Генератор электрического тока: Генераторы и электростанции, промышленные электрогенераторы — купить с доставкой

Содержание

Электрический генератор — это… Что такое Электрический генератор?

Основная статья: Электрогенераторы и электродвигатели

Электрогенераторы в начале XX века


Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История

Русский ученый Э.Х.Ленц еще в 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток.

Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г. А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии.

Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах.

Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Динамо-машина Йедлика

В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1852 и 1854) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1832 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределенных по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение.

Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Основная статья Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Pixii Ипполит Пикси в 1832.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле.

На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация

Электромеханические индукционные генераторы

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

 — устанавливает связь между ЭДС и скоростью изменения магнитного потока пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
  • По виду выходного электрического тока
      • Трёхфазный генератор
        • С включением обмоток звездой
        • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также

Ссылки

Виды генераторов электрического тока

Другие направления деятельности ООО «Кронвус-Юг»

www.4akb.ru

Оборудование для
обслуживания аккумуляторов

ural-k-s.ru

Промышленное и
автосервисное оборудование

www.metallmeb. ru

Производство мебели
специального назначения

verstaki.com

Слесарные верстаки и
производственная мебель

Генераторы представляют собой устройства, которые преобразуют механическую энергию в электрическую. Как правило, они производят электрический ток двух видов – постоянный и переменный.

Генераторы постоянного и переменного тока

Если рассматривать генератор постоянного тока, то в его состав его конструкции входит неподвижный статор с вращающимся ротором и дополнительной обмоткой. За счет движения ротора вырабатывается электрический ток. Генераторы постоянного тока в основном используются в металлургической промышленности, морских судах и общественном транспорте.

Генераторы переменного тока вырабатывают энергию за счет вращения ротора в магнитном поле. Путем вращения прямоугольного контура вокруг неподвижного магнитного поля, механическая энергия преобразуется в электрический ток. Данный вид генератора имеет преимущество в том, что ротор (основной движущий элемент) вращается быстрее, чем в генераторах переменного тока.

Синхронные и асинхронные генераторы

Генераторы, вырабатывающие переменный ток бывают синхронными и асинхронными. Они отличаются друг от друга своими возможностями. Мы не будем подробно рассматривать их принцип работы, а остановимся лишь на некоторых особенностях.

Синхронный генератор конструктивно сложнее асинхронного, вырабатывает более чистый ток и при этом легко переносит пусковые перегрузки. Синхронные агрегаты отлично используются для подключения техники, которая чувствительно реагирует на перепады напряжения (компьютеры, телевизоры и различные электронные устройства). Также, отлично справляются с питанием электродвигателей и электроинструментов.

Асинхронные генераторы, благодаря простоте конструкции достаточно стойки к короткому замыканию. По этой причине они используются для питания сварочной техники и электроинструментов. К данным агрегатам ни в коем случае нельзя подключать высокоточную технику.

Однофазные и трехфазные генераторы

Необходимо учитывать характеристику, связанную с типом вырабатываемого тока. Однофазные модели выдают 220 В, трехфазные — 380 В. Это очень важные технические параметры, которые необходимо знать каждому покупателю.

Однофазные модели считаются самыми распространенными, поскольку часто используются для бытовых нужд. Трехфазные позволяют напрямую снабжать электроэнергией крупные промышленные объекты, здания и целые поселки.

Перед покупкой генератора, необходимо владеть определенной технической информацией, понимать, чем они отличаются, поскольку это поможет Вам выбрать достойную модель, конкретно для ваших нужд, а также избавиться от лишних хлопот и сэкономить средства.

Компания «ООО «Кронвус-Юг»» реализует и изготавливает бензиновые, дизельные, и газовые электростанции, которые вы можете купить по выгодной цене.

Дизельные, бензиновые, газовые, портативные, передвижные

  1. Главная
  2. Полезное
  3. Виды генераторов (электростанций)

Использование энергетических ресурсов нуждается в преобразовании одних форм энергии в другие. Устройства, в которых такое преобразование происходит, являются преобразователями энергии. Данное преобразование, как правило, включает в себя промежуточную стадию: энергия простого носителя предварительно преобразуется в механическую, а после этого полученная механическая энергия преобразуется в электрическую энергию.

Энергетический преобразователь, преобразующий механическую энергию в электрическую энергию или наоборот, называется электрической машиной. Электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию, называются электрическим генератором. Любая электрическая машина является электромагнитным устройством, которое включает в себя взаимозависимые магнитные и электрические цепи.

Если встал вопрос, как выбрать электростанцию или генератор, то нужно учитывать множество факторов:

  • мощность,
  • время непрерывной работы,
  • вид топлива,
  • производителя и т.д.

Ниже приведена классификация генераторов по различным параметрам.

По типу первичного двигателя промежуточной стадии электрические генераторы бывают:

  • турбогенераторами, приводимыми в движение газотурбинным двигателем;
  • гидрогенераторами, приводимыми в движение гидравлической турбиной;
  • дизель-генераторами, бензо-генераторами, газогенераторами, приводимыми в движение двигателем внутреннего сгорания;
  • ветрогенераторами, приводимыми в движение энергией ветра.

По виду выходного электрического тока бывают электрические генераторы:

  • Постоянного тока. Их принцип действия основан на законе электромагнитной индукции, открытой Майклом Фарадеем в 1831 году, — электродвижущая сила индуцируется в прямоугольном контуре, который находится в однородном вращающемся магнитном поле. Преобразование в постоянный ток осуществляется посредством электромеханического выпрямителя – коллектора.
  • Переменного тока. В основе их действия также лежит закон электромагнитной индукции. Поток электрических зарядов вызван перемещением электрического проводника. Это движение создает разность напряжений между двумя концами провода, что в свою очередь заставляет двигаться электрические заряды, таким образом, генерируя электрический ток.

По мобильности:

  • Портативные (переносные). Такой тип генератора является одним из наиболее эффективных и удобных решений вопроса резервного электроснабжения загородного дома, обеспечения электричеством в туристическом походе, улучшения условий проживания в длительных путешествиях и экспедициях. Если необходим независимый источник питания, и вы не знаете, как выбрать генератор бензиновый, то первое, что нужно учесть, что его мощность колеблется в пределах от 0,5 до 12 кВт и для крупных объектов не подходит. Хотя малый вес и экономичность делает его популярным резервным источником питания. Эти генераторы оснащены двигателями с воздушным охлаждением.
  • Передвижные. Для такого типа генератора не требуется специальное помещение и монтаж. Оборудование имеет постоянную готовность к срочной эксплуатации. Установка на шасси позволяет доставить оборудование (прицепную электростанцию) в труднодоступную точку, где нет электричества.
  • Стационарные генераторы и электростанции. Применяются для бесперебойной подачи электрической энергии значительных мощностей. Не подлежат транспортировке и имеют постоянное место нахождения. Используются на строительных площадках, различных промышленных объектах непрерывного производства, в торговых центрах и проч. Такие генераторы имеют жидкостное охлаждение с использованием антифриза (радиаторное охлаждение).

В свою очередь стационарные генераторы бывают закрытого и открытого типа (закрытый тип имеет шумопоглощающий всепогодный кожух, открытый тип может быть установлен в помещении, где нет ограничений по уровню шума).

По назначению:

  • Бытовые. Из-за способности эффективного обеспечения электрической энергией не более 8 часов в сутки, бытовые генераторы используются как резервный источник при кратковременных отключениях электроэнергии централизованными линиями электропередач на дачах, в загородных домах, на небольших производствах. Зачастую эти устройства бывают бензиновыми, весят от 25 до 200кг, просты в обслуживании, имеют небольшие габариты.
  • Профессиональные. Предназначены для интенсивного использования на крупных объектах (больницах, супермаркетах, стройплощадках, промышленных предприятиях), а также в жестких условиях эксплуатации. Могут работать в качестве как основных, так и резервных источников электроэнергии. Имеют большой моторесурс.

По применению:

  • Резервные. Используются как резервные источники электроэнергии (при аварийном или временном отключении электричества).
  • Основные. Используются там, где вообще отсутствует электроснабжение.

По числу фаз:

  • Однофазные. Подходят для подключения только однофазных потребителей с нагрузкой 220В.
  • Трехфазные. Этот тип генератора может выдавать как 220В, так и 380В. Он используется для подключения трехфазных потребителей, а также может быть подключен к 1-фазным потребителям, но в этом случае необходимо равномерное распределение нагрузки между фазами (разница мощностей на разных фазах не должна отличаться на 20-25%). Трехфазные дизельные генераторы имеют больший КПД по сравнению с однофазными бензиновыми.

По виду пуска или степени автоматизации:

  • Ручной. Запускается пусковой рукояткой.
  • Электростартерный или автоматический. Запускается поворотом ключа или нажатием на кнопку. Также может иметь дистанционный запуск пультом, соединенным с генератором кабелем.

По виду топлива в двигателе внутреннего сгорания:

  • Бензиновые. Работают на высокооктановых сортах бензина. Расход топлива составляет 1-2,5 л в час. Предел непрерывной работы – 12 часов, в связи с чем не используются в качестве полной замены электроснабжению, но купить электростанцию на бензине для аварийного и резервного источника с небольшими мощностями – оптимальный вариант. Бензиновые генераторы просты в эксплуатации, с низким уровнем шума, однако имеют низкий КПД по сравнению с дизельными аналогами.
  • Дизельные. Работают на дизельном дистиллятном и остаточном топливе. Благодаря обеспечению низкой стоимости вырабатываемой электроэнергии имеют быструю окупаемость. Расход топлива составляет 2-3 л в час. Несмотря на большую стоимость по сравнению с бензиновыми установками, этот тип генераторов экономичнее, имеет больший моторесурс, может работать в суровых условиях с сильной запыленностью и при низких температурах. Купить генератор дизельный – значит обеспечить объект оборудованием, рассчитанным на интенсивное использование.
  • Газовые. Работают на пропан-бутановых смесях и природном газе. Требуют врезку к газовой магистрали или периодическую замену баллона. Отличаются стабильной, надежной и экономичной работой, выдают мощности в диапазоне от 1,5 кВт до десятков тысяч, в результате чего используются на объектах с высоким энергопотреблением. Из-за низкого давления на поршень двигателя, установка работает бесшумно и без вибраций, полное сгорание газа обеспечивает чистоту выхлопа. Особенность: запуск двигателя может быть только при плюсовых температурах, поэтому генератор должен устанавливаться в отапливаемых помещениях.

По производителю

Дизельные: Honda, Kubota, Yamaha (Япония), John Deer (США), Hatz (Германия), Perkins (Великобритая) и др. Продукцию Hondа отличает бесшумность работы и долговечность двигателя. Бензиновые: Mecc Alte, Sincro, Soga (Италия), Stamford (Великобритания) и др. Синхронные генераторы Mecc Alte отличаются высочайшим качеством, безопасностью и надежностью.

Наличие собственного, независимого источника электроэнергии – важное дополнение к техническому оборудованию частного домовладения или предприятия. Электрогенератор решает многие проблемы, связанные с электроснабжением. Правильная эксплуатация и должное сервисное обслуживание позволит использовать электростанции многие годы.

Как устроен генератор — все об устройстве электрогенераторов постоянного и переменого тока

Принцип работы генерирующего устройства

Работа электрогенерирующего оборудования основывается на принципе конвертации механической энергии, получаемой из внешнего источника, в электроэнергию. Иными словами, устройство не вырабатывает самостоятельно электричество. Происходит усиление движения возникающих в проводах его обмотки электрических зарядов, которые проходя через внешнее кольцо циркуляции, отдают свою энергию. В результате на выходе образуется электрический ток, который и поступает в сеть от электростанции.

С научной точки зрения принцип называется «магнитной индукцией» и был обнаружен Майклом Фарадеем в 19 веке. Ученый физик установил, что перемещением электрического проводника в магнитном поле рождается поток зарядов. Между двумя концами проводника, в частности, провода, создается разность напряжений, который усиливает движение зарядов, превращая их в электричество.

Перейти в каталог генераторного оборудования:

Основные элементы электростанции


Как устроен генератор переменного тока?

Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.

Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:

  • индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
  • постоянными магнитами, используемыми в малых генераторах;
  • с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.

Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.

Факторы, влияющие на эффективность работы синхронного генератора:

  • металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
  • шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
  • в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.

Двигатель

С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя:

  • вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
  • верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
  • чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.

Система подачи топлива

Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.

Характеристики системы:

  • соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
  • вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
  • сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
  • топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
  • топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
  • инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.

Регулятор напряжения AVR

Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:

  • регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
  • возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
  • вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
  • ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.

Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.

При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.

В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>


Установка выхлопа и охлаждения двигателя электростанции

Включает в себя:

  • Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
  • Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.

Система смазки

Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.

Зарядное устройство

Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.

Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры. Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку. Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.

Панель управления

Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.

Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.

Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.

Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.

Рама / Корпус

Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.

Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>

Принцип работы генератора переменного и постоянного тока

Как известно, при прохождении тока через проводник (катушку) образуется магнитное поле. И, наоборот, при движении проводника вверх-вниз через линии магнитного поля возникает электродвижущая сила. Если движение проводника медленное, то соответственно возникающий электрический ток будет слабым. Значение тока прямо пропорционально напряженности магнитного поля, числу проводников, и соответственно скорости их движения.

Простейший генератор тока состоит из катушки, изготовленной в виде барабана, на которую намотана проволока. Катушка крепится на валу. Барабан с проволочной обмоткой еще называют якорем.

генератор тока

Для снятия тока с катушки, конец каждого провода припаивается к токособирающим щеткам. Эти щетки должны быть полностью изолированы друг от друга.

Электрический мотор

Генератор переменного тока

генератор переменного тока

При вращении якоря вокруг своей оси происходит изменение электродвижущей силы. Когда виток поворачивается на девяносто градусов сила тока максимальная. При следующем повороте падает к значению нуля.

генератор переменного тока

Полный оборот витка в генераторе тока создает период тока или, другими словами, переменный ток.

Генератор постоянного тока

Генератор постоянного тока

Для получения постоянного тока используется переключатель. Он представляет собой разрезанное кольцо на две части, каждая из которых присоединена к разным виткам якоря. При правильной установке половинок кольца и токособирающих щеток, за каждый период изменения силы тока в устройстве, во внешнюю среду будет поступать постоянный ток.

Генератор постоянного тока

Крупный промышленный генератор тока имеет неподвижный якорь, именуемый статором. Внутри статора вращается ротор, создающий магнитное поле.

Обязательно прочитайте статьи про автомобильные генераторы:

В любом автомобиле есть генератор тока, работающий при движении машины для питания электрической энергией аккумулятора, систем зажигания, фар, радиоприемника и т.д. Обмотка возбуждения ротора является источником магнитного поля. Для того чтобы магнитный поток обмотки возбуждения подводился без потерь к обмотке статора, катушки помещают в специальные пазы стальной конструкции.

автомобильный генератор тока

Таким образом, генератор тока является современным устройством, способный преобразовывать энергию механического движения в электрическую.

Оцените качество статьи:

Принцип действия генератора электрического тока в кране

Категория:

   Электрическое оборудование

Публикация:

   Принцип действия генератора электрического тока в кране

Читать далее:



Принцип действия генератора электрического тока в кране

Электрической машиной называется устройство, служащее для преобразования механической энергии в электрическую или, наоборот, электрической энергии в механическую. В первом случае машина называется электрическим генератором, во втором — электродвигателем. Принцип действия электрических машин основан на законах электромагнитной индукции и действия электромагнитных сил. Для работы любой электрической машины необходимо наличие магнитного поля и проводников, по которым протекает ток.

Одна и та же электрическая машина может быть генератором, тока или двигателем. Рассмотрение устройства машин постоянного тока удобнее начать с генераторов, т. е. машин, которые производят электрический ток. Любой генератор состоит из устройства, служащего для создания магнитного потока, и электрической обмотки, в которой наводится ЭДС. У генераторов постоянного тока обмотка обычно размещается на вращающейся части, называемой якорем. Якорь располагается между полюсами, создающими магнитное поле. При вращении якоря механическим двигателем в этом магнитном поле в обмотке наводится ЭДС, которая прямо пропорциональна частоте вращения и магнитному потоку. С помощью коллектора и щеток ток подается во внешнюю цепь.

Аналогично устроены и генераторы переменного тока, только у них основная обмотка, как правило, размещается на неподвижной части машины — статоре, а магнитное поле создается магнитными полюсами, расположенными на вращающейся части — роторе.

Рекламные предложения на основе ваших интересов:

Генераторы постоянного тока вырабатывают по сути дела переменное напряжение, которое выпрямляется особым устройством — коллектором. Рассмотрим работу простейшего генератора переменного тока (рис. 3.1), который приводится во вращение каким-либо механическим двигателем и преобразует механическую энергию в электрическую.

Рис. 3.1. Схематическое устройство простейшего генератора переменного тока

Будем считать, что якорь вращается с постоянной скоростью в направлении против часовой стрелки. Так как проводники аЬ и ей находятся в одинаковых условиях относительно полюсов С и Ю, то достаточно рассмотреть процесс создания ЭДС только в одном проводнике, например в проводнике аЪ.
Направление наводимой ЭДС определяется по правилу правой руки. Ладонь правой руки надо расположить в магнитном поле так, чтобы магнитные силовые линии были направлены в ладонь, а большой палец был отведен на 90° в плоскости ладони и направлен в сторону движения проводника. Тогда остальные пальцы руки покажут направление наведенной в проводнике ЭДС (рис. 3.2). Напомним, что принято считать магнитные силовые линии исходящими из северного полюса.

Рис. 3.2. Правило правой руки

Из рис. 3.3 видно, что каждая щетка соединена через кольцо только с одним проводником: щетка А — с проводником ab, а щетка В — с проводником cd. Значит, на зажимах внешней цепи имеется переменное во времени напряжение и по ней течет переменный ток частотой /. Итак, внутри машины получается переменный ток, но во внешнюю цепь можно выдавать постоянный или выпрямленный ток. Для этого применяют специальное устройство — коллектор, по сути дела являющийся механическим выпрямителем.

Принцип действия его состоит в следующем. Концы витка ab-cd присоединяются не к двум кольцам, как было сделано вначале, а к одному кольцу, разрезанному по диаметру, обе половинки которого изолированы друг от друга и от вала, на который они насажены. На эти полукольца или пластины коллектора наложены щетки А и В, к которым присоединяется внешняя цепь. Только теперь положение щеток на пластинках не безразлично, как на рис. 3.1, а имеет существенное значение.

С целью выпрямить переменный ток надо поставить щетки так, чтобы наводимая в витке ЭДС была равна нулю в момент перехода щетки с одной пластины на другую (рис. 3.3).

Рис. 3.3. Схема простейшего генератора постоянного тока

Тогда ток во внешней цепи будет протекать только в одном направлении — от щетки А к щетке В. Здесь происходит выпрямление наводимой в витке ab-cd переменной ЭДС в пульсирующую ЭДС, и ток во внешней цепи будет также пульсирующим, т. е. меняющимся по величине в течение периода в соответствии с изменением ЭДС, но направление его остается неизменным. Щетка А, от которой отводится ток во внешнюю цепь, является положительной и обозначается знаком плюс, а щетка В, через которую ток возвращается в машину — отрицательной и обозначается знаком минус. Чтобы пульсирующий ток стал постоянным током, необходимо сделать не две коллекторные пластины, а значительно больше, а также следует уложить на якорь обмотку, состоящую из большого числа проводников. Витки обмотки соединены с коллекторными пластинами по определенному закону.

Итак, мы ознакомились с устройством машины постоянного тока, являющейся генератором или источником электрической энергии. Но генератор может быть легко обращен в электрический двигатель. Для этого необходимо дать такое же напряжение постоянного тока на зажимы машины, какое она вырабатывала в качестве генератора. Это свойство электрических машин носит название обратимости. При работе такой машины в качестве двигателя коллектор попеременно посылает в секции обмотки якоря ток определенного направления.

Каждая машина постоянного тока состоит из следующих основных частей: неподвижной части станины, т. е. статора, предназначенного для создания магнитного потока; вращающейся части, или якоря; двух подшипниковых щитов. На статоре укреплены основные полюсы, служащие для создания основного магнитного потока, и добавочные полюсы, выравнивающие магнитный поток при работе машины, что необходимо для подавления искрения на коллекторе.

Рис. 3.4. Основной полюс

Якорь представляет собой цилиндрическое тело, вращающееся в пространстве между полюсами. Якорь имеет пазы, в которые уложены проводники обмотки. На одном валу с якорем насажен коллектор, к пластинам которого припаяны выводы от обмотки якоря. Зазор между якорем и неподвижной частью машины колеблется в пределах 0,7—3 мм для машин мощностью до 50 кВт, а в машинах большей мощности может достигать 10 мм. Сердечник 1 основного полюса (рис. 3.4) выполнен из листовой электротехнической стали толщиной 1 мм. Со стороны, обращенной к якорю, сердечник имеет полюсный наконечник 2, служащий для равномерного распределения магнитного потока через воздушный зазор. На сердечник полюса надета катушка обмотки возбуждения 3, по которой проходит постоянный ток. Катушка наматывается на каркас 4, выполняемый из листовой стали толщиной 1—2 мм, пластмассы или картона. Полюсы крепятся к статору 6 при помощи болтов 5.

Добавочные полюсы, так же как и основные, состоят из сердечника, оканчивающегося полюсным наконечником, и надетой на сердечник катушки. Добавочные полюсы устанавливают строго посередине между основными полюсами и крепят к станине болтами.

Станиной или статором называют неподвижную часть машины, к которой крепятся основные и добавочные полюсы и при помощи которой машина крепится к фундаменту или другому основанию. Станину делают из чугуна или стали с разъемом или без него в зависимости от типа и мощности машины. К станине крепятся подшипниковые щиты, поддерживающие подшипники, в которых вращается якорь.

Якорь машин постоянного тока представляет собой барабан с пазами, выполненный из листовой стали толщиной 0,5 мм. Частота перемагничивания якоря составляет 20—60 Гц. Листы набираются в осевом направлении и для уменьшения потерь от вихревых токов изолируются друг от друга лаком или бумагой толщиной 0,03— 0,05 мм. Листы якоря спрессовывают с обеих сторон нажимными приспособлениями, которые крепят на валу или стягивают болтами. Для улучшения охлаждения на вал якоря насаживают вентилятор.

Секции обмотки якоря изготовляют на шаблонах и укладывают в пазы якоря. Обмотку якоря присоединяют к коллектору, который выполняют из медных пластин трапецеидальной формы, изолированных друг от друга и от корпуса посредством слюды или миканитовых прокладок. Коллекторные пластины закрепляют на ласточкиных хвостах. После запрессовки коллектор обтачивают на станке, чтобы его поверхность имела правильную цилиндрическую форму. Концы секций якоря впаиваются в пластины коллектора.

Для подвода тока к вращающемуся коллектору и отвода от него тока применяют щеточный аппарат, состоящий из щеткодержателей, укрепленных на щеточных пальцах, и щеток, установленных в щеткодержателях. Все щеточные пальцы крепятся на общей траверсе, устройство которой показано на рис. 3.5.

Рекламные предложения:


Читать далее: Принцип действия двигателя трехфазного тока

Категория: — Электрическое оборудование

Главная → Справочник → Статьи → Форум


Явление электромагнитной индукции. Генератор электрического тока

Изучение электромагнитных явлений показывает, что вокруг электрического тока всегда существует магнитное поле. Электрический ток и магнитное поле неотделимы друг от друга.

Но если электрический ток, как говорят, «создает» магнитное поле, то не существует ли обратного явления? Нельзя ли с помощью магнитного поля создать электрический ток? Такую задачу в начале IX столетия пытались решить многие ученые. Поставил ее перед собой и английский ученый Фарадей. «Превратить магнетизм в электричество» — так записал в своем дневнике эту задачу Фарадей в 1822 г. Почти 10 лет упорной работы потребовалось Фарадею для ее решения.

Чтобы понять, как Фарадею удалось «превратить магнетизм в электричество», выполним некоторые опыты Фарадея, используя современные приборы.

На рисунке 305 изображен проводник, концы которого присоединены к гальванометру. Если этот проводник вдвигать внутрь магнита или удалять из него так, чтобы он пересекал магнитные линии, то в нем возникает и существует во все время движения электрический ток. Это видно по отклонению стрелки гальванометра. Можно двигать магнит, а проводник закрепить неподвижно, важно, чтобы существовало движение проводника относительно магнитного поля и чтобы магнитные линии и проводник при этом пересекались.

Явление возникновения электрического тока в проводнике, пересекающем магнитные линии, называется электромагнитной индукцией. А возникающий при этом ток—индукционным током,

Индукционный ток в проводнике представляет собой такое же упорядоченное движение электронов, как и ток, полученный от гальванического элемента или аккумулятора. Название же «индукционный» указывает только на причину его возникновения.

На явлении электромагнитной индукции основано устройство и действие мощных источников тока – генераторов. Модель генератора показана на рисунке 306. Когда рамка вращается в магнитном поле (рис, 306), в ее обмотке возникает ток.

Фарадей Майкл (1791—1867)— английский физик. Создал учение о магнитном и электрическом поле. Открыл явление электромагнитной индукции, установил законы электролиза, прославился опытами по сжижению газов.

Устройство технического генератора значительно сложнее. При помощи их вырабатывается ток на электростанциях. Для приведения во вращение подвижной части генератора используют двигатели внутреннего сгорания, паровые турбины и гидротурбины.

Электрический генератор и паровую турбину, соединенные в один агрегат (рис. 307), называет турбогенератором. На рисунке 307 слева изображен внешний вид генератора, справа — внешний вид турбины. Турбогенераторы устанавливают на тепловых (и атомных) электростанциях. Наши заводы могут сейчас строить генераторы мощностью свыше 1 млн. кВт, создающие напряжение 13—15 тыс. В.

На рисунке 308 изображена схема гидрогенератора, они, как и турбогенераторы, вырабатывают ток большой мощности. При работе генераторов энергия топлива (угля, нефти, газа) или воды (на гидроэлектростанциях) превращается в энергию электрического тока, которая используется в промышленности, транспорте, сельском хозяйстве и в быту.

Вопросы.  1. На каком опыте можно показать возникновение в проводнике индукционного тока? 2. Какие необходимы условия для получения в проводнике индукционного тока? 3. Какое явление называют электромагнитной индукцией? Кто и когда открыл это явление? 4. Как называются мощные современные источники электрического тока? 5. На каком физическом явлении основано устройство и действие генераторов тока? 6. Какие агрегаты называются турбогенераторами, какие — гидрогенераторами? 7. Какие превращения энергии происходят при работе турбогенератора и гидрогенератора?

Как работают генераторы и динамо-машины

Как работают генераторы и динамо-машины — объясните это Рекламное объявление

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили. Электричество очень удобно. Вы можете производить его самыми разными способами, используя все, от угля и нефти до ветра и волн.Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя. Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя. работа в обратном направлении, которая преобразует обычную энергию в электричество. Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20-го века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова.Любезно предоставлены фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите запустить что-нибудь электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии. Откуда ты это возьмешь? Есть основной закон физики называется сохранение энергии, которое объясняет, как можно получить энергия — и как вы не можете.Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать. Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно. Вы будете использовать энергию преобразуется из какой-либо другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель.Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо. В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя нагревать). Откуда бы ни пришла ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора.Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Рекламные ссылки

Как мы можем производить электричество?

Фото: Типичный электрогенератор. Он может производить до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении.Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, обернутый вокруг железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться.Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь вокруг и вокруг и приводя в действие что-нибудь из электрическая зубная щетка к электричке.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри.Вместо того, чтобы позволить батарее питать двигатель, который толкает щетку, что, если бы вы сделали противоположный? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг. Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора.По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Возьмите кусок провода и подключите его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита. Теперь резко проведите проволокой сквозь невидимое магнитное поле, создаваемое магнитом, и через провод на короткое время протекает ток (регистрируемый на измерителе).Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (прочитать краткая биография или длинная биография). Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда вы перемещаете провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же).Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив один или другой из них на колесо. Затем, когда вы поворачиваете колесо, проволока и магнит перемещаются друг относительно друга, и возникает электрический ток.

Изображение: такой простой генератор вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное).Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он будет генерировать односторонний ток; когда он движется вниз, ток течет в другую сторону. Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

А теперь самое интересное. Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и размещаете так, чтобы она постоянно вращалась, как на схеме.Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество течет в одну сторону; когда он движется вниз, ток будет течь в другую сторону. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток). Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается.Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока. Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая создание постоянного тока.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока.В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный. В генераторе постоянного тока (вверху) коммутатор меняет направление тока каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходная мощность просто поднимается, опускается и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора на диаграмме справа.

Генераторы переменного тока

Фотография: Генератор переменного тока — это генератор, который вырабатывает переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим механика, снимающего генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

Что, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока. Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора.Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от двигателей транспортных средств. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Фото: Генератор ветряной турбины находится сразу за лопастями ротора. (Это цилиндр справа). Фото Джо Смита любезно предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной. фары, работающие от колес: вам нужно немного крутить педали, чтобы фары загорелись — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек.Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как применяется сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает от топлива.А также топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

Какую мощность вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем большую мощность он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Ручной USB-генератор 20
Микро-ветряная турбина 500
Малый дизельный генератор 5000 (5 кВт)
Ветряк (средний) 2 000 000 (2 МВт)

Переносные генераторы

Фото: Переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем фонари, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. Но что, если вы работаете на улице, в глуши, и нет источник электричества, который вы можете использовать для питания вашей бензопилы или вашего электрическая дрель?

Одна из возможностей — использовать аккумуляторные инструменты с аккумуляторы. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать переносной электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, дожигая бензин, он толкает поршень взад и вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое необходимое напряжение в любом месте, где оно вам нужно.В качестве пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Artwork: Генераторные технологии быстро развивались в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовывать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082 переиздание 8 141 Эдварда Уэстона, любезно предоставленного Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На этом сайте

Вам могут понравиться эти другие статьи на нашем сайте по смежным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хэра и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалированный провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

Статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Генератор переменного тока

Генератор переменного тока
следующий: Генератор постоянного тока Up: Магнитная индукция Предыдущая: Вихревые токи


Генератор переменного тока Электрический генератор или динамо-машина — это устройство, преобразующее механическую энергию в электроэнергия.Простейший практичный генератор состоит из прямоугольного катушка вращается в однородном магнитном поле. Магнитное поле обычно подается постоянным магнитом. Эта установка проиллюстрирована на рис. 38.
Рисунок 38: Генератор переменного тока.

Пусть будет длина катушки вдоль оси вращения, а ширина катушки, перпендикулярная этой оси. Предположим, что катушка вращается с постоянной угловой скоростью в равномерном магнитное поле напряженности.Скорость, с которой двое длинные стороны катушки ( т.е. , стороны и) движутся через магнитное поле, это просто продукт угловой скорости вращения и расстояния каждого сторону от оси вращения, поэтому . Двигательная ЭДС индуцированный в каждую сторону задается , где составляющая магнитного поля, перпендикулярная мгновенному направлению движения рассматриваемой стороны. Если направление магнитного поля составляет угол с нормальным направлением к катушку, как показано на рисунке, затем .Таким образом, величина двигательной ЭДС, генерируемой в сторонах и является

(209)

где площадь катушки. ЭДС равна нулю, когда или, поскольку направление движения сторон и составляет параллельно направлению магнитного поля в этих случаях. ЭДС достигает максимального значения, когда или, поскольку направление движения сторон и находится на перпендикулярно направлению магнитного поля в этих случаях.Между прочим, из симметрии ясно, что нет чистого двигательного ЭДС генерируется в сторонах и катушки.

Предположим, что направление вращения катушки такое, что сторона перемещается на страницу на рис. 38 (вид сбоку), тогда как сбоку перемещается со страницы. Двигательная ЭДС, индуцированная в побочных действиях от к . Точно так же двигательный ЭДС индукции в побочных действиях от до. Видно, что обе ЭДС действуйте по часовой стрелке вокруг катушки. Таким образом, чистая ЭДС действуя вокруг катушка .Если в катушке есть витки, то чистая ЭДС становится равной . Таким образом, общее выражение для ЭДС, генерируемой вокруг устойчиво вращающаяся многовитковая катушка в однородном магнитном поле

(210)

где мы написали для постоянно вращающейся катушки (при условии, что в ). Это выражение также можно записать
(211)

куда
(212)

— пиковая ЭДС, создаваемая генератором, и — количество полных оборотов, выполняемых катушками в секунду.Таким образом пиковая ЭДС прямо пропорциональна площади катушки, количеству витков в катушке частота вращения катушки, и напряженность магнитного поля.

Рисунок 39 показывает ЭДС, указанную в формуле. (211) в виде функции времени. Видно, что изменение ЭДС во времени равно синусоидальная по природе. ЭДС достигает максимальных значений, когда плоскость катушка параллельна плоскости магнитного поля, проходит через ноль, когда плоскость катушки перпендикулярна магнитному полю, и меняет направление подписывать каждые полупериоды оборота катушки.ЭДС периодическая (, то есть , он постоянно повторяет один и тот же образец во времени), с период (который, конечно же, период вращения катушки).

Рисунок 39: ЭДС, генерируемая устойчиво вращающимся генератором переменного тока.

Предположим, что некоторая нагрузка (, например, , лампочка или электрическое отопление элемент) сопротивления подключается к клеммам генератор.На практике это достигается соединением двух концов катушка к вращающимся кольцам, которые затем подключаются к внешней цепи с помощью металлических щеток. По закону Ома ток, протекающий в нагрузка дается

(213)

Обратите внимание, что этот ток постоянно меняет направление, как и ЭДС генератора. Следовательно, тип генератора, описанный выше, является обычно называется переменным током , или генератором.

Ток, протекающий через нагрузку, также должен течь вокруг катушки. Поскольку катушка находится в магнитном поле, этот ток вызывает крутящий момент на катушке, который, как легко продемонстрировать, замедляет ее вращение. Согласно разд. 8.11, тормозной момент действующий на катушке дается выражением

(214)

куда — составляющая магнитного поля, которая лежит в плоскости катушки.Из уравнения (210) что
(215)

поскольку . Внешний крутящий момент, равный разрывному моменту и противоположный ему, должен быть приложен к катушка, если она должна вращаться на равномерно на , как предполагается выше. Скорость, с которой этот внешний крутящий момент действительно работает, равна произведение крутящего момента и угловой скорости катушки. Таким образом,
(216)

Неудивительно, что скорость, с которой работает внешний крутящий момент, точно соответствует скорость, с которой электрическая энергия генерируется в цепи, состоящей из вращающейся катушки и нагрузки.

Уравнения (210), (213) и (215) дают

(217)

куда . На рисунке 40 показан разрыв крутящий момент, построенный как функция времени, согласно Уравнение (217). Видно, что крутящий момент всегда имеет один и тот же знак ( т.е. , он всегда действует в одном и том же направление, чтобы постоянно противостоять вращение катушки), но не постоянный во время. Вместо этого периодически пульсирует с периодом .Нарушение крутящий момент достигает максимального значения, когда плоскость катушки параллельна плоскость магнитного поля и равна нулю, если плоскость катушки перпендикулярна к магнитному полю. Понятно, что внешний крутящий момент нужен чтобы катушка вращалась с постоянной угловой скоростью, она также должна пульсировать вовремя с периодом. Постоянный внешний крутящий момент может привести к неравномерно вращающемуся катушки, и, следовательно, к переменной ЭДС, которая меняется со временем в более сложнее, чем .
Рисунок 40: Тормозной момент в стабильно вращающемся генераторе переменного тока.

Практически все коммерческие электростанции вырабатывают электроэнергию с помощью генераторов переменного тока. Внешнее питание, необходимое для вращения генерирующей катушки, обычно подается от паровая турбина (продувка паром по вентиляторным лопаткам, которые принудительно вращается). Вода испаряется, чтобы произвести высокое давление пара, сжигая уголь, или используя энергию, выделяемую внутри атомной электростанции. реактор.Конечно, на гидроэлектростанциях мощность нужна на поворот катушки генератора подводится водяная турбина (аналогичная к паровой турбине, за исключением того, что падающая вода играет роль пара). Недавно был разработан новый тип электростанции, в которой мощность, необходимая для вращения генераторной катушки, вырабатывается газовой турбиной. (по сути, большой реактивный двигатель, работающий на природном газе). В Соединенных Штатах и Канаде переменная ЭДС, генерируемая электростанциями, колеблется на Гц, что означает, что катушки генератора на электростанциях вращаются точно шестьдесят раз в секунду.В Европе и большей части остального мира частота колебаний коммерчески производимой электроэнергии составляет Гц.



следующий: Генератор постоянного тока Up: Магнитная индукция Предыдущая: Вихревые токи
Ричард Фицпатрик 2007-07-14

Генератор переменного тока — Что происходит внутри электрического генератора? — Высшее — OCR 21C — Редакция GCSE Physics (Single Science) — OCR 21st Century

Выходной сигнал генератора на графике

Выходной сигнал генератора переменного тока может быть представлен на графике разности потенциалов-времени с разностью потенциалов на вертикальной оси и время по горизонтальной оси.

На графике изображена переменная синусоида. Максимальную разность потенциалов или ток можно увеличить за счет:

  • увеличения скорости вращения
  • увеличения силы магнитного поля
  • увеличения количества витков на катушке

На схеме показаны четыре различных положения катушки в генераторе переменного тока и соответствующая разность потенциалов.

График разности потенциалов-времени для генератора переменного тока

A — Катушка находится под 0 °.Катушка движется параллельно направлению магнитного поля, поэтому разность потенциалов не возникает.

B — Катушка под углом 90 °. Катушка движется под углом 90 ° к направлению магнитного поля, поэтому наведенная разность потенциалов максимальна.

C — Катушка повернута на 180 °. Катушка движется параллельно направлению магнитного поля, поэтому разность потенциалов не возникает.

D — Катушка под углом 270 °. Катушка движется под углом 90 ° к направлению магнитного поля, поэтому наведенная разность потенциалов максимальна.Здесь наведенная разность потенциалов находится в направлении , противоположном направлению по отношению к тому, что было в точке B.

A — Катушка находится под углом 360 °, то есть она вернулась в исходную точку, сделав полный оборот. Катушка движется параллельно направлению магнитного поля, поэтому разность потенциалов не возникает.

13.6 Электрические генераторы и обратная ЭМП — Университетская физика, Том 2

Задачи обучения

К концу этого раздела вы сможете:

  • Объясните, как работает электрогенератор
  • Определить наведенную ЭДС в петле в любой интервал времени, вращающейся с постоянной скоростью в магнитном поле.
  • Покажите, что вращающиеся катушки имеют наведенную ЭДС; в двигателях это называется обратной ЭДС, потому что она противодействует входной ЭДС в двигатель

С помощью закона Фарадея можно понять множество важных явлений и устройств.В этом разделе мы рассмотрим два из них.

Электрогенераторы

Электрические генераторы индуцируют ЭДС, вращая катушку в магнитном поле, как кратко обсуждается в Движущей ЭДС. Теперь мы исследуем генераторы более подробно. Рассмотрим следующий пример.

Пример 13,9

Расчет ЭДС, индуцированной в катушке генератора
Катушка генератора, показанная на рисунке 13.27, поворачивается на одну четверть оборота (от θ = 0 ° θ = 0 ° до θ = 90 °) θ = 90 °) на 15.0 мс. Круглая катушка с 200 витками имеет радиус 5,00 см и находится в однородном магнитном поле 0,80 Тл. Что наведена ЭДС? Фигура 13,27 Когда катушка генератора вращается на одну четверть оборота, магнитный поток ΦmΦm изменяется от максимального до нуля, вызывая ЭДС. на магнитное поле изначально равна cosθ, cosθ, и это вставляется по определению скалярного произведения.Величина магнитного поля и площадь контура фиксируются во времени, что позволяет быстро упростить интеграцию. Индуцированная ЭДС записывается по закону Фарадея:

ε = NBAsinθdθdt.ε = NBAsinθdθdt.
Решение
Нам дано, что N = 200, N = 200, B = 0.80T, B = 0.80T, θ = 90 ° θ = 90 °, dθ = 90 ° = π / 2dθ = 90 ° = π / 2 и dt = 15.0 мс. Dt = 15.0 мс. Площадь петли A = πr2 = (3,14) (0,0500 м) 2 = 7,85 × 10−3м2. A = πr2 = (3,14) (0,0500 м) 2 = 7,85 × 10−3м2.

Ввод этого значения дает

ε = (200) (0,80T) (7,85 × 10−3m2) sin (90 °) π / 215.0 × 10−3s = 131V. Ε = (200) (0,80T) (7,85 × 10−3m2) sin (90 °) π / 215,0 × 10−3s = 131V.
Значение
Это практическое среднее значение, подобное 120 В, используемому в бытовой электросети.

ЭДС, рассчитанная в примере 13.9, является средним значением за четверть оборота. Какова ЭДС в каждый момент времени? Он меняется в зависимости от угла между магнитным полем и перпендикуляром к катушке. Мы можем получить выражение для ЭДС как функции времени, рассматривая ЭДС движения на вращающейся прямоугольной катушке шириной × и высотой × в однородном магнитном поле, как показано на рисунке 13.28.

Фигура 13,28 Генератор с одной прямоугольной катушкой, вращающейся с постоянной угловой скоростью в однородном магнитном поле, создает ЭДС, синусоидально изменяющуюся во времени. Обратите внимание, что генератор похож на двигатель, за исключением того, что вал вращается для выработки тока, а не наоборот.

На заряды в проводах петли действует магнитная сила, потому что они движутся в магнитном поле. Заряды в вертикальных проводах испытывают силы, параллельные проводу, вызывая токи.Но те, кто находится в верхнем и нижнем сегментах, чувствуют силу, перпендикулярную проводу, которая не вызывает тока. Таким образом, мы можем найти наведенную ЭДС, рассматривая только боковые провода. Движущаяся ЭДС равна ε = Blvε = Blv, где скорость v перпендикулярна магнитному полю B . Здесь скорость находится под углом θθ к B , так что ее составляющая, перпендикулярная B , равна v sin θθ (см. Рисунок 13.28). Таким образом, в этом случае ЭДС, индуцированная с каждой стороны, равна ε = Blvsinθε = Blvsinθ, и они направлены в одном направлении.Суммарная ЭДС вокруг контура тогда составляет

. ε = 2Blvsinθ.ε = 2Blvsinθ.

13,13

Это выражение допустимо, но оно не дает ЭДС как функцию времени. Чтобы найти зависимость ЭДС от времени, предположим, что катушка вращается с постоянной угловой скоростью ωω. Угол θθ связан с угловой скоростью соотношением θ = ωt, θ = ωt, так что

ε = 2Blvsin (ωt). ε = 2Blvsin (ωt).

13,14

Итак, линейная скорость v связана с угловой скоростью ωω соотношением v = rω.v = rω. Здесь r = w / 2, r = w / 2, так что v = (w / 2) ω, v = (w / 2) ω и

ε = 2Blw2ωsinωt = (lw) Bωsinωt.ε = 2Blw2ωsinωt = (lw) Bωsinωt.

13.15

Учитывая, что площадь петли A = lw, A = lw, и учитывая N петель, мы находим, что

ε = NBAωsin (ωt) .ε = NBAωsin (ωt).

13,16

Это ЭДС, индуцированная в катушке генератора из N, витков и площади A, ​​, вращающейся с постоянной угловой скоростью ωω в однородном магнитном поле B . Это также можно выразить как

ε = ε0sinωt, ε = ε0sinωt,

13,17

где

— пиковая ЭДС, так как максимальное значение sin (wt) = 1 sin (wt) = 1.Обратите внимание, что частота колебаний равна f = ω / 2πf = ω / 2π, а период равен T = 1 / f = 2π / ω.T = 1 / f = 2π / ω. На рисунке 13.29 показан график зависимости ЭДС от времени, и теперь кажется разумным, что переменное напряжение синусоидально.

Фигура 13.29 ЭДС генератора направляется на лампочку с показанной системой колец и щеток. График показывает ЭДС генератора как функцию времени, где ε0ε0 — пиковая ЭДС. Период равен T = 1 / f = 2π / ω, T = 1 / f = 2π / ω, где f — частота.

Тот факт, что пиковая ЭДС равна ε0 = NBAωε0 = NBAω, имеет смысл. Чем больше катушек, тем больше их площадь и чем сильнее поле, тем больше выходное напряжение. Интересно, что чем быстрее вращается генератор (больше ωω), тем больше ЭДС. Это заметно на велосипедных генераторах — по крайней мере, на более дешевых моделях.

На рис. 13.30 показана схема, с помощью которой генератор может вырабатывать импульсный постоянный ток. Более сложные конструкции из нескольких катушек и разрезных колец могут обеспечить более плавный постоянный ток, хотя для создания постоянного тока без пульсаций обычно используются электронные, а не механические средства.

Фигура 13.30 Разделенные кольца, называемые коммутаторами, в этой конфигурации создают импульсный выходной сигнал ЭДС постоянного тока.

В реальной жизни электрические генераторы сильно отличаются от рисунков в этом разделе, но принципы те же. Источником механической энергии, вращающей катушку, может быть падающая вода (гидроэнергия), пар, образующийся при сжигании ископаемого топлива, или кинетическая энергия ветра. На рис. 13.31 показана паровая турбина в разрезе; пар движется по лопастям, соединенным с валом, который вращает катушку внутри генератора.Производство электрической энергии из механической энергии — основной принцип всей энергии, которая направляется через наши электрические сети в наши дома.

Фигура 13.31 Паровая турбина / генератор. Пар, образующийся при сжигании угля, ударяет по лопаткам турбины, вращая вал, который соединен с генератором.

Генераторы, показанные в этом разделе, очень похожи на двигатели, показанные ранее. Это не случайно. Фактически, двигатель становится генератором, когда его вал вращается.В некоторых ранних автомобилях стартер использовался в качестве генератора. В следующем разделе мы подробнее исследуем действие двигателя как генератора.

Задний Emf

Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую. Таким образом, неудивительно, что двигатели и генераторы имеют одинаковую общую конструкцию. Двигатель работает, посылая ток через проволочную петлю, находящуюся в магнитном поле. В результате магнитное поле оказывает крутящий момент на петлю.Это вращает вал, тем самым извлекая механическую работу из первоначально подаваемого электрического тока. (См. Раздел «Сила и крутящий момент в токовой петле», чтобы обсудить двигатели, которые помогут вам лучше понять их, прежде чем продолжить.)

Когда катушка двигателя поворачивается, магнитный поток через катушку изменяется, и индуцируется ЭДС (в соответствии с законом Фарадея). Таким образом, двигатель действует как генератор всякий раз, когда его катушка вращается. Это происходит независимо от того, поворачивается ли вал под действием внешнего источника, например ременной передачи, или под действием самого двигателя.То есть, когда двигатель выполняет работу и его вал вращается, возникает ЭДС. Закон Ленца говорит нам, что ЭДС противодействует любому изменению, так что входной ЭДС, питающей двигатель, противостоит самогенерируемая ЭДС двигателя, называемая обратной ЭДС двигателя (рис. 13.32).

Фигура 13,32 Катушка двигателя постоянного тока представлена ​​на этой схеме как резистор. Обратная ЭДС представлена ​​как переменная ЭДС, которая противодействует ЭДС, приводящей в движение двигатель. Обратная ЭДС равна нулю, когда двигатель не вращается, и увеличивается пропорционально угловой скорости двигателя.

Выходная мощность генератора двигателя — это разница между напряжением питания и обратной ЭДС. При первом включении двигателя обратная ЭДС равна нулю, что означает, что катушка получает полное управляющее напряжение, а двигатель потребляет максимальный ток, когда он включен, но не вращается. По мере того, как двигатель вращается быстрее, обратная ЭДС возрастает, всегда противодействуя управляющей ЭДС, и снижает как напряжение на катушке, так и величину потребляемого ею тока. Этот эффект заметен во многих обычных ситуациях.При первом включении пылесоса, холодильника или стиральной машины свет в той же цепи на короткое время тускнеет из-за падения IR в питающих линиях из-за большого тока, потребляемого двигателем.

Когда двигатель впервые включается, он потребляет больше тока, чем когда он работает с нормальной рабочей скоростью. Когда на двигатель оказывается механическая нагрузка, например, электрическая инвалидная коляска, поднимающаяся в гору, двигатель замедляется, обратная ЭДС падает, течет больше тока и можно выполнять больше работы.Если двигатель работает на слишком низкой скорости, больший ток может его перегреть (из-за резистивной мощности в катушке, P = I2R), P = I2R), возможно, даже сжечь его. С другой стороны, если на двигатель нет механической нагрузки, он увеличивает свою угловую скорость ωω до тех пор, пока обратная ЭДС не станет почти равной управляющей ЭДС. Тогда двигатель использует достаточно энергии только для преодоления трения.

Вихревые токи в железных сердечниках двигателей могут вызывать серьезные потери энергии. Их обычно сводят к минимуму, собирая сердечники из тонких электрически изолированных листов железа.На магнитные свойства сердечника практически не влияет ламинация изолирующего листа, в то время как резистивный нагрев значительно снижается. Рассмотрим, например, катушки двигателя, представленные на рисунке 13.32. Катушки имеют эквивалентное сопротивление 0,400 Ом 0,400 Ом и управляются ЭДС 48,0 В. Вскоре после включения они потребляют ток

. I = V / R = (48,0 В) / (0,400 Ом) = 120 AI = V / R = (48,0 В) / (0,400 Ом) = 120 А

и, таким образом, рассеивают P = I2R = 5,76 кВт = I2R = 5,76 кВт энергии в качестве теплопередачи.При нормальных условиях эксплуатации для этого двигателя предположим, что противо-ЭДС составляет 40,0 В. Тогда при рабочей скорости полное напряжение на катушках составляет 8,0 В (48,0 В минус противоэдс 40,0 В), а потребляемый ток равен

. I = V / R = (8,0 В) / (0,400 Ом) = 20 А. I = V / R = (8,0 В) / (0,400 Ом) = 20 А.

При нормальной нагрузке рассеиваемая мощность составляет P = IV = (20A) (8.0V) = 160W. P = IV = (20A) (8.0V) = 160W. Это не вызывает проблем для этого двигателя, тогда как прежние 5,76 кВт сожгли бы катушки, если бы продолжали работать.

Пример 13.10

Двигатель с последовательной обмоткой в ​​работе
Полное сопротивление (Rf + Ra) (Rf + Ra) двигателя постоянного тока с последовательной обмоткой составляет 2,0 Ом 2,0 Ом (рисунок 13.33). При подключении к источнику 120 В (εSεS) двигатель потребляет 10 А при работе с постоянной угловой скоростью. (а) Какая обратная ЭДС индуцируется во вращающейся катушке εi? εi? б) Какова механическая мощность двигателя? (c) Какая мощность рассеивается на сопротивлении катушек? (d) Какова выходная мощность источника 120 В? (e) Предположим, что нагрузка на двигатель увеличивается, заставляя его замедляться до точки, в которой он потребляет 20 А.Ответьте на вопросы от (a) до (d) в этой ситуации.

Фигура 13,33 Схема двигателя постоянного тока с последовательной обмоткой.

Стратегия
Обратная ЭДС рассчитывается на основе разницы между подаваемым напряжением и потерями из-за тока через сопротивление. Мощность каждого устройства рассчитывается по одной из формул мощности на основе данной информации.
Решение
  1. ЭДС обратная εi = εs − I (Rf + Ra) = 120V− (10A) (2.0 Ом) = 100 В. εi = εs − I (Rf + Ra) = 120 В− (10 А) (2,0 Ом) = 100 В.
  2. Поскольку потенциал на якоре составляет 100 В при токе через него 10 А, выходная мощность двигателя равна Pm = εiI = (100 В) (10 A) = 1,0 × 103 Вт. Pm = εiI = (100 В) (10 A) = 1,0 × 103 Вт.
  3. Ток 10 А протекает через катушки, общее сопротивление которых составляет 2,0 Ом 2,0 Ом, поэтому мощность, рассеиваемая в катушках, составляет PR = I2R = (10A) 2 (2,0 Ом) = 2,0 × 102 Вт. PR = I2R = (10 A) 2 (2,0 Ом) = 2,0 × 102 Вт.
  4. Поскольку 10 А потребляется от источника 120 В, его выходная мощность составляет Ps = εsI = (120 В) (10 А) = 1.2 × 103 Вт. Ps = εsI = (120 В) (10 А) = 1,2 × 103 Вт.
  5. Повторяя те же вычисления с I = 20AI = 20A, находим εi = 80 В, Pm = 1,6 × 103 Вт, PR = 8,0 × 102 Вт и Ps = 2,4 × 103 Вт. εi = 80 В, Pm = 1,6 × 103 Вт, PR = 8,0 × 102 Вт и Ps = 2,4 × 103 Вт. В этом случае двигатель вращается медленнее, поэтому его выходная мощность и мощность источника больше.
Значение
Обратите внимание, что у нас есть баланс энергии в части (d): 1,2 × 103 Вт = 1,0 × 103 Вт + 2,0 × 102 Вт. 1,2 × 103 Вт = 1,0 × 103 Вт + 2,0 × 102 Вт.

DIY Модель генератора электроэнергии Электрогенератор переменного тока постоянного тока Физические эксперименты Образовательные игрушки — Лабораторные и научные материалы Научное образование — 1 комплект Электрогенератор —


Материал Другой
Марка Неизвестный
Вес предмета 1 фунт

  • Убедитесь, что это подходит введя номер вашей модели.
  • Лабораторные и научные принадлежности Научное образование — Материал спецификации: пластик
  • Цвет: как показано на фотографии
  • Размер: 17,3 см × 8,8 см (длина × ширина)
  • 1.Для демонстрации основной конструкции генератора постоянного и переменного тока и принципа работы.
  • Модель генератора электроэнергии своими руками Электрогенератор переменного и постоянного тока Физические эксперименты Образовательные игрушки — Лабораторные и научные материалы Научное образование — 1 комплект Электрогенератор
› См. Дополнительные сведения о продукте

Никола Тесла У.S. Patent 447,921

Патентное бюро США.

NIKOLA TESLA, OF NEW YORK, N. Y.

СПЕЦИФИКАЦИЯ, являющаяся частью письма о патенте № 447 921 от 10 марта 1891 г.

Заявка подана 15 ноября 1890 г. Серийный номер 371 554. (Модель отсутствует.)

Всем, кого это может касаться:

Известно, что я, НИКОЛА ТЕСЛА, подданный австрийского императора, из Смиляна, Лика, пограничной страны Австро-Венгрии, проживаю в Новой Йорк в округе и штате Нью-Йорк изобрел некоторые новые и полезные усовершенствования в машинах переменного тока, спецификация которых приводится ниже со ссылкой на прилагаемые чертежи.

В системах распределения электроэнергии от генераторов переменного тока, которые используются в настоящее время, генераторы обычно выдают от одной до трех сотен колебаний тока в секунду. Я осознал и продемонстрировал на практике, что во многих отношениях очень выгодно использовать в таких системах генераторы, способные производить гораздо большее количество колебаний в секунду — скажем, пятнадцать тысяч в секунду или намного больше. Чтобы произвести такую ​​высокую скорость чередования, необходимо сконструировать машину с большим количеством полюсов или полярных выступов; но такое построение по этой причине для того, чтобы быть эффективным, затруднено.Если использовать якорь без полярных выступов, нелегко получить необходимую напряженность поля, в основном из-за сравнительно большой утечки силовых линий от полюса к полюсу. Если, напротив, использовать сердечник якоря, сформированный или снабженный полярными выступами, очевидно, что скоро будет достигнут предел, при котором железо не будет экономически использоваться, поскольку оно не сможет без значительных потерь следовать за быстрым изменением полярности. Чтобы избежать этих и других трудностей, я разработал форму машины, воплощающую следующие общие черты конструкции.

Я предлагаю сердечник полевого магнита, состоящий из двух независимых частей, образованных канавками для приема одной или нескольких катушек возбуждения. Катушка возбуждения или катушки полностью окружена железным сердечником, за исключением одной стороны, где имеется отверстие между полярными поверхностями сердечника, причем это отверстие делается настолько узким, насколько позволяют условия машины. Полярные грани ядра поля не гладкие, а образованы множеством выступов или зазубрин, точки которых на одной стороне или полярной грани предпочтительно точно противоположны точкам на другой.Между сформированными таким образом гранями я устанавливаю или поддерживаю катушку или катушки якоря и обеспечиваю либо вращение полевого магнита, либо якоря, либо обоих, и я размещаю упомянутую катушку якоря или проводник так, чтобы он был симметрично расположен относительно поле, то есть, когда одна часть проводника проходит через самую сильную часть поля, другая часть, которая образует обратную связь для первого, проходит через самые слабые точки или части поля. Следует понимать, что самые сильные точки поля находятся между выступами или точками на полярных гранях, а самые слабые точки находятся посередине между ними.

Полевой магнит, когда он сконструирован, как описано выше, создает, когда через возбуждающую катушку проходит непрерывный ток, поле большой силы, которое может сильно изменяться по интенсивности в точках, не более удаленных от одно другое, чем восьмая часть дюйма. В машине, сконструированной таким образом, сравнительно мало того эффекта, который известен как «магнитная утечка», а также имеется лишь небольшая реакция якоря. Либо якорь-проводник, либо полевой магнит может быть неподвижным, в то время как другой вращается, и, поскольку часто желательно поддерживать неподвижные проводники и вращать полевой магнит, я сделал специальную модификацию конструкции машины для этого. цель, и в таком случае с целью дальнейшего упрощения машины и облегчения ее обслуживания в работе, я размещаю проводники якоря и раму или опоры для них так, чтобы поддерживать неподвижную катушку или катушки для возбуждения вращающегося полевой магнит, что исключает использование всех скользящих контактов.

На прилагаемых чертежах я проиллюстрировал две типичные формы моей машины, упомянутые выше.

Фиг. 1 представляет собой вертикальный центральный разрез машины по линиям x x на фиг. 2; и фиг. 2 — горизонтальный разрез по линии y y фиг. 1. Машина на этих двух фигурах представляет собой машину, в которой якорь-проводник и катушка возбуждения неподвижны, в то время как сердечник магнитного поля вращается. Фиг. 3 — вертикальный центральный разрез машины, имеющей ту же конструкцию, но со стационарным полевым магнитом и вращающимся якорем.На фиг.4 представлена ​​диаграмма, иллюстрирующая особую конфигурацию полярных поверхностей и отношение проводника якоря или проводников к ним.

На рис. 1 и 2, A A обозначают две цилиндрические отливки, снабженные кронштейнами B B, в которых последние представляют собой втулки C для вращающегося вала. Проводник, в котором индуцируются токи, может быть сконструирован или расположен различными способами; но я предпочитаю формировать его следующим образом: я беру кольцевую пластину из меди D и с помощью пилы или другого режущего инструмента прорезаю в ней радиальные прорези от одного края почти до другого, начиная попеременно с противоположных краев.Таким образом образуется непрерывный зигзагообразный проводник. К внутреннему краю этой пластины прикреплены два кольца из немагнитного металла E, которые изолированы от медного проводника, но прочно удерживаются на нем, например, с помощью болтов F. Затем внутри колец E помещается кольцевая катушка G, которая является возбуждающей катушкой для полевого магнита. Провод D и прикрепленные к нему части поддерживаются с помощью цилиндрической оболочки или отливки A A, две части которой сведены вместе и зажаты болтами F ‘к внешнему краю проводника D.Провод D также изолирован от оболочки A.

Сердечник полевого магнита состоит из двух круглых частей HH, образованных кольцевыми канавками I, которые при соединении этих двух частей образуют пространство для приемная катушка возбуждения G. Центральные части или ступицы сердечников HH отшлифованы так, чтобы плотно прилегать друг к другу, в то время как внешние части или фланцы, которые образуют полярные поверхности JJ, несколько уменьшены по толщине, чтобы освободить место для проводника D, имеют зубцы на торцах или любым другим удобным способом с полярными выступами.Две части сердечника H H установлены на валу K, прикреплены к нему и скреплены болтами L. Число зубцов на полярных поверхностях произвольно; но между ними и радиальными частями проводника D должно существовать определенное соотношение, которое будет понято со ссылкой на рис.4, на котором NN представляют собой выступы или точки на одной стороне сердечника поля, а SS — точки другого лица. Провод D показан на этом чертеже в сечении: a a ‘ обозначает радиальные части проводника, а b — изолирующие перегородки между ними.Относительная ширина частей aa ‘ и пространство между любыми двумя соседними точками NN или SS таковы, что когда радиальные части a проводника проходят между противоположными точками NS, где поле наиболее сильное, промежуточная радиальные части и ‘ проходят через самые широкие пространства на полпути между такими точками и там, где поле наиболее слабое. Поскольку сердечник на одной стороне имеет полярность, противоположную полярности обращенной к нему части, все точки или выступы одной полярной грани будут иметь полярность, противоположную полярности таковой на другой грани.Следовательно, хотя пространство между любыми двумя соседними точками на одной и той же грани может быть чрезвычайно маленьким, утечки магнитных линий между любыми двумя точками с одним и тем же именем не будет; но силовые линии будут проходить от одного набора точек к другому. Такая конструкция в значительной степени устраняет искажение магнитных линий под действием тока в проводнике D, в котором можно наблюдать, как ток течет в любой момент времени от центра к периферии в одном наборе радиальных части a и в противоположном направлении в соседних частях a ‘.

Чтобы соединить возбуждающую катушку G с источником постоянного тока, я обнаружил, что удобно использовать две смежные радиальные части проводника D для соединения выводов катушки G с двумя клеммами M. Для этого Для этого пластина D полностью прорезана, как показано, и сделанный таким образом разрыв перекрывается коротким проводником c .

В любой удобной точке пластина D разрезается, образуя две клеммы d , которые соединяются с клеммами N.

Сердечник HH при вращении ведущим шкивом P генерирует в проводниках D переменный ток, который снимается со стержней N. Можно заметить, что по характеру описанной конструкции эта машина является способен производить переменный ток с чрезвычайно высокой частотой изменения.

Когда требуется повернуть проводник между поверхностями неподвижного полевого магнита, я использую конструкцию, показанную на рис. 3. Проводник D в этом случае выполнен или может быть выполнен по существу таким же образом, как описано выше. прорезать кольцевую токопроводящую пластину и удерживать ее между двумя головками O, удерживаемыми вместе болтами o и прикрепленными к ведущему валу K.Внутренний край пластины или проводника D предпочтительно имеет фланцевое соединение для обеспечения более прочного соединения между ним и головками О. Он изолирован от упомянутой головки. Полевой магнит в этом случае состоит из двух кольцевых частей H H, снабженных кольцевыми канавками I для приема катушек. Фланцы или поверхности, окружающие кольцевую канавку, сведены вместе, в то время как внутренние фланцы имеют зубцы, как в предыдущем случае, и образуют полярные поверхности. Две части H H образованы основанием R, на которое опирается машина.

S S — немагнитные втулки, закрепленные или установленные в центральном отверстии сердечников.

Провод D полностью прорезан в одной точке, образуя клеммы, от которых изолированные проводники T проходят через вал к собирающим кольцам V.

Я заявляю —

1. Комбинация в кольцевом поле силы, образованной противоположными полярными поверхностями с радиальными канавками или зубцами и указанными полюсами соединенного ряда радиальных проводников, расположенных так по отношению к зубцам, что пока одна часть радиальных проводников проходит между наиболее сильными частями поля, или точки, в которых два полюса наиболее близко подходят друг к другу, соседние или промежуточные проводники будут проходить через самые слабые части поля или точки, где два полюса наиболее удалены, как указано.

2. Комбинация из соединенного ряда радиальных проводников, образующих кольцевую катушку, неподвижной опорной рамы, состоящей из двух частей, прикрепленной к внешним концам указанных проводников и изолированной от них, кольца, образованного из двух частей, прикрепленных к внутренней концы того же, возбуждающая катушка, содержащаяся в указанном кольце, и полевой сердечник, сделанный из двух частей и охватывающий указанную возбуждающую катушку и представляющий кольцевые полярные поверхности для ряда радиальных проводников, как описано.

3. Комбинация с кольцевой токопроводящей пластиной с прорезями для образования связной серии радиальных проводников, секционной опорной рамой, прикрепленной к внешнему краю пластины с прорезями и изолированной от нее, секционного кольца, прикрепленного и изолированного от внутренний край упомянутой пластины, полая возбуждающая катушка, содержащаяся в упомянутом кольце, и полевой сердечник, состоящий из двух частей, скрепленных вместе и утопленных для охвата возбуждающей катушки, упомянутые сердечники установлены на вращающемся валу, как изложено.

4. Комбинация с двумя кольцевыми полярными поверхностями противоположной магнитной полярности и образованная противоположными точками, выступами или зазубринами проводника, повернутого назад по существу радиальными изгибами и установленного в кольцевом поле, посредством чего вращение поле или указанный проводник будет вырабатывать в нем переменный ток, как указано.

5. Комбинация полярной поверхности заданной полярности, образованной канавками или зубцами, полярной поверхности противоположной полярности с соответствующими канавками или зубцами, при этом две полярные грани расположены так, чтобы их канавки были противоположны друг другу, и проводник или катушка, установленная между указанными поверхностями с возможностью перемещения поперек силовых линий в направлении, перпендикулярном направлению канавок или зубцов, как изложено.

6. В магнитоэлектрической машине комбинация секционной рамы, сердечника полевого магнита, состоящего из двух соединенных частей, вращающегося вала, на котором установлен упомянутый сердечник, проводника, в котором должны индуцироваться токи, витки которых расположены радиально между полярными поверхностями сердечника возбуждения и прикреплены к раме и поддерживаются ею, а катушка возбуждения для сердечника возбуждения, поддерживаемая катушкой наведенного тока и содержащаяся в кольцевой выемке, образованной канавками в гранях двух участков поля-сердечника.

7. Комбинация с противоположными полюсами полевого магнита, образованными выступами или зубцами на их сторонах, причем самые высокие части или выступы одной стороны противоположны таковым на другой, проводника, изгибы которого приспособлены для прохождения через под прямым углом через магнитные линии между противоположными выступами, как указано.

8. Комбинация с вращающимся сердечником полевого магнита, имеющим две противоположные и кольцевые полярные поверхности с радиальными канавками или зубцами на них, систематически расположенными так, что самые высокие части или выступы одной стороны лежат напротив таковых на другой. стационарный проводник с радиальными изгибами, установленный между полярными поверхностями, как указано.

НИКОЛА ТЕСЛА.

Свидетели:

ROBT. F. GAYLORD,

PARKER N. PAGE.

Электрогенератор своими руками, как это работает

Каждый раз, когда круг из проволоки окружает магнитное поле, и если Затем магнитное поле изменяется, появляется круговое «давление», называемое напряжением. Чем быстрее изменяется магнитное поле, тем больше становится напряжение. Это круговое напряжение пытается заставить подвижные заряды внутри провода вращаться по кругу. Другими словами, движущиеся магниты вызывают изменение магнитные поля, которые пытаются создать электрические токи в замкнутых кругах провод.Движущийся магнит вызывает насосное действие. Если схема не полная, если есть обрыв, то сила откачки не вызовет заряда поток. Вместо этого на концах провода появится разница напряжений. es. Но если цепь «замкнутая» или «замкнутая», то магнит действие накачки может заставить электроны катушки начать течь. А движущийся магнит может создать электрический ток в замкнутой цепи. В эффект называется Электромагнитная индукция. Это основной закон физики, и это используется всеми электрогенераторами с катушкой / магнитом.

У генераторов нет только одного круга провода. Предположим, что вокруг много металлических кругов. движущийся магнит. Предположим, что все окружности последовательно соединены с образуют катушку. Небольшое напряжение от каждого круга складывается чтобы дать гораздо большее напряжение. Катушка на 100 витков будет иметь сто в разы больше напряжения, чем на однооборотной катушке.

Почему этот генератор переменного тока, а не постоянного тока? Когда магниты переворачиваются, они создают импульс напряжения. Но когда они переворачиваются во второй раз, они создать противоположный импульс? да.Итак, вращающийся магнит всегда делает электрические сигналы, которые идут плюс-минус-плюс-минус? Ага. Это происходит потому, что для создания напряжения и тока полюс магнита должен перемещаться вбок по проводу. Если вместо этого он проведет вдоль провода, ничего не произойдет. В нашем маленький генератор, полюса магнита не качаются постоянно по изгиб провода. Вместо этого сначала северный магнитный полюс проходит через одну сторона катушки, и в то же время южный полюс магнита перемещается назад через другую сторону.Два эффекта складываются вместе. Но дальше магнит продолжает вращаться, и теперь противоположные полюса проведите по этим частям катушки. Магнит перевернулся, магнит полюса поменяны местами, поэтому второй импульс напряжения катушки будет назад. И если лампочка подключена, тогда любой ток тоже будет обратным. Каждый раз магнит делает один полный оборот, он создает прямой импульс, а затем обратный пульс. Быстро крутите магнит, и он издает переменную волну: AC.

Если вам нужен генератор постоянного тока, вам придется добавить специальный реверсивный переключатель. к валу магнита.Это переключатель, который называется «коммутатор». Все DC у генераторов они есть. Через каждые пол-оборота он меняет соединение к катушке. Таким образом, получается импульсный постоянный ток. Если вы посмотрите на некоторые DIY проектов для генераторов постоянного тока, вы увидите, как построить коммутатор. Но эти генераторы не Ультра Простые!

Теперь о лампочке. Если соединить концы катушки вместе, то всякий раз, когда магнит движется, заряды металла будут двигаться и большой в катушке появится электрический ток.Змеевик слегка нагревается. Что, если вместо этого мы подключим лампочку между концами катушки? А лампочка на самом деле просто кусок тонкой проволоки. Заряды света нить лампы будет проталкиваться. Когда заряды внутри меди провода продеваем в тонкую нить накаливания лампочки, их скорость сильно увеличивается. Когда заряды покидают нить и движутся обратно в медный провод большего размера, они замедляются опять таки. Внутри узкой нити быстро движущиеся заряды нагревают металл. своего рода электрическим «трением».Металлическая нить накаливания становится настолько горячей, что он светится. Движущиеся заряды также нагревают провода генератора немного, но так как провода генератора намного толще, и поскольку тонкая нить накала лампы замедляет ток во всем змеевике, почти весь нагрев происходит в лампочка накаливания.

Итак, просто подключите лампочку к катушке провода, поместите короткую мощную магнит в катушке, затем быстро переверните магнит. Чем быстрее вы вращаете магнита, чем выше становится сила накачки напряжения, и тем ярче лампочка загорается.Чем мощнее ваш магнит, тем выше напряжение и ярче лампочка. И чем больше в твоих кругах проволоки катушки, тем выше напряжение и тем ярче лампочка. Теоретически вы должен иметь возможность зажечь обычную лампочку фонарика 3 В, но только если вы может вращать ваши магниты нечеловечески быстро.


Отсоедините один провод от лампочки. Вращайте магнит. В то время как до сих пор крутится магнит, есть друг трогайте провода вместе так что лампочка снова загорится.Гвоздь по-прежнему легко вращается? Продолжайте крутить магнит, пока ваш друг подключается и отключается лампочка. Чувствуете разницу в том, как сильно нужно крутить гвоздь? Также попробуйте крутить магниты, пока ваш друг подключает генератор. провода вместе (без подключенной лампы).

ТАК ЧТО?

Когда вы запускаете генератор и зажигаете лампочку, вы работает против электрического трения, чтобы создать тепло и свет. Вы можете ЧУВСТВОВАТЬ работу, которую выполняете, потому что всякий раз, когда вы подключаете лампочку, вдруг становится труднее провернуть генератор.Когда вы отключаете лампочка, становится легче.

Подумайте об этом так. Если слегка потереть руки, кожа остается прохладным, но если вы сильно потрете руки, кожа станет горячей. Нужно приложить больше усилий, чтобы сильно натереть кожу, чтобы она нагрелась; это требует работы. И точно так же сложно греть лампочку нить накала, это требует работы. Вы крутите вал генератора, генератор проталкивает заряд провода через крошечную нить накала, и если вы не держите вращая магнит, он быстро замедлится.


ПОЧУВСТВУЙТЕ ЭЛЕКТРОНЫ

Когда ваша рука вращает магниты, вы можете почувствовать дополнительную работу, которая требуется зажечь лампочку. Попробуйте покрутить магниты при отключенной лампочке. Магниты крутить стало намного сложнее. Это происходит потому, что ваш рука связана с течет заряд в лампочке, и когда вы на нее нажимаете, вы можете это почувствовать оттолкнуть вас! Как ваша рука связана с текущими зарядами? Твоя рука крутит гвоздь, гвоздь крутит магнит, магнит толкает невидимые магнитные поля, поля толкайте подвижные заряды, заряды медленно текут через свет нить лампы накаливания, а крошечная нить вызывает трение о поток заряжается и нагревается.Но тогда происходит обратное! Заряд не может сильно двигаться из-за крошечной нити накала, поэтому она сопротивляется давление со стороны магнитных полей, которые, в свою очередь, противостоят давлению от магнита, который выдерживает скручивающее давление гвоздя, который сопротивляется скручивающему давлению ваших пальцев. Итак, в очень реальным способом, вы можете ПОЧУВСТВОВАТЬ электроны в нити накаливания лампочки. Когда вы толкаете их, вы можете ЧУВСТВОВАТЬ их нежелание двигаться дальше. узкая нить!

ВЫКЛЮЧИТЕ ПОЛЕ

Попробуйте изменить положение магнитов.Снимите магниты, затем скотчите их вокруг гвоздя так, чтобы две стопки цеплялись бок о бок, скорее чем сложены в линию. Крутите магниты. Лампочка все еще загораться? Нет. Это происходит потому, что полюс N одного блока магнитов очень близко к S-полюсу другого, и наоборот. Магнитное поле теперь растягивается между двумя стопками магнитов и не распространяется наружу. Большая часть поля находится между соседними противоположными полюсов, поэтому поле не распространяется через катушку.Когда магниты бок о бок, вот так, они образуют один больший, но слабый магнит. На Другие рука, когда вы вместо этого сделаете одну стопку магнитов, поле расширится наружу на много дюймов. Сложенные друг на друга магниты образуют более крупный, но очень сильный магнит. Если вы вращаете стек с одним магнитом, поле прорезает провода и накачивает их электроны в движение.

ИЗМЕРИТЬ НАПРЯЖЕНИЕ И ТОК

Если у вас есть цифровой вольтметр или цифровой вольтметр, вы можете провести некоторые измерения.(Как только вы увидите некоторые цифры, вы можете заняться какой-нибудь профессиональной наукой. эксперименты. Это отлично подходит для проектов научной ярмарки.) Вращайте магниты. чтобы зажечь лампочку, затем подсоедините провода счетчика к лампочке соединения. Установите измеритель напряжения переменного тока. Вращайте магниты и смотрите насколько высокое напряжение вырабатывает ваш генератор.

Насколько высоким вы можете сделать напряжение просто пальцами? Или с помощью ручной дрели? Попробуйте просто крутить магниты достаточно быстро, чтобы едва зажечь лампочку в темной комнате.Как мало напряжение необходим? Также попробуйте отключение лампочку, затем измерьте напряжение переменного тока на двух концах катушки. Можете ли вы сказать, осталось ли оно таким же, как когда была подключена лампочка? Намекать: чтобы вращать магниты с постоянной скоростью, используйте электродрель с полностью заряженный аккумулятор. Или, возможно, зацепите гвоздь за электродвигатель и Подключите двигатель к источнику постоянного тока с настраиваемым напряжением.

Примечание: электрическая лампочка имеет сопротивление около 50 Ом. Кроме того, 250 футов # 30 проволока вокруг Сопротивление 21 Ом.Из-за сопротивления провода Генератор может создавать ток не более 60 миллиампер (0,06 ампер.) Если вы намотаете на генератор дополнительный провод №30, он увеличится максимальное напряжение и максимальная мощность. Но поскольку это добавляет больше сопротивление он НЕ увеличивает максимально возможный ток. Увеличить максимально возможный ток, либо замените провод №30 на более толстый проволокой, крутите магниты быстрее или используйте более прочный магнитный материал.


ДВИГАТЕЛЬ ВЫЗОВ!

Есть простой способ превратить ваш генератор в мотор.Это включает использование краски или ленты, чтобы изолировать место на одной стороне гвоздь затем, используя батарею 6 В и провода генератора, касаясь гвоздя, чтобы сформировать переключатель. Вращающиеся магниты поворачивают гвоздь, который включает катушку и выключаемся в нужное время. Сможете ли вы обнаружить уловку?

ИЗГОТОВЛЕНИЕ DC

Вы можете изменить этот генератор так, чтобы он создавал постоянный ток, а не переменный. Напряжение все еще очень низкий, поэтому он не очень полезен. Если вращаться очень быстро, вы можете уметь перезаряжать крошечный 1.Аккумулятор 2в. (Может быть, ты мог бы добавить много витков провода к катушке, чтобы увеличить напряжение?)

Преобразование в постоянный ток:

Сложный путь: добавить вращающийся переключатель «коммутатор» и скользящие металлические «щетки», так что каждый раз, когда магниты поворачиваются наполовину, переключатель меняет местами подключения генератора.

Простой способ: добавить односторонний клапан! Электроклапан называется диодом. или выпрямитель. Если вы подключите диод последовательно с одним из ваших двигателей провода, это будет только пусть заряды текут в одном направлении.Это изменит Переменный ток в односторонний поток (так называемый «пульсирующий постоянный ток»). Попробуйте диоды от Radio Shack, например 1N4000 или 1N4001. К сожалению диоду требуется около 3/4 вольт для протекания любых зарядов, и это напряжение вычитает из вывода вашего генератора. Если ваш генератор выдает только один вольт, диод снизит его до 1/4 вольт. Итак, если вы хотите добавить диод, попробуйте удвоить или утроить количество проводов на ваш генератор. Также попробуйте использовать специальный диод «Шоттки» с меньшим напряжение, чем 0.7V, например 1N5819 с сайта digikey.com


ИСТОРИЯ «УЛЬТРАПРОСТОГО» ГЕНЕРАТОРА

Смотрите мою оригинальную версию 1996 года

Работая в техническом магазине в Музее науки в Бостоне, я работал над новыми идеями для экспонатов Зала электричества в 1988 году. знал, что Эксплораториум имеет выставку электрогенераторов, где Посетитель музея протаскивал пластиковую пластину через ряд огромные магниты (большие магнетронные рупоры-магниты от военного радара ВОВ.) Делая это загорится маленькая лампочка. Я просто знал , что там было быть каким-то методом, который использует менее дорогие обычные магниты. Итак, я сложил стопку по 3 дюйма громкоговоритель магниты (эти черные пончики) и размахивали им мимо различных катушек. Наконец, я намотал около пяти фунтов проволоки №26 на кольцо с гвоздями. толкнул в доску, подключил лампочку №49, затем переместил стопку магниты динамика внутрь и наружу. От этого легко загорелась лампочка.

Примерно в 1994 году я думал об сверхпростом электродвигателе, который позже стал известен в Интернете как «Beakman Motor».»Разве это не было бы круто, если бы дети могли сделать еще и электрический генератор так же просто? Но это нужно делать с использованием деталей из магазина Radio Shack, так как Radio Shack имела специальную лампочку, а также магниты и катушки провод электромагнита. После нескольких часов экспериментов я понял, что едва мог зажечь лампочку на 20 миллиампер, используя одну катушку провода №30 от радиорубки. Но провод должен был быть ОЧЕНЬ близок к быстрому вращающийся магнит, причем магнит должен был состоять из четырех мощных керамические магниты в стопке.

Чтобы произвести впечатление на всех учителей физики, я постарался сделать детали легкими. в наличии, а стоимость минимально возможна. Чтобы сделать проект популярным, я удостоверился, что никаких инструментов, кроме ножниц, не требуется. Я отказался использовать мяч подшипники или детали из распиленного пластика. Поэтому я сделал свою картонную коробку для катушка, а для вращающегося вала использовался гвоздь. Чтобы избежать лишних деталей, гвоздь просто зажимается мощными магнитами. Вот вызов: попробуйте зажечь лампочку, но сделать это с помощью генератора, что еще проще.


Хотите гораздо более мощный двигатель или генератор? Те, которые нуждаются в штамповке железные листы для ламината. Но есть другой способ. Посмотрите на Эдисона тактика: он взял 1873 Мотор с кольцом Грамма, модифицированный добавление отдельного тихоходного коммутатора, и продавал их как горячие пирожки.

Магнитопровод, «пластинки» ротора Грамма, могут быть изготовлены из длинная длина железная проволока, обернутая как обруч, залитая эпоксидной смолой, смолой и т. д. не знаю если тонкую железную проволоку легко найти, а колючая проволока и проволока для тюков сена — общий.Оберните толстую медную проволоку вокруг всего железного кольца и установите его. на маховике. Плоско отшлифуйте внешний обод, чтобы медная спираль стала его собственный коммутатор. Статор может быть на постоянных магнитах или не ламинированный. твердые железные блоки, так как это DC. В ранних версиях использовались «кисти» из тонкой железной проволоки в качестве щеток, позже замененных блоками скользкий графит.

Но затем сделайте то же, что и Тесла, и измените свои первоначальные конструкции статора. в компактную цилиндрическую форму с закрытыми катушками вместо использования огромных длинные магниты-подковы, как у Эдисона Дизайн «длинноногая Мэри Энн».

Motor Triva: электродвигатели были всего лишь лабораторные диковинки до Зеноби Грамм разработал генератор, предназначенный для замены аккумуляторных батарей, поскольку он давал чрезвычайно плавное выходное напряжение постоянного тока. Во время выставки изобретателей помощник случайно подключил неиспользованный Gramme Dynamo до другого, работавшего под действием пара. Второй бежал как мотор, как мотор * сотни лошадиных сил *. Этот момент был началом электрический век в промышленности. Но об этом прорыве много не говорят. в американских учебниках, возможно потому, что это заставит Томаса Эдисона появиться меньше гения.


ВНИМАНИЕ: держите магниты подальше от компьютеров, дисков, видеокассет, цветных Телевизоры, бумажники и кошельки с кредитными картами. Попробуйте это: сохранить генератор вдали от вашего цветного телевизора, включите телевизор, начните крутить гвоздь, чтобы магнит вращался быстро, затем поднесите генератор примерно на 2 фута подальше от экрана телевизора. НЕ ПРИНОСИТЕ БЛИЖЕ !!! Продолжайте крутить магниты, и вы увидите крутой эффект шатания на телевизионном изображении, с некоторыми изменениями цвета. Поле магнита искривляет электронный луч, который рисует картинку на экране.Будьте осторожны, если вы Отнесите магнит примерно на 15 см, железный лист внутри телевизионного изображения трубка намагнитится, и искаженные цвета останутся неизменными.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *