8 Виды защиты электродвигателей.
Правильный выбор и настройка защиты электродвигателей позволяют продлить ресурс их работы, обеспечить безаварийную работу и повысить их надежность в эксплуатации. Однако применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки.
Предусматриваются следующие виды защиты электродвигателей напряжением до 1000 В:
1) защита от многофазных коротких замыканий и от минимального напряжения, а в сетях с глухозаземленной нейтралью — дополнительно от однофазных замыканий для двигателей переменного тока;
2) защита от коротких замыканий и от недопустимого повышения частоты вращения для двигателей постоянного тока;
3) защита от перегрузки для всех двигателей;
4) защита от асинхронного режима для синхронных двигателей.
Для электродвигателей переменного тока напряжением свыше 1000 В дополнительно предусматриваются следующие виды защит:
1) защита, действующая на сигнал и отключение при повышении температуры смазки или прекращении ее циркуляции для электродвигателей, имеющих принудительную смазку подшипников;
2) защита, действующая на сигнал и отключение при повышении температуры или прекращении вентиляции для электродвигателей, имеющих принудительную вентиляцию;
3) защита, действующая на сигнал при снижении циркуляции воды ниже заданного значения и на отключение при прекращении ее циркуляции для электродвигателей с водяным охлаждением обмоток и активной стали, а также имеющих встроенные воздухоохладители, охлаждаемые водой;
4) общая защита от многофазных замыканий для блоков трансформатор (автотрансформатор) — двигатель;
5) на синхронных электродвигателях должно предусматриваться автоматическое гашение поля. При этом для синхронных двигателей мощностью менее 500 кВт автоматического гашения поля, как правило, не требуется.
Для защиты электродвигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.
Защита от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска для ограничения длительности пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловыми реле. Защита должна действовать на отключение, или на сигнал, или на разгрузку, если последняя возможна.
Для двигателей с повторно-кратковременным режимом работы применение этой защиты не требуется.
Защита от минимального напряжения должна устанавливаться: для двигателей постоянного тока, которые не допускают непосредственного включения в сеть; для электродвигателей механизмов, самозапуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности; на многоскоростных двигателях ответственных механизмов, самозапуск которых допустим и целесообразен; защита от минимального напряжения должна автоматически переключать двигатель на низшую скорость.
Защита от асинхронного режима синхронных двигателей должна, как правило, осуществляться с помощью защиты от перегрузки по току статора для двигателей напряжением до 1000 В. Для двигателей с напряжением выше 1000 В защита может осуществляться с помощью реле, реагирующего на увеличение тока в обмотках статора.
Она должна быть отстроена по времени от пускового режима и от тока при действии форсировки возбуждения.
Защита и автоматика асинхронного двигателя 6(10) кВ
В данной статье мы разберем РЗА стандартного асинхронника малой и средней мощности, т.е. такого, где по нормам не требуется продольной дифференциальной защиты (ДЗТ, ДТО).
Согласно ПУЭ дифф. защита требуется для двигателей мощностью 5 МВт и выше, либо для двигателей 2 МВт и выше, если обычная токовая отсечка оказывается нечувствительной. Такие двигатели мы рассмотрим в следующей статье.
Кроме того, мы не будем касаться каких-то специальных защит вроде защиты от колебаний нагрузки (помпажа) или минимальной токовой защиты. Они нужны далеко не везде и начинающему специалисту не стоит делать упор на их изучении. Это позже.
Токовая отсечка (МТЗ)
По сути это стандартная МТЗ, которая отстраивается от максимального тока двигателя и работает без выдержки времени. Но в ПЭУ и технической литературе ее почему-то упорно называют отсечкой. Почему именно — я сказать не могу, но давайте придерживаться общепринятого обозначения.
Отсечка — это основная защита двигателя потому, что защищает весь двигатель и срабатывает быстрее остальных защит. Отстраивается от тока самозапуска двигателя с учетом апериодики. Выполняется без выдержки времени.
Защита от перегрузки
Защищает двигатель от длительных симметричных перегрузок, которые могут возникнуть по технологическим причинам или при снижении напряжения сети. Работает на измерении фазных токов (одного и более). Выполняется с выдержкой времени, на сигнал или отключение двигателя (в зависимости от условий работы)
Это простая и надежная защита, но она не учитывает температуру окружающей среды и полученный двигателем тепловой импульс от токов нормального режима (когда защита не пускается). Для устранения данных недостатков в микропроцессорных защитах используют тепловую модель двигателя
Защита по тепловой модели
Это еще один вариант защиты от перегрузок, только более технологичный. Основная опасность при перегрузке двигателя — это перегрев обмоток статора. Если температуру обмоток нельзя измерить непосредственно, при помощи термозондов, то пытаются предсказать температуру двигателя по заранее заданной характеристике.
Эта характеристика учитывает постоянные времени нагрева и охлаждения конкретного типа двигателей и эквивалентный ток, который состоит из геометрической суммы фазного тока и тока обратной последовательности с различными коэффициентами.
В общем алгоритм сложный, расчет уставок сложный, найти исходники на двигатель еще сложнее. Но если все получается, то вы сможете защищать двигатель от перегрузки более эффективно, чем в случае использовать максимальной токовой защиты
Защита по тепловой модели имеет несколько ступеней — на сигнализацию и на отключение. После достижения определенной точки перегрева на характеристике защита блокирует дальнейшие пуски на время охлаждения двигателя, с учетом его постоянной времени охлаждения.
Защита от неполнофазного режима
Защита на принципе замера токов обратной последовательности. Эти токи появляются при обрыве фазы/двух фаз или ослаблении контактого соединения.
В принципе эта защита полезна для любого присоединения, но для двигателя она особо важна потому, что токи обратной последовательности, даже при малом значении, разогревают двигатель. Напишите в комментариях если знаете “почему?”
Защита от блокировки ротора и затянутого пуска
По сути это одна защита, которая может различать пусковое и рабочее состояния двигателя. Делает она это при помощи фиксации начального тока статора, перед его увеличением.
Если увеличивается от нуля, то затянутый пуск. Если от номинального тока, то механическая блокировка ротора.
В общем это еще один тип защиты от перегрузки двигателя
Токовая защита от ОЗЗ
Стандартная функция работающая по 3Io, однако, при больших токах замыкания на землю, действует на отключение двигателя (ПУЭ п.5.3.48.)!
Если мощность двигателя до 2 МВт, то отключение следует производить мгновенно, при уровне токов ОЗЗ 10А и более. Если двигатель более 2 МВт, то при 5 А.
Как мы уже говорили ранее, ОЗЗ для двигателя — это очень опасное явление. Особенно при неустойчивых и близких замыканиях. Виной всему дуговые перенапряжения, возникающие при подобных анормальных режимах.
Защита минимального напряжения
Обычно применяется на неответственных двигателях, когда нужно их отключить для обеспечения самозапуска ответственных. Аналогична групповой ЗМН в ТН 6(10) кВ, только выполняется индивидуальной.
Если говорить прямо, то даже в асинхронном двигателе 6(10) кВ может быть просто куча разных защит, в том числе и технологических (вентиляция, давление масла и т.д.) Все зависит от технологического процесса, который он обслуживает. Рассматривать их все мы не будем, ограничимся только самыми базовыми.
В следующей статье рассмотрим РЗА синхронных двигателей 6(10) кВ большой мощности
На рисунке
Терминал защиты и автоматики двигателя 6(10) кВ типа БМРЗ-152-ЭД.
Разработчик НТЦ «Механотроника», www.mtrele.ru
Терминал содержит все перечисленные в статье защиты и автоматику
Защита электродвигателей, перечень современных защитных устройств разных производителей
Защита электродвигателей В виду достаточно простой конструкции, высокой степени надежности и сравнительно небольшой стоимости асинхронный электродвигатель с короткозамкнутым ротором (далее по тексту АД), является наиболее распространенным электродвигателем. Свыше 85% всех электрических машин – это трехфазные асинхронные электродвигатели. По статистике сейчас в общественном производстве России находится не менее 50 млн. единиц трехфазных АД напряжением 0,4 кВ. — приборы контролирующие перегрузку по потребляемому току, — при питании от трехфазной сети очень важным параметром питающего напряжения — это величина асимметрии напряжения, которая очень критична для отдельных типов электродвигателей и двигатель не сможет нормально долго работать при большой асимметрии, перегревается и выходит из строя, — контроль за наличием трехфазного напряжения и отключение при обрыве фазы, нарушение последовательности фаз и «слипание» фаз. — контроль за температурой обмоток электродвигателей разработано реле термисторной защиты: при изготовлении двигателя на заводе в обмотку электродвигателя устанавливаются позисторы (нелинейный элемент который резко меняет свое сопротивление при достижении заданной температуры, температура срабатывания определяется позистором, изготавливаются на температуру от +60°С до +180°С) Приборы применяемые для защиты электродвигателей:
| |
Защита асинхронных электродвигателейПриборы контроля по току | |
Реле контроля и защиты РКЗ обеспечивает токовую защиту электродвигателей по всем трем фазам от перегрузки, недогрузки, повышенного дисбаланса токов и неполнофазного режима. | |
Приборы контроля по напряжению | |
Реле защиты двигателей MP35 и MC35 обеспечивает защиту от неисправностей любой фазы питающей сети по напряжению. Выходное реле отключается без задержки и защищает электродвигатель от перегрузки и выхода из строя при возникновении неисправности в любой из фаз питающей сети. Выходное реле включается без задержки, когда все фазы питающей сети будут в норме. | |
Приборы термисторной защиты | |
TER-7 реле термисторной защиты обеспечивает контроль температуры обмотки электродвигателя. В качестве датчика температуры применяются PTC резисторы встроенные в обмотку электродвигателя при изготовлении. | |
Универсальный блок защиты асинхронных электродвигателей | |
УБЗ-301 — универсальный блок защиты электродвигателей предназначен для постоянного контроля параметров сетевого напряжения и действующих значений фазных/линейных токов трехфазного электрооборудования 380 В/50 Гц. Выпускаются три модификации прибора по номиналам тока: — УБЗ-301 5-50A; — УБЗ-301 10-100A; — УБЗ-301 63-630A. | |
УБЗ-302 — универсальный блок защиты асинхронных электродвигателей при некачественном сетевом напряжении; — постоянный контроль потребляемой мощности, токов прямой и обратной последовательности; — контроль сопротивления изоляции; — контроль токов утечки на корпус; — контроль температуры обмоток электродвигателя; — имеет защиту от затянутого пуска. Возможно изготовление с возможностью вывода информации на ПК по протоколу RS-485. | |
УЗОТЭ 2У — предназначен для защиты трехфазных асинхронных электродвигателей, работающих в тяжелых условиях производства: — при перегрузках, вызванных пониженным напряжением в сети; — при повышенной влажности и температуре, высокой запыленности; — срабатывает при обрыве фазы; — контроль сопротивления изоляции перед включением; — контроль тока потребления электродвигателя; — контроль за перегревом обмоток электродвигателя. Схема прибора подключается к выходам токовых трансформаторов включенных в разрыв каждой фазы защищаемого электродвигателя. Описание прибора УЗОТЭ 2У |
Перейти на страницу схемы подключения звезда — треугольник электродвигателя.
ПУЭ 7. Правила устройства электроустановок. Издание 7
5.3.55. Для электродвигателей переменного тока должна предусматриваться защита от многофазных замыканий (см. 5.3.56), в сетях с глухозаземленной нейтралью — также от однофазных замыканий, а в случаях, предусмотренных в 5.3.57 и 5.3.58, — кроме того, защита от токов перегрузки и защита минимального напряжения. На синхронных электродвигателях (при невозможности втягивания в синхронизм с полной нагрузкой) дополнительно должна предусматриваться защита от асинхронного режима согласно 5.3.59.
Для электродвигателей постоянного тока должны предусматриваться защиты от КЗ. При необходимости дополнительно могут устанавливаться защиты от перегрузки и от чрезмерного повышения частоты вращения.
5.3.56. Для защиты электродвигателей от КЗ должны применяться предохранители или автоматические выключатели.
Номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей должны выбираться таким образом, чтобы обеспечивалось надежное отключение КЗ на зажимах электродвигателя (см. 1.7.79 и 3.1.8) и вместе с тем чтобы электродвигатели при нормальных для данной электроустановки толчках тока (пиках технологических нагрузок, пусковых токах, токах самозапуска и т. п.) не отключались этой защитой. С этой целью для электродвигателей механизмов с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей механизмов с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.
Для электродвигателей ответственных механизмов с целью особо надежной отстройки предохранителей от толчков тока допускается принимать это отношение равным 1,6 независимо от условий пуска электродвигателя, если кратность тока КЗ на зажимах электродвигателя составляет не менее указанной в 3.1.8.
Допускается осуществление защиты от КЗ одним общим аппаратом для группы электродвигателей при условии, что эта защита обеспечивает термическую стойкость пусковых аппаратов и аппаратов защиты от перегрузок, примененных в цепи каждого электродвигателя этой группы.
На электростанциях для защиты от КЗ электродвигателей собственных нужд, связанных с основным технологическим процессом, должны применяться автоматические выключатели. При недостаточной чувствительности электромагнитных расцепителей автоматических выключателей в системе собственных нужд электростанций могут применяться выносные токовые реле с действием на независимый расцепитель выключателя.
Для надежного обеспечения селективности защит в питающей сети собственных нужд электростанций в качестве защиты электродвигателей от КЗ рекомендуется применять электромагнитные расцепители-отсечки.
5.3.57. Защита электродвигателей от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также когда при особо тяжелых условиях пуска или самозапуска необходимо ограничить длительность пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловым реле или другими устройствами.
Защита от перегрузки должна действовать на отключение, на сигнал или на разгрузку механизма, если разгрузка возможна.
Применение защиты от перегрузки не требуется для электродвигателей с повторно-кратковременным режимом работы.
5.3.58. Защита минимального напряжения должна устанавливаться в следующих случаях:
для электродвигателей постоянного тока, которые не допускают непосредственного включения в сеть;
- для электродвигателей механизмов, самозапуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности;
- для части прочих электродвигателей в соответствии с условиями, приведенными в 5.3.52.
Для ответственных электродвигателей, для которых необходим самозапуск, если их включение производится при помощи контакторов и пускателей с удерживающей обмоткой, должны применяться в цепи управления механические или электрические устройства выдержки времени, обеспечивающие включение электродвигателя при восстановлении напряжения в течение заданного времени. Для таких электродвигателей, если это допустимо по условиям технологического процесса и условиям безопасности, можно также вместо кнопок управления применять выключатели, с тем чтобы цепь удерживающей обмотки оставалась замкнутой помимо вспомогательных контактов пускателя и этим обеспечивалось автоматическое обратное включение при восстановлении напряжения независимо от времени перерыва питания.
5.3.59. Для синхронных электродвигателей защита от асинхронного режима должна, как правило, осуществляться с помощью защиты от перегрузки по току статора.
5.3.60. Защита от КЗ в электродвигателях переменного и постоянного тока должна предусматриваться:
1) в электроустановках с заземленной нейтралью — во всех фазах или полюсах;
2) в электроустановках с изолированной нейтралью:
- при защите предохранителями — во всех фазах или полюсах;
- при защите автоматическими выключателями — не менее чем в двух фазах или одном полюсе, при этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах или полюсах.
Защита электродвигателей переменного тока от перегрузок должна выполняться:
- в двух фазах при защите электродвигателей от КЗ предохранителями;
- в одной фазе при защите электродвигателей от КЗ автоматическими выключателями.
Защита электродвигателей постоянного тока от перегрузок должна выполняться в одном полюсе.
5.3.61. Аппараты защиты электродвигателей должны удовлетворять требованиям гл. 3.1. Все виды защиты электродвигателей от КЗ, перегрузки, минимального напряжения допускается осуществлять соответствующими расцепителями, встроенными в один аппарат.
5.3.62. Специальные виды защиты от работы на двух фазах допускается применять в порядке исключения на электродвигателях, не имеющих защиты от перегрузки, для которых существует повышенная вероятность потери одной фазы, ведущая к выходу электродвигателя из строя с тяжелыми последствиями.
Общие сведения
где Iсз – первичный ток срабатывания отсечки; kн – коэффициент надежности, с
учётом отстройки от броска тока намагничивания равен 1,8 – для отсечек с временем срабатывания 0,05 с и более, или 2 – при времени срабатывания меньшем 0,05 с; In max – пусковой ток двигателя в максимальном режиме.
Кратность пускового тока двигателя может быть взята из паспорта двигателя. А пусковой ток равен:
In max | = kпуск.Iном.. | (5.2) | |
После выбора уставки должна быть проверена чувствительность отсечки по | |||
току: |
|
|
|
| I (2) | (5.3) | |
kч = | КЗmin | . | |
| |||
| Iсз |
|
где kч – коэффициент чувствительности, он должен быть не менее 2; IКЗ(2)min – ток двухфазного короткого замыкания в минимальном режиме.
Если ток срабатывания отсечки отстроен от пускового тока электродвигателя, то она надёжно отстроена и от тока, который электродвигатель посылает в сеть при внешнем КЗ.
Токовую РЗ электродвигателей мощностью до 2000 кВт ранее выполняли на простой и дешевой однорелейной схеме, включая реле на разность токов двух фаз. Недостатком этой схемы является более низкая чувствительность по сравнению с двухрелейной отсечкой, к двухфазным КЗ между одной из фаз, на которых установлен ТТ, и фазой без ТТ. Ток срабатывания реле отсечки,
выполненной по однорелейной схеме, в 3 раз больше, чем в двухрелейной схеме: при выборе уставки учитывался коэффициент схемы при симметричном пусковом режиме равный kсх = 3 .
Iсз = 3 kнIn max . | (5.4) |
Соответственно ниже в 3 раз получалась и чувствительность защиты.
На электродвигателях мощностью 2000–5000 кВт токовую отсечку необходимо выполнять двухрелейной. Двухрелейную схему отсечки требуется также применять на электродвигателях мощностью до 2000 кВт, если
Защита электродвигателя
Предлагаемая схема защиты электродвигателя трёхфазного тока обеспечивает дополнительную защиту двигателя от пропадания одной из фаз, например, при перегорании предохранителя или неисправности пусковой аппаратуры.
Песня В.С. Высоцкого — Наши предки люди тёмные и грубые 1,6 Мб
Эту схему, как рационализаторское предложение, я предлагал несколько десятков лет назад. Схема довольно простая, однако обеспечивает надёжную защиту. При пропадании одной из фаз или плохом контакте в цепи электродвигателя, ток в остальных фазах увеличивается, электродвигатель перегревается и может выйти из строя. Это может произойти и при перегорании одного из предохранителей, окислении контактов пускателя, перегорании обмотки теплового реле.
Обычно практикуемая замена предохранителей на номинал большего тока или «жучки», а также загрубление или закорачивание теплового реле повышают вероятность сгорания электродвигателя.
Предлагаемая защита трёхфазного двигателя от пропадания фазы будет работать даже при «дубовых» предохранителях и отсутствии других видов защиты.
На рисунке изображена реверсивная схема электродвигателя трёхфазного тока с дополнительной защитой. Схема защиты трёхфазного двигателя содержит два реле напряжения KV1 и KV2, подключенные после пускателя и теплового реле КК.
При нажатии одной из пусковых кнопок, например SA2, включится пускатель КМ1, который подаст напряжение на электродвигатель МА и на реле напряжения KV1 и KV2. Контакты этих реле включены в цепь самоподхвата пускателя КМ1 и КМ2. При отсутствии напряжения на одной из фаз, одно или оба реле окажутся без напряжения и при отпускании пусковой кнопки пускатель и электродвигатель отключатся. Аналогично работает и пускатель для включения электродвигателя в другом направлении. Если пропадание фазы на электродвигателе произойдёт во время работы двигателя, то реле напряжения также отключат пускатель электродвигателя.
Стабилитроны VD1, VD2, VD3 и VD4 необходимы, чтобы увеличить чувствительность схемы к изменениям напряжения. Причина в том, что электродвигатель, подключенный к двум фазам, будет работать как автотрансформатор с выводом посередине обмотки. Значит, напряжение на 3-м свободном выводе электродвигателя будет равно половине приложенного напряжения 380В и составит 190В. Этого напряжения может быть достаточно для удержания обычного реле, например, на 380В. Решить проблему можно несколькими способами. Существуют специальные реле напряжения, которые способны отключаться при небольшом коэффициенте возврата или использовать специализированные реле обрыва фазы. Но можно повысить чувствительность к снижению напряжения и для обычных реле с помощью стабилитронов. Для этого в каждое плечо вместо диода ставим параллельно по два стабилитрона, включенных в разных направлениях. При использовании стабилитронов К680А на напряжение 180В при подаче напряжения 380В на обмотке реле будет 200В, а при обрыве фазы только 10В, поэтому возможно использование обычных реле на напряжение 220В. Лучше всего использовать реле на напряжение 110В, а «лишние» 270В погасить с помощью цепочки из стабилитронов КС650А на напряжение стабилизации 150В и КС620 на напряжение 120В.
В отличие от промышленных реле защиты электродвигателя, предлагаемая схема может работать с электродвигателями любой мощности, не содержит собственных силовых отключающих контактов, которые сами могут быть источником повреждения, а значит, надёжная в работе.
Традиционные, а тем более современные электронные устройства устройства защиты электродвигателей достаточно надёжны, но для их применения требуется высокая квалификация персонала и добросовестное отношение к работе. Необходимо правильно выбрать оборудование и его настройку под конкретный электродвигатель с учётом конкретных особенностей работы конкретного двигателя.
Электродвигатели разной мощности и даже разного типа потребляют различный ток, поэтому им необходима индивидуальная настройка защиты электродвигателя. Пусковой ток электродвигателей малой и средней мощности может превышать номинальный в 3-7 раз. Чаще всего для защиты электродвигателя применяют предохранители, а также автоматические выключатели с быстродействующими электромагнитными расцепителями и тепловыми реле. Электродвигатель может выдерживать большой пусковой ток непродолжительное время. Поэтому предохранители и электромагнитный расцепитель не должны срабатывать при пусковых токах, но должны обеспечить защиту при коротких замыканиях. Тепловые реле имеют большее замедление на срабатывание и защищают от повышенного тока потребления, например, при превышении нагрузки или заклинивания механизма. Время и ток срабатывания теплового реле зависит от температуры окружающей среды, частоты пуска и от того, работал ли двигатель непосредственно перед повышением тока. Поэтому настройка теплового реле обычно выбирается в пределах 1,2 — 1,5 от номинального тока, но у мало нагруженных двигателей может быть и меньше. Диапазон регулировки тепловых реле небольшой, поэтому для определённого двигателя нужно выбирать подходящее по параметрам реле.
Мощные двигатели, как правило, имеют более серьёзную защиту. У них применяются меры по плавному пуску, поэтому пусковой ток не так сильно отличается от номинального, но больше по продолжительности. Может дополнительно использоваться защита от минимального и максимального напряжения, от пропадания фазы, регулируемая по времени и току защита, иногда контроль частоты и другие защиты.
Современные электронные приборы защиты имеют больший диапазон регулировок как по времени, так и по току срабатывания и некоторые дополнительные возможности. Но, без правильной квалифицированной настройки, они могут принести больше вреда, чем пользы.
При вводе нового оборудования необходимо проверить соответствие настройки защиты параметрам конкретного электродвигателя. Для серьёзного дорогого оборудования желательно проверить параметры срабатывания защиты на стенде. При включении в работу проверить фактический режим работы двигателя по стационарным приборам или токовыми клещами. Механическая часть часть оборудования должна быть исправной, электрическая изоляция двигателя и схемы в норме, электрические контакты надёжно затянуты.
Сергей Южный
Защита обмоток электродвигателей — Ремонт220
Автор Фома Бахтин На чтение 5 мин. Просмотров 836 Опубликовано
Для защиты и предотвращения нежелательных явлений, связанных с чрезмерным повышением температуры нагрева обмоток электродвигателей бытовых приборов при неисправной их эксплуатации или аварийных режимах работы, часто применяют специальные защитные устройства, которые по принципу действия можно разделить на: токовые, температурные и температурно-токовые.
Итак, по порядку:
Токовые защитные устройства реагируют на ток, протекающий в обмотке статора защищаемого электродвигателя (плавкие предохранители, токовые защитные реле). Основной частью предохранителя является плавкая вставка, которая представляет собой небольшой по длине проводник или пластину, изготовленную из серебра меди или цинка.
Плавкая вставка включается последовательно с защищаемой цепью. При увеличении тока, протекающего через защищаемую цепь, выше допустимого плавкая вставка перегорает и отключает прибор от сети. Для повторного включения прибора необходимо заменить плавкую вставку. При случайных кратковременных перегрузках для тепловой защиты электродвигателей плавкие предохранители применяются редко.
Наибольшее распространение получили токовые защитные реле. Принцип действия их основан на изменении физических свойств материалов при изменении температуры нагрева. Чувствительным элементов таких реле служит биметаллическая пластина, состоящая из двух сваренных по всей длине слоев разнородных металлов с разными коэффициентами линейного температурного расширения. Один конец биметаллической пластины закреплен неподвижно, а второй, на котором расположен подвижный контакт, свободно перемещается.
При обесточенной обмотке электродвигателя подвижный контакт биметаллической пластины соприкасается с неподвижным контактом, расположенным на корпусе реле. При протекании тока через обмотку электродвигателя и последовательно соединенное с ней тепловое реле биметаллическая пластина изгибается в сторону слоя металла с меньшим коэффициентом линейного температурного расширения и при определенном токе размыкает цепь питания электродвигателя.
По способу нагрева биметаллической пластины токовые реле подразделяются на реле с непосредственным, косвенным и комбинированным нагревом. В токовых защитных реле с непосредственным нагревом ток обмотки статора электродвигателя протекает непосредственно через биметаллическую пластину.
Вследствие удельного сопротивления материала биметалла такую конструкцию реле применяют для электродвигателей большой мощности, имеющий большой ток обмотки статора. При косвенном нагреве ток обмотки статора защищаемого электродвигателя протекает через специальный нагреватель, выполненный из пластины или проволоки с большим удельным сопротивлением. Нагреватель можно расположить вблизи биметаллической пластины или непосредственно намотать на нее. Биметаллическую пластину при этом не включают в цепь питания защищаемого электродвигателя.
При комбинированном нагреве ток защищаемого электродвигателя протекает через последовательно соединенные нагревательный элемент и биметаллическую пластину. Изгиб биметаллической пластины обусловлен совместным действием тепла, выделяемого в биметаллической пластине и в нагревателе. Токовые реле с косвенным и комбинированным нагревом применяют для защиты обмоток маломощных электродвигателей с непосредственным разрывом контактов реле силовой питающей сети.
Токовые реле располагают отдельно от электродвигателя. Связь между ним и электродвигателем осуществляется через ток обмотки статора, вследствие чего реле чувствительны лишь к составляющей потерь, которая обусловлена увеличением тока обмотки статора. Однако практике возможны случаи возрастания температуры нагрева обмоток статора без увеличения протекающего через них тока (нарушения условий вентиляции, увеличение механических потерь и др.). На такие возрастания температуры обмоток токовые реле не реагируют.
Токовые реле имеют неодинаковую чувствительность к изменениям перегрузок. Наибольшей чувствительностью они обладают в диапазоне больших перегрузок, связанных с резким возрастанием тока статора защищаемого электродвигателя. В диапазоне малых перегрузок чувствительность их снижается, что является основным недостатком токовой защиты.
Температурные защитные устройства реагируют на температуру нагрева обмоток электродвигателя и позволяют защищать двигатель от многих сложных типов перегрузок (увеличение механических потерь, длительные небольшие перегрузки и др.). Конструктивно температурные реле выполняются в виде биметаллических дисков, встраиваемых непосредственно в обмотку статора. Преимущество температурной защиты – высокая эффективность при малых длительных перегрузках.
Однако этот вид защиты плохо действует при больших толчковых перегрузках, так как тепловая инерция изоляции обмотки статора, через которую тепло передается от обмотки чувствительному элементу реле, приводит к запаздыванию срабатывания защиты. Вследствие этого температурная защита неэффективна при заторможенном роторе электродвигателя, что является ее существенным недостатком.
Температурно-токовые защитные устройства совмещают в себе положительные свойства температурных и токовых устройств и свободны от недостатков, свойственных каждому из них в отдельности. Температурно-токовые защитные устройства достаточно хорошо защищают электродвигателя как при возникновении небольших длительных перегрузках, так и при кратковременных.
Конструктивно температурно-токовую защиту выполняют обычно в виде биметаллических дисков с дополнительным нагревателем. Диск крепят к стали сердечника ротора или встраивают непосредственно в обмотку, а нагреватель включают последовательно с обмоткой статора. Биметаллический диск реагирует на температуру нагрева обмотки и обеспечивает защиту двигателя при длительных небольших перегрузках, а нагреватель реагирует на ток обмотки статора, обеспечивая защиту при кратковременных длительных больших перегрузках.
В зарубежных электробытовых приборах для защиты электродвигателей широко применяют температурную и температурно-токовую защиту, в отечественных наибольшее распространение получила токовая. Основные параметры защитных токовых реле: время срабатывания контактов и время возврата их в исходное положение при определенных значениях тока и окружающей температуры.
Зависимость времени срабатывания контактов реле от тока при определенной температуре называют защитной характеристикой реле. Совокупность таких характеристик для различных температур окружающей среды образует семейство защитных характеристик реле.
В стиральных машинах, например, применяют тепловые реле типа РТ. Это реле с одним нормально замкнутым контактом, служащее для защиты от перегрузок электроустановок и однофазных электрических двигателей переменного тока с питающим напряжением 220 В частотой 50 Гц.