Защита электродвигателей – Защита электродвигателей, перечень современных защитных устройств разных производителей

Содержание

Виды защит электродвигателя — ElectrikTop.ru

Виды защит электродвигателя

Асинхронные электродвигатели – наиболее распространенный вид электрических машин, использующихся в приводах различного назначения. От их безаварийной работы зачастую зависит не только правильность течения технологического процесса, но и жизнь людей.

Кроме того, их цена зачастую больше или сравнима с совокупной стоимостью всего остального оборудования. По этой причине принимаются различные меры по защите асинхронных двигателей, которые обычно носят комплексный характер и предусматривают возможность возникновения всех типов аварийных ситуаций.

Что может случиться с электродвигателем

К нашему счастью, список возможных аварийных ситуаций в цепях электрического привода ограничен. Это вам не «Справочник фельдшера» объемом в несколько тысяч страниц. Вот что может случиться:

  • Нестабильность питающего напряжения и тока.
  • Дисбаланс фаз.
  • Все виды замыканий – как так называемые короткие, возникающие между фазами или между фазой и землей, а также межвитковые, уменьшающие индуктивность и сопротивление статорных обмоток двигателя.
  • Физическая перегрузка на валу.

Проблемы с качеством электропитания

Статорные обмотки асинхронного электродвигателя обладают значительной индуктивностью. Каждая из них по отдельности может рассматриваться как балластный трансформатор. По этой причине асинхронные электродвигатели в наименьшей степени зависят от качества подаваемого на них напряжения. Его снижение или увеличение на десяток вольт машиной будет просто проигнорировано, если оно произошло симметрично по всем фазам.

Наиболее проблемным является момент запуска и набора оборотов. Пусковой ток электродвигателя с короткозамкнутым ротором превышает номинальный минимум в пять раз. И чем выше мощность машины, тем это значение больше.

Дело усугубляется в том случае, если подключается нагруженный привод. Например, подъемный механизм или навозный транспортер на животноводческой ферме.

Решить проблему запуска можно двумя способами:

  1. Применить схему коммутации обмоток. В момент замыкания контактов рубильника они включены по схеме «Звезда», а после набора оборотов переключаются на «Треугольник». Снижение токовой нагрузки происходит по той причине, что на каждой обмотке первоначальное напряжение в 1,73 раза меньше – 220 вольт.
  2. Использовать автоматические выключатели с подходящей случаю времятоковой характеристикой. Например, рабочий ток асинхронного двигателя мощностью 3 кВт находится в пределах 12 ампер. Если вы поставите на входе цепи питания АВ с номиналом 16 ампер типа «С», то привод может отключаться во время запуска. Оптимальным вариантом является АВ на те же 16 ампер, но типа «В».

Короткие замыкания

Возникновение сверхтоков – они так названы потому, что в сотни и тысячи раз превышают номинальные – происходит в случае замыкания между фазой и землей (как физической, на корпус электроустановки, так и технологической нейтралью) или между фазами. Процесс этот сопровождается возникновением дуги электрического разряда и выделением большого количества тепла.

Повреждение электродвигателя

Поэтому несмотря на его явную и большую опасность, токовая защита электродвигателя решается наиболее просто – установкой плавких предохранителей или автоматических выключателей. Их номинал должен соответствовать рабочему току двигателя после набора оборотов. В цепи подачи напряжения они устанавливаются первыми.

Дисбаланс фаз

Часто не имеет явных признаков и потому более опасен. Он возникает в следующих случаях:

  • При пропадании одной из фаз в линии, подающей электропитание на всю электроустановку.
  • При отсутствии соединения в одном из элементов схемы. Например, при выгорании какой-либо клеммы в группе основных подвижных контактов магнитного пускателя или присоединительной коробке на корпусе электродвигателя.
  • При физическом обрыве одного из фазных проводников в кабеле.
  • При межвитковом замыкании в статорной обмотке.

Наиболее опасно отсутствие именно одной фазы. При этом происходит возрастание межфазного напряжения в 1,7 раза. При отсутствии двух двигатель просто останавливается, его конструктивные элементы перегрузкам не подвергаются.

Включение в сеть по схеме треугольник звезда

Если обмотки двигателя соединены треугольником, то та, что оказывается подключенной между двумя оставшимися фазами, испытывает колоссальные нагрузки, ведь ее сопротивление не превышает десятка Ом. Фактически она работает в режиме короткого замыкания, из-за чего сильно нагревается.

При соединении обмоток звездой процесс менее активен, но более опасен по той причине, что двигатель может продолжить работать, потеряв при этом мощность. И вы этого не заметите до момента полного выгорания обмоток.

Дисбаланс фаз может определить трехфазное УЗО. Через ферритовое кольцо его дифференциального трансформатора пропущены проводники трех фаз и нейтрали. В штатном режиме работы система находится в равновесном состоянии, токи в проводниках компенсируют друг друга, магнитное поле не наводится. Поэтому во вторичной обмотке движения электронов не возникает.

Стоит одной из фаз пропасть, как по нейтрали потечет ток иного направления. Возникший дисбаланс вызывает срабатывание расцепителя и отключение питания. Эта схема работает только в том случае, когда пропадает подводимое к электроустановке напряжение. При возникновении неисправностей в нагрузке УЗО остается включенным.

Виды узоНо если обмотки двигателя соединены звездой, то можно подключить нейтральный провод питающей линии к ее центру (это пластина в клеммной коробке, соединяющей три вывода). При дисбалансе фаз в нагрузке возникает ток в нейтрали. Это вызовет срабатывание защитного устройства.

Если магнитный пускатель имеет втягивающую катушку с номиналом в 380 вольт (она включается между фазами), то этот элемент схемы также может играть роль своеобразной защиты от перекоса фаз в питающей линии. Вероятность отключения привода в этом случае очень велика.

Но основным способом предотвращения аварии в этом случае является тепловая защита электродвигателя. По той причине, что он сопровождается выделением тепла – фактором, на который может среагировать автоматика. Стоит отметить, что при дисбалансе фаз двигатель еще и гудит, но защитных автоматов, реагирующих на звук, не существует.

Тепловой расцепитель, который есть в автоматических включателях на вводах, не сработает или сделает это слишком поздно. Ведь из-за большой протяженности линии тепло может рассеяться. Поэтому стало правилом устанавливать сразу после магнитного пускателя так называемое тепловое реле, с помощью которого осуществляется и защита электродвигателя от перегрузки на валу.

Тепловое релеОно состоит из трех нагревательных элементов и биметаллической пластины, которая при изменении температуры деформируется и размыкает контакты цепи управления – одного из фазных проводов, подающихся на контакты втягивающей катушки магнитного пускателя.

Номинальный ток теплового реле должен соответствовать рабочему току двигателя. Обычно он регулируется, для чего на корпус реле выводят винт потенциометра и градуированную шкалу.

Совокупная стоимость приборов защиты меньше цены электрического двигателя. И ничтожна по сравнению с возможными последствиями аварии. Поэтому не стоит пренебрегать их установкой.

ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ ОТ АВАРИЙНЫХ РЕЖИМОВ

Автоматическая защита электродвигателей

Привод исполнительных механизмов различных технологических процессов, как правило, осуществляется от электродвигателей.

Двигатель относится к основным компонентам электропривода, в наибольшей степени подвергающимся в процессе эксплуатации воздействию неблагоприятных факторов различного характера.

Причины вероятных отклонений от нормального режима работы электродвигателя можно разделить на три основные группы:

  • проблемы в исполнительных механизмах, вызывающие торможение и перегрузку приводного электродвигателя;
  • нарушение качества электроэнергии, питающей электродвигатель;
  • дефекты, возникающие внутри самого двигателя.

Для обеспечения надёжной эксплуатации, электродвигатель должен быть оборудован автоматическими защитами в необходимом объёме, реагирующими на опасные отклонения рабочих параметров и перегрузки по любой причине из перечисленных групп и действующими на отключение выключателя.

Минимальный объём автоматических устройств защиты электродвигателей определяется правилами устройства электроустановок (ПУЭ). Электрические двигатели различаются по номинальной мощности, напряжению питания, роду потребляемого тока, а также конструктивными особенностями.

В соответствии с этими различиями, а также исходя из условий работы, для каждой модели электрической машины производится выбор автоматической защиты электродвигателя. Различные виды автоматических устройств действуют как на отключение выключателя, так и на включение предупредительной сигнализации.

По роду потребляемого тока электродвигатели делятся на:

В быту и производстве распространены двигатели переменного тока, которые бывают асинхронными и синхронными.

По уровню номинального напряжения электрические машины переменного тока делятся на две основные группы – низковольтные, питающиеся напряжением до 1000 В и высоковольтные, рассчитанные на работу в сетях выше 1000 В. Наиболее массовое распространение имеют асинхронные машины с номинальным напряжением 0,4 кВ.

Защищаются они посредством автоматического выключателя, имеющего электромагнитный и тепловой расцепители от короткого замыкания и перегрузки.

ОСНОВНЫЕ ТИПЫ ЗАЩИТ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ ДО 1000 В

Токовая отсечка.

Из всех аварийных режимов наиболее опасным является междуфазное короткое замыкание. Данный вид повреждения требует немедленного отключения асинхронного двигателя выключателем от питающей сети.

В соответствии с действующими правилами, асинхронные двигатели до 1000 В должны защищаться от коротких замыканий плавкими предохранителями или электромагнитными и тепловыми расцепителями автоматических выключателей.

Как обычно, правила отстают от фактических реалий. На вновь вводимых объектах асинхронные электрические машины комплектуются выносными многофункциональными блоками автоматической релейной защиты электродвигателя на базе микроконтроллеров, воздействующими на отключение выключателя.

Основной сути это не меняет. Автоматические защитные устройства от междуфазных коротких замыканий реагируют на сверхтоки и не имеют выдержки времени отключения выключателя. Такие устройства по-прежнему называют токовыми отсечками, защитные реле срабатывают при КЗ в обмотке статора либо на выводах асинхронного двигателя.

Контроль протекающего электротока осуществляется посредством традиционных токовых преобразователей – трансформаторов тока (ТТ) или более современных датчиков электротока.

Зоной действия защищающего устройства является участок электросети, расположенный после ТТ или датчика. Обычно кроме самого асинхронного двигателя в защищаемой зоне находится и питающий кабель.

Параметры срабатывания токовой отсечки должны быть надёжно отстроены от пусковых токов. С другой стороны, автоматическое защитное устройство должно обладать достаточной чувствительностью при межвитковых замыканиях в любой части обмотки статора асинхронной машины.

Перегрузка.

Данный вид ненормального режима возникает при неисправностях или перегрузке исполнительного механизма. Перегрузка двигателя также может происходить по причине его недостаточной мощности. Режим перегрузки характеризуется повышенным уровнем токового потребления с относительно небольшой кратностью по сравнению с номинальным значением.

Токовая уставка автоматической защиты электродвигателя от перегрузки меньше значения пусковых токовых параметров, поэтому должна быть осуществлена отстройка от режима запуска путём искусственной задержки времени срабатывания и отключения автоматического выключателя.

Защищённость электромашины от перегрузки может быть реализована с применением следующих устройств:

  • теплового расцепителя автоматического выключателя защиты электродвигателя;
  • выносного защитного комплекта с токовым реле и реле времени, воздействующего на отключение выключателя при перегрузке;
  • блока комплексной защитной автоматики двигателя на микроконтроллере, при срабатывании воздействующего на расцепитель выключателя.

В случае применения автоматического выключателя требуется просто подобрать подходящий по номинальному току и характеристике автомат. Тепловой расцепитель выключателя защиты электродвигателя обеспечивает интегральную зависимость времени отключения выключателя от величины токовой перегрузки.

Защитный автоматический релейный комплект с выносными электромагнитными реле настраивается на фиксированные ток и время срабатывания защиты.

В этом варианте, в отличие от теплового расцепителя, токовые и временные параметры между собой не связаны. Выходные реле выносных комплектов релейной защиты должны воздействовать на независимый (не тепловой) расцепитель автоматического выключателя.

ЗАЩИТА ОТ НЕПОЛНОФАЗНОГО РЕЖИМА

Этот вид автоматического защитного устройства не предписан ПУЭ как обязательный, хотя является весьма желательным. При работе трёхфазного электродвигателя на двух фазах происходит постепенный перегрев обмоток, приводящий к разрушению изоляции обмоточного провода.

Возникнуть такой режим может, например, при потере контакта в одной из фаз выключателя.

Самое плохое в этой ситуации то, что потребляемый ток при этом может быть сравним с номинальной величиной, то есть токовые защиты электродвигателя, в том числе расцепители теплового типа, защищающие от перегрузки на этот режим могут не среагировать.

Некоторые модели электрических машин содержат встроенные (температурные) датчики обмотки. Такие модификации электрических машин можно оснастить специальным устройством защиты электродвигателя, осуществляющие контроль теплового состояния электромашины.

Тепловые защитные устройства способны помочь и в случае перегрева при работе на двух фазах.

ЗАЩИТНЫЕ УСТРОЙСТВА ДВИГАТЕЛЕЙ ВЫШЕ 1000 ВОЛЬТ

Защищённость высоковольтных электрических машин обеспечивается только выносными релейными устройствами. Тепловой и электромагнитный расцепители являются прерогативой низковольтных устройств.

Принцип действия и расчёт уставок токовой отсечки и защиты от перегрузки такой же, как для низковольтных машин. Но кроме этого существуют специфические защитные устройства, не применяемые на низких напряжениях.

Защита от однофазных замыканий на землю.

Особенностью сетей высокого напряжения (6 – 10 кВ) является работа в режиме изолированной нейтрали. В таких сетях величина Iз замыкания на землю может составлять всего единицы ампер, что находится вне зоны чувствительности максимальных токовых защит от перегрузки.

Однофазные замыкания на землю характеризуются наличием токов нулевой последовательности, протекающих в одном направлении во всех трёх фазах.

Реле земляной защиты электродвигателя (это её название на жаргоне релейщиков) подключается к специальному трансформатору нулевой последовательности, представляющему собой тор (бублик), через который проходит кабель питания.

При этом через тор не должен проходить вывод экранирующей оболочки высоковольтного кабеля, в противном случае имеют место ложные срабатывания устройства с отключением выключателя.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Защиты электродвигателей

Как в электроустановках потребителей, так и в установках собственных нужд электростанций наиболее широкое применение нашли простые и надёжные в эксплуатации асинхронные электродвигатели (АД). Асинхронные электродвигатели потребляют из сети относительно большую реактивную мощность, что является их недостатком, поэтому для приводов механизмов, не требующих регулирования частоты вращения применяют синхронные электродвигатели (СД) устройства автоматического регулирования возбуждения которых позволяют обеспечить резкое увеличение отдаваемой ими реактивной мощности при снижении напряжения в сети, что является эффективным средством повышения устойчивости работы электроустановок.

Релейная защита электродвигателей так же как и защита других электрических машин (генераторов и трансформаторов) должна реагировать на внутренние повреждения и опасные ненормальные режимы.

    1. Повреждения и ненормальные режимы работы электродвигателей. Основные виды защит.

В обмотках электродвигателей могут возникать следующие повреждения: междуфазные к.з., замыкания на землю одной фазы статора и замыкания между витками. Междуфазные к.з. и замыкания на землю могут также возникать на выводах электродвигателей и в питающих их кабелях. Короткие замыкания в электродвигателях сопровождаются прохождением в месте повреждения больших токов разрушающих изоляцию и медь токоведущих частей обмоток, а также сталь статора и ротора электродвигателя.

Для защиты электродвигателей напряжением выше 1 кВ от междуфазных к.з. применяется токовая отсечка или продольная дифференциальная защита действующая на отключение. Электродвигатели напряжением до 500 В защищаются от к.з. с помощью плавких предохранителей или электромагнитных расцепителей автоматов.

Однофазные замыкания на землю в обмотках статора электродвигателей напряжением 3-10 кВ, работающих в сетях с изолированной нейтралью, менее опасны чем к.з., так как сопровождаются прохождением небольших токов порядка 5-20А, определяемых ёмкостным током сети. Поэтому защита от замыканий на землю устанавливается на электродвигателях мощностью до 2 мВт при токах замыкания на землю более 10А и на электродвигателях мощностью более 2 мВт при токах замыкания на землю более .

Перегрузка (длительное прохождение по обмоткам электродвигателя тока превышающего номинальный) является ненормальным режимом, так как может повлечь за собой повреждение электродвигателя.

Перегрузка электродвигателей может возникать из-за перегрузки или неисправности механизмов, а также при пусках и самозапусках электродвигателей когда из-за уменьшения скорости вращения уменьшается сопротивление электродвигателя.

Зависимость тока электродвигателя I от скорости вращения n при постоянно напряжении на его выводах приведена на рис. 10-1.

Рис. 10-1. Зависимость тока статора и сопротивление электродвигателя от скорости вращения (скольжения)

Электродвигатели оснащаются защитами от перегрузки действующими: на разгрузку механизма или на отключение электродвигателя от сети.

Зависимость момента электродвигателя от напряжения на его зажимах характеризуется соотношением:

Mg=KU2

При к.з. в сети напряжения на выводах электродвигателя понижается, вследствие чего создаваемый им вращающийся момент уменьшается и становится меньше противодействовавшего ему момента механизма. В результате скорость вращения электродвигателя уменьшается тем больше, чем глубже и длительнее было снижение напряжения. После отключения к.з. напряжение на выводах восстанавливается, и скорость его вращения увеличивается. При этом по обмоткам электродвигателя проходят большие токи, величина которых определяется скоростью вращения и напряжением на его выводах. При снижении скорости вращения электродвигателя на 10-25% из-за снижения его сопротивления происходит увеличение тока до величины пускового тока. Процесс восстановления нормальной работы электродвигателя после отключения к.з. называется самозапуском, а токи, проходящие при этом – токами самозапуска.

Особое место по своей ответственности среди электродвигателей занимают электродвигатели механизмов собственных нужд электростанций. Поэтому защиты электродвигателей ответственных механизмов электростанций должны отличаться особой надёжностью и должны обеспечивать возможность их самозапуска.

Для обеспечения самозапуска электродвигателей ответственных механизмов собственных нужд электростанций применяют специальную защиту минимального напряжения, отключающую неответственные электродвигатели при снижении напряжения на их выводах до 60-70% номинального.

В случае обрыва одной из 3-х фаз обмотки статора электродвигатель продолжает работать, при этом скорость вращения ротора незначительно уменьшается, а обмотки 2-х неповреждённых фаз перегружаются током в 1,5‑2 раза больше номинального. Как правило, защита от перегрузки является чувствительной к этому режиму и отдельной защиты от работы электродвигателя на 2-х фазах не предусматривают. Применение специальной защиты от работы электродвигателей на 2-х фазах допускается лишь в порядке исключения для электродвигателей защищаемых предохранителями, если 2-х фазный режим может привлечь за собой повреждение электродвигателя.

Специальных защит от витковых замыканий в одной фазе обмотки статора электродвигателя не применяют, так как простых способов исполнения таких защит на сегодняшний день не существует.

Выводы:

  1. В электродвигателях могут возникать следующие повреждения и ненормальные режимы работы:

  • междуфазные к.з.;

  • замыкания на землю одной фазы обмотки статора;

  • витковые замыкания в обмотках статора и ротора;

  • перегрузки;

  • понижения напряжения.

  • Электродвигатели должны оснащаться защитами от: междуфазных к.з., замыканий на землю, (действующие на отключение) и защитой от перегрузки (действующей на разгрузку механизма или на отключение электродвигателя от сети).

    Специальными защитами от витковых замыканий электродвигатели не оснащаются из-за отсутствия простых способов их исполнения.

    1. Защиты электродвигателей ответственных механизмов собственных нужд электростанций должны отличаться особой надёжностью и обеспечивать возможность самозапуска электродвигателей.

  • Защита электродвигателя

    Защита электродвигателя

    В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

    Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

    Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.  

    Как правило, для двигателей напряжением до 1000 Вт предусматривается:
    • защита от коротких замыканий;
    • защита от перегрузки.

    Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

    Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

    Для защиты двигателя от перегрузки используется:

    • Тепловая защита;
    • Температурная защита;
    • Максимально токовая защита;
    • Минимально токовая защита;
    • Фазочувствительная защита.

    Температурная защита

    Наиболее эффективной защитой двигателей является температурная защита.

    Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

    Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

    В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

    Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

    Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

    Пороги термозащиты

    Тепловой режим Значение температуры обмотки статора для систем изоляции класса нагревостойкости, град. С
    B F H
    Установившийся (Предельно допустимое среднее значение) 120 140 165
    Медленной нагревание (Срабатывание защиты) 145 170 195
    Быстрое нагревание (Срабатывание защиты) 200 225 250

    Характеристики датчиков температурной защиты

    Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

    В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

    Температура срабатывания датчиков температурной защиты:

    Класс нагревостойкости изоляции двигателя Обозначения типа позистора по ТУ11-85 ОЖО468.165ТУ Пороговая температура срабатывания позистора, град. С.
    В CТ-14А-2-130 130
    F CТ-14А-2-145 145
    H CТ-14А-2-160 160

    Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

    Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

    Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

    • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
    • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя <= 140 °C) не более 1650 Ом.

    Напряжение, подаваемое на цепь терморезисторов, не более 7,5 В.

    Исполнительные устройства

    В качестве исполнительного устройства температурной защиты применяется любое устройство позволяющее отключать силовую цепь двигателя при достижении цепью терморезисторов сопротивления в диапазоне 1650-2400 Ом. Время срабатывания устройства температурной защиты при этом должно быть не более 1 с.

    Электрический двигатель: комплексная релейная защита

    Главная страница » Электрический двигатель: комплексная релейная защита

    Практически нет в эксплуатации техники, где не использовался бы электрический двигатель. Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень эффективности, на которую рассчитана защита электрического двигателя, как правило, определяется схемными решениями внедрения реле и датчиков контроля.

    СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

    Схема комплексной защиты двигателя

    Существуют различные типы защитных реле, предназначенных исключить сбои двигателя при работе. Этими реле определяется рабочие состояние мотора, выходящее за рамки нормы, что в конечном итоге приводит к срабатыванию автоматического выключателя.

    Комплексная защита двигателя обеспечивает контроль:

    • нарушений в обмотках и связанных цепях;
    • чрезмерной перегрузки и короткого замыкания;
    • дисбаланса трёхфазного и однофазного напряжения;
    • изменения порядка чередования фаз и коммутационных напряжений.

    Основная характеристика защитных реле двигателя — это зависимость уменьшения времени срабатывания от увеличения магнитуды тока повреждения.

    Защитные реле моторовУстройства из серии приборов, гарантирующих целостность моторов при работе электрических двигателей в тяжелых эксплуатационных условиях

    Рассмотрим различные варианты защиты, применяемые к традиционным электрическим двигателям, находящимся в эксплуатации.

    Перечень защит и предназначение

    Список часто применяемых защитных решений состоит из шести реализуемых функций:

    1. Перегрузка по току.
    2. Перегрев статорных обмоток.
    3. Перегрев ротора.
    4. Пониженное напряжение.
    5. Дисбаланс и пофазный сбой.
    6. Реверс фаз.

    Прежде чем подробнее рассмотреть отмеченные схемы защиты, логичным видится разделить двигатели на две группы эксплуатационного статуса – значимые и малозначимые.

    Перегрузка двигателя по току

    Это основной функционал защиты, направленный на предотвращение короткого замыкания обмоток статора. Здесь предохранители и элементы прямого действия используются для защиты статорных обмоток двигателя.

    Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.

    Схема реле срабатывающего по токуСхема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

    Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

    Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

    Перегрев статорных обмоток

    Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

    Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки по току либо прямое срабатывание на отключение от источника питания в случае перегрузки.

    Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.

    Температурный датчик для двигателя Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

    Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

    Фактор перегрева ротора (фазного)

    Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

    Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

    Защита от пониженного напряжения

    Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

    Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.

    Термальная защита электродвигателяКлассический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

    Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

    Дисбаланс и пофазный сбой

    Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

    Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и  поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

    Рекомендуется применять реле защиты двигателя, чувствительное  на отказ обмотки статора. Например, на межфазное замыкание или короткое замыкание на землю.

    Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

    Непредусмотренный реверс фазы

    В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

    Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.

    Схема реле реверса фазыПлата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

    Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

    Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

    Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

    Традиционная защита асинхронных двигателей

    Схема защиты трехфазных асинхронных двигателей небольшой мощности показана на рисунке ниже. Магнитный контактный пускатель содержит группу кнопок пуска и останова, связанных соответствующими вспомогательными контактами, защитными устройствами перегрузки или недогрузки.

    Стартовая кнопка (КН1) представляет собой обычный прямой контактный переключатель, который обычно удерживается в нормально открытом состоянии усилием пружины. В свою очередь кнопка останова (КН2) удерживается в состоянии нормально закрытом также посредством пружины.

    Стоит нажать кнопку пуска (замкнуть линию), рабочая катушка контактора получает питание через контакты (ВК) реле перегрузки (Р1-Р3). Образованное магнитное поле катушки притягивает металлический сердечник контактора.

    В результате замыкаются три главных контакта (К1-К3) магнитного пускателя, через которые электродвигатель (М) соединяется с трёхфазным источником питания.

    Схема защиты электродвигателяСхема пуска, останова и аварийной блокировки: П1, П2, П3 — плавкие предохранители; Р1, Р2, Р3 — токовые реле; ВК — контакты блокировки; КП — катушка пускателя; К1, К2, К3 — контакторы пускателя; КН1 — кнопка пуска; КН2 — кнопка останова; М- мотор

    Пока кнопка «пуск» (КН1) замкнута, цепь питания проходит через контакты кнопки «стоп» (КН2) и катушку магнитного пускателя (КП). Между тем, цепь питания катушки индуктивности теперь уже поддерживается иной схемой.

    Поддержка осуществляется вспомогательными контактами (ВК) реле с токовым управлением (Р1-Р3), поэтому возврат кнопки «пуск» в исходное положение ситуацию не изменит. Контактор останется замкнутым, а двигатель в работе.

    Как работает функционал защиты

    Обычно двигатели мощностью до 20 кВт рассматриваются как маломощные аппараты. Максимум защиты таких моторов обеспечивается:

    • предохранителями с высокой отключающей способностью,
    • биметаллическими реле и
    • реле напряжения.

    Все эти элементы защиты собраны, как правило, в структуре магнитного пускателя.

    Чаще всего выгорание линейных предохранителей защиты двигателя отмечается на одной фазе. Этот обрыв может оставаться не обнаруженным, даже если двигатель защищён обычным биметаллическим реле.

    Защитный предохранитель для электродвигателяСтруктура предохранителя: 1 — торцевая крышка; 2 — кремнезём; 3 — фарфоровый корпус; 4 — выступ крепежа; 5 — предохраняющий элемент; 6 — оловянный сплав; 7 — конструкция управления дугой

    Обнаружение обрыва фазы зачастую не дают и реле напряжения, подключенные на каждой линии. Несмотря на обрыв одной фазы, схемой обмоток электродвигателя поддерживается значительная обратная ЭДС на клемме фазы, находящейся в обрыве.

    Поэтому уровень напряжения на реле остаётся достаточно высоким, что не приводит к срабатыванию. Однако сложности обнаружения подобных дефектов вполне преодолимы.

    Достаточно использовать дополнительный набор из трех реле, управляемых по току. Подключение наглядно демонстрирует схема защиты двигателя, показанная выше.

    Защитные функции токовых реле

    Управляемые током реле — устройства простые, но обладающие эффектом мгновенной отсечки. Конструктивно прибор состоит из следующих деталей:

    • катушка тока;
    • один или несколько нормально разомкнутых контактов.

    Механизм движения контактов управляются ЭДС катушки тока. Традиционно токовые реле подключаются на каждой фазе последовательно с плавкими защитными предохранителями.

    Когда срабатывает магнитный пускатель, электродвигатель запускается, ток питания течёт через катушку. Магнитодвижущая сила катушки (ЭДС) воздействует на механику и замыкает контакты реле. Цепь питания мотора замыкается.

    Элементы реле управляемого токомБлокиратор токовой перегрузки: 1 — электрические коннекторы; 2 — индикатор отключения; 3 — тест; 4 — клеммы для проводников двигателя; 5 — сигнальный контакт; 6 — кнопка сброса; 7 — селектор «авто» или «ручной»; 8 — кнопка останова; 9 — шкала установки тока; 10 — механическая защёлка

    Если, вдруг, случится обрыв фазы, ток катушки индуктивности снижается, контакты соответствующего реле переключаются в нормально-открытое положение.

    Учитывая, что контакты всех трех защитных реле соединяются последовательно, цепь питания мотора разомкнётся.

    Защитные функции тепловых реле

    Все классические конструкции моторов предполагают использование опорных и упорных подшипников. В зависимости от мощности электродвигателей, может устанавливаться тот или иной вид подшипников, либо оба вида вместе.

    Неисправность подшипника любого вида нередко приводит к полной остановке вращения ротора. Внезапное механическое заклинивание, в свою очередь, провоцирует резкий подъём тока статорной обмотки двигателя и последующий перегрев.

    Здесь токовая защита не способна удовлетворительно реагировать на событие. Как правило, этот вид защиты настроен с учётом стартового тока двигателя и короткой временной составляющей. Проблема клина может быть решена только путём внедрения защиты от тепловой перегрузки.

    Также защиту в данном случае допустимо обеспечить индивидуальным модулем, настроенным на определенное время срабатывания по току. В случае применения тепловой отсечки, разумно ставить датчик температуры, встроенный непосредственно в подшипниковый узел.

    Теоретический минимум по защите электродвигателей

    Защита электродвигателей | Заметки электрика

    Добрый вечер, уважаемые посетители моего сайта.

    Сегодня Вашему вниманию я представляю статью на тему защита электродвигателей.

    Данной теме хочу уделить особое внимание, т.к. начинаю серию статей о защите электродвигателей разного назначения и класса напряжений.

    Итак, приступим. 

    Релейная защита различного электрооборудования, такого как, трансформаторов, синхронных и асинхронных двигателей, генераторов и других, должна мгновенно реагировать на любые внутренние повреждения и ненормальные опасные режимы работы. Об этом Вы можете подробнее прочитать в моих статьях про назначение релейной защиты и повреждения в электроустановках.

     

    Требования к защите электродвигателей

    1. Ложные отключения

    Самый важный пункт я считаю — это неправильные или ложные отключения электродвигателей при неопасных ненормальных режимах.

    Такие отключения могут возникнуть при некорректном расчете уставок релейной защиты электрических двигателей, что приводит к большому ущербу и  затратам производства.

    2. Простота и надежность

    Этот пункт может многим показаться спорным, но я выскажу свое мнение на этот повод. Я считаю, что защиту электродвигателей необходимо выполнять простой и надежной, т.к. в последнее время столкнулся с проблемами лишнего усложнения схем релейной защиты электродвигателей.

    3. Самозапуск

    Огромное значение для надежного и бесперебойного электроснабжения предприятия имеет самозапуск электродвигателей.

    Самозапуск — это такое явление, когда при кратковременном снижении напряжения сети, питающей электродвигатели, они не отключаются от сети, а продолжают вращаться. И после восстановления нормального напряжения сети — электродвигатели начинают «самозапускаться», т.е. увеличивать свою скорость вращения до нормальной скорости. 

    Кратковременные снижения напряжения сети могут быть по причине:

    • короткого замыкания
    • при работе схемы АВР, когда происходит автоматическое переключение питания электродвигателей с одного источника на другой

    В этом пункте хочу добавить, что защита электродвигателей должна предусматривать возможность самозапуска, т.е. не отключать электродвигатели от сети при снижении напряжения, а также и при его восстановлении.

    Но остались еще старые исполнения схем, где самозапуск электродвигателей ликвидировался защитой минимального напряжения, что наносило ущерб предприятию. Об этом мы тоже поговорим, но чуть позже.

     

    Содержание 

    На этом я не заканчиваю, а только начинаю Вас знакомить более подробно с большой темой под названием защита электродвигателей. В данном разделе мы рассмотрим следующие темы:

    P.S. Уважаемые посетители моего ресурса, следите за обновлениями и подписывайтесь на новые статьи. 

    Дмитрий, автор сайта http://zametkielectrika.ru.

    Если статья была Вам полезна, то поделитесь ей со своими друзьями:


    Виды защит электродвигателей | Заметки электрика

    Добрый день, уважаемые гости сайта http://zametkielectrika.ru.

    Продолжаем серию статей о защите электродвигателей.

    И сегодня мы рассмотрим с Вами основные виды защит электродвигателей.

     

    Основные виды защит электродвигателей

    1. Защита электродвигателей от коротких замыканий

    Чаще всего междуфазное короткое замыкание возникает в обмотке статора электрической машины, что приводит к масштабным ее разрушениям.

    Также во время междуфазного короткого замыкания снижается напряжение сети, что сказывается и на работу остальных электроприемников.

    Защита электродвигателей от междуфазных повреждений (коротких замыканий) — является основной и обязательной.

    С данной защитой я познакомлю Вас более подробно в статье защита электродвигателей от коротких замыканий.

    2. Защита электродвигателей от замыкания на землю

    Следующим видом защиты электродвигателей является защита от замыкания на землю.

    Т.к. электродвигатели получают питание от сети с изолированной нейтралью, то однофазные замыкания на землю обмотки статора электрической машины являются не очень опасными.

    Выполняется эта защита в том случае, когда токи замыкания на землю превышает более 5 (А).

    Более подробно об этом виде защиты мы поговорим с Вами в статье защита электродвигателей от замыкания на землю.

    3. Защита электродвигателей от перегрузки

    Защита электродвигателей от перегрузки — это самый распространенный вид защиты электродвигателей, потому как перегрузка по току чаще всего возникает во время эксплуатации электрической машины.

    Чем опасна перегрузка?

    Об этом читайте в статье защита электродвигателей от перегрузки.

    В зависимости от условий работы, эксплуатации и обслуживания электродвигателей, защита от перегрузки выполняется с действием:

    • на сигнал оперативному персоналу
    • на отключение от питающей сети, путем отключения коммутационных аппаратов, питающих электродвигатель
    • на снижение нагрузки с вала двигателя

    4. Защита минимального напряжения

    Еще один вид защиты электродвигателей, который мы рассмотрим — это защита минимального напряжения.

    Иногда по условиям технологического процесса, а также для ограничения токов, возникающих при самозапуске асинхронных двигателей, применяют защиту минимального напряжения, которая действует на отключение малоответственных электродвигателей от питающей сети.

    Мы с Вами рассмотрели основные виды защит электродвигателей.

    И еще, можете прочитать статью про расчет защиты электродвигателя. В этой статье я рассказал про историю, которая произошла со мной в будничные дни моей работы.

    P.S. Более подробно о каждом виде защиты будет посвящена отдельная статья с изображением схем и объяснения принципа исполнения защиты.

    Немного отдохнем и посмотрим видео, как классно танцуют…

    Если статья была Вам полезна, то поделитесь ей со своими друзьями:


    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *