Бестопливный генератор на магнитах: Бтг на неодимовых магнитах

Содержание

Бестопливные генераторы: мифы и разоблачения

Про бестопливные генераторы мы слышали уже давно, да и скажем честно, наши подписчики постоянно о них напоминают. В этой статье мы решили рассказать, как они работают, и почему такая энергия является нереальной. Прочитав все, вы сможете понять, почему такие механизмы являются обманом, и мы покажем, хитрости, которые используют производители, дабы продать свои товары.

Бестопливные генераторы, что обещают производители

Каждый человек в интернете натыкался на рекламу бестопливных генераторов (БТГ), описано все красиво и четко. Поэтому люди далекие от электричества всегда попадают на такие уловки и покупают в надежде, что у них получиться сэкономить или вообще получить бесплатный свет.

Как утверждают разработчики, все устройства работают на так называемой «энергии земли», «свободной энергии» или они просто разгадали тайны времен Николо Теслы. Говорят они все, а вот на деле оказывается совсем иначе. Так давайте разберем все устройства и попробуем выяснить, почему у них нет никакого права на существование. Читайте статью: лучшие производители солнечных батарей.

Бестопливные генераторы с лампочкой

Промышленное устройство на просторах сети у нас найти не получилось, только вот такое фото:

Как можно заметить, конструкция устройства включает в себя:

  1. Транзистор.
  2. Конденсатор.
  3. Лампочку.
  4. И «Чудо катушки», которые и делают эффект.

Все устройство собирается непосредственно перед глазами телезрителей и вот такой результат получается:

Чудо – лампа горит и все на глазах у зрителей. Здесь мы поверили и начали собирать деньги на покупку такого устройства (шутка). Однако решили более внимательно посмотреть на устройство и определить, как так. Ведь лампа должна как-то гореть, а батарейку в конструкцию засунуть не получится. А теперь разгадка (смотрите фото).

К лампе подключаются небольшие проводки, заметить их очень сложно. Поэтому такое устройство купили сотни людей со всей нашей страны. Читайте о том, как выбрать солнечную батарею.

Генератор Адамса

Такое устройство по праву можно назвать рабочим, но продавцы существенно преувеличивают его возможности. В свое время на его производство был даже получен патент в 1967 году, но на этом его история должна была бы и закончиться. Однако мошенники  решили воспользоваться незнанием многих людей и продать так называемую пустышку за серьезные деньги.

Посмотрите вот такое видео, здесь показывают, как работает устройство. Хочется отметить, что даже для показа не удалось показать его эффективность, мы услышали только непонятные обещания, которым поверили многие люди.

Теперь смотрим, почему такое бестопливный генератор Адамса покупать не стоит. Максимальный КПД его работы в лабораторных условиях составил всего 15%. Этого показателя не хватит даже на минимальное обеспечение электричеством небольшую комнату. В реальных условиях КПД составил только 3-7%. А вообще задумка неплохая, даже схема генератора Адамса оказалась довольно продуманной, но пока не рабочей.

схема гениратора Адамса

Бестопливный генератор Тесла

Вот здесь мошенники включили всю свою фантазию и вспомнили все нереальные заслуги известного физика. Конечно, насчет него ходят легенды, и возможно, он придумал что-то особенное, но в свободной продаже вечный генератор энергии вряд ли появится. Это никому не выгодно, и каждый мыслящий человек это должен понимать.

Вот такую подборку бессмысленных устройств мы собрали для вас:

  1. Хотите бесплатную энергию? Купите самое глупое устройство!
  2. Лучшая альтернатива деньгам, правда, только вашим.
  3. Красивый корпус, можно даже соседям показать.
  4. Собран красиво, да толку нуль.
  5. Этот образец называется «Опытный» мы засунули сюда абсолютно все, даже опытный электрик скажет: «Оо».

Если желаете купить бестопливный генератор, представленный выше – выбросьте эту идею со своей головы, только потеряете свои деньги!

Как избежать мошенников

Здесь все очень просто, следуйте не сложным советам:

  1. Думайте головой.
  2. Расскажите своим друзьям и дайте почитать эту статью.
  3. Даже если очень заинтересовал прибор, попросите привезти его лично и показать работу. Продавец откажется в любом случае, а вы попробуйте увеличить цену в несколько раз. Вы думаете если будет большая цена никто не приедет? Конечно, нет, ведь они знают, что продают полную туфту.

А на всякий случай покажем несколько промышленных бестопливных генераторов, которые успешно продаются и сейчас.

Статья по теме: Выгодно ли устанавливать солнечные батареи в частном доме.

Как сделать бестопливный генератор

Невозможно представить современный мир без использования электроэнергии. В связи с её повсеместным применением разрабатываются и выпускаются бестопливные генераторы. В статье объясняется, что это такое, где и как используется, освещены особенности конструкции, а также имеются инструкции, как сделать устройство самостоятельно. Прилагаются схемы генераторов разных видов.

Что это такое бестопливный генератор

Это несложное устройство создано для генерации электроэнергии без использования различных видов топлива. Работает по принципу неодимовых магнитов. В простом двигателе магнитное поле создается электрическими катушками, обычно из меди или алюминия. Эти двигатели постоянно нуждаются в электропитании для создания магнитного поля. Потери энергии колоссальны. Но бестопливный генератор не содержит катушек из таких материалов. Следовательно, потери будут минимальными. Он использует постоянное магнитное поле для создания необходимой силы для перемещения двигателя.

Эта концепция генерации магнитного поля от постоянных магнитов стала применяться на практике только после введения неодимовых магнитов, которые работают лучше на полную мощность, чем предыдущие ферритовые магниты. Главное преимущество заключается в том, что устройство не требует постоянного электроснабжения или подзарядки.

Чтобы найти альтернативные способы генерации электроэнергии, существует ряд альтернатив из нетрадиционных источников энергии, которые также являются возобновляемыми. Одной из таких альтернатив является выработка электроэнергии из бестопливного двигателя в изолированной системе выработки электроэнергии с низкими затратами на техническое обслуживание.

Бестопливный двигатель (как и генератор) – это двигатель, который вырабатывает электроэнергию круглосуточно без топлива (бензин, дизель, масло, газ, солнце). Приводным механизмом является двигатель постоянного тока, который приводится в действие аккумулятором (12 В или более). Батарея приводит в движение электродвигатель постоянного тока, который в свою очередь вращает генератор переменного тока для выработки электроэнергии и в то же время с помощью диода заряжает батарею.

К числу источников энергии, которые могут работать без углекислого газа, относятся ветер, волны или прилив фотоэлектрической и осмотической энергии. Но бестопливные генераторы электроэнергии по-прежнему являются наиболее надежными источниками энергии с низкими эксплуатационными расходами, которые даже в некоторых случаях превосходят солнечные батареи.

Использование недорогих традиционных источников энергии, таких как топливо, будет оставаться основным источником энергии до следующих десятилетий, несмотря на их неблагоприятное воздействие на окружающую среду.

Применение бестопливного двигателя (или генератора) для выработки электроэнергии ограничено мощностью двигателя постоянного тока и генератора переменного тока. Это подразумевает, что наличие двигателя постоянного тока и генератора большой мощности дает бестопливному двигателю свои возможности. Исследования показали, что потенциал бестопливного двигателя во всем мире более чем в пять раз превышает потенциал ветра и солнца, потому что он работает 24/7, ежедневно, в любой точке планеты.

Где и как используется БТГ генератор

Существует множество разнообразных способов генерировать энергию от бестопливного двигателя или генератора. В каждой сфере применение это устройство, вне всяких сомнений, принесёт пользу. Ниже приведены краткие описания некоторых этих сфер.

На дорогах

Бестопливный генератор может спокойно заменить дизельные двигатели, используемые в подавляющем большинстве современных тяжелых транспортных средств, таких как грузовые автомобили, автобусы, поезда, крупногабаритные переносные силовые двигатели. А также в этот перечень входит большинство сельскохозяйственных и карьерных транспортных средств.

В воздухе

И бензиновые, и дизельные двигатели, используемые в самолетах, могут быть заменены на альтернативные источники энергии, в том числе на бестопливные электрогенераторы.

На воде

Бестопливные генераторы также могут служить заменой для высокоскоростных двигателей, которые имеются у яхт, кораблей и линий вдоль открытого моря.

Под землей

Бестопливные двигатели и генераторы также могут заменить дизельные двигатели, а также двигатели, которые используются при добыче полезных ископаемых во всем мире. Аналогичным образом бестопливные устройства заменяют двигатели, которые применяются для добычи и природных ресурсов, таких как разные драгоценные металлы, железная руда, уголь и попутный нефтяной газ.

В медицинских учреждениях

Устройства также могут заменить аварийные резервные генераторы, которые должны быть в каждом крупном медицинском учреждении или больнице, в связи с наличием возможных критических ситуаций.

В центрах обработки данных

Бестопливные генераторы могут быть использованы для компьютеров, а также если не заряжается телефон, то генератор может служить хорошим зарядным устройством для мобильного аппарата. Когда серверы и системы выходят из строя, связь может быть потеряна, рабочий процесс останавливается, данные могут быть утеряны и даже весь рабой процесс может быть полностью остановлен.

Также бестопливные генераторы электроэнергии можно устанавливать на боковых сторонах двухколесного транспортного средства. Это надо делать таким образом, чтобы по мере движения транспортного средства вентилятор начинал вращаться и вырабатывал дополнительную энергию.

Когда двигатели постоянного тока мощностью более 500 л. с. подключены к генератору переменного тока, мощность которого ниже, чем у двигателей постоянного тока, можно получить максимальную выходную мощность генератора.

Особенности конструкции

Простой бестопливный электрогенератор состоит из ротора и статора.

Статор машины не двигается и обычно является внешней рамой машины. Ротор может свободно двигаться и обычно расположен во внутренней части машины. Они оба, как правило, состоят из ферромагнитных материалов. Прорези сделаны по внутренней периферии статора и внешней периферии ротора. Проводники размещены в соответствующих пазах статора или ротора. Они связаны между собой, образуя круглые обмотки. Обмотка, в которой индуцируется напряжение, называется обмоткой якоря, а также это название носит ток, передающийся по ней. Постоянные магниты используются в некоторых машинах для обеспечения основного потока машины.

Устройство TPU Стивена Марка кардинально отличается от других бестопливных аппаратов своей оригинальной конструкцией. Такой генератор не является обладателем резонаторов радиочастотного типа. Рабочая часть устройства состоит из кольца из металла (диаметр приблизительно 20 см), на которое надеты катушки, сделанные из многожильного толстого провода. Автор не раз демонстрировал своё изобретение на публике, однако потом оригинальную разработку строго засекретили.

И всё же благодаря его последователям в свет вышла новая версия – Ottp Ronette, которая уже имела отличия от оригинальной версии. У неё уже было два кольца из пластика, к которым прикреплялся толстый парный провод. Сами же провода соединялись крест-накрест.

Как сделать бестопливный генератор своими руками

Существует два самых распространённых способа, как сделать БТГ своими руками:

Для мокрого метода понадобится аккумулятор, в то время как при использовании сухого нужны будут батареи.

Мокрый способ

Необходимые составляющие:

  • зарядное устройство нужного калибра;
  • аккумулятор;
  • усилитель мощности;
  • трансформатор для переменного тока.

Аккумулятор служит в качестве накопителя энергии и также сохраняет её. Трансформатор необходим для генерации постоянных сигналов электрического тока. Усилитель, в свою очередь, повышает уровень подачи тока, так как изначальная мощность аккумулятора составляет порядка 12 или 24 В. Зарядное устройство понадобится для постоянной и бесперебойной работы аппарата.

Сначала необходимо подключить трансформатор к постоянной сети или к батарее, а затем и к усилителю мощности. После чего нужно будет подключить датчик для расширения к схеме зарядного устройства. Затем требуется подключить датчик обратно к аккумулятору.

Сухой способ

Принцип работы сухого устройства состоит в использовании конденсатора.

Для создания такого устройства нужны:

  • трансформатор;
  • прототип генератора.

Такой способ изготовления устройства является наиболее оптимальным, так как его срок работы может насчитывать минимум 3-4 года без зарядки.

Прежде всего необходимо соединить трансформатор и прототип с помощью специальных проводников (незатухающих). Рекомендуется это делать при помощи сварки для создания максимально прочного соединения. Чтобы проконтролировать выполненную работу, нужно использовать динатрон.

Схема БТГ:

Рабочая схема того, как сделать БТГ своими руками:

Также сегодня выходят новые схемы БТГ, которые предусматривают подключение к нескольким батареям и другим генераторам.

Использование бестопливных генераторов является современным, более экономичным и экологичным решением, однако изготовление и их выбор – задача, требующая особого внимания и ответственности.

Как сделать реально работающий магнитный двигатель. Бестопливный двигатель

Навигация по записям

Новый бестопливный генератор на постоянных магнитах в роторе и бифилярных катушках в статоре. Генератор выполнен и показан в двух вариантах, мощностью на 1 кВт и мощностью на 10 кВт. Автор изобретения Андрей Владимирович Слободян. На видео демонстрируется, не только запуск и …

Отличное видео, в котором рассказывается о текущем положении вещей на рынке холодного ядерного синтеза. В ролике приводятся конкретные примеры, с указанием абсолютно реальных имен компаний, которые осуществляли сделки по покупке и продаже генератора холодного ядерного синтеза Росси. Речь в …

Тема получения электроэнергии из земли уже неоднократно поднималась на нашем ресурсе и в виде разнообразных теорий, и в виде вполне законченных и рабочих устройств. Много опытов на данную тему было проведено и участниками проекта, причем результаты многих опытов были весьма …

Рады представить Вам новое видео, которое демонстрирует полностью автономную работу бестопливного генератора энергии. Автор видео проводит демонстрацию работы в лесу, где нет ни жилых домов, ни людей, ни электричества и электросетей. Для работы генератора необходимо лишь хорошее заземление. В приведенном …

Ну вот и кончилось веселое первое апреля, где злобная марсианская разведка опять помешала в одночасье осчастливить весь мир! 🙂 А значит шутки и розыгрыши в сторону, так как говорить сегодня мы будем, о действительно серьезных вещах. Вчера, как не …

Из писем участников проекта… Предлагаем Вам ознакомиться с генератором Джона Бедини, который по словам его автора работает в режиме самозапитки, посредством коммутации аккумуляторов с помощью таймера.. Основная суть данной конструкции заключается в том, что через определенный промежуток времени заряжающий аккумулятор становится …

Целью данной работы является выяснение энергетических особенностей сверхединичных синхронных генераторов на постоянных магнитах, и, в частности, влияние тока нагрузки, создающего размагничивающее поле (реакцию якоря), на нагрузочную характеристику таких генераторов. Испытанию подвергались два дисковых синхронных генератора различной мощности и конструкции. Первый …

В данной статье будет подробно рассказано о проведенных опытах по получению в домашних условиях альтернативной и свободной энергии, описано, как самостоятельно построить бестопливный генератор свободной и альтернативной энергии, а также показаны новые, совершенно удивительные свойства электрического тока. Хотя электрического ли!? …

Использование: в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем закреплены один или несколько постоянных магнитов ротора, которые вместе с диском (маховиком) могут свободно вращаться вокруг оси. Параллельно рабочему диску (маховику) двигателя на штоке закреплен неподвижно цилиндрический постоянный магнит стопора, который вместе со штоком может перемещаться в зону действия магнитных полей постоянных магнитов ротора, расположенных на рабочем диске. Все магниты обращены друг к другу одноименными полюсами. Одноименные полюса отталкиваются и заставляют рабочий диск двигателя вращаться вокруг оси. Двигатель работает от энергии сильных магнитных полей постоянных магнитов за счет разницы потенциалов магнитной энергии на полюсах магнитов ротора и их нейтральных зонах. Технический результат заключается в том, что для создания вращения потребление топлива минимально. 2 ил.

Наиболее близким по технической сущности к предлагаемому решению является магнитный двигатель (вибратор), включающий статор в виде кольцевого постоянного магнита и ротор (якорь) в виде стержневого постоянного магнита, размещенного внутри статора в одной с ним плоскости, с возможностью взаимодействия между ними одноименными полюсами (а. с. СССР N 1658310, H 02 K 33/00, 1988 г.). Его недостаток в том, что ему нужен подвод электроэнергии. Целью предлагаемого изобретения является создание экологически чистого, без выхлопных газов двигателя, не требующего потребления топлива и подвода энергии извне, не загрязняющего атмосферу воздуха и окружающую среду. Двигатель будет работать от энергии сильных магнитных полей постоянных магнитов, расположенных на двигателе. Постоянные магниты длительное время сохраняют свои сильные магнитные поля и могут многократно намагничиваться. Стабильность магнитных полей постоянных магнитов сохраняется и при работе двигателя благодаря непрерывному вращению, т.е. движению отрицательно заряженных электронов по своим замкнутым орбитам вокруг ядра атома вещества, из которого построены магниты. При своем вращении по замкнутым орбитам электроны создают круговые электрические токи, вокруг которых по закону магнетизма и возникает магнитное поле, являющееся неотделимым спутником всякого тока. А вследствие этого и происходит непрерывное преобразование и пополнение магнитной энергией в постоянных магнитах. Вот почему и сохраняется стабильность магнитных полей и при работе двигателя. Поэтому бестопливному двигателю и не требуется топливо и подвода энергии извне. Бестопливный двигатель может быть различной мощности, которая определяется тремя факторами: 1. Увеличение рабочего плеча двигателя. Достигается это за счет увеличения диаметра статора и соответственно с ним диаметра ротора двигателя. 2. Использование постоянных магнитов с более мощными магнитными полями. 3. Увеличение массы диска, который является еще и маховиком двигателя. А так как диск двигателя способен развивать до двадцати тысяч оборотов в минуту, то даже при небольшом увеличении массы диска (маховика) вращающий его момент будет соответственно усиливаться, одновременно с этим будет увеличиваться и мощность двигателя. Экологически чистый бестопливный двигатель может быть широко использован в автомобилестроении, тракторостроении, авиации, космосе, в подводном транспорте, в энергетике, в коммунальном хозяйстве и во многих других отраслях народного хозяйства. Работа двигателя. На схеме 1 изображен общий вид рабочего диска двигателя, закрепленного на рабочей оси (вид сверху). На плоскости диска может быть установлен и закреплен один или несколько постоянных магнитов. В данном варианте, как показано на схеме, на плоскости диска закреплены неподвижно два постоянных магнита (N 2, N 3), которые вместе с диском могут свободно вращаться на оси диска. Параллельно рабочему диску двигателя на штоке закреплен неподвижно постоянный магнит N 1, который вместе со штоком может перемешаться в зону действия магнитных полей магнитов (N 2, N 3). Все магниты (N 1, N 2, N 3) обращены друг к другу одноименными полюсами. Поэтому при введении магнита N 1 при помощи штока в зону действия магнитов (N 2, N 3) их магнитные поля полюсов N вступают во взаимодействия. Они складываются, а их результирующий отталкивающий момент усиливается. При этом возникают в горизонтальной плоскости силы отталкивания у магнита N 1 (статора), направленные радиально к поверхностям конических торцов полюсов N магнитов N 2 и N 3 (ротора). А так как диск с магнитами N 2 и N 3 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы магнита N 1 (статора), действующей на поверхности конических торцов полюсов N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска, т.е. (ротора) вокруг оси. Вращение диска с магнитами N 2 и N 3 происходит, как показано на схеме, по направлению часовой стрелки. Выключение работы бестопливного двигателя происходит при выводе магнита N 1 из зоны действия магнитного поля магнитов N 2 и N 3. При конструировании магнитов диска необходимо иметь ввиду то, что длина магнита должна быть такой, чтобы в центре его нейтральной зоны оставалась намагниченность, близкая к нулю. Это позволит соблюдать разницу потенциалов магнитной энергии (намагниченности) между полюсами магнита и его нейтральной зоны, так как за счет этой разницы потенциала магнитной энергии и происходит непрерывное вращение рабочего диска двигателя. На схеме 2 изображен второй вариант магнитного двигателя, где показан манит N 1 (статор), имеющий форму круга закрепленного на опоре. Параллельно магниту N 1 расположен подковообразный магнит N 2 (ротор), который закреплен на диске со штоком. Полюса N и S магнита N 2 имеют конусообразную форму под углом 40-45 градусов. Диск с магнитом N 2 при помощи штока может подыматься и опускаться к поверхности торца полюса N магнита N 1. Магниты N 1 и N 2 направлены друг к другу одноименными полюсами. При опускании магнита N 2 при помощи штока к поверхности торца полюса N магнита N 1 на близкое расстояние их магнитные поля полюсов N вступают во взаимодействия. Они складываются, их результирующий отталкивающий момент усиливается. При этом возникают силы отталкивания у торца полюса N магнита N 1 (статора) в вертикальном направлении, вдоль оси, направленные к поверхности конического торца полюса N магнита N 2 (статора). А так как диск с магнитом N 2 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы торца полюса N магнит N 1 (статора), действующей на коническую поверхность торца полюса N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска двигателя, т.е. (ротора) вокруг оси по направлению часовой стрелки. Включение работы бестопливного двигателя происходит при выводе магнита N 2 из зоны действия магнитного поля магнитов N 1 при помощи штока. Использование экологически чистого бестопливного двигателя избавит от загрязнения выхлопными газами и другими вредными веществами атмосферу воздуха и окружающую среду нашей планеты.

Формула изобретения

Двигатель для получения вращательного движения, содержащий закрепленный параллельно постоянному магниту ротора постоянный магнит статора, имеющий возможность перемещаться в зону действия магнитного поля постоянного магнита ротора, отличающийся тем, что постоянный магнит статора неподвижно закреплен на штоке, при помощи которого он вводится в зону действия магнитных полей постоянных магнитов ротора, выполненного в виде диска (маховика), на котором установлен один или несколько, обращенных одноименными полюсами к постоянному магниту статора подковообразных магнитов ротора, длина которых выбрана такой, чтобы в центре нейтральной зоны оставалась намагниченность, близкая к нулю, что обеспечит отталкивание одноименных полюсов статора и ротора при введении постоянного магнита статора, неподвижно закрепленного на штоке в зону действия постоянного магнита ротора, и в результате взаимодействия магнитного поля постоянного магнита ротора с магнитным полем одноименного полюса постоянного магнита статора именно за счет их отталкивания обеспечено вращение ротора.

Похожие патенты:

Изобретение относится к электротехнике, импульсной технике, к формированию электромагнитного импульса под действием сжатия магнитного потока энергией взрывчатого вещества (ВВ) и может быть использовано для генерации магнитных полей мегагауссного диапазона и мощных импульсных токов

Патент на безтопливный двигатель выдан Василию Алексеенко, русскому «Левше», 10 июня 1999 года Российским агентством по патентам и товарным знакам.Двигатель не требует вообще никакого топлива: ни нефти, запасы которой ограничены, ни газа — ничего, что мы называем сырьем. Работает уникальный двигатель от энергии магнитных полей постоянных магнитов. Если один килограмм обычного магнита может притянуть или оттолкнуть 50 или 100 кг. массы, то мощные оксидно-бариевые способны то же самое проделывать с пятью тысячами килограммов массы. Такие мощные магниты, как уточняет изобретатель, не нужны. Годятся самые известные: один к пятидесяти или один к ста. С их помощью можно получить в двигателе, который сотворил русский «Левша», 20 тысяч оборотов в минуту. Мощность придется даже гасить, используя передающее устройство. Постоянные магниты, от энергии которых работает двигатель, на нем и расположены «Ротор своим магнитным полем отталкивается от такого же поля статора и начинает вращаться, а магнитное поле статора следует за ним и как бы его подгоняет, ускоряя вращение» (из выступления Василия Алексеенко). Так можно добиться чудовищной мощности. Если такой двигатель использовать, скажем, в стиральной машине, вращение обеспечат крохотные магнитики…..

Русский изобретатель из Перми А. Бакаев создал «приставку» к автодвигателям, которая позволяет автомобилям ездить на воде без каких-либо углеводородных добавок к ней. И это не фантастический проект. Он уже внедряется. Приставками оснащены уже более 3-х тысяч автомобилей, курсирующих по дорогам России. Это в буквальном смысле подарок автолюбителям. Использование приставок избавляет автомобилистов от затрат на бензин, а атмосферу — от вредных выбросов. Чтобы создать такую приставку, А. Бакаев сначала открыл новый тип расщепления, использовав его в своем уникальном изобретении.Другой русский ученый XX века, Б. Болотов, создал автодвигатель, которому нужна чуть ли не капля бензина, и то для первоначальной раскрутки. Двигателю, который он изобрел, не нужны ни коленчатый вал, ни цилиндры, ни вообще трущиеся детали. Их заменяют два диска на подшипниках с небольшим зазором между ними. В качестве топлива работает воздух, который на огромных оборотах разделяется на кислород и азот. При 90° градусах азот сгорает в кислороде, в результате чего двигатель массой 8 кг развивает мощность в 300 лошадиных сил.Помимо безтопливного двигателя Василия Алексеенко, русские изобретатели предложили еще несколько конструкций безтопливных двигателей. Они работают на принципиально новых источниках энергии: на энергии вакуума и других.

Безтопливный двигатель работает, но никто знает, почему June 18th, 2016

Так называемый EmDrive создаёт тягу за счёт отскакивание микроволн от стенок в закрытой камере, используя только солнечную энергию.

Многие считают проект очередным надувательством, утверждая, что это идёт вразрез с законами физики.

Но теперь появилась группа учёных, которые заявляют, что у них есть новая теория, объясняющая, почему работает EmDrive.

Межзвездные путешествия при нынешнем состоянии технологий невозможны — говорит сама физика с ее законом сохранения импульса. Перефразируя известного персонажа, чтобы разогнать что-нибудь нужное, сперва следует выбросить в противоположном направлении что-нибудь ненужное — вроде ракетного топлива, которого не накопишь на путешествие за границы Солнечной системы.

Чтобы выйти из этого тупика, энтузиасты освоения космоса периодически анонсируют устройства вроде двигателя EmDrive — которые, как нам обещают, не нуждаются в выбросе топлива, чтобы набирать скорость. Идея создания EmDrive была предложена в 2000 году исследователем Роджером Шойером.

На вид гипотетический двигатель представляет собой ведро с магнетроном (генератором микроволн, как в СВЧ-печи) внутри. По утверждению изобретателей, раз микроволны не выходят из ведра, значит выброса чего-либо материального не происходит, при этом само «ведро» создает тягу, фиксируемую в экспериментах с 2002 года и по сей день. Причем один такой опыт проделали в НАСА, другой совсем недавно провел Мартин Таджмар (Martin Tajmar), глава немецкого Института аэрокосмического инжиниринга при Техническом университете в Дрездене. Оба учреждения трудно назвать прибежищем научных фриков — быть может, за аномальной тягой EmDrive что-то есть?


Их оппонентов, впрочем, это не смущает. Одни, как Шон Кэролл (Sean Carroll) из Калифорнийского технологического института, просто характеризует EmDrive словами , которые невозможно повторить в русскоязычных СМИ. Те, кто сдержаннее, высказывают ту же мысль иначе: EmDrive нарушает закон сохранения импульса . А Эрик Дэвис (Eric W. Davis) из Института продвинутых исследований в Остине (США) добавляет: даже если бы тяга действительно создавалась, но как в испытаниях обнаруживалась бы лишь десятками микроньютонов, то профессионалам, работающим в аэрокосмической отрасли, «вообще неинтересны новые методы передвижения, […] порождающие тягу измеряемую лишь в микроньютонах» — слишком уж она невелика.

Здесь следует отметить, что последнее утверждение довольно рискованно. По данным упомянутых экспериментов НАСА, зарегистрированная тяга составила 0,4 ньютона на киловатт — и несмотря на то, что эта цифра действительно ничтожна, двигатель с такими параметрами доставил бы New Horizons к Плутону за полтора года, вместо десятилетия, потребовавшегося на практике. Иными словами, для действительно дальних перелетов ситуация крайне далека от «незаинтересованности».



Принцип работы EmDrive, Изображение: M. Tajmar and G. Fiedler / Institute of Aerospace Engineering, Technische Universität Dresden, 01062 Dresden, German

Но таинственный двигатель поставил учёных в тупик, так как мы уже говорили очевидно, что этот двигатель нарушал закон сохранения импульса, гласящий, что каждое действие должно быть равно противодействию.

Это означает, что ракета может двигаться с ускорением вперёд только тогда, когда прилагается сила равной величины в другом направлении — в виде выхлопных газов ракеты.

«EmDrive работает точно так же, как и любой другой двигатель», — говорит автор статьи профессор физики в Университете Хельсинки доктор Арто Аннила.

«Его топливом являются входящие фотоны микроволновой длины».

Исследователи предполагают, что фотоны, выходящие из двигателя, взаимодействуют друг с другом, и поэтому общий эффект получается нулевым.

«В камере фотоны будут отскакивать в разные стороны, и неизменно некоторые из них будут оказывать деструктивное воздействие».

«Тогда два фотона будут определённо находиться в противоположных фазах на 180 градусов».

«При полной интерференции электромагнитные поля двух фотонов нивелируются, но сами фотоны продолжают распространяться.

Идея схожа с тем, как распространяются волны на воде, когда гребень одной волны точно приходится на нижнюю точку другой волны, ослабляя друг друга.

«Спаренные фотоны без электромагнитного поля выйдут из камеры, — сказал доктор Аннила. — Этот выход спаренных фотонов является выхлопом EmDrive».

«Когда камера несимметрична, то истечение спаренных фотонов также будет асимметричным. Поэтому потеря импульса спаренных фотонов происходит неравномерно. Другими словами, возникает тяга».

«Тяга без выхлопных газов, конечно, невозможна, — утверждают авторы статьи. — Тем не менее, некоторые резонансные камеры, получающие топливо в виде микроволн, обеспечивают тягу без видимых выхлопных газов».

Согласно их теории, EmDrive вырабатывает выхлопные газы, но их просто не видно.

Учёные считают, что фотоны теоретически можно обнаружить с помощью интерферометра, инструмента, который используется для обнаружения гравитационных волн.


Сложнее вопрос о том, работает ли EmDrive на самом деле, или в экспериментах «регистрируется» несуществующая тяга. Мартин Таджмар — известный «разрушитель мифов», экспериментатор, поставивший несколько «аномальных» экспериментов, найдя источники их аномалий в трудно обнаруживаемых ошибках измерения. В этот раз он привлек крутильные весы и проводил сам эксперимент в глубоком вакууме, чтобы исключить влияние конвекции воздуха. Все это не помогло убрать аномальную тягу.

Однако оппоненты не утратили своего скепсиса. Тот факт, что тяга не исчезала сразу после выключения EmDrive, может указывать на то, что речь идет о каком-то тепловом эффекте, влияющем на показания регистрирующих приборов. Следует отметить, что Таджмар в своей работе детально описывает предпринятые меры по теплозащите и магнитному экранированию, которых его критики (являющиеся физиками-теоретиками) почему-то не замечают.

Более всего смущает тезис Эрика Дэвиса о том, что работа Таджмара «не будет принята рецензируемыми журналами», только потому, что она не предлагает теоретического механизма, который мог бы объяснять наблюдавшуюся аномальную тягу. Очевидно, Дэвис в курсе того, как в XIX веке Майкельсон и Морли в American Journal of Science описание эксперимента, также не предложив никакого внятного теоретического механизма, который мог бы объяснить его. Если бы тогда журнал стоял на позициях Дэвиса, результаты важнейшего эксперимента, вызвавшего кризис теории эфира и в конечном счете возникновение теории относительности, просто не были бы опубликованы. Эксперименты по бета-распаду в 1914-1930 годах формально и вовсе нарушали закон сохранения энергии, но трудно представить себе, как кто-то из физиков той поры говорит: «данные об этом не попадут в рецензируемые журналы, потому что не объяснены теоретически».

Повторимся: отсутствие теоретического объяснения тяги EmDrive действительно означает, что, скорее всего, он не работает — по крайней мере, не работает так, как это описывает его создатель Роджер Шойер (Roger Shawyer). Но и позиция Дэвиса, сводящаяся к утверждению «не стоит тратить время на эксперименты, если у них нет теоретического объяснения», несомненно, необычна для ученого.

Разработаны двигатели и генераторы, производящие избыточную мощность. Т.е. на единицу потребляемой мощности, они вырабатывают во много раз большую мощность. Избыток мощности отбирается от окружающего пространства и выдается потребителю. Даные устройства очень просты по конструкции,не требуют дорогих материалов и специальных технологий. Изготовление может быть налажено на любом электромашиностроительном предприятии. Лучше других конструкций,был исследован электродвигатель. Испытание макета двигателя полностью подтвердило теорию. Выходная, механическая мощность, в три раза превысила, потребляемую электрическую.

Для эксперимента был изготовлен один из самых простых и неэффективных вариантов двигателя. Данный двигатель разместили на одной раме с автомобильным генератором от автомобиля Жигули, соединив клиноременной передачей их шкивы. Двигатель питался от сети 220 вольт. Для управления двигателем был использован механический коммутатор, а не электронный, что также значительно снизило эффективность его работы. В качестве нагрузки генератора использовались автомобильные лампы. При этом потребляемая двигателем мощность составила 140 ватт. Измерив мощность на выходе генератора на лампочках, получили 160 ватт электрической мощности. Известно, что автомобильные генераторы имеют КПД, не превышающий 60%, поэтому механическая мощность на валу двигателя была значительно выше, чем электрическая на выходе генератора.

К сожалению, не было возможности достать генератор переменного тока на 220 вольт необходимой мощности и проверить устройство в режиме самозапитки. А от того генератора, что использовался, это было невозможно. Но и в этом виде, испытания показали, что возможно получение большей механической мощности, чем затрачено электрической. Механический коммутатор не позволил работать в нужном алгоритме подачи напряжения на обмотки. Поэтому двигатель потреблял гораздо большую электрическую мощность, чем было необходимо. И в конце концов сгорел при испытаниях. Тем более, изготовлен был со значительным отступлением от авторского проекта. Используя электронный Блок Управления двигателем, можно значительно улучшить параметры. Исследования на другом макете показало, что реально достичь отношения входная электрическая/выходная механическая мощность 1/20, а немного усложнив конструкцию, показатели можно улучшить в несколько раз.

Сейчас разработан источник энергии для электромобиля,позволяющий без всяких аккумуляторов ездить пока не износится сама конструкция. Источник гораздо компактнее,легче,дешевле аккумуляторов. Срок службы может быть десятки лет.

Бестопливный двигатель

С каждым днем все больше людей во всем мире задумываются о возможности получения свободной энергии. Сегодня доступным способом получения такой энергии является альтернативная энергетика. Альтернативные источники энергии преобразуют природную энергию в нужную нам электрическую и тепловую. Но главным их недостатком является зависимость от погодных условий. Данного недостатка и некоторых других лишен изобретенный безтопливный двигатель Москвина.

Безтопливный двигатель Москвина — механическое устройство, преобразующее потенциальную энергию наружней консервативной силы, в кинетическую энергию вращения рабочего вала без потребления какого-либо вида топлива и электроэнергии. Безтопливный двигатель — своего рода вечный двигатель, работающий бесконечно долго, пока к рычагам приложено усилие и детали не изношены с непрерывным преобразованием свободной энергии. Свободная энергия, получаемая в процессе работы бестопливного двигателя, полность бесплатна, а потребление бесплатной электроэнергии от бестопливного генератора, при подключении к двигателю обычного электрогенератра, будет абсолютно законно.

Безтопливный двигатель — это экологически чистый универсальный привод для различных устройств и механизмов, работающий без вредных выбросов в атмосферу с сохранением окружающей среды.

Безтопливный генератор — основное устройство, которое стало возможным благодаря бестопливному двигателю. Безтопливный генератор электроэнерги — это возможность производить автономные бестопливные электростанции различной мощности!

В настоящее время изобретение находится на стадии экспертизы по существу, и в отличии от многочисленных аналогичных запатентованых изобретений, работоспособность которых не была проверена по различным причинам и находится под сомнением, данный безтопливный двигатель уже имеет рабочий образец. практически подтверждающий реальность получения свободной энергии.

Бестопливный двигатель Москвина

1. Бестопливный двигатель, преобразующий потенциальную энергию наружной консервативной силы в кинетическую энергию вращения рабочего вала, состоящий из корпуса, ротора, рабочего вала, шарнирно закрепленного в корпусе, отличающийся тем, что для преобразования потенциальной энергии от наружной консервативной силы, приложенной, по меньшей мере, к одному входному механизму, соединенному с пустотелым валом, соосным с рабочим валом и шарнирно закрепленным на нем, применена механическая передача, обеспечивающая необходимую разность скоростей вращения рабочего и пустотелого валов и передачу крутящего момента, по меньшей мере, на один шарнирно закрепленный в маховиках ротора вал с зубчатым колесом, зубчатое колесо которого, находясь в зацеплении с зубчатым венцом, расположенным по всему диаметру в корпусе двигателя, возможно приведет во вращение ротор с рабочим валом в направлении, обратном вращению пустотелого вала.

2. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой цепную передачу от большой звездочки, закрепленной на пустотелом валу к малой звездочке, закрепленной на валу с зубчатым колесом.

3. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой ременную передачу от большого шкива, закрепленного на пустотелом валу к малому шкиву, закрепленному на валу с зубчатым колесом.

4. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой зубчатую передачу от большой шестерни, закрепленной на пустотелом валу, через промежуточную шестерню, закрепленную шарнирно на маховике ротора, к малой шестерне, закрепленной на валу с зубчатым колесом.

5. Бестопливный двигатель по п.1, отличающийся тем, что входной механизм представляет собой рычаг, соединенный с пустотелым валом и имеющий выход через окно в корпусе наружу.

Ученые: бестопливный двигатель невозможен

Новая разработка получила название EmDrive и обещала революционные перспективы. Создатели даже заявили о некоторых успехах на раннем этапе тестирования. Впрочем, скептиков в научной среде тоже хватает, и они решили выразить свои мысли на этот счет. Среди противников EmDrive оказался физик и математик Фил Плейт из Калифорнийского университета.

По мнению ученых, концепция бестопливного двигателя противоречит простым физическим законам. Пока создается тяга внутри двигателя, должен соблюдаться некий баланс сил внутри него, а по закону сохранения импульса это невозможно. «Нам придется свергнуть закон сохранения импульса, дабы говорить о чем-то подобном» — отмечает Фил Плейт. Иными словами, чтобы построить бестопливный двигатель, потребуется совершить некий прорыв в фундаментальной науке, а современные технологии не позволяют рассматривать EmDrive всерьез.

Косвенно на все это указывает и положение дел вокруг EmDrive. Рабочего образца двигателя пока что не существует, а характеристики экспериментального устройства ни о чем не говорят. Замеры показали тягу примерно в 16 миллиньютонов. Впоследствии этот показатель вырос до 50 миллиньютонов.

Напомним, что экспериментальная модель бестопливного двигателя EmDrive была представлена еще в 2003 году — разработчиком стал британец Роджер Шоер. Электричество, нужное для создания микроволн, добывается посредством солнечной энергии. Таким образом, ученые вновь дали повод говорить про вечный двигатель.

В NASA разработку своих коллег оценили неоднозначно. Была отмечена уникальность конструкции двигателя. При этом специалисты утверждают, что добиться результатов можно лишь в условиях квантового вакуума.

БЕСТОПЛИВНЫЙ ДВИГАТЕЛЬ

Патент на безтопливный двигатель выдан Василию Алексеенко, русскому Левше, 10 июня 1999 года Российским агентством по патентам и товарным знакам. Двигатель не требует вообще никакого топлива: ни нефти, запасы которой ограничены, ни газа — ничего, что мы называем сырьем. Работает уникальный двигатель от энергии магнитных полей постоянных магнитов. Если один килограмм обычного магнита может притянуть или оттолкнуть 50 или 100 кг. массы, то мощные оксидно-бариевые способны то же самое проделывать с пятью тысячами килограммов массы. Такие мощные магниты, как уточняет изобретатель, не нужны. Годятся самые известные: один к пятидесяти или один к ста. С их помощью можно получить в двигателе, который сотворил русский Левша, 20 тысяч оборотов в минуту. Мощность придется даже гасить, используя передающее устройство. Постоянные магниты, от энергии которых работает двигатель, на нем и расположены Ротор своим магнитным полем отталкивается от такого же поля статора и начинает вращаться, а магнитное поле статора следует за ним и как бы его подгоняет, ускоряя вращение. Так можно добиться чудовищной мощности. Если такой двигатель использовать, скажем, в стиральной машине, вращение обеспечат крохотные магнитики.

Русский изобретатель из Перми А. Бакаев создал приставку к автодвигателям, которая позволяет автомобилям ездить на воде без каких-либо углеводородных добавок к ней. И это не фантастический проект. Он уже внедряется. Приставками оснащены уже более 3-х тысяч автомобилей, курсирующих по дорогам России. Это в буквальном смысле подарок автолюбителям. Использование приставок избавляет автомобилистов от затрат на бензин, а атмосферу — от вредных выбросов. Чтобы создать такую приставку, А. Бакаев сначала открыл новый тип расщепления, использовав его в своем уникальном изобретении.Другой русский ученый XX века, Б. Болотов, создал автодвигатель, которому нужна чуть ли не капля бензина, и то для первоначальной раскрутки. Двигателю, который он изобрел, не нужны ни коленчатый вал, ни цилиндры, ни вообще трущиеся детали. Их заменяют два диска на подшипниках с небольшим зазором между ними. В качестве топлива работает воздух, который на огромных оборотах разделяется на кислород и азот. При 90° градусах азот сгорает в кислороде, в результате чего двигатель массой 8 кг развивает мощность в 300 лошадиных сил.Помимо безтопливного двигателя Василия Алексеенко, русские изобретатели предложили еще несколько конструкций безтопливных двигателей. Они работают на принципиально новых источниках энергии: на энергии вакуума и других.

Источники: www.susam.ru, energetiku.jimdo.com, bankpatentov.ru, naked-science.ru, maksonovosti.livejournal.com

Война богов и людей

Много веков жизнь продолжалась согласно установленному порядку. Но однажды произошла война богов и людей. Этому предшествовал мятеж…

Вертикальный инерционный электрогенератор памяти Адамса ВЕГА, Автономный электрогенератор ВЕГА, альтернативная энергетика, генератор адамса, вега генератор, вертикальный генератор адамса, на постоянных магнитах

  Альтернативная энергетика стала не только одной из наиболее обсуждаемых тем последнего времени. В силу сложившихся обстоятельств она стала единой сферой решений глобальных проблем  вместе с внедрением передовых энерготехнологий. Грядущий энергетический кризис и катастрофическое состояние экологии стали теми факторами, которые потребовали поиска возобновляемых источников энергии и практических разработок новых энергетических технологий.

  Чистый ресурс, «зеленая» энергетика уже сегодня стали, если не национальной гордостью, то наиболее динамично развивающимся сектором энергетической промышленности многих стран. Сегодня стали привычными пейзажи ветроэнергетических установок по склонам холмов. Уже никого не удивишь панелями солнечных батарей на крышах небоскребов и электростанциями на морском побережье, генерирующими энергию приливов и отливов. Преимущества альтернативных энерготехнологий, несмотря на, порой, конъюнктурные результаты исследований экспертов в этой области очевидны. Для многих внедрение альтернативных энерготехнологий – не конъюнктурный вопрос, а вопрос принятых решений.

  Но… Успешная работа генерирующих установок, использующих возобновляемые источники энергии, требует соблюдения необходимых и достаточных условий эксплуатации, как то: постоянный умеренный ветер, желательно всегда безоблачное небо или мягкий прилив-отлив морской пучины. В этой связи энергогенерирующее устройство ВЕГА в общем ряду альтернативных источников энергии занимает особое место. Исключительность генератора ВЕГА обусловлена, прежде всего, тем, что это по-настоящему инновационная технология основана на принципе так называемой генерации свободной энергии, практической реализации которого посвятили свои исследования Адамс и Бедини.

  Практическим опытом реализации этого принципа сегодня стал вертикальный инерционный электрогенератор памяти Адамса. Генератор ВЕГА – качественная альтернатива всем возобновляемым источникам энергии сегодняшнего дня.

  Главным преимуществом вертикально-ориентированного инерционного электрогенератора ВЕГА, классифицируемого как бестопливное самовосстанавливающееся зарядное устройство, является отсутствие необходимости постоянного внешнего воздействия для придания вращательного движения валу генератора. Синхронный генератор памяти Адамса независим от силы воздушных потоков, количества солнечных лучей или других источников энергии.

Принцип работы электрогенератора ВЕГА

Принцип работы электрогенератора ВЕГА заключается в использовании гибридной системы, которая конвертирует кинетическую и электромагнитную энергию в высокую пульсацию тока, другими словами, преобразует кинетическую и электромагнитную энергии в высокотоковые импульсы. В работе используется бесщеточный и безредукторный многополюсный генератор прямого вращения. В создании генераторов ВЕГА используют генераторы от 1 до 5 кВт с наружным ротором, то есть вращается само тело генератора. Корпус генератора изготавливается таким образом, чтобы защитить все узлы и механизмы от пагубного воздействия внешней среды. Таким образом, пыль, влага, соль и химические соединения никак не влияют на устройство, тем самым обеспечивая высокий уровень надежности устройства.

По наружному диаметру на ротор генератора механическим способом фиксируются магниты NdFeB, напряженность поля которых подбирается индивидуально, в зависимости от модели и скорости вращения генератора, при которой развивается инерционность движения маховика.

  Общий вид генератора ВЕГА памяти Адамса

  Принципиальная схема генератора выглядит таким образом

  Скоба с э/магнитными катушками, толкающими и собирающими, с драйверами и  оптическими датчиками в сборе

  В качестве регенеративной системы вращения ротора используется модуль ускорительных электромагнитных катушек 8 Ом. Время открытия фиксировано и равно 1,8 градуса, при этом величина не зависит от частоты вращения ротора. «СEMF» (counter electro magnetic force) сила, используемая для регенерации импульсной амплитуды силой 350 В.

  Эффективность регенерации при этом достигается порядка 300%.

  Синхронный генератор, у которого N-полюс магнита обращен наружу, обеспечивает непрерывное вращение, контролируемое толчковым воздействием комплекта ускоряющих электромагнитных катушек, имеющих особую геометрическую форму.

  Высоковольтные отрицательные пики напряжения на собирающих катушках транспортируют энергию в батареи для обеспечения их постоянного вращения. Катушки, при этом, выполняют роль ветроколеса.

Вырабатываемый генератором трехфазный ток направляется в контроллер, где преобразованная энергия выдается в виде перемежающихся высокотоковых импульсов для зарядки аккумуляторных батарей инвертора.

Контроллер

  В основе принципа создания контроллера лежит система каскадного конденсаторного умножителя (1 к 4), принципиальная схема которого была разработана еще в 1919 году швейцарским физиком Генрихом Грейнахером. Контроллер на основе умножителя способен преобразовать переменное или пульсирующее постоянное напряжение в высокое постоянное напряжение. Контроллер состоит из группы конденсаторов и диодов. Усовершенствованная схема такого контролера использовалась Джоном Кокрофтом и Эрнстом Уолтоном в исследованиях, которые отмечены Нобелевской премией по физике 1951 года. Формирование высокочастотных индуктивных импульсов, которые в сочетании с большой инерционной способностью генератора позволяют заряжать АКБ на оборотах, составляющих до ½ от номинальной мощности генератора.. К устройству возможно подключение параллельно-последовательно до 8 АКБ 12В-200А/ч. Зарядка АКБ происходит высокочастотными сверхкороткими импульсами (напряжение импульса достигает значения до 600 В) сила тока 0.1-0.5А.

  Электроэнергия трехфазного тока вырабатывается синхронным генератором. При этом стимуляция вращения ротора (тела генератора) происходит за счет импульсного возбуждения внешних катушек. Энергия возбуждения на 100% регенерируется в системе катушек. Подключение нагрузки потребителя через контролер ВЕГА не приводит к увеличению затрачиваемой энергии катушками и не притормаживает генератор, так как энергия «снимается» с генератора, вращающегося на «холостых оборотах».

  Система, работая в непрерывном режиме, заряжает АКБ, выдает зарядку, 9% из которой направляется на катушку АКБ и 91% идет на зарядку самой АКБ, в дальнейшем преобразованную инвертером. В случае отсутствия необходимости потребления энергии, генератор затормаживается или останавливается и запускается снова, как только возникает необходимость в потреблении энергии.

  Увеличение выходной мощности генератора производится путем соединения нескольких блоков генератора (возможно с мощностью от 1,5 кВт до 3,5 МВт) и, соответственно, складывается в суммарную мощность. Система предполагает возможность параллельного использования генератора с солнечными батареями.

 Внешний вид корпуса блока генератора

  Спаренные корпуса генераторов

                                              

  Пример одновременного использования спаренного генератора и солнечной фотопанели

 

 

Назначение и применение ВЕГА 1/5 кВт

 

  Энергогенератор памяти Адамса ВЕГА — один из лучших способов решения задач автономного энергоснабжения. Главная задача генератора – обеспечение потребителей электроэнергией. Вертикальный инерционный электрогенератор памяти Адамса (ВЕГА) способен работать в такой местности, удаленной от систем центрального электроснабжения, а использование, например, ветрогенератора невозможно из-за ограниченного воздействия воздушных потоков. Электрогенератор ВЕГА является необслуживаемым устройством, то есть, работа генератора не требует вмешательства в пределах срока эксплуатации комплектующих узлов и агрегатов. ВЕГА – это многополюсный бесщеточный безредукторный генератор медленного вращения.

 

  Генератор ВЕГА может быть использован в любых, самых недоступных местах, имеющих потребность в энергоснабжении и потреблении. Это может быть жилище (дом, квартира, дача, усадьба), аграрное или фермерское хозяйство, где необходимо отапливать или освещать теплицы, помещения, производственные или коммерческие предприятия с ограниченной потребностью. Незаменимым источником энергии может оказаться ВЕГА для воздушных и морских судов. Возможности нового генератора не ограничены никакими препятствиями. В будущем такая система получения энергии сможет быть использована в автомобилестроении. Электроавтомобиль, который не будет нуждаться в подзарядке аккумуляторных батарей, – звучит как фантастика, но ВЕГА способен претворить и такую идею в жизнь.

 

 

Основные преимущества ВЕГА

 

  Энергогенератор памяти Адамса независим от внешних природных факторов, как то: солнечный свет, ветер, влажность воздуха, давление, время суток. Устройство устанавливается в помещении, и на него не могут повлиять атмосферные осадки, изменения температуры и прочее.

 

  Компактность установки позволяет использовать устройство в любых помещениях. Генератор не оказывает негативного воздействия на людей и окружающие предметы. Он не выделяет тепла и не является источником шума.

 

  Если кто-то решит, что ВЕГА – подобие вечного двигателя, ошибается. Срок службы прибора, к сожалению, ограничен. Эксплуатация, в первую очередь, приводит к периодической замене аккумуляторных батарей, срок службы которых находится в пределах, предусмотренных руководством по эксплуатации. Основным изнашивающимся узлом генератора является подшипник. Применение специально разработанного японскими специалистами упорно-радиального подшипника позволяет использовать генератор без его замены на протяжении в среднем 10 лет. В среднем срок службы генератора рассчитан примерно на 20 лет эффективной работы.

  Время, в котором нам довелось жить, называют временем глобальных проблем. Человек, который считает себя венцом природы, так до конца и понимает, что он на 100% зависим от природы. Важнейшим фактором, обеспечивающим жизнедеятельность человека, является получение различных видов энергии. Подавляющее количество энергетических запасов человек забирает у природы, отдавая ей только грязь и отходы. Рано или поздно это закончится. Природные ресурсы исчерпаемы, вот в это время выживут только те, кто сможет найти альтернативные источники возобновляемой энергии. Все, что не делал бы человек в быту или в производстве требует энергии. Если обозначить на карте регионы, которые богаты полезными ископаемыми, которые являются источником энергии, мы безошибочно укажем на процветающие государства. Но. Необходимо понимать, что благополучие в этих регионах закончится в тот день когда из скважин будит выкачан последний литр нефти, а из шахты последний килограмм угля. Этот день наступит неизбежно.

  Понимание проблем постепенно охватывает все большее количество людей, которые стремятся обеспечить будущее своим потомкам, ищут, находят и внедряют инновационные источники энергии, разрешая тем самым не только свои проблемы с получением источника движения, но и помогая природной среде.

  Таким образом, победителем окажется тот, кто сможет полностью отказаться от помощи природы в вопросе получения энергоносителей. Единственный вид энергии, которым может быть получен человеком без помощи природных ресурсов – это электричество. Электричество это универсальный вид энергии, который подойдет для любых жизненных ситуаций: благодаря электричеству двигаются все механизмы товарного производства, электричество помогает приготовить пищу, обогреть жилище, двигает автомобили  и поезда. Вот, еще бы создать генератор, способный вырабатывать энергию бесконечно долго с минимальными материальными затратами. Не одно десятилетие ученые бьются над решением этой проблемы. О том, что их усилия не имеют успеха, говорить нельзя. Взять, к примеру, вертикальный электрогенератор памяти Адамса – ВЕГА.

НА ДАННЫЙ МОМЕНТ ПОСТАВКА ДАННОГО ОБОРУДОВАНИЯ ПРИОСТАНОВЛЕНА

обзор, принцип работы. Двигатель на магнитах Математическое описание вд с постоянными магнитами

Возможность получения свободной энергии для многих учёных в мире является одним из камней преткновения. На сегодняшний день получение такой энергии осуществляется за счёт альтернативной энергетики. Природная энергия преобразовывается альтернативными источниками энергии в привычную для людей тепловую и электрическую. При этом такие источники обладают основным недостатком — зависимостью от погодных условий. Подобных недостатков лишены бестопливные двигатели, а именно — двигатель Москвина.

Двигатель Москвина

Бестопливный двигатель Москвина представляет собой механическое устройство, которое преобразует энергию наружной консервативной силы в кинетическую энергию, которая вращает рабочий вал, без потребления электроэнергии или какого-либо вида топлива. Такие устройства являют собой фактически вечные двигатели, работающие бесконечно долго до тех пор, пока прилагается усилие к рычагам, а детали не изнашиваются в процессе преобразования свободной энергии. В процессе работы бестопливного двигателя образуется бесплатная свободная энергия, потребление которой при подключении генератора является законным.

Новые бестопливные двигатели представляют собой универсальные и экологически чистые приводы для различных механизмов и устройств, которые работают без вредных выбросов в окружающую среду и атмосферу.

Изобретение в Китае безтопливного двигателя сподвигло учёных-скептиков на проведение экспертизы по существу. Несмотря на то, что многие аналогичные запатентованные изобретения находятся под сомнением по причине того, что их работоспособность в силу определённых причин не была проверена, модель бестопливного двигателя полностью работоспособна. Образец устройства позволил получить свободную энергию.

Бестопливный двигатель на магнитах

Работа различных предприятий и оборудования, как и каждодневный быт современного человека, зависит от наличия электрической энергии. Инновационные технологии позволяют практически полностью отказаться от использования подобной энергии и устранить привязку к определённому месту. Одна из подобных технологий позволила создать бестопливный двигатель на постоянных магнитах.

Принцип работы магнитного электрогенератора

Вечные двигатели делятся на две категории: первого и второго порядка. Под первым типом подразумевают оборудование, способное вырабатывать энергию из воздушного потока. Двигателям второго порядка для работы требуется поступление природной энергии, — воды, солнечных лучей или ветра — которая преобразуется в электрический ток. Несмотря на существующие законы физики, учёные смогли создать вечный бестопливный двигатель в Китае, который функционирует за счёт производимой магнитным полем энергии.

Разновидности магнитных двигателей

На данный момент выделяют несколько видов магнитных двигателей, для работы каждого из которых требуется магнитное поле. Единственное различие между ними — конструкция и принцип работы. Двигатели на магнитах не могут существовать вечно, поскольку любые магниты теряют свои свойства спустя несколько сотен лет.

Самая простая модель — двигатель Лоренца, который реально собрать в домашних условиях. Для него характерно антигравитационное свойство. Конструкция двигателя строится на двух дисках с разным зарядом, которые соединены посредством источника питания. Устанавливают её в полусферический экран, который начинает вращаться. Такой сверхпроводник позволяет легко и быстро создать магнитное поле.

Более сложной конструкцией является магнитный двигатель Серла.

Асинхронный магнитный двигатель

Создателем асинхронного магнитного двигателя был Тесла. Его работа строится на вращающемся магнитном поле, что позволяет преобразовывать получаемый поток энергии в электрический ток. На максимальной высоте крепится изолированная металлическая пластина. Аналогичная пластина зарывается в почвенный слой на значительную глубину. Через конденсатор пропускается провод, который с одной стороны проходит через пластину, а с другой — крепится к её основанию и соединяется с конденсатором с другой стороны. В такой конструкции конденсатор выполняет роль резервуара, в котором накапливаются отрицательные энергетические заряды.

Двигатель Лазарева

Единственным работающим на сегодняшний день ВД2 является мощный роторный кольцар — двигатель, созданный Лазаревым. Изобретение учёного отличается простой конструкцией, благодаря чему его можно собрать в домашних условиях при помощи подручных средств. Согласно схеме бестопливного двигателя, используемую для его создания ёмкость делят на две равные части посредством специальной перегородки — керамического диска, к которому крепят трубку. Внутри ёмкости должна находиться жидкость — бензин либо обычная вода. Работа электрогенераторов такого типа основывается на переходе жидкости в нижнюю зону ёмкости через перегородку и её постепенном поступлении наверх. Движение раствора осуществляется без воздействия окружающей среды. Обязательное условие конструкции — под капающей жидкостью должно размещаться небольшое колёсико. Данная технология легла в основу самой простой модели электродвигателя на магнитах. Конструкция такого двигателя подразумевает наличие под капельницей колёсика с закреплёнными на его лопастях маленькими магнитами. Магнитное поле возникает только в том случае, если жидкость перекачивается колёсиком на большой скорости.

Двигатель Шкондина

Немалым шагом в эволюции технологий стало создание Шкондиным линейного двигателя. Его конструкция представляет собой колесо в колесе, которая широко применяется в транспортной промышленности. Принцип работы системы строится на абсолютном отталкивании. Такой двигатель на неодимовых магнитах может быть установлен в любом автомобиле.

Двигатель Перендева

Альтернативный двигатель высокого качества был создан Перендевым и представлял собой устройство, которое для производства энергии использовало только магниты. Конструкция такого двигателя включает в себя статичный и динамичный круги, на которые устанавливаются магниты. Внутренний круг беспрерывно вращается за счёт самооталкивающей свободной силы. В связи с этим бестопливный двигатель на магнитах такого типа считается наиболее выгодным в эксплуатации.

Создание магнитного двигателя в домашних условиях

Магнитный генератор можно собрать в домашних условиях. Для его создания используются три вала, соединённых друг с другом. Расположенный в центре вал обязательно поворачивается к остальным двум перпендикулярно. К середине вала крепится специальный люцитовый диск диаметром четыре дюйма. К другим валам крепятся аналогичные диски меньшего диаметра. На них размещают магниты: восемь посередине и по четыре с каждой стороны. Основанием конструкции может выступить алюминиевый брусок, который ускоряет работу двигателя.

Преимущества магнитных двигателей

К основным достоинствам подобных конструкций относят следующее:

  1. Экономия топлива.
  2. Полностью автономная работа и отсутствие необходимости в источнике электроэнергии.
  3. Можно использовать в любом месте.
  4. Высокая выходная мощность.
  5. Использование гравитационных двигателей до их полного износа с постоянным получением максимального количества энергии.

Недостатки двигателей

Несмотря на имеющиеся преимущества, у бестопливных генераторов есть и свои минусы:

  1. При длительном нахождении рядом с работающим двигателем человек может отмечать ухудшение самочувствия.
  2. Для функционирования многих моделей, в том числе и китайского двигателя, требуется создание специальных условий.
  3. Готовый двигатель подключить в некоторых случаях довольно сложно.
  4. Высокая стоимость бестопливных китайских двигателей.

Двигатель Алексеенко

Патент на бестопливный двигатель Алексеенко получил в 1999 году от Российского агентства по товарным знакам и патентам. Для работы двигателю не требуется топливо — ни нефть, ни газ. Функционирование генератора строится на полей, создаваемых постоянными магнитами. Обычный килограммовый магнит способен притягивать и отталкивать порядка 50-100 килограммов массы, в то время как оксидно-бариевые аналоги могут воздействовать на пять тысяч килограммов массы. Изобретатель бестопливного магнита отмечает, что настолько мощные магниты для создания генератора не требуются. Лучше всего подойдут обычные — один к ста либо один к пятидесяти. Магнитов такой мощности достаточно для работы двигателя на 20 тысячах оборотов в минуту. Мощность будет гаситься за счёт передающего устройства. На нём и располагаются постоянные магниты, энергия которых приводит двигатель в движение. Благодаря собственному магнитному полю ротор отталкивается от статора и приходит в движение, которое постепенно ускоряется из-за воздействия магнитного поля статора. Такой принцип действия позволяет развить огромную мощность. Аналог двигателя Алексеенко можно применять, к примеру, в стиральной машине, где его вращение будет обеспечиваться маленькими магнитами.

Создатели бестопливных генераторов

Специальное оборудование к автомобильным двигателям, которое позволяет машинам передвигаться только на воде без использования углеводородных добавок. Подобными приставками сегодня оснащаются многие российские автомобили. Использование подобного оборудования позволяет автомобилистам сэкономить на бензине и снизить количество вредных выбросов в атмосферу. Для создания приставки Бакаеву понадобилось открыть новый тип расщепления, который и использовался в его изобретении.

Болотов — учёный XX века — разработал автомобильный двигатель, которому для запуска требуется буквально одна капля топлива. Конструкция такого двигателя не подразумевает цилиндров, коленчатого вала и любых других трущихся деталей — они заменены двумя дисками на подшипниках с небольшими зазорами между ними. Топливом является обычный воздух, который расщепляется на азот и кислород на высоких оборотах. Азот под воздействием температуры в 90 о С сгорает в кислороде, что позволяет двигателю развить мощность в 300 лошадиных сил. Русские учёные, помимо схемы бестопливного двигателя, разработали и предложили модификации многих других двигателей, для функционирования которых требуются принципиально новые источники энергии — к примеру, энергия вакуума.

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

Содержание:

Существует немало автономных устройств, способных вырабатывать электрическую энергию. Среди них следует особо отметить двигатель на неодимовых магнитах, который отличается оригинальной конструкцией и возможностью использования альтернативных источников энергии. Однако существует целый ряд факторов, препятствующих широкому распространению этих устройств в промышленности и в быту. Прежде всего, это негативное влияние магнитного поля на человека, а также сложности в создании необходимых условий для эксплуатации. Поэтому прежде чем пытаться изготовить такой двигатель для бытовых нужд, следует тщательно ознакомиться с его конструкцией и принципом работы.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен . В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.

В интернете можно почерпнуть много полезной информации, и мне хотелось бы обсудить с сообществом возможность создания аппаратов (двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

В обсуждениях данных двигателей говорят что теоретически они возможно могут работать НО согласно закона сохранения энергии это невозможно.

Тем не менее что же собой представляет постоянный магнит:

Есть в сети информация о таких аппаратах:

По замыслу их изобретателей они созданы для получения полезной энергии но очень многие считают что в их конструкциях скрываются некие недоработки препятствующие свободной работе аппаратов для получения полезной энергии,(а работоспособность аппаратов всего лишь ловко скрытое мошенничество) . Попробуем обойти эти препятствия и проверить существование возможности создания аппаратов(двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

И вот вооружившись листом бумаги карандашом и резинкой попробуем добиться усовершенствования приведённых выше аппаратов

ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ

Настоящая полезная модель относится к магнитным аппаратам вращения, а также к области энергетического машиностроения.

Формула полезной модели:

Аппарат магнитного вращения состоящий из роторного (вращающегося) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и статорного (статического) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и расположенных на одной оси вращения, где роторный диск неподвижно соединён с валом вращения, а статорный диск соединён с валом посредством подшипника; какой отличается тем что в его конструкции применены постоянные магниты, сконструированные таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, а так же в конструкции применены статорный (статический) и роторный (вращающийся) диски с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами.

Предшествующий уровень техники:

А) Хорошо известен магнитный двигатель Кохеи Минато. Патент США № 5594289

В патенте описано магнитный аппарат вращения в котором на валу вращения расположены два ротора с размещёнными на них постоянными магнитами обычной формы (прямоугольный параллелепипед), где все постоянные магниты размещены наискосок радиальной линии направления ротора. А с наружной периферии роторов расположено два электромагнита на импульсном возбуждении которых и базируется вращение роторов.

Б)Так же хорошо известен магнитный двигатель Перендев

В патенте на него описан аппарат магнитного вращения в котором на валу вращения расположен ротор из немагнитного материала в котором расположены магниты, вокруг которого расположен статор из немагнитного материала в котором расположены магниты.

Изобретение обеспечивает магнитный двигатель, который включает: вал (26) с возможностью вращения вокруг своей продольной оси, первый набор (16) магнетиков (14) расположены на валу (26) в роторе (10) для вращения вала (26), и второй набор (42) магниты (40), расположенных в статоре (32), расположенных вокруг ротора (10), причем второй набор (42) магнетиков (40), во взаимодействии с первого набора (16) магнетиков (14), в котором магнетизм (14,40) первого и второго множеств (16,42) магнетизма, по крайней мере частично магнитно экранированы, чтобы сосредоточить свое магнитное поле в направлении разрыва между ротор (10) и статора (32)

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройстве вместо статора, используемого в обычных электродвигателях, или как в патенте,где используется два электромагнита на импульсном возбуждении, задействована система кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, и для сокращения,в данном ниже описании, названая статорным (статическим) диском.

В) Имеется ещё и такая схема аппарата магнитного вращения:

В схеме используется двухстаторная система и при этом в роторе по получению энергии вращения задействованы оба полюса постоянных магнитов. Но в данном ниже устройстве эффективность по получению энергии вращения будет гораздо выше.

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройства, вместо статора, используемого в обычных электродвигателях, или как в патенте, где используется два статора, внешний и внутренний; задействована система кольцеобразных обойм (секций) из постоянных магнитов измененной конфигурации, и для сокращения, в данном ниже описании, названа статорных (статическим) диском

В данном ниже устройстве ставится цель улучшить технические характеристики, а так же увеличить мощность аппаратов магнитного вращения использующих силу отталкивания одноимённых полюсов постоянных магнитов.

Реферат:

Настоящая заявка на полезную модель предлагает аппарат магнитного вращения.(схема 1, 2, 3, 4, 5.)

Устройство магнитного вращения содержит: вращающийся вал-1 к которому неподвижно закреплён диск-2 являющийся роторным (вращающимся) диском, на котором неподвижно закреплены а)кольцеобразная-3а и б)цилиндрическая-3б обоймы с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Так же Устройство магнитного вращения содержит и статорный диск-4 (схема: 1а, 3.) стационарно закреплённый и соединённый с вращающимся валом-1 посредством подшипника-5. к стационарному диску неподвижно прикреплены кольцеобразные (схема 2,3) магнитные обоймы (6а, 6б) с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Сами постоянные магниты (7) сконструированы таким образом что противоположные полюса расположены под углом 90 град. друг к другу (схема 1, 2.) и только на внешнем статоре (6б) и внутреннем роторе (3б) они обычной конфигурации: (8).

Обоймы с магнитами (6а, 6б, 3а.) выполнены кольцеобразной формы, а обойма (3б) цилиндрической формы, таким образом чтобы при совмещении статорного диска (4) с роторным диском (2) (схема 1, 1а.) обойма с магнитами(3а) на роторном диске (2) помещалась в середину обоймы с магнитами (6б) на статорном диске (4) ; обойма с магнитами (6а) на статорном диске (4) помещалась в середину обоймы с магнитами (3а) на роторном диске (2) ; и обойма с магнитами (3б) на роторном диске (2) помещалась в середину обоймы с магнитами (6а)на статорном диске (4).

Работа устройства:

При соединении (совмещении) статорного диска (4) с роторным диском (2) (схема 1, 1а, 4)

Магнитное поле постоянного магнита (2а) обоймы с магнитами статорного диска (2) воздействует на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска.

Начинается поступательное движение отталкивания одноимённых полюсов постоянных магнитов (3а) и (2а) которое преобразуется во вращательное движение роторного диска на котором неподвижно закреплены кольцеобразная (3) и цилиндрическая (4) обоймы с магнитами согласно направлению (на схеме 4).

Далее роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (1а) обоймы с магнитами (1) статорного диска начинает воздействовать на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (1а) и (3а) порождает поступательное движение отталкивания одноимённых полюсов магнитов (1а) и (3а), которое преобразуется во вращательное движение роторного диска согласно направления (на схеме 4) И роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска начинает воздействовать на магнитное поле постоянного магнита (4а) из обоймы с магнитами (4) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (4а) порождает поступательное движение отталкивания одноимённых полюсов постоянных магнитов (2а) и (4а), которое преобразуется во вращательное движение роторного диска согласно направлению (на схеме 5) .

Роторный диск поворачивается в положение при котором, магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска, начинает воздействовать на магнитное поле постоянного магнита (3б) из обоймы постоянных магнитов (3) роторного диска; воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (3б) порождает поступательное движение отталкивания одноимённых полюсов магнитов (2а) и (3б) положив, при этом, начало нового цикла, магнитных взаимодействий между постоянными магнитами, в рассматриваемом, для примера работы устройства, 36-градусном секторе дисков вращающего устройства.

Таким образом по окружности дисков с магнитными обоймами, состоящими из постоянных магнитов, предлагаемого устройства, расположено 10 (десять) секторов, процесс который был описан выше происходит в каждом из которых. И за счёт описанного выше процесса происходит движение вращения обойм с магнитами (3а и 3б) , и так как обоймы (3а и 3б) неподвижно присоединены к диску (2) то синхронно с движением вращения обойм (3а и 3б) происходит движение вращения диска (2) . Диск (2) неподвижно соединён (с помощью шпонки, либо шлицевое соединение) с валом вращения (1) . А через вал вращения (1) вращательный момент передаётся далее, предположительно на электрогенератор.

Для увеличения мощности двигателей такого типа можно использовать добавление в схеме дополнительных магнитных обойм,состоящих из постоянных магнитов, на дисках (2) и (4) (согласно схеме № 5).

А так же с той же целью (для увеличения мощности) в схему двигателя можно добавить ещё не одну пару дисков (роторного и статического). (схема № 5 и № 6)

Хочу ещё дополнить что данная схема именно магнитного двигателя будет более эффективной если в магнитных обоймах роторного и статического дисков будет разное количество постоянных магнитов, подобранное таким образом, чтобы в системе вращения было или минимальное количество, либо не было совсем «точек баланса»- определение именно для магнитных двигателей. Это точка в которой во время вращательного движения обоймы с постоянными магнитами (3)(схема 4) постоянный магнит (3а) во время своего поступательного движения наталкивается на магнитное взаимодействие одноименного полюса постоянного магнита (1а) которое и следует преодолеть с помощью грамотной расстановки постоянных магнитов в обоймах роторного диска (3а и 3б) и в обоймах статического диска (6а и 6б) таким образом чтобы при прохождении таких точек сила отталкивания постоянных магнитов и последующее их поступательное движение, компенсировали силу взаимодействия постоянных магнитов при преодолении магнитного поля противодействия в данных точках. Либо использовать метод экранизации.

Ещё в двигателях такого типа можно использовать вместо постоянных магнитов электромагниты (соленоид).

Тогда схема работы (уже электродвигателя) описанная выше будет подходить, только уже в конструкцию будет включена электрическая цепь.


Вид сверху разреза аппарата магнитного вращения.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией -(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

3б) Цилиндрическая обойма (секция) с постоянными магнитами обычной конфигурации.

6а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

6б) Кольцеобразная обойма (секция) с постоянными магнитами обычной конфигурации.

7) Постоянные магниты изменённой конфигурации-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

8) Постоянные магниты обычной конфигурации.


Вид сбоку в разрезе аппарата магнитного вращения

1) Вал вращения.

2) Роторный (вращающийся) диск.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией- (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

1а) постоянный магнит обычной конфигурации из обоймы (1) статорного диска.

2) сектор в 36 градусов обоймы с постоянными магнитами (2а) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу статорного диска.

2а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (2) статорного диска.

3) сектор в 36 градусов обоймы с постоянными магнитами (3а) и (3б) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу роторного диска.

3а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

3б) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

4) сектор в 36 градусов обоймы с постоянными магнитами (4а) обычной конфигурации статорного диска.

4а) постоянный магнит обычной конфигурации из обоймы (4) статорного диска.


Рисунок разреза вида сбоку АМВ(аппарата магнитного вращения) с двумя статорными дисками и двумя роторными дисками. (Прототип заявляемого большей мощности)

1) Вал вращения.

2), 2а) Роторные (вращающиеся) диски, на которых неподвижно закреплены обоймы: (2 рот), и (4 рот) с постоянными магнитами с изменённой конфигурацией — (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4), 4а) Статорные (статические, неподвижные) диски, на которых неподвижно закреплены обоймы: (1стат) и (5s) с постоянными магнитами обычной конфигурации; а также обойма (3стат) с постоянными магнитами с изменённой конфигурацией — (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4 рот) Кольцеобразная обойма с постоянными магнитами (4а) с изменённой конфигурацией — (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу). Роторного (вращающегося) диска.

5) Цилиндрическая обойма с постоянными магнитами (5а) обычной конфигурации (прямоугольный параллелепипед). статорного (статического) диска.

К сожалению рисунок № 1 содержит ошибки.

Как Мы видим в схемы существующих магнитных двигателей можно вносить существенные изменения всё более их совершенствуя….

Практически все происходящее в нашем быту целиком зависит от электроэнергии, однако существуют некоторые технологии, позволяющие совсем избавиться от проводной энергии. Давайте вместе рассмотрим, можно ли изготовить магнитный двигатель своими руками, в чес состоит принцип его работы, как он устроен.

Принцип работы

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира. Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил. Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя. Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого. Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Каким должен быть настоящий магнитный двигатель

В общем, выглядит подобное устройство следующим образом.

  1. Катушка индуктивности.
  2. Магнит подвижный.
  3. Пазы катушек.
  4. Центральная ось;
  5. Шарикоподшипник;
  6. Стойки.
  7. Диски;
  8. Постоянные магниты;
  9. Закрывающие магниты диски;
  10. Шкив;
  11. Приводной ремень.
  12. Магнитный двигатель.

Любое устройство, которое изготовлено на подобном принципе, вполне успешно может быть использовано для выработки по-настоящему аномальной электрической и механической энергии. Причем, если применять его как генераторный электрический узел – то он способен вырабатывать электроэнергию такой мощности, которая существенно превышает аналогичное изделие, в виде механического приводного двигателя.

Теперь разберем подробнее, что вообще представляет из себя магнитный двигатель, а также почему множество людей пытаются разработать и воплотить в реальность эту конструкцию, видя именно в ней заманчивое будущее. Действительно настоящий двигатель этой конструкции должен функционировать исключительно только на магнитах, при этом используя непосредственно для перемещения всех внутренних механизмов их постоянно выделяемую энергию.

Важно: основной проблемой разнообразных конструкций основанных именно на использовании постоянных магнитов, становится то, что они склонны стремиться к статическому положению, именуемому равновесием.

Когда рядом привинтить два достаточно сильных магнита, то они двигаться будут только до момента, когда будет достигнуто на минимально возможной удаленности максимальное притяжение между полюсами. В реальности они просто друг к другу повернутся. Поэтому каждый изобретатель разнообразных магнитных двигателей пытается сделать переменным притяжение магнитов за счет механических свойств самого двигателя или использует функцию своеобразного экранирования.

При этом магнитные двигатели в чистом виде очень неплохи по своей сущности. А если добавить к ним реле и управляющий контур, использовать гравитацию земли и дисбаланс, то они становятся действительно идеальными. Их смело можно именовать «вечными» источниками поставляемой бесплатной энергии! Есть сотни примеров всевозможных магнитных двигателей, начиная от наиболее примитивных, которые можно собрать собственноручно и заканчивая японскими серийными экземплярами.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Карикатура вечного двигателя

Наука давно не стоит на месте и развивается все больше и больше. Благодаря науке было изобретено множество предметов, которыми мы пользуемся в повседневной жизни. Однако, на протяжении многих столетий перед наукой всегда стоял вопрос изобретения такого устройства, которое бы могло работать не потребляя никакой энергии извне, работая вечно. Такого результата добивались многие. Однако кому это удалось? Создан ли такой двигатель? Об этом и о многом другом мы и поговорим в нашей статье.

Двигатель Стирлинга простейшей конструкции. Свободнопоршневой. Игорь Белецкий

Что такое вечный двигатель?

Трудно представить современную человеческую жизнь без использования специальных машин, которые в разы облегчают жизнь людям. С помощью таких машин люди занимаются обработкой земли, добычей нефти, руды, а также просто передвигается. То есть, главной задачей таких машин является совершать работу. В любых машинах и механизмах перед тем, как совершить какую-либо работу, любая энергия переходит их одного вида в другой. Но существует один нюанс: нельзя получить энергии одного вида больше, чем иного при самых любых превращениях, поскольку это противоречит законам физики. Таким образом, вечный двигатель создать нельзя.

Но что же означает словосочетание «вечный двигатель»? Вечный двигатель – это такой двигатель, в котором в конечном результате превращения энергии вида получается больше, чем было в начале процесса. Данный вопрос о вечном двигателе занимает особое место в науке, в то время, как существовать не может. Это достаточно парадоксальный факт оправдывается тем, что все искания ученых в надежде изобрести вечный двигатель насчитывают уже более 8 веков. Эти поиски связаны прежде всего с тем, что существуют определенные представления о самом распространенном понятии физики энергии.

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась ? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Вечный двигатель на магнитах

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Американский БТГ выдвинут на Нобелевскую премию

A Brief Tour of the IEC Factory Floor

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Двигатель Перендева основанный на взаимодействии магнитов

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

Варианты разработок вечных двигателей

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя. Удачи!

Как разоряют и убивают изобретателей двигателей на воде. Почему беЗтопливные технологии под запретом

4 преимущества генераторов на постоянных магнитах

4 преимущества генераторов на постоянных магнитах

Ситуация, связанная с сокращением предложения ископаемого топлива и критическим состоянием окружающей среды, делает все более и более необходимым поиск альтернативных источников энергии. Все больше и больше людей выбирают генераторы на постоянных магнитах , чтобы заменить традиционные генераторы в некоторых бытовых применениях. Если вы все еще не знакомы с генераторами постоянных магнитов и их преимуществами, эта статья должна привлечь ваше внимание.

Генераторы на постоянных магнитах Преимущество 1: Источник свободной энергии

Генераторы с постоянными магнитами вырабатывают электричество с помощью внутренних магнитов, которые можно использовать для питания других электрических устройств, а это означает, что вам больше не нужно будет оплачивать дорогие счета за электроэнергию. Кроме того, вы даже можете продавать избыточную электроэнергию местным коммунальным предприятиям и получать от них оплату.

Генераторы на постоянных магнитах

Преимущество 2: надежный выход энергии

По сравнению с генераторами, работающими на других возобновляемых и экологически чистых источниках энергии, солнечной энергии и энергии ветра, например, генераторы на постоянных магнитах работают независимо от факторов внутри или снаружи вашего дома.Вам больше не нужно будет беспокоиться о погоде.

Генераторы на постоянных магнитах

Преимущество 3: Низкая плата за установку

Установка генератора на постоянных магнитах не будет стоить больших денег. Достаточно за небольшие деньги купить все необходимое в строительном магазине и собрать самому. Затратив всего лишь сотни долларов на один день или меньше, вы можете иметь дома свои собственные генераторы на постоянных магнитах.

Генераторы на постоянных магнитах Преимущество 4: не требует обслуживания

Еще одна замечательная особенность генераторов с постоянными магнитами заключается в том, что вам не нужно тратить много времени и денег на техническое обслуживание.Просто установите его и ждите, ожидая, что он принесет вам деньги!

Спасибо, что прочитали нашу статью, и мы надеемся, что она поможет вам лучше понять преимущества генераторов на постоянных магнитах . Если вы хотите узнать больше о постоянных магнитах , мы хотели бы порекомендовать вам посетить Stanford Magnets для получения дополнительной информации.

Stanford Magnets — ведущий поставщик магнитов по всему миру, который занимается исследованиями и разработками, производством и продажей магнитов с 1990-х годов.Он предоставляет клиентам высококачественные изделия из редкоземельных постоянных магнитов и другие постоянные магниты, не являющиеся редкоземельными элементами, по очень конкурентоспособной цене.

Просмотры сообщений: 3 437

Теги: поставщик магнитов, Генераторы на постоянных магнитах, постоянные магниты

МАГНИТ-ДВИГАТЕЛЬ БЕЗ ГЕНЕРАТОРА ЭНЕРГИЯ

Магнитный двигатель-генератор (см. Видео ниже) не требует батарей в качестве стартера, чтобы начать вращение, тщательное расположение настроенных магнитов на ДИСКЕ из нержавеющей стали или алюминия создает очень мощную отталкивающую силу, которая заставьте ДИСК вращаться на очень высоких оборотах (около 3000 об / мин).Система имеет 18 маленьких магнитов, закрепленных на диске из нержавеющей стали, 2 маленьких магнита, закрепленных на оргстекле в качестве магнитного переключателя (стартера), и 2 больших магнита для центробежной силы для поддержания вращающего момента. Эта система может быть расширена, создавая очень высокий крутящий момент, который может быть связан с:

1. Генератор / генератор для выработки электроэнергии, в зависимости от потребности в мощности.

2. Может соединяться с валом привода / шестерни электромобиля для управления транспортным средством без батарей.

Преимущества генератора с магнитным двигателем:

1. Алюминиевый диск или диск из нержавеющей стали с магнитами вращается на основе магнитного отталкивания и центробежной силы

2. Нет необходимости в каком-либо топливе, собственное магнитное поле в магнитах является его собственным топливом и никогда не заканчивается на нескольких лет, пока магниты не ослабеют.

3. Это зеленая энергия, никаких выбросов.

4. Отсутствуют какие-либо звуковые загрязнения и выхлопные газы, потому что нет никакого топлива.

5. Магнитный двигатель может быть подключен к любому генератору переменного тока в зависимости от мощности, которую вы хотите генерировать, и он будет генерировать чистую энергию для личного или коммерческого использования.

6. Его можно хранить в помещении, и он будет работать нормально без любые выбросы, которые могут повлиять на ваше здоровье.

7. Он самодостаточен, для работы не требуется никаких внешних источников. И это не зависит от погодных условий, как Солнце или Ветер. Работает в любых погодных условиях.

8.Магнитный двигатель-генератор может быть подключен к системе передачи эВ для его питания, если он настроен на соответствующую номинальную мощность.

Сообщите нам, что вы смогли запитать с помощью сконструированного вами магнитного генератора, и мы выделим вам особое место на нашем веб-сайте.

Ссылка для скачивания плана строительства здесь: Скачать

Цена: 895,95 $

Новый сверхпроводящий магнит приведет к новому поколению ветряных генераторов

AML Superconductivity and Magnetics, совместно с U.Аргоннская национальная лаборатория Министерства энергетики США (DOE) недавно объявила, что их сверхпроводящая магнитная система прошла знаковый тест на надежность, продемонстрировав ее потенциальную пригодность для широкомасштабных коммерческих приложений. Этот новый сверхпроводящий магнит поможет создать новое поколение турбинных генераторов, которые по размеру и весу примерно вдвое меньше тех, что используются в настоящее время.

В 2012 году Министерство энергетики профинансировало проект AML сверхпроводящего генератора для крупномасштабных высокоэффективных морских ветряных турбин.Компания AML работала со своими партнерами, Emerson Electric Corporation, Creare Inc., DNV USA и Аргоннской национальной лабораторией Министерства энергетики США, чтобы разработать проект полностью сверхпроводящего генератора с прямым приводом мощностью 10 мегаватт (МВт). По словам вице-президента AML по развитию Вернона Принса, конструкция была тщательно проверена и утверждена Министерством энергетики США и готова для полномасштабного демонстрационного проекта и серийного производства.

Ключевые потенциальные преимущества генератора AML с прямым приводом включают улучшенную масштабируемость, уменьшенный вес и отсутствие в катушках редкоземельных материалов.Конструкция AML не требует редуктора, что может привести к повышению надежности и снижению затрат на техническое обслуживание. Хотя это также может быть верно для современных конструкций генераторов с прямым приводом без редукторов, генератор AML создает магнитное поле с использованием сверхпроводящих обмоток, которые более мощные и компактные, чем альтернативы на основе меди. Они также построены из более доступных и более дешевых материалов, чем генераторы на постоянных магнитах, которые чувствительны к колебаниям цен на нестабильном рынке редкоземельных магнитов.Кроме того, AML рассчитывает, что его генератор будет весить до 50% меньше, чем сопоставимый генератор редкоземельных элементов с постоянными магнитами и номинальной мощностью 10 МВт. Меньшая масса генератора имеет основные преимущества системы, включая более легкую и, следовательно, менее дорогую башню, а также снижение затрат на установку за счет использования небольших кранов и морских судов.

Mainspring Energy заключила сделку на 150 миллионов долларов на развертывание линейных генераторов с NextEra

За последнее десятилетие компания Mainspring Energy работала над новым «линейным генератором», который, по ее словам, может обеспечивать электричеством на месте с меньшими выбросами, чем двигатели и микротурбины, работающие на ископаемом топливе, и большей гибкостью, чем топливные элементы.

Во вторник видение Mainspring получило вотум доверия со стороны американского гиганта электроэнергетики и возобновляемых источников энергии NextEra в виде соглашения на 150 миллионов долларов с его подразделением по оказанию бизнес-услуг NextEra Energy Resources о закупке, финансировании и развертывании устройств Mainspring по всей стране.

Mainspring начала испытания своих линейных генераторов прошлым летом с неназванной национальной сетью супермаркетов, которая согласилась расширить свое использование до 30 продуктовых магазинов, согласно объявлению во вторник.Стартап из Менло-Парк, штат Калифорния, ранее называвшийся EtaGen, также поставлял продукты крупным розничным торговцам и потребителям коммунальных услуг и обсуждает его с другими компаниями из списка Fortune 500.

Основная концепция генератора Mainspring — улавливание возвратно-поступательного движения поршней или осцилляторов в терминологии Mainspring для выработки энергии — используется в широком классе устройств, от двигателей Стирлинга до линейных генераторов и двигателей. Но система Mainspring по нескольким ключевым причинам отличается от множества аналогичных технологий, разработанных на протяжении десятилетий, сказал в интервью генеральный директор Шеннон Миллер.

«Это полная системная интеграция: обеспечение низкого уровня выбросов, обеспечение высокой эффективности, обеспечение наличия средств управления для использования различных видов топлива», — сказал Миллер, бывший инженер-механик в Tesla, который разработал эту идею. за технологию Mainspring в Стэнфордском университете с соучредителями компании Мэттом Сврчеком и Адамом Симпсоном.

Низкие выбросы, гибкость в использовании топлива, возможность распределения электроэнергии на месте

Одним из ключевых нововведений является использование компанией Mainspring «пневматических рессор» и «пневматической системы» в качестве воздушных подушек. , которые удерживают оснащенный магнитом осцилляторы на месте внутри конструкции, которые улавливают их возвратно-поступательное движение для выработки электричества.По словам Миллера, использование воздуха вместо механических подшипников или масла снижает трение и устраняет ключевые механические точки отказа, которые бросают вызов другим конструкциям линейных генераторов.

Проще говоря, «это как стол для аэрохоккея, который вы завернули в трубку», — сказал Миллер. Что касается сложности, то для того, чтобы эта система воздушного базирования работала бесперебойно и надежно, потребовалось «много хороших инженеров», чему способствовало финансирование исследований и разработок. На сегодняшний день Mainspring привлекла 133 миллиона долларов от инвесторов, включая соучредителя Microsoft Билла Гейтса, Khosla Ventures, коммунальное предприятие AEP и венчурные подразделения нефтяного гиганта Statoil и энергетической компании Centrica.

Mainspring также использует передовую силовую электронику, разработанную для электромобилей, солнечных инверторов и других технологий цифрового преобразования энергии и управления, чтобы «очень точно отрегулировать положение плавающих трубок, — сказала она, — до толщины листа бумаги. . »

Это делает его генераторы «управляемыми», то есть способными приспосабливаться к изменениям в электрических нагрузках, которые они поддерживают, или к повышению и понижению уровней энергии в сетях, к которым они подключены, сказал Миллер.В этом отличие устройств Mainspring от обычных топливных элементов, которые рассчитаны на стабильную работу.

Та же самая гибкость управления также дает Mainspring возможность «перемещать осцилляторы в другое положение для разных видов топлива» с разными энергетическими характеристиками, сказала она. Это позволит его устройствам перейти от использования природного газа, который выделяет углекислый газ при преобразовании в энергию, на углеродно-нейтральные виды топлива, такие как биометан или водород, по мере того, как они станут более доступными, без значительных изменений в конструкции и конструкции. эксплуатируется.

Наконец, генераторы Mainspring могут работать практически без выбросов оксидов азота или NOx, сказала она. Это потому, что генераторы объединяют топливо с кислородом в центральном реакционном цилиндре между двумя осцилляторами, а затем используют повышающееся давление, поскольку эти два осциллятора толкаются назад воздушными пружинами на обоих концах, чтобы создать «однородную и беспламенную реакцию» для высвобождения энергия.

Это отличается от использования электрических искр для воспламенения топливовоздушных смесей, как это делают большинство двигателей, работающих на ископаемом топливе, и опять же требует отлаженной инженерии для эффективной работы.По словам Миллера, конечным результатом является генератор, который соответствует строгим стандартам выбросов NOx, установленным Округом управления качеством воздуха Южного побережья Калифорнии для электроэнергии на месте, и более эффективно использует топливо для сокращения выбросов углекислого газа по сравнению с двигателями.

Гибкие виды топлива против чистой энергии и батарей

Mainspring не раскрывает первоначальную стоимость своих генераторов мощностью 250 киловатт и не проводит прямых сравнений с двигателями или топливными элементами. Но Миллер указал на гибкость технологии как на ключевой аргумент для клиентов, включая NextEra.

Сделка на 150 миллионов долларов включает финансовые структуры, подобные соглашениям о закупке электроэнергии, чтобы позволить клиентам использовать блоки Mainspring для замены нагрузки на месте, обслуживаемой сетью, а также для обеспечения надежного резервного питания во время отключений сети. Этот тип модели «энергия как услуга» все чаще используется для снижения как начальных затрат, так и сложности эксплуатации для клиентов, при этом разработчики микросетей, включая Enchanted Rock и Scale Microgrid Solutions, и гиганты энергетических услуг, такие как Schneider Electric и Siemens, создают совместные предприятия с инвесторами. чтобы вывести их на рынок.

Как один из крупнейших в мире владельцев ветровой и солнечной энергии, NextEra также заинтересована в технологиях, которые могут «работать так, как мы, увеличивать и уменьшать скорость и переключаться на разные виды топлива», чтобы обеспечить гибкость для интеграции возрастающих уровней периодически возобновляемых источников энергии. на сетке, по словам Миллера. В новом техническом документе от Guidehouse Insights (PDF) подчеркивается потенциал таких технологий, как Mainspring, для интеграции крупномасштабных и распределенных возобновляемых источников энергии с прогнозируемым объемом мирового рынка в 38 миллиардов долларов в течение следующих пяти лет.

В то время как батареи все чаще сочетаются с ветряной и солнечной, «солнечной энергии и батарей недостаточно, чтобы снизить выбросы углерода с точки зрения затрат, — сказал Миллер. «Нам нужны возобновляемые виды топлива, чтобы помочь в этом».

Помимо этих долгосрочных проблем декарбонизации, Калифорния сталкивается с непосредственной проблемой поиска альтернатив дизельным генераторам для поддержки сообществ, которые сталкиваются с многодневными отключениями электросети для предотвращения лесных пожаров, сказала она. Солнечные батареи и батареи сами по себе обходятся слишком дорого, чтобы надежно обеспечивать мегаватты энергии в течение нескольких дней, но они могут быть частью микросети, сосредоточенной на генераторах, которые могут со временем перейти от ископаемого топлива к заменителю топлива с низким или нулевым содержанием углерода, она сказал.

Билл Магаверн, директор по политике калифорнийской некоммерческой коалиции за чистый воздух, подчеркнул проблему, с которой сталкивается Калифорния, одновременно стремясь достичь своих целей по декарбонизации и обеспечить надежную электроэнергию.

«Мы определенно хотим как можно скорее свести к нулю выбросы», — сказал он. «Но мы также должны отказаться от грязного дизельного топлива. И поэтому мы приветствуем технологии, которые намного … чище дизельного топлива, даже если они не имеют абсолютного нуля выбросов. Мы особенно приветствуем эти технологии, если у них есть потенциал для достижения нулевого уровня выбросов в будущем.”

почему мы не используем магнитную энергию Земли для создания электричества?

Любопытные дети — серия для детей. Если у вас есть вопрос, на который вам нужен эксперт, отправьте его по адресу [email protected]. Возможно, вам также понравится подкаст «Представь это», совместное производство ABC KIDS listen и The Conversation, основанное на «Любопытных детях».


Почему мы не используем магнитную энергию Земли для создания электричества? — ученица 5-го класса естественных наук г-жи Браун Южной начальной школы Неэрим, Виктория.


Привет!

Поначалу это звучит неплохо, но не очень практично. Прежде чем я объясню почему, позвольте мне сначала объяснить, как мы производим электричество, если кто-то, читающий это, еще не знает.

Электричество (скажем, «электрический ток») — это когда электрически заряженные частицы текут, как вода в трубе. Есть два вида электрических зарядов — положительный и отрицательный. Положительные заряды притягивают отрицательные заряды, но две частицы с одинаковым зарядом (положительные или отрицательные) будут отталкиваться.Это означает, что они раздвигаются.

Другими словами, противоположности притягиваются.

Обычно электрический ток состоит из крошечных отрицательных зарядов, называемых «электронами», которые исходят от атомов.

Все, к чему можно прикоснуться, состоит из атомов. Каждый атом окружен облаком электронов, беспорядочно движущихся, как пчелы, вокруг улья, притягиваемых положительными зарядами в центре (или «ядре») атома.

Электрический ток обычно возникает, когда электроны покидают свои атомы и перетекают к другим атомам.


Читать далее: Любопытные дети: как и почему магниты слипаются?


Как создать электрический ток

Есть три основных способа производства электрического тока.

Первый — это батарейки. В батареях существует «электрохимическая реакция», которая заставляет электроны перемещаться от одного типа атома к другому с более сильным притяжением к электронам. Батарея предназначена для того, чтобы заставить эти электроны проходить через провод в ваши электронные устройства.

Второй способ — солнечные батареи. Световая энергия поглощается электронами в чем-то, что называется «полупроводниками» (обычно кремнием), что заставляет электроны двигаться, создавая электрический ток.

Но я думаю, вы спрашиваете о третьем способе, который обычно используется для генерации электрического тока для электрических розеток в вашем доме.

Прядение бухты проволоки в сильном магнитном поле

Третий способ — быстро провести электрический провод через магнитное поле.Вам нужно сделать это, потому что электроны в проводе не могут чувствовать магнитную силу, если они не движутся.

Чтобы получить ток, достаточный для всех, вы должны пропустить партии провода через магнитное поле. Мы делаем это, быстро раскручивая катушку (содержащую множество петель из проволоки) в сильном магнитном поле.

Во время каждого поворота катушки электроны получают толчок от магнитного поля, перемещая их. Это создает электрический ток. На этой анимации S представляет собой «южный полюс» магнита, а N — «северный полюс».Анимация показывает только одну петлю из проволоки, вращающейся в магнитном поле. В реальном генераторе были бы сотни или даже тысячи петель.

Машины, которые это делают, называются генераторами. Вы можете вращать змеевик, используя падающую воду (это называется «гидроэлектричество»), пар (полученный из угля, нефти, газа, ядерной энергии или тепла от Солнца), ветряные турбины, использующие ветер, и так далее.

В большинстве генераторов каждый раз, когда катушка делает пол-оборота, электроны получают магнитный удар.В следующий пол-оборота они получают магнитный удар в обратном направлении. Это означает, что направление тока продолжает быстро меняться в течение многих циклов.

Электрический ток, меняющий направление, называют «переменным током» или сокращенно AC. Батареи вырабатывают ток, который движется только в одном направлении, называемом «постоянный ток» или сокращенно DC.

В генераторах мы не забираем энергию из магнитного поля. Энергия, переходящая в электрический ток, на самом деле исходит из энергии, используемой для вращения катушки.Ученые называют это «кинетической энергией».

Назад к магнитному полю Земли

Теперь (наконец-то!) Отвечу на ваш вопрос: почему бы нам не использовать магнитное поле Земли для выработки электричества?

Сила тока, производимого генератором, в основном зависит как минимум от трех вещей: 1) количества витков провода в катушке, 2) скорости вращения катушки и 3) силы магнитного поля.

Магнитное поле Земли очень слабое, поэтому от вашего генератора будет очень мало тока.

Насколько слаб? Вы когда-нибудь видели магниты из неодима, железа и бора в форме пуговиц, которые также называют «неомагнитами»? (Будьте осторожны, они действительно могут вас ущипнуть).

Эти магниты маленькие, но мощные. Flickr / brett jordan, CC BY

Их магнитные поля примерно в 6000 раз сильнее, чем магнитное поле Земли. Магнитные поля внутри электрических генераторов похожи на это.

Даже магниты на холодильник имеют магнитные поля примерно в 200 раз сильнее земных.

Обновление: эта статья была обновлена ​​21 мая, чтобы включить ядерную энергию в список источников энергии.


Читать далее: Любопытные дети: почему с деревьев падают листья?


Здравствуйте, любопытные ребята! У вас есть вопрос, на который вы хотите дать ответ эксперта? Попросите кого-нибудь из взрослых отправить свой вопрос по адресу [email protected]

CC BY-ND

Скажите, пожалуйста, свое имя, возраст и город, в котором вы живете.Мы не сможем ответить на все вопросы, но сделаем все, что в наших силах.

магнитных генераторов — прорыв в области свободной энергии — правда или ложь? — Штаб-квартира альтернативной энергетики

Магнитные генераторы — прорыв в области свободной энергии — правда или ложь?

Вы хотите значительно сэкономить на расходах на электроэнергию с помощью экологически безопасных методов? Если поэтому у вас есть несколько вариантов. Солнечные энергетические системы — самый популярный выбор в области энергетики. В ограниченных областях выработка электроэнергии с помощью системы ветряных турбин может быть реальным решением.Однако появился возможный новый источник энергии. Магнитные генераторы продвигаются как будущее альтернативной энергетики. Защитники утверждают, что после выплаты первоначальной стоимости вы получите бесплатную энергию на всю жизнь.

Предпосылка магнитных генераторов заключается в том, что после включения генератора он будет продолжать вырабатывать больше энергии, чем потребляет, и может это делать бесконечно. Это состояние вечного движения известно как сверхединичность. Сторонники этой идеи утверждают, что есть несколько причин, по которым вы должны предпочесть этот метод солнечной и ветровой энергии.Давайте рассмотрим эти утверждения и проверим, верны ли они.

1. Магнитный генератор может быть изготовлен в домашних условиях любым человеком, использующим обычные бытовые инструменты и материалы, которые можно купить в местном хозяйственном магазине. Как только вы изучите планы, доступные в Magniworks, ведущем онлайн-магазине этих планов, вам многое бросится в глаза. Изначально нужно изготовить металлические детали. В некоторых случаях медный ротор требует чрезвычайно точной обработки металла. У большинства владельцев нет инструментов или таланта, чтобы попробовать это сделать.

Во-вторых, необходимые элементы не являются обычными предметами для скобяных изделий. Стальные проволоки с медным покрытием, медный ротор, а также указанные специально разработанные магниты, похоже, недоступны в моем магазине скобяных товаров или в каких-либо онлайн-источниках, перечисленных в планах Magniwork. Верно или неверно утверждение, что любой, кто использует обычные бытовые инструменты и легкодоступные материалы, может построить этот генератор? Ложь.

2. После подключения магнитный генератор заменяет до 50% электроэнергии в обычном доме.Посмотрев в сети, я не обнаружил в продаже магнитных генераторов, только в планах их производство. Для такого типа выработки электроэнергии, как солнечная или ветряная турбина, требуется несколько 12-вольтовых батарей для хранения генерируемой энергии. Генератор Magniworks площадью примерно 4 дюйма слишком мал, чтобы заменить пятьдесят процентов электроэнергии, потребляемой в доме. Заявленная мощность составляет всего 3 пять вольт, 7 ампер, что дает 24 пять ватт выходной мощности. Аккумулятор на двенадцать вольт зарядить только 3-мя батареями невозможно.пять вольт. Подключенный к инвертору влияния, он может питать только одну 20-ваттную лампочку, а не весь дом. Является ли утверждение, что генератор будет обеспечивать до 50 процентов электроэнергии в доме, истинным или ложным? Ложь.

3. Магнитогенераторы — это вечные двигатели, вырабатывающие бесплатную энергию. Два широко разрекламированных магнитных генератора, N-Machine De Palma и система LEA Lutech, заявляют о высоком уровне универсальности. На данный момент эти утверждения не были независимо проверены беспристрастными нейтральными учеными.Кроме того, нет никаких корпораций, продающих эти генераторы, только частные лица, предлагающие планы.

Критики магнитных генераторов утверждают, что сверхединичная или свободная энергия не может быть получена без нарушения основного закона науки — сохранения энергии. Возможно, это объясняет отсутствие магнитных генераторов, производящих энергию. Является ли это утверждение о вечном двигателе или сверхъединстве правдой или ложью? Ложь. В итоге магнитные генераторы — это в лучшем случае бездоказательная теория, а в худшем — маркетинговая уловка, предназначенная для продажи непродуктивных планов.

Солнечная энергия и энергия ветряных турбин действительно производят действительно полезную электроэнергию. Некоторые компоненты, солнечные батареи и ветряные турбины, будут производиться дома. Отличные планы для солнечных панелей и / или ветряных турбин доступны для загрузки своими руками.

Экономия энергии дома означает косвенную экономию денег и значительное сокращение домашних расходов. Читайте больше на моем сайте: солнечная энергия, сделанная самим, чтобы узнать больше о солнечной энергии, сделанной самим дома. Узнайте больше об экономии энергии и приобретении энергоэффективных домов: самодельный обзор солнечной энергии.

Пример Южной Африки

Магнитные материалы, в особенности постоянные магниты, имеют решающее значение для эффективной работы многих технологий использования возобновляемых источников энергии. Возросшая зависимость от возобновляемых источников энергии ускорила исследования в области энергетических технологий во всем мире. Использование редкоземельных (РЗЭ) металлов в постоянных магнитах по-прежнему вызывает большую озабоченность из-за ограниченного предложения ВЭ в сочетании с сокращающимися запасами в мире. В этом обзоре основное внимание уделяется тому, как это повлияло на современные магнитные материалы, которые продолжают играть ключевую роль в развитии технологий возобновляемых источников энергии.Магнитные материалы считаются ключевыми движущими силами промышленной революции 21 века, и участие Южной Африки в этой энергетической парадигме имеет решающее значение для продвижения новой промышленной революции на африканском континенте. Выделен ряд возможностей, и дана ясность в отношении нескольких широко распространенных заблуждений и рисков, связанных с сильной зависимостью от единственного источника магнитных материалов из РЗЭ.

1. Введение

В последние годы акцент в развитии технологий сместился в сторону возобновляемых источников энергии как новых источников энергии.Магнитные материалы играют ключевую роль в эффективной работе устройств в широком спектре приложений, таких как производство электроэнергии, транспорт, кондиционирование воздуха и телекоммуникации. Стремление к повышению эффективности передачи электроэнергии и замене топлива на нефтяной основе электродвигателями в транспортных технологиях побудило исследователей сосредоточиться на технологиях магнитных материалов [1]. Повышенный спрос на электроэнергию в последние несколько десятилетий потребует значительных инвестиций в энергоэффективные методы производства электроэнергии в некоторых случаях; предпочтительны легкие устройства и устройства меньшего размера, например, на транспорте и в ветроэнергетике [1].Историческая эволюция постоянных магнитных материалов охватывает 100-летний период [1]. Технологии производства этих магнитов хорошо отработаны, а плотности энергии (ключевой показатель качества для постоянных магнитов) были увеличены с ~ 1 MGOe для сталей, увеличиваясь до ~ 3 MGOe для гексагональных ферритов и достигая максимума ~ 56 MGOe для неодима. магниты из железа и бора (Nd-Fe-B) в начале 2000-х годов [1]. Потребность в максимальной плотности энергии при различных рабочих температурах направила исследования и разработку редкоземельных (RE) постоянных магнитов (RPM), обладающих улучшенной температурной стабильностью для электродвигателей [1].Однако из-за нехватки РЗМ-магнитных металлов, таких как Dy-диспрозий, Pr-празеодим и Sm-самарий, более практичным подходом, который, кажется, становится все более популярным, являются манипуляции со структурой межзеренных фаз и внутренних поверхностей раздела. , которые позволяют лучше понять соответствующие механизмы принуждения. Другой подход — разработка текстурированных нанокомпозитов, которые могут привести к созданию нового поколения постоянных магнитов.

Хотя актуальность этого сектора может не иметь большого значения для промышленности Южной Африки в настоящее время, действительно, мир движется к более чистым и более эффективным источникам энергии.Таким образом, ожидается, что новая промышленная революция будет вызвана такой потребностью, что приведет к появлению специализированных онлайн-отраслей для удовлетворения спроса. В 2015 году Стеган опубликовал предупреждающую статью об опасениях по поводу «редкоземельного кризиса» [2]. Это должно было послужить тревожным сигналом для лиц, принимающих решения, о необходимости разработки альтернативных цепочек поставок магнитных материалов на основе RE по всему миру. Таким образом, в настоящем обзоре делается попытка еще раз подчеркнуть эту необходимость и ознакомить политиков, научное и инженерное сообщество Южной Африки, а также заинтересованные стороны с открывающимися перед ними возможностями, которые могут потребовать специального финансирования, особенно в области исследований и разработок.В обзоре представлена ​​общая информация о магнитных материалах и представлены некоторые основные моменты мирового рынка магнитных материалов. Особое внимание уделяется постоянным магнитам на основе RE как ключевому ингредиенту поддержки промышленной революции 21 века. Автор также намерен прояснить несколько распространенных заблуждений и риски, связанные с сильной зависимостью от единственного источника магнитных материалов RE. Обзор завершается оценкой имеющихся альтернатив для решения проблемы дефицита и той роли, которую Южная Африка может сыграть в этом кризисе, связанном с редкоземельными элементами.

2. Историческая справка о магнитных материалах

С годами потребности общества стали более развитыми, и магнитные материалы стали решающими в развитии человеческой цивилизации. Применение магнитных продуктов эволюционировало от простых потребностей в распределении магнитов в начале 1930-х годов до более продвинутых высокопроизводительных двигателей в современных электромобилях. Доступен ряд магнитных материалов, от недорогих ферритов с низким энергопотреблением до более дорогих и высокоэффективных RE-материалов.Магнитные материалы обычно классифицируются с точки зрения их магнитных свойств и использования. Например, материал, который легко намагничивается и размагничивается, называют мягким магнитным материалом, тогда как материал, который трудно размагнитить, называют твердым (постоянным) магнитным материалом [3].

С 1930-х годов магниты Alnico широко используются, сначала в военной электронике, а затем в гражданских версиях, таких как автомобильные и авиационные датчики.Развитие магнитов Alnico ознаменовало начало нового взгляда на магнитные материалы, при котором композитные материалы с несколькими фазами производятся по характеристикам, превосходящим свойства отдельных компонентов [4]. Магниты алнико — это сплавы, в основном на основе никеля, кобальта и железа с меньшими количествами алюминия, меди и титана (типичный состав в мас.%: Fe-35; Co-35; Ni-15; Al-7; Cu-4. ; Ti-4) [4]. Они обладают тонкой микроструктурой, состоящей из ферромагнитных частиц микронного или субмикронного размера, диспергированных в слабомагнитной матрице [4].Они получают свою магнитную силу благодаря разделению фаз в сплаве на ферромагнитные фазы с высоким содержанием FeCo и слабомагнитные фазы с высоким содержанием NiAl, выделенные из высокотемпературной однородной композиции [4]. На сегодняшний день так называемые «супермагниты » основаны именно на этом принципе [4].

В 1952 г. компания Phillips (Эйндховен, Нидерланды) объявила об успешном коммерциализации первых керамических магнитов [5]. Эти сложные оксиды основаны на прототипном составе МО.6Fe 2 O 3 или эквивалентно MFe 12 O 16 , где M представляет собой двухвалентные металлы Ba, Sr или Pb [4]. Наиболее популярными из этих керамических магнитов являются феррит бария или гексаферрит бария (BaFe 12 O 19 ) [4]. Эти магниты имеют коммерческое значение из-за их низкой стоимости, химической инертности и простоты обработки. Они классифицируются как ферримагнетики с ферромагнитной (FM) и антиферромагнитной (AF) связью между атомными моментами, а магнитная связь зависит от конкретного кристаллографического положения ионов Fe [4].Однако основным недостатком этих магнитов является уменьшение значений намагниченности при повышении температуры, хрупкость и низкие значения намагниченности при комнатной температуре [4]. Это компенсируется высокой температурой Кюри T c ∼1223–1248 ° C (определяемой как температура перехода от ферромагнетизма к парамагнетизму), что делает их пригодными для использования в материалах спинтроники, катодах батарей, микроволновой связи, электродвигателях и т. Д. high- T c сверхпроводники [6–9].

В середине 1960-х годов под руководством доктора Карла Дж. Стрната из Лаборатории материалов ВВС США, позже в Дейтонском университете, штат Огайо, сообщалось о больших магнитных продуктах в интерметаллических соединениях на основе самария-кобальта, обычно 5,1 MGOe. (40,6 кДж / м 3 ) и позже оптимизированный до 18 MGOe (143,2 кДж / м 3 [10]. Это семейство соединений состояло из общей формулы RE (TM) 5 , содержащей RE-металлы Y-иттрий, Церий церий, Pr-празеодим, Sm-самарий и переходный металл (TM) кобальт [4].В 1972 году дальнейшие исследования привели к открытию нового соединения RE 2 (TM) 17 , так называемых соединений «2–17» [4]. Sm 2 (Co, Fe) 17 , как сообщается, обладает теоретическим максимальным энергетическим продуктом до 60 MGOe (477,5 кДж / м 3 ) [11]. Позже магниты SmCo были коммерциализированы с типичными энергетическими продуктами в диапазоне 22–32 ГМОэ (175–255 кДж / м 3 ) в зависимости от состава в сочетании с привлекательной температурой Кюри (∼750 ° C), что делало их подходящими для высоких температур. температурные приложения [12].

Стремление к использованию неодим-железо-борных магнитов (Nd 2 Fe 14 B) было результатом повышения стоимости Co в конце 1970-х годов, критического ингредиента магнитов SmCo [4]. Политическая нестабильность в ДРК (бывший Заир: источник 60 процентов мировых поставок Co) в 1978 году поставила под угрозу глобальные поставки кобальта [4]. В 1982 году Бюджетное управление США опубликовало вариант стратегической политики, чтобы свести к минимуму зависимость США от кобальта и сосредоточиться на заменителях кобальта для производства высокоэнергетических магнитов [4].В середине 1980-х годов в General Motors в США одновременно был произведен новый супермагнит на основе железа Nd 2 Fe 14 B (также известный как «Neo» или 2-14-1 ) с помощью метода синтеза с быстрым затвердеванием. а в Sumitomo — методом жидкофазного спекания [13–15]. Сегодня коммерчески выпускаемые супермагнетики на основе интерметаллических соединений RE Nd 2 Fe 14 B имеют типичные максимальные продукты энергии порядка 56MGOe (∼445,7 кДж / м 3 ) с остаточной намагниченностью B r ∼14 кГ (1 .4 Тл) и внутренней коэрцитивной силы H ci ∼10 кЭ (796 кА / м) [16]. Чтобы представить это в перспективе, большинство магнитов, используемых на сувенирах, таких как дисплеи на холодильниках, содержат типичные энергетические продукты <1MGOe (8 кДж / м 3 ) [4]. Хотя эти магниты достигли высоких показателей производительности, они обладают предельной температурой Кюри в диапазоне 300–400 ° C с рабочей температурой, ограниченной ~ 150 ° C, страдающей как хрупкостью, так и большой склонностью к коррозии [4]. На рисунке 1 показан цикл разработки магнитных материалов, как описано выше.


2.1. Мировой рынок постоянных магнитов

В последние годы выбор постоянного магнитного материала для конкретного применения в основном основан на сбалансированном рассмотрении цены и характеристик [4]. Цель разработки легких устройств и меньших размеров позволила NdFeB стать предпочтительным магнитом для приложений более высокого уровня [4]. Здесь следует отметить, что наиболее быстрорастущим рынком постоянных магнитных материалов являются приложения, связанные с энергетикой [1].Производство спеченных магнитов NdFeB пережило феноменальный рост с ∼6000 т в 1996 г. до ∼63000 т в 2008 г., при этом большая часть (∼80%) производилась в Китае [18]. Движущей силой роста спроса на постоянные магниты являются высокоэнергетические потребительские электронные продукты, такие как DVD, iPod, камеры, датчики и мобильные телефоны [1]. Использование высокоэнергетических магнитов позволяет миниатюризировать эти устройства, что резко снижает потребность таких устройств в электроэнергии [1].Существуют и другие приложения, в которых магниты NdFeB используются в больших количествах, например, в электромобилях (EAV / EV), динамиках, устройствах магнитной сепарации, ветряных генераторах, магнитно-резонансной томографии (MRI) и электрических велосипедах [1 ].

Магниты из гексаферрита имеют самую большую долю на мировом рынке по тоннажу, составляя ∼85% (по массе) от общего объема продаж благодаря своей гораздо более низкой цене [1, 4]. Тем не менее, семейство магнитов NdFeB остается постоянным магнитом для высокопроизводительных приложений и составляет более 50 процентов продаж магнитов в долларовом выражении (рис. 2) [19, 20].Прогноз продаж постоянных магнитов для четырех основных типов магнитов: Alnico, SmCo, феррита и NdFeB показывает квазиэкспоненциальный рост с 1985 по 2020 год с прогнозом, что продажи магнитов NdFeB к 2020 году превысят 17 миллиардов долларов (рисунок 2) [19, 20 ].


Использование магнитотвердого материала NdFeB дало довольно значительные преимущества в производительности, что позволило разработать высокоэффективные тяговые двигатели, невозможные при использовании других технологий [21]. Однако жесткие магниты NdFeB содержат RE Nd, поставка которого вместе с другими RE-металлами (Sm-самарием, Dy-диспрозием, Gd-гадолинием, Pr-празеодимом, Pm-прометием и Er-эрбием) является экологически неустойчивой [21]. .Это привело к резкому росту цен на такие RE-металлы в период 2011–2012 гг. (Рисунок 3), что вызвало серьезную озабоченность по поводу их дальнейшего использования в качестве ингредиентов для магнитотвердых материалов [21].


Приведенное ниже обсуждение дает представление о текущем состоянии и усилиях, предпринятых до сих пор в поисках альтернативных материалов для замены магнитов RE.

2.2. Магнитные материалы в возобновляемых источниках энергии

Исторически движущая сила разработки постоянных магнитов проистекает из необходимости получения продукта с высокой магнитной энергией на меньших объемах магнитов, которые могут быть использованы в ряде технологических приложений, таких как экологически чистые энергетические технологии ( генераторы ветряных турбин и гибридные регенеративные двигатели), компоненты транспорта и потребительские товары [4].Магнитные материалы играют ключевую роль в современном обществе благодаря своей уникальной способности выполнять ряд следующих задач: (i) преобразовывать механическую энергию в электрическую (ii) передавать и распределять электроэнергию (iii) способствовать микроволновой связи (iv) обеспечивать основу для систем хранения данных

Теоретически сильный постоянный магнит характеризуется большим остаточным магнитным потоком (остаточный или B r ), который необходимо поддерживать в отсутствие магнитного поля в сочетании с большим сопротивлением размагничивание (коэрцитивная сила H c или внутренняя коэрцитивность i H c ).Магнитные свойства могут быть как внутренними, так и внешними. Собственные магнитные свойства определяются кристаллической структурой и составом материала и в идеале нечувствительны к микроструктуре материала. К таким свойствам относятся намагниченность насыщения, M s , и температуры магнитного упорядочения, то есть ферромагнитная температура Кюри ( T c ) и антиферромагнитная температура Нееля ( T N ) [ 4]. T c и T N определяют температуры, при которых тепловая энергия окружающей среды становится достаточно большой, чтобы разрушить эффективное магнитное упорядочение. Ключом к высоким характеристикам постоянных магнитов является то, что все параметры, упомянутые выше, должны быть нечувствительными к температуре, чтобы сохранять свою целостность в условиях эксплуатации при повышенных температурах [4]. Температура Кюри, значительно превышающая комнатную, является более подходящей, и составляющие материалы должны быть предпочтительно недорогими, простыми в обработке, легкими, нетоксичными и устойчивыми к коррозии [22].

Нет сомнений в том, что политики, ученые и другие заинтересованные стороны во всем мире сосредоточены на сокращении зависимости от углеводородных источников энергии в пользу возобновляемых источников энергии [2]. Был назван ряд причин, в том числе нестабильность цен на нефть и экономическая уязвимость, опасения по поводу глобального потепления и общая потребность в диверсификации энергетических портфелей [2]. Постоянные магниты находят применение во многих технологиях использования возобновляемых источников энергии и являются ключом к успеху отрасли возобновляемых источников энергии.Оценка Министерством энергетики США в 2011 году важности возобновляемых источников энергии для приложений чистой энергии как в краткосрочном (0–5 лет), так и в среднесрочном (5–15 лет) периодах четко указывает на важность возобновляемых источников энергии для жизнеобеспечения. технологий возобновляемой энергетики [23]. Некоторые избранные RE, относящиеся к настоящему обзору, сведены в Таблицу 1. Редкоземельные элементы (REE) с наибольшим риском предложения считаются критическими, а элементы со средним или низким риском считаются близкими к критическим или некритическим, соответственно. .

магниты, стержни управления реактором 67 904

Атомный номер Название Тип Избранные области применения Содержание корки (ppm) Критичность для чистой энергии: краткосрочная / среднесрочная

57 Лантановые легкие сплавы 904 , люминофоры 31 Почти критические / некритические
58 Церий Легкие Никель-металлогидридные (NiMH) батареи для гибридных / электрических транспортных средств, люминофорные порошки 63 Почти критические / не критические критический
59 Празеодим Легкий Постоянные магниты, NiMH батареи, фотографические фильтры 7.1 Некритично / некритично
60 Неодим Световой Постоянные магниты, лазеры, астрономические инструменты 27 Критично / критически
62 Постоянный свет 4,7 Некритично / некритично
65 Тербий Тяжелый Постоянные магниты, люминофоры освещения и дисплея 0.7 Критический / критический
66 Диспрозий Тяжелый Постоянные магниты, лазеры, освещение 3,9 Критический / критический
НЕТ
69 Тулий Тяжелый Магниты 0,3 НЕТ

905 905 904 Согласно статистике Всемирной ассоциации ветроэнергетики (WWEA), ветроэнергетика является самым быстрорастущим сектором в секторе возобновляемых источников энергии [24].Ожидается, что мощность ветроэнергетики достигнет 1,9 млн МВт в 2020 году. Постоянный магнит — ключевой компонент в конструкции генераторов ветряных турбин, используемых для преобразования механической энергии в электрическую [1]. Конструкция приводной системы ветряного генератора (рис. 4) развивалась на протяжении многих лет, чтобы удовлетворить более высокие требования к большему выходу энергии, надежности и меньшим требованиям к техническому обслуживанию [25]. Постоянные магниты из NdFeB позволяют заменять механические редукторы в ветряных турбинах генераторами с постоянными магнитами с прямым приводом (DD), что снижает общий вес турбины, стоимость других компонентов, таких как бетон и сталь, необходимых для поддержки тяжелых редукторов, а также сокращение количества подвижных частей, что в основном обеспечивает большую надежность и эффективность [2, 26].


Новая конструкция предлагает такие преимущества, как меньший объем и вес, более высокая эксплуатационная эффективность, более высокая плотность крутящего момента, простота сборки и обслуживания, а также на 50% меньшее внутреннее тепловыделение [27–29].

С момента изобретения немецким изобретателем Анри Пипером в 1905 году «смешанного автомобиля» был достигнут феноменальный прогресс в запатентованной тогда элементарной конструкции [1]. Сегодня электрические / гибридные электромобили (EV / HEV) вновь стали реальной альтернативой бензиновым автомобилям внутреннего сгорания [1].Успех электромобилей обязан высокоэффективным двигателям с постоянными магнитами, используемым для управления силовой передачей электромобилей. В 1997 году HEV стал мейнстримом с запуском Toyota Prius [21]. Сегодня другие производители автомобилей запустили свои собственные бренды EV / HEV, такие как BMW i3 и Nissan Leaf, благодаря усовершенствованиям, внесенным в технологию за эти годы [21]. Использование магнитотвердого материала NdFeB дает довольно значительные преимущества, которые позволили разработать высокоэффективные тяговые двигатели, невозможные при использовании других технологий.Типичный состав магнитов NdFeB, используемых в тяговых двигателях, составляет около Nd 22 Dy 11 Fe 6,5 B 1 Cu 0,1 по массе, что означает, что около 33% составляют драгоценные РЗЭ [30].

Магнитокалорический эффект (МКЭ) — это альтернативный метод охлаждения, в котором используется адиабатическое намагничивание [1]. Принцип работы MCE основан на концепции, согласно которой температура подходящего материала изменяется при намагничивании или размагничивании [31].Намагничивание магнитокалорического материала эквивалентно сжатию газа (нагреву), а размагничивание эквивалентно расширению газа (охлаждению) [32]. MCE быстро становится предпочтительным методом охлаждения в будущем благодаря ряду преимуществ по сравнению с методом охлаждения на основе компрессора. Наиболее заметные преимущества охлаждения MCE включают отсутствие вредных газов, гораздо меньший уровень шума и то, что его можно построить более компактно, поскольку рабочий материал твердый (рис. 5) [1].Более того, было продемонстрировано, что эффективность охлаждения в магнитных холодильниках, содержащих гадолиний (Gd), может достигать 60 процентов от теоретического предела эффективности по сравнению с только ∼45 процентами в лучших холодильниках с компрессией газа [33].


Наконец, использование магнитомягких материалов в трансформаторах для выработки электроэнергии и преобразования в электросети играет ключевую роль в производстве электроэнергии. Характеристики мягких магнитов зависят от материала и определяются такими свойствами, как низкая коэрцитивная сила и потери в сердечнике, высокая намагниченность насыщения, удельное сопротивление и проницаемость, что делает эти материалы более привлекательными для эффективной передачи и распределения электроэнергии [1].Предпринимаются попытки революционизировать способ подачи электроэнергии путем разработки передовых систем хранения электроэнергии, интеллектуального управления и силовой электроники для преобразования переменного тока в постоянный, именуемых «интеллектуальные сети , », с использованием ряда современных материалов и устройств для обеспечения большего эффективность и более доступное и устойчивое использование энергии в долгосрочной перспективе [22, 34].

2.3. Устойчивость поставок постоянных магнитов в 21 веке

РЗМ-металлы играют ключевую роль в производстве РЗМ-супермагнитов благодаря их превосходным свойствам — от высокой намагниченности, обеспечиваемой кристаллической подрешеткой переходного металла 3d, до чрезвычайно сильного поля магнитокристаллической анизотропии, обеспечиваемого 4f электроны [22].Редкоземельные элементы состоят из 17 химических элементов периодической таблицы, а именно скандий (Sc), иттрий (Y) и 15 лантаноидов. Лантаноиды классифицируются как легкие РЗЭ, состоящие из элементов с атомными номерами от Z = 57 (лантан, La) до 61 (прометий, Pm), средние РЗЭ — от Z = 62 (самарий, Sm) до Z = 64 (гадолиний, Gd), и, наконец, тяжелые РЗЭ элементы включают от Z = 65 (тербий, Tb) до Z = 71 (лютеций, Lu) [4].Ключевыми элементами для производства постоянных магнитов являются Pr-празеодим ( Z = 59), неодим Nd ( Z = 60), Sm-самарий ( Z = 62) и Gd-гадолиний. ( Z = 64) для специализированных приложений и чрезвычайно важными РЗЭ элементами являются Tb-тербий ( Z = 65) и Dy-диспрозий ( Z = 66) [4]. Интересно отметить, что самые редкие элементы в земной коре не являются особенно редкими элементами. Например, церий, который входит в состав RE, является 25-м наиболее распространенным элементом из 78 обычных элементов в земной коре (∼60 ppm), а элементы тулий и лютеций являются наименее распространенными RE (∼0.5 ppm), но их все же больше, чем драгоценных металлов, таких как золото и платина [1]. Следует отметить, что столетие назад РЗЭ элементы считались редкими в основном из-за их редкости, но в настоящее время термин «редкие» относится больше к трудности выделения отдельных элементов из их руд из-за их чрезвычайно схожих физико-химических свойств [2]. Более того, глобальное распределение RE неравномерно: основные мировые геологические запасы происходят из небольшого числа источников (Таблица 2 и Рисунок 6) [4].

6 Россия 0,42

Страна Добыча на рудниках (метрические тонны) Процент от общих Запасы (миллион метрических тонн) Процент от общих
130,000 97,3 55,0 50
США Нет 13,0 13
Не сообщается Не сообщается 904.0 17
Австралия Не сообщается Не указано 1,6 1,5
Индия 2700 2 3,1 Малые
Малайзия 250 0,27 Малые
Прочие Н / Д 22 Всего 133,600 1100


Недавний анализ Геологической службы США показывает, что в Китае находится примерно 39% мировых запасов ВЭ, из которых 55000000 тонн. остальные распределились следующим образом: Бразилия (22 000 000 т), Содружество Независимых Государств. Штаты (СНГ) (19 000 000 т), США (13 000 000 т), Индия (3 100 000 т) и Австралия (2 100 000 т), а оставшиеся 25 800 000 т распределены между меньшими запасами в Малайзии, Вьетнаме и других странах [36, 37] .Мировое производство ВЭ составляет около 110000 тонн в год, из которых Китай поставляет 90 процентов, а оставшиеся 10 процентов распределяются между более мелкими поставщиками, а именно: США (∼4000 тонн в год), Индия (∼2900 тонн в год), Россия (∼2400 тонн в год) и Австралия (∼2000 т / год) с меньшими количествами из Бразилии, Малайзии и Вьетнама [36, 37]. В настоящее время Китай — единственная страна в мире, обладающая мощностями по переработке тяжелых ВЭ благодаря интегрированной цепочке поставок, разработанной за последние несколько десятилетий [38]. В 1995 г. китайский консорциум приобрел подразделение General Motors Magnequench-Delco Remy, созданное в 1986 г. для коммерциализации магнитных материалов Nd 2 Fe 14 B [39].За этим последовал массовый отток производственных мощностей RE-магнитов из США в Китай и, как следствие, эффективная «утечка мозгов» инженеров и ученых [4].

По оценкам, мировая отрасль возобновляемых источников энергии в 2010 году стоила 1,3 миллиарда долларов, тогда как отрасли конечных пользователей, которым требуются возобновляемые источники энергии, приносят прибыль в размере около 4,8 триллиона долларов в тот же год [40]. Это побудило китайское правительство ограничить мировой экспорт ВЭ в попытке привлечь больше предприятий обрабатывающей промышленности конечного потребления для работы в Китае [40].Это привело к так называемому кризису редкоземельных элементов в конце 2000-х годов. В 2011 году США, ЕС и Япония подали в ВТО жалобу на Китай, в которой было установлено, что Китай нарушил закон о международной торговле, ограничив зарубежные продажи ВЭ [41].

Несмотря на то, что кризис возобновляемых источников энергии, как ожидается, со временем утихнет, предложение возобновляемых источников энергии для высокопроизводительных приложений будет оставаться стратегически важным. Из-за высокого спроса на передовые постоянные магниты для питания высокотехнологичных технологий, в будущих парадигмах проектирования наблюдается явный сдвиг в сторону низкого или нулевого содержания RE [4].Однако полная замена RE в постоянных магнитах оказалась проблематичной, и производители и ученые больше сосредоточены на снижении содержания RE [2]. Напротив, полное исключение возобновляемых источников энергии в технологиях использования возобновляемых источников энергии — это длительный процесс, который может легко занять десятилетие, прежде чем может быть осуществлена ​​полная замена.

В последние годы переоценка шахт за пределами Китая заняла центральное место. В связи с преобладающими в настоящее время привлекательными ценами на ВИЭ возобновление работы рудников снова оказалось привлекательным [2].Одним из таких рудников является рудник Стинкампскраал в Южной Африке, который был введен в эксплуатацию в конце 1950-х годов и в основном производил торий из руды, содержащей RE [2, 42]. Рудник в настоящее время переоборудуется как рудник RE, и в 2014 году сообщалось, что пилотная установка по тестированию извлечения RE была предварительно успешной [42]. Однако Министерство энергетики США прогнозировало, что увеличение спроса на поставки ВИЭ в достаточных количествах потребуется, чтобы компенсировать сильную зависимость от китайских шахт [23].В своем исследовании 2013 года Геологическая служба США представила дополнительные исследования запасов ВЭ на африканском континенте, который включает Мозамбик, Малави, Мадагаскар, Южную Африку и Танзанию [35].

2.4. Инновация альтернативных постоянных магнитных материалов

Нет сомнений в том, что использование РЗМ-металлов Nd и Dy придает высокоэнергетический продукт, устойчивость к размагничиванию и высокотемпературную стабильность в (Nd, Dy) 2 (Fe, Co) 14 B по сравнению с другими магнитными материалами [2, 21].Максимальный энергетический продукт определяется как мера магнитной энергии, которая может храниться в единице объема магнитным материалом. Математически это может быть выражено как произведение остаточной плотности магнитного потока (степень намагничивания, M ) и его коэрцитивной силы (способности противостоять размагничиванию после намагничивания, H ) [21]. Было продемонстрировано, что магниты NdFeB позволяют создавать очень сильное магнитное поле в очень небольшом объеме. Чтобы представить это в перспективе, необходимо примерно в пять раз меньше площади поперечного сечения NdFeB для создания того же магнитного поля, что и электромагнитная катушка [21].Кроме того, электромагнитная катушка создает большие потери в обмотке, возникающие из-за электрического сопротивления проводника [21].

Хотя RE магнитные материалы обладают рядом преимуществ, было продемонстрировано, что их замена действительно предлагает некоторую привлекательность с точки зрения стоимости, воздействия на окружающую среду и некоторых аспектов производительности [21]. Во всем мире растет беспокойство по поводу безопасности поставок RE, критически важных для производства магнитов NdFeB [43]. Однако следует отметить, что переход от RE может также вызвать увеличение затрат на заменяющие металлы, что может легко компенсировать любые выгоды от отказа от RE [21].Рассматривается ряд подходов к разработке новых магнитных сплавов, не содержащих РЗЭ, и концепций обработки для создания структур, которые могут соответствовать магнитным свойствам постоянных магнитов NdFeB.

Hitachi Metals разработала процесс, который включает диффузию диспрозия (Dy) в магнитные материалы в отличие от прямого легирования [44]. Это эффективно снижает количество Dy, необходимое в магнитных изделиях. Имеются сообщения о технологиях, основанных на уменьшении размера до нанодиапазона для увеличения максимального энергетического продукта [45].Инженеры-конструкторы также использовали компьютерное моделирование для оптимизации геометрии электрических машин, что, в свою очередь, максимизирует выходную мощность при сохранении небольшого количества требуемых RE [44].

Наконец, было продемонстрировано, что во время механической обработки спеченных магнитов образуется примерно 25% лома, и огромное количество этих отходов выбрасывается, не пытаясь переработать [46]. Текущие высокие цены на магниты из ВИЭ вынудили производителей рассмотреть вопрос об утилизации, и предпринимается ряд попыток разработать технологии, которые эффективны для производства не только магнитов из РЗЭ из лома, но и неиспользуемых магнитов из старых устройств.Существуют два метода, которые были разработаны для получения порошков из спеченных из отходов магнитов NdFeB, а именно, процесс декрепитации водорода (HD) и процесс рекомбинации при разложении и десорбции водорода (HDDR) [18, 47, 48]. Однако основным недостатком является разработка анизотропных спеченных магнитов с высокой коэрцитивной силой. Кроме того, сильно окисленные фазы, богатые неодимом, полученные в процессе рециркуляции, не подходят для производства полностью уплотненных магнитов NdFeB без какой-либо формы смешивания с более чистыми фазами [49].В 2003 году Кавасаки и др. сообщили, что спеченные магниты были успешно воспроизведены путем смешивания подвергнутого струйной мельнице NdFeB с бинарным сплавом Nd 80 Fe 20 [50]. Закотник и др. [51] добавил 1,0 мас.% Nd к переработанным порошкам NdFeB, подвергнутым струйной мельнице, что было достаточно для восстановления магнитных свойств с помощью метода водородной декрепитации (HD). Ли и др. смешанные переработанные измельченные магниты NdFeB с 24 мас.% порошка Nd 22 PrFe 14 B, который восстановил B r до 99.2%, i H c от до 105,65% и ( BH ) макс. до 98,65% [52, 53]. В двух отдельных исследованиях было предложено использование соли DyF 3 для получения оболочки (Nd, Dy) 2 Fe 14 B на поверхности переработанных порошков [53, 54]. Недавно Sepehri-Amin et al. [49] сообщили о переработанном магните с номинальным составом Nd 21,63 Pr 6,43 Dy 3,42 Fe 64.75 Ga 0,1 Zr 0,11 Al 0,28 Co 1,74 Cu 0,32 B 0,97 C 0,12 O 0,13 мас.% Произведено с помощью модификатора границ зерен Nd 2 14286 Fe B в виде порошка. Сообщалось, что магнитные свойства переработанного магнита превосходят таковые у коммерческого спеченного магнита марки NMX-43SH. Это было приписано образованию отчетливой зернограничной фазы и обогащению ∼0.8% по Dy в оболочке зерен Nd 2 Fe 14 B [49].Во всех этих исследованиях ясно, что выбор состава очень важен для восстановления сопоставимых магнитотвердых свойств.

3. Перспективы

Нет сомнений в том, что спрос на постоянные магниты из RE постоянно растет, и есть ряд аргументов в пользу того, что магниты из RE могут не предлагать лучшее долгосрочное решение из-за высокой стоимости и риска поставка критических редкоземельных элементов (РЗЭ), используемых в постоянных магнитах. Более того, некоторые исследователи указали, что влияние постоянных магнитов в двигателях может выступать в качестве источника неэффективности.Однако, по мнению автора, существуют возможности для развития цепочки поставок ВИЭ-магнитов в Южной Африке в краткосрочной и среднесрочной перспективе, при условии, что более крупные игроки не прибегут к хищническому ценовому поведению, чтобы отпугнуть новых игроков, как это было в 2011-2012 годах период. Кроме того, высшие учебные заведения Южной Африки должны усилить свою поддержку, разработав специальную подготовку для инженеров и технологов в области магнитных материалов, включая их исследования и разработки.Во всем мире действительно существует критическая нехватка навыков в этой области. Исследовательский потенциал должен быть направлен на поиск альтернативных магнитотвердых материалов с низким содержанием РЭ или без них, разработку альтернативных технологий и разработку технологий рециркуляции. Благодаря таким инициативам некоторые производители автомобилей, такие как Renault и Tesla, успешно разработали технологии с фазным ротором и асинхронные двигатели, соответственно, в поисках альтернатив постоянным магнитам с RE. В долгосрочной перспективе действительно существует потенциал полной замены RE-магнитов на недорогие ферриты с еще более высоким тяговым усилием.Это просто вопрос времени и вложения достаточных средств для достижения уровня зрелости дизайна, соизмеримого с поставленными целями производительности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2024 © Все права защищены.