильность частоты не хуже чем 10-6…10-8, что можно обеспечить, применяя кварцевые резонаторы. Добротность кварцевых резонаторов во много раз превышает добротность резонаторов на LC-контурах и составляет 104…106.

  Существует много схем кварцевых автогенераторов. Поэтому возникла необходимость рассмотреть наиболее часто применяемые на практике схемы. Общепринятая эквивалентная схема кварцевого резонатора изображена на рис.1. Динамическая индуктивность Ls, динамическая емкость Cs и сопротивление потерь Rs обусловлены наличием прямого и обратного пьезоэффекта и резонансными свойствами пьезоэлемента. Параллельная емкость Ср обусловлена межэлектродной емкостью пьезоэлектрика, емкостью корпуса и монтажа. Резонансная частота динамической ветви называется частотой последовательного резонанса кварцевого резонатора Fs. Добротность кварцевого резонатора Q определяется динамической ветвью в соответствии с формулой для последовательного колебательного контура Q =(2pFsLs)/Rs

  Частота параллельного резонанса Fp несколько выше Fs, что обусловлено параллельным резонансом Ср, Cs и Ls. Важным параметром кварцевого резонатора является отношение его параллельной емкости к динамической, обозначаемое г и называемое емкостным коэффициентом r=Cc/Cs

  По разным литературным источникам, емкостной коэффициент для АТ-среза кварца равен 220…250. Учитывая, что Cs/Cp<0,1, можно пользоваться приближенным выражением для частоты параллельного резонанса Fp=Fs(1+(Cs/2Cp)). Для емкостного коэффициента г>25 резонансный интервал, определяемый как разность между частотами параллельного и последовательного резонансов кварцевого резонатора, можно записать в виде dF=Fs/2r. На механических гармониках кварцевого резонатора резонансный интервал уменьшается и определяется выражением dFn=Fs/(2rn2), где n — номер гармоники.

  Емкостной коэффициент определяет величину резонансного промежутка резонатора, следовательно, девиацию частоты управляемого кварцевого генератора, стабильность частоты при изменении параметров схемы, условия возникновения и поддержания колебаний в схеме кварцевого автогенератора. Для оценки способности кварцевого резонатора возбуждаться, в некоторых схемах кварцевых генераторов используют параметр, называемый фактором качества. Он определяется как отношение добротности резонатора к его емкостному коэффициенту м=Q/r.

  Для кварцевых резонаторов значения М лежат в пределах от 1 до 10000. При М<2 реактивное сопротивление резонатора оказывается положительным (емкостным) и не имеет области индуктивной реакции. Следовательно, возбуждение такого резонатора в схемах кварцевых генераторов, требующих индуктивной реакции, становится невозможным. При М>2 резонатор имеет область индуктивной реакции, и чем больше значение М, тем эта область шире. На практике шире всего распространены два вида кварцевых генераторов: а) генераторы, в которых кварцевый резонатор является частью колебательного контура и эквивалентен индуктивности; б) генераторы, в которых кварцевый резонатор включен в цепь обратной связи, используется как узкополосный фильтр и эквивалентен активному сопротивлению.

  Кварцевые генераторы, в которых кварцевый резонатор используется в качестве элемента контура с индуктивной реакций, называют осцилляторными, а генераторы, в которых кварцевый резонатор включен в цепь обратной связи, называют генераторами последовательного резонанса.

  Осцилляторная схема кварцевого генератора с кварцем между коллектором и базой, выполненная по схеме с заземленным эмиттером (емкостная трехточка) приведена на рис.2.

  В настоящее время емкостная трехточка находит широкое применение в диапазоне частот до 22 МГц при работе резонатора на основной частоте, и до 66 МГц при возбуждении на третьей механической гармонике (рис.3). Автогенератор с кварцевым резонатором между коллектором и базой в схеме с заземленным по высокой частоте эмиттером, не склонен к паразитным колебаниям на ангармонических обертонах, имеет превосходную стабильность частоты при изменении питающего напряжения и температуры окружающей среды.

  Влияние изменений реактивных параметров транзистора, зависящих от напряжения питания и времени,ослабляется с ростом емкостей С1, СЗ (рис.2), т.е. с приближением рабочей частоты автогенератора к Fg. Однако чрезмерное увеличение емкостей приводит к ухудшению условий самовозбуждения. С другой стороны, с увеличением емкостей растет рассеиваемая на резонаторе мощность, что ведет к увеличению нестабильности генерируемой частоты. По техническим условиям рассеиваемая мощность на кварце ограничена 1…2 мВт. Однако в диапазоне частот 1…22 МГц при такой рассеиваемой мощности частота последовательного резонанса зависит от рассеиваемой мощности, а коэффициент пропорциональности составляет (0,5…2) •10-9 Гц/мкВт, поэтому для высокостабильных генераторов рассеиваемую мощность на резонаторе следует ограничить величиной 0,1…0,2 мВт.

  На практике рекомендуется выбирать емкости С1, СЗ так, чтобы частота генерации отстояла от Fs не более чем на четверть резонансного интервала. При возбуждении кварцевого резонатора на нечетных механических гармониках кварца, вместо резистора R3 включают катушку индуктивности Lк (рис.3). На частоте генерации контур Lк-С4 должен иметь емкостное сопротивление, т.е. его резонансная частота должна быть ниже частоты генерации. Параметры контура следует выбирать так, чтобы его собственная частота составляла 0,7…0,8 от частоты генерации. В результате контур имеет емкостную проводимость на частоте необходимой гармоники, что исключает возможность генерации на низших гармониках и основной частоте.

  В осцилляторных генераторах, работающих на частоте выше 22 МГц, резонатор обычно возбуждают на 3-й или 5-й гармонике, но не на более высоких, так как сильно сказывается влияние параллельной емкости. Чаще чем приведенная на рис.2, применяется емкостная трехточечная схема кварцевого генератора с кварцевым резонатором между коллектором и базой в схеме включения транзистора с заземленным коллектором (рис.4). Эта схема особенно удобна для генераторов с электронной перестройкой частоты (при включении последовательно с кварцем варикапа), и имеет меньшее количество блокировочных элементов, чем схема с заземленным эмиттером. Многие специалисты в области кварцевых генераторов считают емкостную трехточку наилучшей из всех схем кварцевых генераторов, работающих на основной или 3-й механической гармонике резонатора. Следует отметить, что существует схема емкостной трехточки, не содержащая индуктивности, которая возбуждается на 3-й и 5-й гармониках.

  
Puc.4Puc.5

  Автогенератор с кварцем в контуре. Если в схеме на рис.4 последовательно с кварцем включить катушку индуктивности L1, это приведет к появлению новых свойств, т.е. в генераторе (рис.5) возможны автоколебания, не стабилизированные кварцевым резонатором. На высоких частотах, где реактивное сопротивление параллельной емкости резонатора меньше реактивного сопротивления динамической ветви кварцевого резонатора, возможно самовозбуждение через параллельную емкость Ср. Наличие индуктивности L1 означает возможность выполнения баланса фаз на

  частоте последовательного резонанса, а также в некоторой области расстроек ниже частоты последовательного резонанса. Индуктивность L1 обеспечивает выполнение баланса фаз в условиях, когда М<2, и эквивалентное реактивное сопротивление кварца не может иметь индуктивный характер. Это значит, что генератор с кварцем в контуре может работать на более высоких частотах и более высоких номерах механических гармоник кварцевого резонатора. Для исключения паразитного самовозбуждения через параллельную емкость Ср, которое наиболее вероятно на высоких частотах и на высших механических гармониках, параллельно резонатору включают резистор R1, который вносит потери в контур паразитного самовозбуждения.

  Снизить требования к активности кварцевого резонатора на механических гармониках можно при использовании схем генераторов последовательного резонанса. Так как при повышении частоты и номера гармоники активность кварцевого резонатора уменьшается из-за увеличения его эквивалентного сопротивления и повышения шунтирующего влияния статической (параллельной) емкости Ср, необходимо ее нейтрализовать или компенсировать. Нейтрализацию можно осуществить в мостовой схеме, где кварц помещают в одно из плеч сбалансированного моста.

  Мостовой автогенератор последовательного резонанса. В схеме, приведенной на рис.6, при точном балансе моста (Ср=С2, ХL1-2=ХL2-3) обратная связь осуществляется только через динамическую ветвь резонатора. На механической гармонике кварцевого резонатора резко возрастает проводимость последовательной ветви резонатора, мост разбалансируется, и при соответствующем выборе элементов схемы генератор возбуждается. Контур L1-C3 должен быть настроен на частоту требуемой гармоники.


Puc.6

  В этой схеме удается возбудить кварцевые резонаторы на 5-й или 7-й гармониках. Схемы с нейтрализацией статической емкости резонатора весьма критичны к режиму работы и сложны в регулировке, хотя их можно применять на частотах до 100 МГц. Верхний предел частот генератора с нейтрализацией обусловлен трудностью получения большого эквивалентного сопротивления контура с ростом частоты, так как начальную емкость контура нельзя сделать малой из-за паразитных емкостей.

  Схема Батлера (рис.7) характеризуется наибольшей устойчивостью к дестабилизирующим факторам в диапазоне до 100 МГц. Верхний предел генерируемых частот обусловлен ухудшением свойств эмиттерного повторителя. В схеме Батлера кварцевый резонатор включен в цепь обратной связи между эмиттерами транзисторов. Транзистор VT1 включен по схеме с общим коллектором, а транзистор VT2 — с общей базой. Недостатком этой схемы является склонность к паразитному самовозбуждению из-за связи выхода со входом через параллельную емкость кварца Ср. Для устранения этого явления параллельно кварцу подключают катушку индуктивности, образующую совместно с параллельной емкостью кварца резонансный контур, настраиваемый на частоту паразитного колебания.


Puc.7

  Автогенератор по схеме Батлера на одном транзисторе с компенсацией Ср. На частотах до 300 МГц целесообразно применять однокаскадные схемы фильтров, например, схему фильтра с общей базой (рис.8). По существу, такой автогенератор представляет собой однокаскадный усилитель, в котором контур соединен с эмиттером биполярного транзистора через кварцевый резонатор, выполняющий роль узкополосного фильтра. Контур, образованный параллельной емкостью кварца Ср и катушкой L2, настраивают на частоту используемой гармоники. С увеличением рабочей частоты возрастают эквивалентные проводимости транзистора, т.е. выполнение условий самовозбуждения ухудшается. Однако, несмотря на это, условия самовозбуждения этого автогенератора на высоких частотах выполняются легче, чем автогенераторов с кварцем между коллектором и базой и кварцем в контуре, что определяет его преимущество.


Puc.8

  В заключение необходимо отметить, что рассмотренные схемы кварцевых генераторов не исчерпывают всего многообразия схем генераторов, стабилизированных кварцевым резонатором, и на выбор схемы решающее влияние оказывают наличие кварцевых резонаторов с необходимыми эквивалентными параметрами, требования к выходной мощности, к мощности, рассеиваемой на резонаторе, долговременной стабильности частоты и др.

  Немного о резонаторах. При выборе резонатора для генератора особое внимание следует обращать на добротность резонатора — чем она выше, тем стабильнее частота. Наибольшей добротностью обладают вакуумированные резонаторы. Но чем добротнее резонатор, тем он дороже. Часто встречаются резонаторы с большим уровнем побочных резонансов.

  В СССР, кроме резонаторов из кварца, выпускались резонаторы из ниобата лития (с маркировкой РН или РМ), танталата лития (с маркировкой РТ) и из других пьезоэлектриков. Так как эквивалентные параметры таких резонаторов отличаются от параметров кварцевых резонаторов, они могут не возбуждаться в схемах, в которых отлично работают кварцы, хотя частота, маркированная на корпусе, может быть одинаковой. У них могут быть хуже стабильность частоты и точность настройки. Предприятия СССР, как правило, выпускали кварцевые резонаторы с основной частотой до 20…22 МГц, а выше — на механических гармониках. Это связано с устаревшей технологией обработки кварцевых пластин. Зарубежные предприятия выпускают кварцы с основной частотой 35 МГц. Ведущие зарубежные фирмы выпускают резонаторы в виде так называемой обратной мезаструктуры, работающие на объемных колебаниях сдвига по толщине, у которых частота первой гармоники достигает 250 МГц! Используя такие кварцевые резонаторы в схемах генераторов, в которых в качестве колебательных систем применяются системы с распределенными параметрами индуктивности и емкости, можно получить высокостабильные колебания вплоть до частоты 750 МГц без умножения частоты!

О.БЕЛОУСОВ
г. Ватутино, Черкасской обл.
РЛ №6,7/2000

Источник: shems.h2.ru

Кварцевые генераторы: схема, принцип работы, резонатор

рис. 2.69Основу кварцевых генераторов составляют кварцевые резонаторы.

 Кварцевый резонатор

— это пластинка кварца, закрепленная определенным образом в кварцедержателе и представляющая собой электромеханическую колебательную систему. Эти резонаторы относятся к пьезоэлектрическим элементам, принцип действия которых основан на использовании прямого и обратного пьезоэффекта.

 

Прямой пьезоэффект

состоит в том, что механическая нагрузка на материал элемента вызывает появление электрического напряжения между соответствующими поверхностями элемента.

 Обратный пьезоэффект

состоит в том, что электрическое напряжение между соответствующими поверхностями элемента, создаваемое с помощью внешнего источника напряжения, вызывает появление механических напряжений, которые могут изменять форму и размеры элемента.

Кварцевые резонаторы изготавливают из природного и искусственного монокристаллического кварца. Из заготовки вырезают пластины, грани которых определенным образом ориентированы относительно кристаллографических осей монокристалла. В рабочем режиме на обкладках пластины имеется переменное напряжение, и имеют место механические колебания пластины. Используются колебания сжатия-растяжения, изгиба, кручения и другие.

При анализе схемы с кварцевым резонатором (рис. 2.69, а) его удобно заменять эквивалентной схемой, представленной на рис 2.69, б. рис. 2.69

Необходимо отметить, что именно эта эквивалентная схема кварцевого резонатора используется в пакете программ «PSpice» для моделирования электронных схем. В эквивалентной схеме могут иметь место и параллельный, и последовательный резонанс. На практике используют оба вида резонанса.

На частоте последовательного резонанса ωk= 1/(Lk·Ck)1/2резонатор имеет минимальное сопротивление Rk.Частота параллельного резонанса ω0 ≈ 1/ [ Lk · Ck· C0 / ( Ck+ C0 ) ]1/2.

В диапазоне частот между ωk и ω0 резонатор ведет себя как некоторая индуктивность.

Кварцевые резонаторы характеризуются высокой стабильностью и добротностью (Qk= 104 − 105). Использование кварцевых резонаторов позволяет снизить относительное изменение частоты генераторов до очень малых значений (10−6 − 10−9).

Приведем для примера упрощенную схему кварцевого генератора на основе операционного усилителя при использовании последовательного резонанса (рис. 2.70). рис. 2.70

На частоте последовательного резонанса в схеме имеет место сильная положительная обратная связь, что и поддерживает автоколебания.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Здравствуйте, уважаемые Авторы, Журналисты, Читатели!

В этой статье я расскажу, как изготовил простой прибор, позволяющий проверять исправность кварцевых резонаторов и генерировать сигналы образцовых частот в широком диапазоне. А также определять частоту кварцевых резонаторов, если она не известна.

Повторить прибор не составит большого труда. Достаточно базовых знаний, навыков и минимума материалов и инструментов.

В настоящее время кварцевые резонаторы можно встретить на каждом шагу. Они применяются в часах, радиоприёмниках, телевизорах, компьютерах, мобильных телефонах, автомобилях и даже в некоторых стиральных машинах и холодильниках!

Разумеется, мастера — самодельщики тоже используют «кварцы» в своих конструкциях.

Много лет назад я собрал по схеме из какого-то журнала примитивный приборчик. В панельку вставлялся кварцевый резонатор и на выходе получалась точная, стабильная частота, указанная на корпусе кварца. Помогало проверить и настроить приёмники и другие приборы.
Со временем появился большой выбор кварцев и, казалось бы,теперь можно генерировать множество образцовых частот. Однако, я стал замечать, что далеко не каждый кварц работает в этом приборе. К тому же возникла необходимость проверять кварцевые резонаторы на исправность перед их установкой в свои конструкции и при ремонте различной аппаратуры. Прибор меня разочаровал и я его продал или просто подарил кому-то, точно не помню.

Недавно я решил изготовить подобный прибор, используя накопленные знания и опыт. По моей задумке, новый прибор должен быть в разы лучше, сохранив простоту в изготовлении. Вот что у меня получилось.

Это принципиальная электрическая схема прибора.

Условно я разбил её на две части.

Генераторная. При подключении испытуемого кварца, если он исправен, возникает генерация. Частота генерации определяется кварцевым резонатором. Получается маломощный передатчик, в спектре сигнала которого, помимо основной частоты, присутствуют её гармоники, то есть частоты, кратные основной. Например, если подключить кварц на частоту 10 МГц, в спектре так же будут частоты 20 МГц, 30 МГц и так далее. Это позволяет проверять и точно настраивать различную аппаратуру.

Индикаторная. Определяет наличие генерации и зажигает светодиод.

К генераторной части предъявляются весьма жёсткие требования. Генерация должна возникать при подключении любого исправного кварца, любого конструктивного исполнения. В тоже время не должна возникать «паразитная» генерация, то есть при отсутствии кварца или при подключении неисправного резонатора.

Я решил применить не биполярный, как можно встретить в большинстве подобных устройств, а полевой транзистор. Так схема получается проще и стабильнее в работе. Режим работы транзистора VT1 по постоянному току задан резисторами R1 и R2. Проверяемый кварц через конденсатор C1 подключается к затвору и стоку транзистора. При исправном резонаторе создаётся положительная обратная связь и возникает генерация. Для подключения кварца решил использовать небольшие зажимы типа «крокодил» с проводами небольшой длины. Такие зажимы позволяют легко подключать кварцы с самыми разными выводами. Провода также выполняют функцию передающей антенны. Конденсатор C2 закорачивает по высокой частоте провод питания на общий провод. Корпус транзистора соединён с общим проводом.

Индикаторная часть.

Чтобы сделать её максимально простой, я решил применить так называемый транзисторный детектор. Раньше его называли триодным детектором. Его изредка можно встретить в схемах старых радиоприёмников. В отличие от диодного детектора, триодный не только детектирует, но и усиливает продетектированный сигнал. Колебания с выхода генераторной части через конденсатор небольшой ёмкости C3 поступают на базу транзистора VT2. При положительных полупериодах колебаний транзистор открывается и в его коллекторной цепи протекают импульсы тока. Этими импульсами заряжается конденсатор С4. Параллельно конденсатору через ограничительный резистор R4 подключен светодиод HL1, который начинает светиться. База транзистора через резистор R3 подключена к общему проводу, поэтому в отсутствие сигнала транзистор закрыт и светодиод не светится. Таким образом, индикаторная часть однозначно показывает наличие или отсутствие генерации, то есть исправность проверяемого кварцевого резонатора.

Цепь питания прибора состоит из колодки для подключения батарейки 9 В типа «Крона», выключателя S1, диода VD1 защиты от переплюсовки и конденсатора C5.

Далее я расскажу, как изготовить этот прибор.

Детали и материалы:

Транзистор КП307Б
Транзистор КТ325В
Диод Д310
Конденсатор керамический малогабаритный 47 нФ — 2 шт.
Конденсатор керамический малогабаритный 20 пФ
Конденсатор электролитический 47мкФ х 16В
Конденсатор электролитический 470мкФ х 16В
Резистор 10 МОм
Резистор МЛТ-0,125 560 Ом
Резистор МЛТ-0,125 100 кОм
Резистор МЛТ-0,125 470 Ом
Светодиод
Переключатель или кнопка с фиксацией
Колодка под батарейку типа «Крона»
Зажим «крокодил» — 2шт.
Пластиковый прозрачный контейнер для мелочей
Стеклотекстолит фольгированный
Провод монтажный многожильный
Припой
Канифоль
Поролон
Клей
Растворитель 646
Ветошь


Инструменты:

Паяльник 25-40 Вт
Кусачки
Ножницы
Нож
Шило
Пинцет
Пассатижи
Лобзик
Напильник
Мини дрель с насадками
Перманентный фломастер
Линейка
Лупа
Швейная иголка
Мультиметр


Процесс изготовления.

Шаг 1.

Изготовление платы.
В качестве заготовки я решил использовать самодельную плату из фольгированного стеклотекстолита, которую я изготовил много лет назад. На ней были собраны макеты нескольких устройств. Хороша она тем, что имеются небольшие кружочки «пятачки», окруженные фольгой, выполняющей функцию общего провода. Такая плата идеально подходит для изготовления ВЧ устройств, каковым и является данный прибор. Также на этой плате имеется провод питания в виде дорожки. Если у Вас подобной платы нет, её легко изготовить, вырезав кружочки при помощи мини дрели с насадкой наподобие зубоврачебного бора. Или при помощи линейки и резака изготовленного из ножовочного полотна. В этом случае надо вырезать не кружочки, а квадратики.

Шаг 2.

Монтаж деталей на плату.
Залудив выводы деталей, я распаял их на плате, как показано на фотографиях. При монтаже старался выводы деталей сделать по возможности короткими, это важно для ВЧ устройств. Затем лобзиком аккуратно отпилил с двух сторон ненужные части платы и обработал края напильником. Конечно, это неправильно, эти операции нужно делать до монтажа деталей. Но всё дело в том, что я точно не знал, сколько деталей и каких потребуется для этой самоделки. Определился в процессе работы. Используя лупу осмотрел монтаж, особое внимание уделил отсутствию замыканий «пятачков» с окружающей их фольгой. При помощи швейной иголки и тряпочки смоченной растворителем очистил плату от остатков канифоли. В результате у меня получилась плата размерами 65 х 40 мм.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Здесь обозначение выводов транзисторов, в том положении, как они распаяны на плате. Также обозначены аноды диода, светодиода и плюсовые выводы электролитических конденсаторов.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Шаг 3.

Изготовление корпуса.
Сначала я хотел изготовить или подобрать готовый металлический корпус. Но мне попался на глаза небольшой пластиковый контейнер для мелочей. Вот такой.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Решил его использовать. У него 4 небольших и одно большое отделение. Прикинул, что в одном отделении можно будет разместить плату, в другом батарейку, в третьем выключатель питания, в четвёртом зажимы с проводами и подключенным кварцем. В пятом (большом) отделении можно разместить набор резонаторов. Кроме того, корпус полупрозрачный, поэтому не надо будет думать, где и как разместить светодиод, чтобы он был виден с разных сторон. Корпус будет свободно пропускать радиоволны, излучаемые прибором, при этом можно будет закрыть крышку, никакие провода снаружи болтаться не будут и можно будет легко перемещать прибор в нужное место.

Первым делом я наметил маркером место отверстия для крепления выключателя питания и три места прорезей для проводов. Сделал отверстие и прорези.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Шаг 4.

Для того,чтобы батарейка и набор кварцев не болтались в корпусе, вырезал 4 подкладки из поролона.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

И приклеил их на соответствующие места.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Шаг 5.

Монтаж всего прибора.
Отмерил необходимое количество провода,чтобы соединить плату с колодкой и выключателем, а также зажимы «крокодил» с платой. Провода взял разных цветов. Спаял согласно схеме. Провода свил между собой.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Шаг 6.

Сборка в корпусе.
Закрепил выключатель питания гайкой, плату закреплять не стал, она хорошо держится в своём отделении корпуса. Уложил провода в соответствующие прорези. Прибор готов!

Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Прибор для проверки кварцевых резонаторов+кварцевый калибратор
Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Шаг 7.

Проверка работоспособности прибора.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор

Результаты испытаний.

Прибором было проверено большое количество кварцевых резонаторов в диапазоне частот от 1,000 МГц до 79,000 МГц, самого разного конструктивного исполнения. Разных лет изготовления, начиная с 1961 года. Прибор чётко определил неисправные резонаторы. Кроме того, один исправный кварц был умышленно выведен из строя. Для этого на пластину была нанесена капля клея. Прибор показал, что резонатор неисправен.

Излучаемый прибором сигнал (при частоте кварца 24,200 МГц) фиксировался простейшим индикатором поля на расстоянии 10 см, а радиоприёмником (на третьей гармонике) на расстоянии не менее 15 м.

Работоспособность прибора сохранялась при снижении напряжения батареи питания до 4,0 Вольт (с уменьшением яркости свечения индикатора).

Потребляемый ток при напряжении питания 9,0 В составлял 10-13 мА.

В дальнейшем я планирую усовершенствовать это изделие.

1) Сделать выход для подключения частотомера.
2) Сделать отключаемую модуляцию сигналом звуковой частоты (встроенный генератор).
Свободного места в корпусе для этого достаточно.

Я доволен своей самоделкой и активно пользуюсь ей. Также давал на время знакомому радиолюбителю. Отзыв положительный.
Надеюсь, эта статья будет Вам полезна.
Буду рад Вашим комментариям и пожеланиям.

С уважением, R555.

Прибор для проверки кварцевых резонаторов+кварцевый калибратор Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *