Бесколлекторный генератор – Проверка возможностей автомобильного генератора в качестве электродвигателя.

Бесщёточный синхронный генератор — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Генератор.

Бесщёточный синхронный генератор — синхронная машина, работающая только в генераторном режиме, ротор которой не имеет коллекторно-щёточного узла, а ток в обмотке возбуждения (в роторе) индуцируется за счёт переменного магнитного поля, создаваемого основной и/или дополнительной обмоткой статора.

Существует несколько практических реализаций бесщёточного синхронного генератора, отличающихся способом индуцирования тока в обмотке возбуждения и регулированием напряжения на выходных зажимах.

Генераторы с компаундным возбуждением и компенсирующей ёмкостью[править | править код]

Наиболее простым по технической реализации является бесщёточный генератор с компаундным возбуждением и компенсирующей ёмкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.

Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.

Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.

Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счёт последней в обмотках начинает индуцироваться ток. Так как за счёт диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле, создаваемое ротором, индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через неё начинает протекать переменный ток. Этот переменный ток создаёт переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и ещё сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь ещё сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.

При подключении нагрузки к основной обмотке в ней появляется ток, который создает своё магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падение напряжения на внутреннем сопротивлении и смещение магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счёт этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.

Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В то же время этому типу генераторов присущ ряд недостатков, а именно:

  • генератор может быть только однофазным;
  • в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается — напряжение на выходе генератора может оказаться сильно завышенным.
  • коэффициент полезного действия генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению.

Генераторы с независимым возбуждением[править | править код]

Недостатки генераторов с компаундным возбуждением и емкостной компенсацией устраняются в бесщёточных генераторах с независимым возбуждением. В этом случае передача электрической энергии к обмотке возбуждения (в виде переменного тока) происходит через вращающийся трансформатор, а выпрямление переменного тока для питания обмотки возбуждения происходит в самом роторе за счёт выпрямителя. Такие генераторы сложнее по конструкции (необходим вращающийся трансформатор). Регулирование напряжение может осуществляться как за счёт компаундирования, так и с применением электронного регулятора.

устройство, принцип работы, преимущества и недостатки

Генераторы — это электрические машины для трансформации механической, тепловой и других типов энергии в электрическую.

Среди всех прочих, наиболее популярны генераторы, преобразующие в электричество энергию вращения. Источников данного вида движения можно назвать множество:

  • двигатели внутреннего сгорания;
  • вращающиеся колеса вагона;
  • льющаяся на лопасти водяной мельницы вода и т.д.

Обычно, в конструкции генераторов используются щеточные узлы для передачи постоянного тока на вращающийся якорь, который выступает в роли постоянного магнита. Щетки, в силу механической конструкции, являются их слабым звеном.

Щеточный узел требует регулярного обслуживания, чистки и замены подверженных износу деталей. Этого недостатка лишены бесщеточные схемы возбуждения.

Устройство

Самыми распространенными, за счет простоты конструкции и практической надежности, являются бесщеточные синхронные генераторы с компаундной системой возбуждения.

Как любая другая электрическая машина, данный генератор состоит из двух ключевых узлов:

  • вращающийся ротор, с расположенными на нем обмотками возбуждения с выпрямительными диодами;
  • неподвижный статор, с основной обмотки которого снимается напряжение для питания потребительской нагрузки, а дополнительная обмотка с компенсирующим конденсатором предназначена для усиления магнитного потока. Обмотки статора питаются напрямую от ступенчатого стабилизатора напряжения и, как правило, соединены по схеме «звезда».

При пуске генератора, ток в обмотках ротора индуцируется остаточной намагниченностью железа генератора. За счет кремниевых выпрямительных диодов, ток индуцирует постоянное магнитное поле, которое при вращении приводит к возбуждению ЭДС в статорных обмотках. Замкнутая через компенсирующий конденсатор дополнительная обмотка, усиливает начальную намагниченность и запускает процесс лавинообразного возбуждения генератора, продолжающийся до момента насыщения магнитного потока. После этого, к генератору можно подключать потребительские устройства и агрегаты.

Чтобы подключение нагрузки не приводило к понижению выдаваемого напряжения, применяется компаундное регулирование. Оно осуществляется за счет того, что обмотки статора располагаются таким образом, чтобы оси их магнитных полей были смещены на 90 градусов. При этом, увеличение тока в цепи нагрузки приводит к повороту магнитного поля ротора в сторону основной обмотки и, следовательно, увеличению индуцируемой в ней ЭДС. Выходное напряжение стабилизируется.

Преимущества и недостатки

По сравнению с обычными генераторами бесщёточный имеет ряд преимуществ:

  1. Нет угольной пыли, являющейся причиной электрических пробоев.
  2. Нет необходимости в замене изношенных щеток и проточке коллектора якоря.
  3. Меньшее количество механических конструкций даёт более высокую надежность при минимальных трудозатратах на обслуживание.
  4. На  работу бесщёточного синхронного генератора не влияют окружающие климатические условия, его применение экономически целесообразно.
  5. Бесщёточные генераторы просты по конструкции и недороги.

К недостаткам можно отнести то, что данные генераторы могут быть только однофазными и имеют невысокий КПД, что, впрочем, устранимо путем применения системы независимого возбуждения с электронными регуляторами.

Бесщёточный синхронный генератор в настоящее время активно используется в бензиновых электростанциях, в речных и морских судах — везде, где их применение оправдано требованиями повышенной надёжности и долгого срока эксплуатации.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

фото бесколлекторных двигателей постоянного тока

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера

ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - переделка

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил – переломил вдвое плату  вместе с металлической пластиной крепления.

использование моторчика в качестве генератора электричества

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Схемы сборки соединены методом «дельта»

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было.  На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток  отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - схема 1

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора,  вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 – 100 мкФ х 16 В, все шесть диодов 1N5817.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - схема 2

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант — поставить на выход стабилизатор.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ CD DVD

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика – «жучка».

Шестерёнки (зубчатая пара) с передаточным отношением

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

двигатель возможно использовать в качестве генератора

Схема собрана, вновь обращённый генератор к тесту готов.

Как собрать ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

двигатель использовать в качестве генератора тока

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео — работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве ветрогенератора способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay.

   Форум по электротехнике

   Обсудить статью ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ


Униполярный бесколлекторный торцовый генератор постоянного тока

Изобретение относится к области электротехники и электромашиностроения и может быть использовано при производстве униполярных бесколлекторных торцевых электрических машин. Технический результат, на достижение которого направлено данное изобретение, состоит в увеличении мощности, повышении эффективности охлаждения и расширении функциональных возможностей, а также в повышении эксплуатационной надежности и технического ресурса предлагаемого генератора путем обеспечения возможности механического регулирования и визуального наблюдения величины воздушного зазора. Сущность изобретения состоит в следующем. Униполярный бесколлекторный торцовый генератор постоянного тока, содержащий неподвижный раздвоенный кольцевой магнитопровод якоря с пазами для укладки обмотки якоря, вращающиеся торцовые магнитопроводы индукторов для возбуждения и вентилятор, отличающийся тем, что в схеме возбуждения генератора установлены радиальные электромагниты и круговые электромагниты, при этом вращающиеся на валу ротора генератора торцовые магнитопроводы обоих индукторов вместе с радиальными и круговыми электромагнитами обращены встречно через воздушный промежуток одноименными полюсами к магнитопроводам с обмоткой якоря, что обеспечивает в торцовых магнитопроводах обоих индукторов постоянное наличие остаточного магнетизма, способствующего возбуждению генератора, при этом схема возбуждения снабжена двумя щеточно-контактными узлами, включающими щетками токосъема и неразрезные контактные кольца. Генератор может быть использован при производстве электроэнергии на электростанциях, ГЭС, для дальних электропередач больших мощностей на постоянном токе с высоким экономическим эффектом, при этом исключается необходимость строительства повышающих напряжение подстанций и дорогостоящих преобразующих устройств для преобразования переменного тока в постоянный. Генераторы для дальних электропередач работают при последовательной схеме их включения. Область использования предлагаемого изобретения расширяется путем обеспечения возможности его использования в промышленности как в качестве генератора, так и в качестве двигателя, а именно в электрифицированном транспорте, в ветроустановках, для электросварки, электролиза, электроснабжения компьютерной техники, ЭВМ, зарядки аккумуляторных батарей, аварийное электроснабжение систем автоматики, освещения. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к электромашиностроению и может быть использовано в производстве машин постоянного тока.

Известное устройство торцового двигателя [1] по авторскому свидетельству СССР № 129715, 1960 г. имеет для возбуждения постоянные магниты и малую мощность. Кроме того, при торцовом устройстве двигатель не обеспечен возможностью механического регулирования и визуального наблюдения величины воздушного зазора.

Указанные недостатки аналога ограничивают предел выдаваемой мощности и технический ресурс работы двигателя.

Лучшим вариантом аналога, избранным в качестве прототипа [2] является самовозбуждающийся бесколлекторный генератор постоянного тока по патенту № 2124799, прототипом для которого тоже служит униполярный генератор, но который хоть и содержит для возбуждения постоянные магниты, но может выдавать несколько большую мощность, но не более 10 кВт.

Недостатками прототипа являются: малая мощность, отсутствие возможности механического регулирования и визуального наблюдения величины воздушного зазора, вентилятор на валу ротора генератора ограничивает эффективность охлаждения при торцовом устройстве генератора, неподвижный раздвоенный кольцевой магнитопровод якоря с аксиальными и коаксиальными пазами для укладки обмотки якоря служит для создания магнитной цепи, но не введен в электрическую схему обмотки якоря, которая выполнена только в последовательном исполнении, без параллельных ветвей. Указанные недостатки прототипа снижают его эксплуатационную надежность и технический ресурс.

С целью повышения величины выдаваемой мощности, эксплуатационной надежности и технического ресурса генератора путем обеспечения возможности механического регулирования и визуального наблюдения величины воздушного зазора, повышения эффективности охлаждения генератора и расширения функции неподвижного раздвоенного кольцевого магнитопровода якоря для создания многовитковой последовательно-параллельной обмотки якоря предлагается внести следующие изменения в устройстве прототипа, содержащего неподвижный раздвоенный кольцевой магнитопровод якоря с пазами для укладки обмотки якоря, вращающиеся торцовые магнитопроводы индукторов для возбуждения и вентилятор, отличающийся тем, что в схеме возбуждения генератора установлены радиальные электромагниты и круговые электромагниты, при этом вращающиеся на валу ротора генератора торцовые магнитопроводы обоих индукторов вместе с радиальными и круговыми электромагнитами обращены встречно через воздушный промежуток одноименными полюсами к магнитопроводам с обмоткой якоря, что обеспечивает в торцовых магнитопроводах обоих индукторов постоянное наличие остаточного магнетизма, способствующего возбуждению генератора, при этом схема возбуждения снабжена двумя щеточно-контактными узлами, включающими щетками токосъема, и неразрезные контактные кольца, в узле крепления торцовых магнитопроводов обоих индукторов к валу ротора генератора установлены ферромагнитные шайбы для обеспечения возможности механического регулирования величины воздушного зазора, на торцовых участках магнитопроводов обоих индукторов установлены вентиляционные лопасти для повышения эффективности охлаждения генератора, раздвоенный кольцевой магитопровод якоря, к которому через воздушные промежутки обращены одноименными полюсами торцовые магнитопроводы обоих индукторов, образует вместе с якорной обмоткой, уложенной в его аксиальных и коаксиальных пазах, тороидальную катушку с двумя разделенными друг от друга воздушным промежутком кольцевыми магнитопроводами прямоугольного сечения, выполненными в цельном исполнении с перемычкой из ферромагнитного токопроводящего материала, на внешнем диаметре торцовых магнитопроводов якоря для намотки кольцевой обмотки якоря выполнены коаксиальные пазы в двойном исполнении, то есть одни пазы расположены параллельно оси ротора, а другие выполнены с шагом до следующего аксиального паза, при этом магнитопроводы с обмоткой якоря обеспечены электрической изоляцией от корпуса генератора изоляционными прокладками, а раздвоенный кольцевой магнитопровод якоря, в теле магнитопроводов которого образовано множество размещенных по радиусу параллельных ветвей в цепи обмотки якоря, введен в электрическую схему обмотки якоря, выполненной многовитковой в последовательно-параллельном исполнении.

На фиг.1 представлен в продольном разрезе общий вид предлагаемого устройства униполярного бесколлекторного торцового генератора постоянного тока, содержащего неподвижный раздвоенный кольцевой магнитопровод якоря 1 с пазами 18, 18′, 18» (см. также фиг.2) для укладки кольцевой обмотки якоря 2, 11, 12, на валу ротора генератора 7 вращающиеся торцовые магнитопроводы обоих индукторов 3 с радиальными электромагнитами 4 и круговыми электромагнитами 6 с соответствующей ориентировкой их полярности с целью создания замкнутой магнитной цепи. Магнитный поток от северного полюса радиального электромагнита 4 проходит по магнитопроводу якоря 1, пересекает воздушный зазор и по телу ротора уходит к южному полюсу кругового электромагнита 6, затем от северного полюса кругового электромагнита 6 уходит по магнитопроводу индуктора 3 к южному полюсу радиального электромагнита 4 и цепь замыкается (на чертеже она показана пунктирными линиями, а направление потока — указательными стрелками), два щеточно-контактных узла с неподвижными щетками токосъема 15 и вращающимися неразрезными контактными кольцами 16, в узле крепления вращающихся торцовых магнитопроводов обоих индукторов к валу 7 ротора генератора установлены ферромагнитные шайбы 8 для обеспечения возможности механического регулирования величины воздушного зазора, а в корпусе генератора 20 образованы смотровые окна 9, на вращающихся торцовых магнитопроводах обоих индукторов установлены вентиляционные лопасти 5 для повышения эффективности охлаждения генератора, а в боковых подшипниковых щитах 19 образованы вентиляционные прорези 10, перемычка 14 из ферромагнитного токопроводящего материала между разделенными друг от друга воздушным промежутком неподвижными раздвоенными кольцевыми магнитопроводами якоря прямоугольного сечения, выполненными с ней в цельном исполнении, коаксиальные пазы 18′ и 18» (см. фиг.2) на внешнем диаметре неподвижных раздвоенных кольцевых магнитопроводов якоря, для намотки кольцевой обмотки якоря, выполнены в двойном исполнении, то есть одни пазы 18′ расположены параллельно оси ротора, а другие 18» выполнены с шагом до следующего аксиального паза 18 (см. фиг.2), неподвижные раздвоенные кольцевые магнитопроводы якоря 1 с кольцевой обмоткой якоря 2, 11, 12 обеспечены электрической изоляцией от корпуса 20 генератора изоляционными прокладками 13 и введены в электрическую схему обмотки 2, 11, 12 якоря, выполненной многовитковой в последовательно-параллельном исполнении.

На фиг.2 представлен в условно разделенном виде неподвижный раздвоенный кольцевой магнитопровод якоря 1 и многовитковая последовательно-параллельная электрическая схема обмотки якоря 2, 11, 12, так как на чертеже фиг.1 ее изобразить невозможно, аксиальные участки 11, 2 и коаксиальные участки 12, 2 изображены на чертеже линиями, а неподвижный раздвоенный кольцевой магнитопровод якоря 1, к которому через воздушные промежутки обращены одноименными полюсами вращающиеся торцовые магнитопроводы обоих индукторов, образуют вместе с якорной обмоткой 2, 11, 12, уложенной в его аксиальных и коаксиальных пазах 18′, 18», тороидальную катушку с двумя разделенными друг от друга воздушным промежутком, кольцевыми магнитопроводами прямоугольного сечения, выполненными в цельном исполнении с перемычкой 14 из ферромагнитного токопроводящего материала, а тело неподвижного раздвоенного кольцевого магнитопровода якоря 1, в котором образовано множество размещенных по радиусу параллельных ветвей в цепи обмотки якоря, введено в электрическую схему обмотки 2, 11, 12 якоря, выполненной многовитковой в последовательно-параллельном исполнении, а соединительные электрические контакты на чертеже (фиг.1 и фиг.2) обозначены цифрой 17.

При работе генератора ЭДС в аксиальной части 11 обмотки якоря 2 будет возникать по закону электромагнитной индукции в трактовке М. Фарадея E=BLV, т.е. общеизвестно, что «Принцип действия всех вращающихся электрических машин основан на законе электромагнитной индукции E=BLV и законе электромагнитных механических сил (Закон Ампера) F=BLI.» (см. А.А.Глебович, Л.П.Шичков. Электрические машины и основы электропривода. Москва, ВО «Агропромиздат», 1989 г. стр.4). Возникновение ЭДС в аксиально уложенных участках 11 обмотки якоря 2 будет обусловлено разной окружной линейной скоростью пересечения поверхностей проводников, хоть и не изменяемым магнитным потоком, но с разной скоростью, т.к. точки поверхности проводников, находящихся ближе к оси вала генератора, будут пересекаться магнитным потоком с меньшей скоростью, чем в точках поверхностей этих же проводников, находящихся в удалении от оси ротора, тогда E=BL(V2-V1), т.к. V2 всегда будет больше V1, то и ЭДС не будет равна нулю. Такое положение в участках 12 обмотки якоря 2, уложенных коаксиально, по внутреннему диаметру неподвижного раздвоенного кольцевого магтатопровода якоря не проявляется, т.к. они пересекаются неизменяемым магнитным потоком и при равной окружной линейной скорости во всех точках поверхности проводника, а сама поверхность этих проводников становится эквипотенциальной, т.е. поверхностью равного потенциала U(XYZ)=Const. Вдоль любой линии на этой поверхности имеем: Следовательно: E=BL(V2-V1)=0, т.к. V2=V1 (см. Л.Р.Нейман и П.А.Калантаров, ТОЭ, ч.1, Москва-Ленинград, ГЭИ, 1959 г., стр.40 и 90). Совершенно другая картина обнаруживается, если мы рассмотрим положение с коаксиальными участками 12 обмотки 2, расположенными в коаксиальных пазах по внешнему диаметру неподвижного раздвоенного кольцевого магнитопровода якоря, т.к. они расположены в продольной линии магнитного потока индукторов, т.е. силовые линии проходят вдоль оси соединительных проводников и не будут пересекать их в поперечном направлении, тогда выражение E=BL(V2-V1)=0, т.к. V2=0 и V1=0.

Известно, что при движении проводника вдоль линий магнитного поля ЭДС не образуется (см. П.Г.Федосеев. Электротехника, М.: Искусство, 1953 г., стр.168).

Предлагаемое устройство генератора является торцовым, одноименнополюсным, т.е. униполярным и работает на принципе униполярной индукции — «Возникновение ЭДС индукции в намагниченном теле, движущемся под некоторым углом к оси намагничивания», т.е. E=BLVSinα, но в предлагаемом устройстве генератора пересечение магнитным потоком поверхности проводников обмотки якоря происходит под прямым углом, тогда Sinα будет равен единице или E=BLVSin90°=BLV (см. П.Г.Федосеев. Электротехника. М., Искусство, 1953 г., стр.208) (см. Москва, Издательство «Большая Российская Энциклопедия», 1998 г., стр.1251). Характерной особенностью нового устройства униполярного генератора постоянного тока (см. патенты № 2031517, 2044386, 2095924 и 2124799) является то, что благодаря его постоянной одноименнополюсности в процессе его работы, будет обеспечиваться постоянное наличие остаточного магнетизма в ферромагнитных магнитопроводах якоря и индукторов, что будет способствовать возбуждению, т.е. если выключить электрический ток в обмотке электромагнитов, которые имеют ферромагнитные сердечники, то их намагничивание останавливается, но сердечники не теряют полностью магнитные свойства — это явление называется остаточным магнитизмом, которое при очередном включении тока увеличивает магнитную насыщаемость, что при одноименнополюсности генератора способствует его возбуждению (см. П.Г.Федосеев. Электротехника. Издание М.: «Искусство», 1953 г., стр.162). «Магнитная индукция, сохраняющаяся в ферромагнетике после снятия поля (когда Н=0), называется остаточной магнитной индукцией» (см. Н.И.Кошкин, М.Г.Ширкевич. Справочник по элементарной физике. М.: Наука, Главная редакция физико-математической литературы, 1988 г., стр.142).

Фактически устройство генератора с независимым возбуждением представлено двумя генераторами, работающими на одну обмотку якоря. Это видно по тому, что имеются два индуктора, два щеточно-контактных узла с щетками токосъема и неразрезными контактными кольцами в схеме возбуждения. Кольцевая обмотка якоря неподвижна. Постоянный электрический ток образуется без средств коммутации и при отсутствии щеточно-контактных узлов в обмотке якоря. Встречное направление магнитных потоков от индукторов не имеет отрицательных последствий, т.к. магнитные цепи индукторов разделены воздушным промежутком. Кроме того, прямое противостояние в пространстве одноименных полюсов электромагнитов от обоих индукторов исключено, т.к. они располагаются со смещением в пространстве друг относительно друга.

Генератор может быть изготовлен при современном уровне электромашиностроения мощностью до 10 тыс. кВт и напряжением 10 кВ. Расширяется область использования машины как в качестве генератора, так и в качестве двигателя в промышленности, а именно в электрифицированном транспорте, электроснабжении компьютерной и электронной аппаратуры, для электросварки, электролиза, зарядки аккумуляторных батарей, производства электроэнергии на электростанциях, в ветроустановках, а также для дальних электропередач больших мощностей на постоянном токе с высоким технико-экономическим эффектом, так как исключается строительство повышающих напряжение подстанций и дорогостоящих преобразующих устройств для перевода переменного тока в постоянный. В пунктах приема будут широко использоваться известные делители напряжения (см. Москва, научное издательство «Большая Российская Энциклопедия», 1998 г., стр.339) или «инверторные устройства» (см. там же на стр.445) Известно, что передачу электроэнергии на постоянном токе при том же уровне напряжения можно осуществить в 1,5 раза большей мощностью, чем на переменном токе (см. К. Баудиш Передача энергии постоянным током высокого напряжения». М.-Л.: Госэнергоиздат, 1958 г., стр.216). Устройство униполярного бесколлекторного торцового генератора постоянного тока работает следующим образом: при вращении вала генератора 7 радиальные электромагниты 4 и круговые электромагниты 6, запитанные от внешней сети постоянного тока, возбуждают напряжение в обмотке якоря, и с набором оборотов генератор переходит из пускового режима в рабочий режим. В качестве первичного двигателя может быть использована энергия воды, ветра, двигатель внутреннего сгорания, электродвигатель.

1. Униполярный бесколлекторный торцовый генератор постоянного тока, содержащий неподвижный раздвоенный кольцевой магнитопровод якоря с пазами для укладки обмотки якоря, вращающиеся торцовые магнитопроводы индукторов для возбуждения и вентилятор, отличающийся тем, что в схеме возбуждения генератора установлены радиальные электромагниты и круговые электромагниты, при этом вращающиеся на валу ротора генератора торцовые магнитопроводы обоих индукторов вместе с радиальными и круговыми электромагнитами обращены встречно через воздушный промежуток одноименными полюсами к магнитопроводам с обмоткой якоря, что обеспечивает в торцовых магнитопроводах обоих индукторов постоянное наличие остаточного магнетизма, способствующего возбуждению генератора, при этом схема возбуждения снабжена двумя щеточно-контактными узлами, включающими щетки токосъема и неразрезные контактные кольца.

2. Генератор по п.1, отличающийся тем, что в узле крепления торцовых магнитопроводов обоих индукторов к валу генератора установлены ферромагнитные шайбы для обеспечения возможности механического регулирования величины воздушного зазора.

3. Генератор по п.1, отличающийся тем, что на торцовых участках магнитопроводов обоих индукторов установлены вентиляционные лопасти для повышения эффективности охлаждения генератора.

4. Генератор по п.1, отличающийся тем, что раздвоенный кольцевой магнитопровод якоря, к которому через воздушные промежутки обращены одноименными полюсами торцовые магнитопроводы обоих индукторов, образует вместе с якорной обмоткой, уложенной в его аксиальных и коаксиальных пазах, тороидальную катушку с двумя разделенными друг от друга воздушным промежутком кольцевыми магнитопроводами прямоугольного сечения, выполненными в цельном исполнении с перемычкой из ферромагнитного токопроводящего материала, на внешнем диаметре торцовых магнитопроводов индукторов для намотки кольцевой обмотки якоря выполнены коаксиальные пазы в двойном исполнении, то есть одни пазы расположены параллельно оси ротора, а другие выполнены с шагом до следующего аксиального паза, при этом магнитопроводы с обмоткой якоря обеспечены электрической изоляцией от корпуса генератора изоляционными прокладками, а раздвоенный кольцевой магнитопровод якоря, в теле магнитопроводов которого образовано множество размещенных по радиусу параллельных ветвей в цепи обмотки якоря, введен в электрическую схему обмотки якоря, выполненной многовитковой в последовательно-параллельном исполнении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *