Управление электродвигателем переменного тока – Управление электродвигателем: приводы переменного тока стали удобнее для пользователя

Векторное управление электродвигателем «на пальцах» / НПФ ВЕКТОР corporate blog / Habr

— Что такое векторное управление?
— Держать ток под 90 градусов.

Термин «векторное управление» электродвигателями знаком всем, кто хоть как-то интересовался вопросом, как с помощью микроконтроллера управлять двигателем переменного тока. Однако обычно в любой книге по электроприводу глава про векторное управление находится где-нибудь ближе к концу, состоит из кучи волосатых формул с отсылками ко всем остальным главам книги. Отчего разбираться в этом вопросе совсем не хочется. И даже самые простые объяснения всё равно держат путь через дифференциальные уравнения равновесия, векторные диаграммы и кучу другой математики. Из-за чего появляются примерно вот такие вот попытки как-то закрутить двигатель без использования мат.части. Но на самом деле векторное управление – это очень просто, если понимать принцип его работы «на пальцах». А там уже и с формулами разбираться в случае надобности будет веселее.


Рассмотрим принцип работы самого простого двигателя переменного тока – синхронной машины с постоянными магнитами. Удобный пример – компас: его магнитная стрелка представляет из себя ротор синхронной машины, а магнитное поле Земли – магнитное поле статора. Без внешней нагрузки (а в компасе её нет, если не считать трение и жидкость, гасящую колебания стрелки) ротор всегда ориентируется по полю статора. Если мы будем держать компас и вращать под ним Землю, то стрелка будет крутиться вслед, совершая работу по перемешиванию жидкости внутри компаса. Но есть и чуть более простой способ – можно взять внешний магнит, например, в виде стержня с полюсами на концах, поле которого значительно сильнее магнитного поля Земли, поднести его к компасу сверху и вращать магнит. Стрелка будет двигаться вслед за вращающимся магнитным полем. В настоящем синхронном двигателе поле статора создается электромагнитами – катушками с током. Схемы обмоток там сложные, но принцип один – они создают статором магнитное поле, направленное в нужную сторону и имеющее нужную амплитуду. Посмотрим на следующий рисунок (Рисунок 1). В центре изображен магнит – ротор синхронного двигателя («стрелка» компаса), а по бокам два электромагнита – катушки, создающие каждая свое магнитное поле, одна в вертикальной оси, другая в горизонтальной.
Рисунок 1. Принцип действия синхронной электрической машины

Магнитный поток катушки пропорционален току в ней (в первом приближении). Нас будет интересовать магнитный поток от статора в том месте, где расположен ротор, т.е. в центре рисунка (краевыми эффектами, рассеянием и всем прочим пренебрегаем). Магнитные потоки двух перпендикулярно расположенных катушек векторно складываются, образуя для взаимодействия с ротором один общий поток. Но так как поток пропорционален току в катушке, удобно рисовать непосредственно вектора токов, сонаправив их с потоком. На рисунке показаны некоторые токи Iα и Iβ, создающие магнитные потоки по осям α и β соответственно. Суммарный вектор тока статора

Is создает сонаправленый ему магнитный поток статора. Т.е. по сути Is символизирует внешний магнит, который мы подносили к компасу, но созданный электромагнитами – катушками с током.
На рисунке ротор расположен в произвольном положении, но из этого положения ротор будет стремиться повернуться согласно магнитному потоку статора, т.е. по вектору Is (положение ротора в этом случае показано пунктирной линией). Соответственно, если подать ток только в фазу α, скажем, Iα = 1А, ротор встанет горизонтально, а если в β, вертикально, а если приложить Iβ = -1А то перевернется на 180 градусов. Если запитать ток Iα по закону синуса, а Iβ по закону косинуса от времени, то будет создано вращающееся магнитное поле. Ротор будет следовать за ним и крутиться (как стрелка компаса следует за вращением магнита руками). Это базовый принцип работы синхронной машины, в данном случае двухфазной с одной парой плюсов.
Давайте нарисуем график момента двигателя в зависимости от углового положения вала ротора и вектора тока Is статора – угловую характеристику синхронного двигателя. Эта зависимость синусоидальная (Рисунок 2).


Рисунок 2. Угловая характеристика синхронной машины (здесь есть некоторая историческая путаница со знаками момента и угла, из-за чего часто рисуют характеристику перевернутой относительно горизонтальной оси).

Чтобы получить этот график на практике, можно поставить на вал ротора датчик вращающего момента, затем включить любой вектор тока, например, просто подать ток в фазу α. Ротор повернется в соответствующее положение, которое нужно принять за ноль. Потом через датчик момента «руками» нужно поворачивать ротор, фиксируя на графике в каждой точке угол

θ, на который повернули, и момент, который показал датчик. Т.е. нужно растягивать «магнитную пружину» двигателя через датчик момента. Самый большой момент окажется при угле в 90 градусов от вектора тока (от начала). Амплитуда получившегося максимального момента Ммакс пропорциональна амплитуде приложенного вектора тока. Будет приложен 1А, получим, скажем, Ммакс = 1 Н∙м (ньютон*метр, единица измерения вращающего момента), если подадим 2А, получим Ммакс = 2 Н∙м.

Из этой характеристики следует, что двигатель развивает наибольший момент, когда ротор находится под 90° к вектору тока. Так как мы при создании системы управления на микроконтроллере хотим получить от двигателя наибольший момент при минимуме потерь, а потери, в первую очередь, это ток в обмотках, то рациональнее всего ставить вектор тока всегда под 90° к магнитному полю ротора, т.е. перпендикулярно магниту на рисунке 1. Нужно поменять всё наоборот – не ротор едет к задаваемому нами вектору тока, а мы задаем вектор тока всегда под 90° к ротору, как бы он там не вращался, т.е. «прибить» вектор тока к ротору. Регулировать же момент двигателя будем амплитудой тока. Чем больше амплитуда – тем выше момент. А частота вращения, частота тока в обмотках это уже «не наше» дело – какая получится, как ротор будет вращаться, так и будет – мы управляем моментом на валу. Как ни странно, именно это и называется векторным управлением – когда мы управляем вектором тока статора так, чтобы он был под 90° к магнитному полю ротора. Хотя некоторые учебники дают более широкие определения, вплоть до такого, что векторным управлением называют вообще любые законы управления, где задействованы «вектора», но обычно под векторным управлением понимается именно приведенный выше способ управления.


Но как векторное управления достигается на практике? Очевидно, для начала понадобится знать положение ротора, чтобы было относительно чего отмерять 90°. Это проще всего сделать установив, собственно, датчик положения на вал ротора. Потом нужно разобраться, как создать вектор тока, поддерживая желаемые токи в фазах α и β. На двигатель-то мы прикладываем напряжение, а не ток… Но раз мы хотим что-то поддерживать, то нужно это измерять. Поэтому для векторного управления понадобятся датчики токов фаз. Далее нужно собрать структуру векторного управления в виде программы на микроконтроллере, которая будет делать всё остальное. Чтобы такое объяснение не было похоже на инструкцию «как нарисовать сову», давайте продолжим погружение.
Поддерживать ток микроконтроллером можно использовав программный ПИ (пропорционально-интегральный) регулятор тока и ШИМ. Например, структура с регулятором тока для одной фазы α показана ниже (Рисунок 3).

Рисунок 3. Замкнутая по току структура управления для одной фазы

Здесь задание тока iα_зад – некая константа, тот ток, который мы хотим поддерживать для этой фазы, например 1А. Задание поступает на сумматор регулятора тока, раскрытая структура которого показана выше. Если читатель не знает, как работает ПИ-регулятор – то увы и ах. Могу лишь посоветовать что-то из этого. Регулятор тока на выходе задает напряжение фазы Uα. Напряжение поступает на блок ШИМ, который рассчитывает задания скважностей (уставок сравнения) для таймеров ШИМ микроконтроллера, формирующих ШИМ на мостовом инверторе из четырех ключей, чтобы сформировать это Uα. Алгоритм может быть разный, например, для положительного напряжения ШИМим правой стойкой пропорционально заданию напряжения, на левой замкнут нижний ключ, для отрицательного ШИМим левой, на правой замкнут нижний. Не забываем добавить мёртвое время! В итоге такая структура делает программный «источник тока» за счет источника напряжения: мы задаем нужное нам значение

iα_зад, а данная структура с определенным быстродействием его реализует.

Дальше, возможно, некоторые читатели уже подумали, что до векторной структуры управления осталось дело за малым – нужно поставить два регулятора тока, на каждую фазу по регулятору, и формировать на них задание в зависимости от угла с датчика положения ротора (ДПР), т.е. сделать что-то типа такой структуры (Рисунок 4):


Рисунок 4. Неправильная (наивная) структура векторного управления

Так делать нельзя. При вращении ротора переменные iα_зад и iβ_зад будут синусоидальными, т.е. задание на регуляторы тока будет всё время меняться. Быстродействие регулятора не бесконечно, поэтому при изменении задания он не мгновенно его отрабатывает. Если задание постоянно менять, то регулятор будет всё время его догонять, никогда не достигая. И с ростом скорости вращения двигателя отставание реального тока от заданного будет всё больше и больше, пока желаемый угол в 90° между током и магнитом ротора совсем не перестанет на него быть похожим, а векторное управление не перестанет быть таковым. Поэтому делают по-другому. Правильная структура следующая (Рисунок 5):


Рисунок 5. Структура векторного датчикового управления для двухфазной синхронной машины

Здесь добавились два блока – БКП_1 и БКП_2: блоки координатных преобразований. Они делают очень простую вещь: поворачивают вектор на входе на заданный угол. Причем БПК_1 поворачивает на +ϴ, а БКП_2 на —ϴ. Это вся разница между ними. В иностранной литературе их называют преобразованиями Парка (Park transformation). БКП_2 делает преобразование координат для токов: от неподвижных осей

α и β, привязанных к статору двигателя, к вращающимся осям d и q, привязанных к ротору двигателя (используя для этого угол положения ротора ϴ). А БКП_1 делает обратное преобразование, от задания напряжения по осям d и q делает переход к осям α и β. Формул для преобразования координат не привожу, но они простые и очень легко ищутся. Собственно, в них нет ничего сложнее школьной геометрии (Рисунок 6):


Рисунок 6. Координатные преобразования из неподвижных осей α и β, привязанных к статору двигателя, к вращающимся осям осям d и q, привязанных к ротору

То есть вместо «вращения» задания регуляторов (как было в прошлой структуре), вращаются их входы и выходы, а сами регуляторы работают в статическом режиме: токи

d, q и выходы регуляторов в установившемся режиме постоянны. Оси d и q вращаются вместе с ротором (так их вращает сигнал с датчика положения ротора), при этом регулятор оси q регулирует как раз тот ток, который в начале статьи я называл «перпендикулярным полю ротора», то есть это моментообразующий ток, а ток d сонаправлен с «магнитом ротора», поэтому он нам не нужен и мы задаём его равным нулю. Такая структура избавлена от недостатка первой структуры – регуляторы токов даже не знают, что что-то где-то крутится. Они работают в статическом режиме: отрегулировали каждый свой ток, вышли на заданное напряжение – и всё, как ротор от них не убегай, они про это даже не узнают: всю работу по повороту делают блоки координатных преобразований.

Для объяснения «на пальцах» можно привести какую-нибудь аналогию.

Для линейного движения пусть это будет, например, городской автобус. Он всё время то разгоняется, то тормозит, то едет назад и вообще ведёт себя как хочет: это ротор двигателя. Также есть вы на автомобиле рядом, едете параллельно: ваша задача быть ровно посредине автобуса: «держать 90°», вы – это регуляторы тока. Если автобус все время меняет скорость – вы тоже должны соответственно менять скорость и всё время её отслеживать. Но теперь сделаем для вас «векторное управление». Вы залезли внутрь автобуса, встали посередине и держитесь за поручень – как автобус не убегай, вы легко справляетесь с задачей «быть посередине автобуса». Аналогично и регуляторы токов, «катаясь» во вращающихся осях d, q ротора, живут легкой жизнью.


Приведенная выше структура действительно работает и используется в современных электроприводах. Только в ней не хватает целой кучи мелких «улучшалок», без которых её уже не принято делать, типа компенсации перекрестных связей, разных ограничений, ослабления поля и т.п. Но базовый принцип именно такой.

А если нужно регулировать не момент привода, а всё-таки скорость (по правильному угловую скорость, частоту вращения)? Ну тогда ставим еще один ПИ-регулятор – регулятор скорости (РС). На вход подаем задание скорости, а на выходе имеем задание момента. Так как ток оси q пропорционален моменту, то можно для упрощения выход регулятора скорости подать сразу на вход регулятора тока оси q, вот так (Рисунок 7):


Рисунок 7. Регулятор скорости для векторного управления
Здесь ЗИ – задатчик интенсивности, плавно изменяет свой выход, чтобы двигатель разгонялся с нужным темпом, а не гнал на полном токе до задания скорости. Текущая частота вращения ω взята из обработчика датчика положения ротора, так как ω это производная от углового положения ϴ. Ну или можно просто время между импульсами датчика засекать…

Как сделать тоже самое для трехфазного двигателя? Ну, собственно, ничего особенного, добавляем еще один блок и меняем модуль ШИМ (Рисунок 8).


Рисунок 8. Структура векторного датчикового управления для трехфазной синхронной машины

Трехфазные токи, точно так же как и двухфазные, служат для одной цели – создать вектор тока статора Is, направленный в нужную сторону и имеющий нужную амплитуду. Поэтому трехфазные токи можно просто пересчитать в двухфазные, а дальше оставить ту же систему управления, что уже была собрана для двухфазной машины. В англоязычной литературе такой «пересчёт» называют преобразованиями Кларк – Clarke transformation (Эдит Кларк – это она), у нас — фазными преобразованиями. В структуре на рисунке 8, соответственно, эта операция производится блоком фазных преобразований. Делаются они опять при помощи курса школьной геометрии (Рисунок 9):


Рисунок 9. Фазные преобразования – из трех фаз к двум. Для удобства принимаем равенство амплитуды вектора Is амплитуде тока в фазе

Думаю, комментарии не нужны. Немного слов про ток фазы C. Туда можно не ставить датчик тока, так как три фазы двигателя соединены в звезду, и по закону Кирхгофа всё, что втекло через две фазы, должно вытечь из третьей (если, конечно, у вас в двигателе не пробита изоляция, и половина не утекла куда-то на корпус), поэтому ток фазы C вычисляют как скалярную сумму токов фаз A и B со знаком минус. Хотя третий датчик иногда ставят чтобы снизить погрешность измерений.

Также нужна полная переделка модуля ШИМ. Обычно для трехфазных двигателей используют трехфазный шестиключевой инвертор. На рисунке задание напряжения поступает всё ещё в двухфазных осях. Внутри модуля ШИМ с помощью обратных фазных преобразований можно пересчитать это в напряжения фаз A, B, C, которые надо приложить в этот момент к двигателю. А вот что делать дальше… Возможны варианты. Наивный метод – это задать на каждую стойку инвертора скважность, пропорциональную желаемому напряжению плюс 0.5. Это называется синусоидальной ШИМ. Именно такой метод применил автор в habrahabr.ru/post/128407. В этом методе всё хорошо, кроме того, что таким методом будет недоиспользован инвертор по напряжению – т.е. максимальное напряжение, которое будет получено, окажется меньше, чем вы могли бы получить, если бы использовали более совершенный метод ШИМ.

Посчитаем. Пусть у вас есть классический преобразователь частоты, питающийся от промышленной трехфазной сети 380В 50Гц. Здесь 380В это линейное (между фазами) действующее напряжение. Так как в преобразователе стоит выпрямитель, он выпрямит это напряжение и на шине постоянного тока окажется напряжение, равное амплитудному линейному напряжению, т.е. 380∙√2=540В постоянного напряжения (по крайней мере без нагрузки). Если мы применим синусоидальный алгоритм расчета в модуле ШИМ, то амплитуда максимального фазного напряжения, которое получится у нас сделать, окажется равной половине от напряжения на шине постоянного тока, т.е. 540/2=270В. Пересчитаем в действующее фазное: 270/√2=191В. А теперь в действующее линейное: 191∙√3=330В. Теперь можем сравнить: вошло нам 380В, а вышло 330В… И больше с этим типом ШИМ никак нельзя. Для исправления этой проблемы используется так называемый векторный тип ШИМ. В нем на выходе будут снова 380В (в идеальном случае без учета всех падений напряжения). Метод векторной ШИМ никакого отношения к векторному управлению электродвигателем не имеет. Просто в его обосновании снова используется немного школьной геометрии, поэтому он и называется векторным. Однако его работу на пальцах не объяснить, поэтому отправлю читателя к книжкам (в конце статьи) или к википедии. Могу еще привести картинку, которая немного намекает на разницу в работе синусоидальной и векторной ШИМ (Рисунок 10):


Рисунок 10. Изменение потенциалов фаз для скалярной и векторной ШИМ
Кстати, а какие датчики положения используются для векторного управления? Чаще всего используются четыре типа датчиков. Это квадратурный инкрементальный энкодер, датчик на основе элементов Холла, абсолютный датчик положения и сельсинный датчик.
Квадратурный энкодер не выдает абсолютного положения ротора – по своим импульсам он позволяет лишь определить, сколько вы проехали, но не куда и откуда (как начало и конец связаны с расположением магнита ротора). Поэтому для векторного управления синхронной машиной сам по себе он не подходит. Немного спасает ситуацию его реперная метка (индекс) – она одна на механический оборот, если до неё доехать, то абсолютное положение становится известно, а от неё можно уже отсчитывать сколько проехали квадратурным сигналом. Но как до этой метки доехать в начале работы? В общем, это не всегда удобно.
Датчик на основе элементов Холла – это грубый датчик. Он выдает всего несколько импульсов на оборот (в зависимости от кол-ва элементов Холла, для трехфазных двигателей их обычно три, т.е. шесть импульсов), позволяя знать положение в абсолютной величине, но с низкой точностью. Точности обычно хватает, чтобы держать угол вектора тока так, чтобы двигатель по крайней мере ехал вперед, а не назад, но момент и токи будут пульсировать. Если двигатель разогнался, то можно начать программно экстраполировать сигнал с датчика по времени – т.е. строить из грубого дискретного угла линейно изменяющийся угол. Это делается на основе предположения, что двигатель вращается с примерно постоянной скоростью, как-то так (Рисунок 11):

Рисунок 11. Работа датчика положения на элементах Холла для трехфазной машины и экстраполяция его сигнала

Часто для серводвигателей используется сочетание энкодера и датчика Холла. В этом случае можно сделать единый программный модуль их обработки, убирая недостатки обоих: делать экстраполяцию угла, приведенную выше, но не по времени, а по меткам с энкодера. Т.е. внутри от фронта до фронта датчика Холла работает энкодер, а каждый фронт Холла чётко инициализирует текущее абсолютное угловое положение. В этом случае неоптимальным (не под 90°) окажется лишь первое движение привода, пока он не доехал до какого-нибудь фронта датчика Холла. Отдельную проблему в этом случае представляет обработка неидеальности и того и другого датчика — симметрично и равномерно элементы Холла редко кто располагает…

В еще более дорогих применениях используют абсолютный датчик положения с цифровым интерфейсом (абсолютный энкодер), который сразу выдает абсолютное положение и позволяет не испытывать описанных выше проблем.

Если в электродвигателе очень жарко, а также когда требуется повышенная точность измерения угла, используют «аналоговый» сельсинный датчик (резольвер, вращающийся трансформатор). Это маленькая электрическая машина, используемая как датчик. Представьте, что в рассмотренной нами синхронной машине на рисунке 1 вместо магнитов стоит еще одна катушка, на которую мы подаем высокочастотный сигнал. Если ротор стоит горизонтально, то сигнал наведется только в катушку статора фазы α, если вертикально – то только в β, если перевернуть его на 180 – то изменится фаза сигнала, а в промежуточных положениях наводится и туда и сюда по закону синуса/косинуса. Соответственно, измеряя амплитуду сигнала в двух катушках, по соотношению этой амплитуды и по фазовому сдвигу можно также определять положение. Установив такую машину как датчик к основной, можно узнавать положение ротора.
Есть еще много экзотических датчиков положения, особенно для сверхвысокоточных применений, например, для изготовления электронных чипов. Там в ход идут уже любые физические явления, чтобы только узнать положение наиболее точно. Их рассматривать не будем.


Как вы поняли, векторное управление достаточно требовательное – и датчиков положения ему наставь, и датчиков тока, и ШИМ ему векторную, и микроконтроллер не абы какой, чтобы всю эту математику обсчитывать. Поэтому для простых применений его упрощают. Для начала можно исключить датчик положения, сделав бездатчиковое векторное управление. Для этого используют немного больше математической магии, находящейся в желтом прямоугольнике (Рисунок 12):

Рисунок 12. Структура бездатчикового векторного управления

Наблюдатель – это такой блок, на который подается информация о приложенном к двигателю напряжении (например, из задания на модуль ШИМ) и о токах в двигателе с датчиков. Внутри наблюдателя работает модель электродвигателя, которая, грубо говоря, пытается подстроить свои токи в статоре под измеренные с реального двигателя. Если у неё это получилось, то можно считать, что и положение моделируемого внутри вала ротора тоже совпадает с реальным и им можно пользоваться для нужд векторного управления. Ну это, конечно, совсем упрощённо. Видов наблюдателей таких – не пересчитать. Каждый аспирант по специальности «электропривод» пытается изобрести именно свой, который чем-то лучше других. Основной принцип – отслеживание ЭДС электродвигателя. Поэтому чаще всего бездатчиковая система управления работоспособна только на относительно высокой частоте вращения, где ЭДС большая. А также имеет еще ряд недостатков по сравнению с наличием датчика: нужно знать параметры двигателя, быстродействие привода ограничено (если частота вращения резко меняется, наблюдатель может не успеть её отследить и какое-то время «врать», а то и «развалиться» совсем), настройка наблюдателя – это целая процедура, для его качественной работы нужно точно знать напряжение на двигателе, точно измерять его токи и т.п.

Есть и другой вариант упрощения. Например, можно сделать так называемую «автокоммутацию». В этом случае для трехфазного двигателя отказываются от сложного метода ШИМ, отказываются от сложной векторной структуры и начинают просто включать фазы двигателя по датчику положения на элементах Холла, даже иногда без всякого токоограничения. Ток в фазах получается не синусоидальный, а трапецеидальный, прямоугольный или еще более искаженный. Но стараются сделать так, чтобы средний вектор тока был всё равно под 90 градусов к «магниту ротора» выбором момента включения фаз. При этом, включая фазу под напряжение, неизвестно, когда же в фазе двигателя нарастет ток. На низкой частоте вращения он это делает быстрее, на высокой, где мешает ЭДС машины, медленнее, еще темп нарастания тока зависит от индуктивности двигателя и т.п. Поэтому, даже включая фазы точно в нужный момент времени, совсем не факт, что средний вектор тока окажется в нужном месте и с нужной фазой – он может как опережать, так и запаздывать относительно оптимальных 90 градусов. Поэтому в таких системах вводят настройку «опережения коммутации» – по сути просто время, насколько раньше нужно на фазу двигателя подавать напряжение, чтобы в итоге фаза вектора тока получилась более близка к 90 градусам. По-простому это называют «настройка таймингов». Так как ток в электродвигателе при автокоммутации не синусоидальный, то, если взять рассмотренную выше синусоидальную машину и управлять ей таким вот образом, момент на валу будет пульсировать. Поэтому в двигателях, предназначенных для автокоммутации, часто специальным образом меняют магнитную геометрию ротора и статора, чтобы они стали более подходящими к такому типу управления: ЭДС таких машин делают трапецеидальной, благодаря чему в режиме автокоммутации они работают лучше. Синхронные машины, оптимизированные для автокоммутации, получили название бесколлекторных двигателей постоянного тока (БДПТ) или по-английски BLDC (Brushless Direct Current Motor). Режим автокоммутации также часто называют вентильным режимом, а двигатели с ним работающие – вентильные. Но это всё просто разные названия, ничем не влияющие на суть (но матёрые электроприводчики часто страдают СПГС в вопросах, связанных с этими названиями). Есть неплохое видео, иллюстрирующее принцип работы таких машин. На нем показан обращенный двигатель, где ротор снаружи, а статор внутри:

А вот здесь есть курс статей по таким двигателям и аппаратной части системы управления.

Можно пойти даже на еще большее упрощение. Коммутировать обмотки так, чтобы одна фаза всё время оказывалась «свободна» и к ней не прикладывался ШИМ. Тогда в ней можно измерять ЭДС (наведенное в катушке фазы напряжение), и, когда это напряжение переходит через ноль, использовать это как сигнал датчика положения ротора, потому что фаза этого наведенного напряжения зависит как раз от положения ротора. Получается бездатчиковая автокоммутация, что широко используется в различных простеньких приводах, например, в «регуляторах» для пропеллеров авиамоделей. При этом надо помнить, что ЭДС машины появляется только на относительно высокой частоте вращения, поэтому для старта такие системы управления просто не спеша перебирают фазы, надеясь, что ротор двигателя будет следовать за подаваемым током. Как только ЭДС появилась, включается режим автокоммутации. Поэтому бездатчиковая система (такая простая, да и сложная чаще всего тоже) не подходит для задач, где двигатель должен уметь развивать момент на околонулевых частотах вращения, например, для тягового привода автомобиля (или его модели), сервопривода какого-то механизма и т.п. Зато бездатчиковая система с успехом подходит для насосов и вентиляторов, где как раз и применяется.

Но иногда делают даже и еще большее упрощение. Можно совсем отказаться от микроконтроллера, ключей, датчиков положения и прочего, осуществляя переключение фаз специальным механическим коммутатором (Рисунок 13):


Рисунок 13. Механический коммутатор для переключения обмоток

При вращении ротор сам переключает свои части обмоток, меняя приложенное к ним напряжение, при этом ток в роторе протекает переменный. Коммутатор располагают таким образом, чтобы магнитный поток ротора и статора снова оказывался близким к 90 градусам, дабы достичь максимума момента. Такие двигатели по наивности называют двигателями постоянного тока, но совершенно незаслуженно: внутри-то, после коллектора, ток всё равно переменный!


Все электрические машины работают схожим образом. В теории электропривода даже существует понятие «обобщенная электрическая машина», к которой сводят работу других. Показанные в статье объяснения «на пальцах» никоим образом не могут служить практическим руководством к написанию кода микроконтроллера. В статье рассмотрен хорошо если один процент информации, которая требуется для реализации настоящего векторного управления. Чтобы сделать что-то на практике, нужно, во-первых, знать ТАУ, хотя бы на уровне понимания, как работает ПИ-регулятор. Потом нужно всё-таки изучить математическое описание как синхронной машины, так и синтеза векторного управления. Также изучить векторную ШИМ, узнать, что такое пары полюсов, познакомиться с типами обмоток машин и прочее. Это можно сделать в свежей книге «Анучин А. С. Системы управления электроприводов. МЭИ, 2015», а также в «Калачев Ю. Н. Векторное регулирование (заметки практика)». Следует предостеречь читателя от погружения в формулы «старых» учебников по приводу, где основной упор сделан на рассмотрение характеристик электродвигателей при питании напрямую от трехфазной промышленной сети, без всяких микроконтроллеров и датчиков положения. Поведение двигателей в этом случае описывается сложными формулами и зависимостями, но для задачи векторного управления они почти никакой пользы не несут (если только изучить для саморазвития). Особенно следует с осторожностью относиться к рекомендациям старых учебников, где, например, сказано, что синхронная машина не должна работать на максимуме своего момента, так как там работа неустойчива и грозит опрокидыванием – для векторного управления всё это «вредные советы».

На каком микроконтроллере можно сделать полноценное векторное управление, читайте, например, в нашей статье Новый отечественный motor-control микроконтроллер К1921ВК01Т ОАО «НИИЭТ», а как это отлаживать в статье Способы отладки ПО микроконтроллеров в электроприводе. Также заходите на наш сайт: там, в частности, выложено два занудных видео, где показано на практике, как настроить ПИ-регулятор тока, а также как работает замкнутая по току и векторная бездатчиковая структура управления. Кроме того, можно приобрести отладочный комплект с готовой датчиковой векторной структурой управления на отечественном микроконтроллере.

Продолжение статьи, где рассказано про асинхронные двигатели здесь.

P.S.
У специалистов прошу прощения за не совсем корректное обращение с некоторыми терминами, в частности с терминами «поток», «потокосцепление», «магнитное поле» и другими – простота требует жертв…

Способы управления двигателями

Управление коллекторными электродвигателями постоянного тока

Из уравнения скорости электродвигателя постоянного тока видно, что частота вращения коллекторного электродвигателя постоянного тока напрямую связана с величиной напряжения питания прикладываемого к двигателю и момента нагрузки.

  • где w — угловая частота, рад/с,
  • U — напряжение питания, В,
  • Ke – постоянная ЭДС, В∙с/рад,
  • M — момент электродвигателя, Н∙м,
  • beta — механическая жесткость двигателя.

Таким образом скорость вращения коллекторного двигателя постоянного тока изменяется посредством изменения величины напряжения питания.

Управление универсальными двигателями

Универсальный коллекторный двигатель может быть подключен как к сети постоянного тока, так и к сети переменного тока. Так же как и у коллекторного двигателя постоянного тока, скорость универсального двигателя управляется величиной напряжения питания, а не его частотой.

Управление бесщеточными электродвигателями переменного тока

Электроприводы с электродвигателем переменного тока наиболее часто используются в составе: насосов, вентиляторов, компрессоров, станков и других механизмов, для которых важно поддерживать скорость вращения вала двигателя, либо определенный технологический параметр.

Основным элементом современного электропривода является система управления электродвигателем: частотный преобразователь или сервопривод.

Преобразователь частоты позволяет управлять моментом и скоростью вращения электродвигателя и исполнительного механизма.
Сервопривод позволяет точно управлять угловым положением, скоростью и ускорением исполнительного механизма.

При этом современные высокопроизводительные методы управления двигателями переменного тока используемые в современных частотных преобразователях и в сервоприводах имеют единую концепцию управления — векторное управление.

Скалярное управление

Скалярный метод управления обеспечивает постоянное отношение амплитуды напряжений обмоток статора к частоте. Такой метод позволяет контролировать скорость вращения электродвигателя в диапазоне до 1:10. Метод прост в реализации и подходит для большинства задач управления двигателем, где не требуется высокая динамика работы. Медленный отклик при переходном процессе связан с тем, что данный метод контролирует величину напряжения и частоты вместо управления фазой и величиной тока.

Векторное управление

Векторное управление позволяет управлять не только амплитудой и частотой, но и фазой управляющих напряжений. Таким образом данный метод обеспечивает максимальное быстродействие и регулирование во всем диапазоне скоростей, что невозможно выполнить с помощью скалярного управления. Недостатками данного метода является сложность реализации и более высокая цена, связанная с необходимостью использования более мощного микроконтроллера. Данный способ управления используется в таких задачах, как: робототехника, беспилотные аппараты, электрические транспортные средства, устройства автоматики и др.

Управление электродвигателями переменного тока / Статьи и обзоры / Элек.ру

Современная схема управления электродвигателем переменного тока чаще всего включает в себя преобразователь частоты. Данная система управления начала набирать популярность благодаря развитию микропроцессорной электроники, на принципах которой и работают современные частотные преобразователи. Такой блок управления асинхронным двигателем отличается высокой надежностью и приемлемой ценой. Кроме того, установка таких систем управления может сэкономить около 40 % потребляемой энергии. Трехфазные двигатели переменного тока могут управляться с применением двух различных принципов:

  • вольт-частотное регулирование;
  • векторный метод управления.

Вольт-частотное управление асинхронным электродвигателем еще называют скалярным. Изменение скорости вращения вала при этом достигается изменением частоты и напряжения в обмотке статора. При этом одновременно изменяется модуль данного напряжения. В результате как частота, так и напряжение являются регулирующими факторами. Для работы двигателя переменного тока важно, чтобы отношение напряжения на статоре и его частота оставались постоянными. То есть снижение или увеличения частоты должно быть синхронизировано напряжением. При этом КПД электродвигателя практически не изменяется.

Подобная схема управления электродвигателем переменного тока удобна тем, что позволяет одновременно работать с группой устройств, что является важнейшим преимуществом при работе со сложными технологическими линиями, например при контроле движения конвейера. При использовании вольт-частотного регулирования можно добиться диапазонов 1/40, чего вполне достаточно для решения большинства производственных задач. Но при этом необходимо отметить, что данная система управления не позволяет контролировать вращающий момент и режим позиционирования. Чаще всего данный способ управления применяется в вентиляторах, насосах, конвейерных системах и т. д.

Векторное управление электродвигателем переменного тока позволяет осуществлять не только скалярное управление, но и работать с магнитным потоком. В основе данной системы лежит представление об основных параметрах электромагнитной системы двигателей как о векторах, расположенных в пространстве. Микросхемы для управления электродвигателя позволяют контролировать и изменять не только амплитуду, но и фазу статорного тока, фактически изменяя его вектор. В результате появляется возможность управления вращающим моментном электродвигателя.

Для эффективного управления фазой тока, а значит, и магнитным потоком относительно ротора, необходимо знать его точное состояние в любой момент времени. Для решения этой проблемы используется либо внешний датчик положения ротора, либо система определения его положения по параметрам напряжения и токов обмоток статора. Управление электродвигателем переменного тока с устройством контроля обратной связи скорости позволяют ее регулирование в диапазоне 1–1000. При этом точность контроля скорости составляет сотые доли процента. Точность регулирования момента несколько ниже — около 2 процентов.

ООО «Кабель» (Кабель.РФ)

Устройства управления электродвигателями

Устройство (система) управления электродвигателем (контроллер двигателя) — устройство или группа устройств, которые предназначены для управления электродвигателем.

Устройство управления электродвигателем может включать ручные или автоматические средства для запуска и остановки двигателя, средства выбора прямого или обратного направления вращения, выбора и регулирования скорости вращения, регулирования или ограничения момента, защиту от перегрузки и от неисправности.

Каждый электродвигатель должен иметь своего рода систему управления (контроллер). Система управления электродвигателем в зависимости от задачи будет иметь различные характеристики и сложность.

Простейшим случаем управления электродвигателем является выключатель который соединяет электродвигатель с источником энергии, например как в небольших бытовых приборах или электроинструменте (дрели и др.). Переключение может осуществляться вручную, с помощью реле или контактора подсоединенного к датчику для автоматического запуска или остановки электродвигателя. Переключатель может иметь несколько положений для выбора различных способов подключения электродвигателя, что может позволить уменьшить пусковое напряжение, выбирать направление и скорость вращения.

Более сложные системы управления электродвигателями могут использоваться для точного управления скорости и момента электродвигателя, могут быть частью системы для точного управления угловым положением управляемого механизма.

Устройства управления электродвигателями могут управляться вручную, удаленно или автоматически. Они могут иметь, как только функции старта и остановки двигателя, так и многие другие функции.

Устройства управления двигателями можно классифицировать по типам управляемых электродвигателей (таких как СДПМ, КДПТ и др.) или по назначению.

Устройства для прямого подключения

Устройства с помощью которых электродвигатель напрямую подключается к источнику питания. Самый простой способ подключения. Небольшие электродвигатели некоторых типов могут быть включены: напрямую в розетку, с использованием выключателя, через автоматический выключатель. Такой способ подключения мгновенно соединяет электродвигатель с сетью питания.

Устройство плавного пуска

Используется для уменьшения пусковых токов асинхронных электродвигателей, что позволяет существенно продлить срок службы двигателя. Устройство плавного пуска используется в задачах, где не требуется управлять скоростью вращения или моментом электродвигателя. При этом для двигателей одинаковой мощности устройство плавного пуска дешевле частотного преобразователя.

Сервопривод

Устройство позволяет точно контролировать угловое положение, скорость и ускорение исполнительного механизма посредством управления синхронным электродвигателем (обычно СДПМ).

Двигатели переменного тока. Принцип работы, характеристики и управление

Продолжаем наш ликбез по движкам. На этот раз речь пойдет о переменном токе, трехфазных движках разной конструкции. Их характеристикам, устройству и принципу работы. Ну и заодно подготавливаем почву под BLDC, так как там получается зверский гибрид всего и вся.
 

▌Вращающееся поле
Вращающееся поле это краеугольный камень всех машин переменного тока. Без него ничего не было бы и все было бы уныло и пресно. Делается оно посредством хитрой обмотки и хитрого напряжения. Сейчас подробно покажу как.
 

Начнем с упрощенной одновитковой обмотки. Вот такой:

Подаем на него напряжение, получаем ток, создающий магнитный поток. Направление потока зависит от направления тока. Определяется по правилу буравчика. Вспоминаем курс физики из школы 🙂 Если сунуть туда синусоидальное напряжение, то поток через обмотку будет шнырять туда-сюда по синусоидальному же закону.
 

Берем три обмотки и ставим их так, чтобы магнитное поле, ими генерируемое, было направленно под 120 градусов относительно катушек.
 

Получаем упрощенный вариант статора. Соединяем обмотки треугольником:

Оставим от него только направления векторов, чтобы посмотреть на это в разрезе. И загоняем в эту обмотку трехфазное напряжение. Три синуса, сдвинутые под 120 градусов.
 

Если взять в какой-либо момент времени напряжения и разложить магнитные потоки по векторам, которые задают наши катушки, с учетом знака, а потом все суммировать, то получим результирующий вектор магнитной индукции трех катушек. Проделав ту же операцию на несколько углов вперед будет явно видно, что результирующий вектор вращается аки часовая стрелка.
 

Т.е. статор, с точки зрения магнитного поля, ведет себя как вращающийся магнит. Делающий один оборот за период. Вот вам каноничная картинка, что есть в каждом учебнике по электромашинам. Полный оборот поля. Я лишь сделал ее более няшный вариант, раскрасив витки в цвета обмоток, чтобы по феншую было все.
 

Скорость вращения поля зависит от частоты сети. n1 = 60*f (об/мин) эта скорость зовется синхронной скоростью. Но не все так просто. Количество полюсов машины может быть и иным. Выше был пример статора двухполюсной машины. Два полюса потому, что там у результирующего магнитного потока есть север и юг и все. Но полюсов может быть больше.
 

Для этого обмотку каждой фазы делают из двух соединенных катушек, как то так:

И размещают их со сдвигом в 60 градусов. Вот, примерно, следующим образом. Тут у меня по одному недавитку, но их может быть и сто. Соединение секций между собой выделено более тонким проводом и чуть другим цветом.
 

 

В результате получается вот такая вот магнитная схема:
 

Видно, что эти четыре гипножабы образуют четыре полюса, два северных, два южных. А дальше как в старом советском мультике… пока ты на коне на четырех ногах раааз, двааа, триии, четырее… он на своих двоих раз-два, раз-два, раз-два. В четырехполюсном движке поле вращается вдвое медленней, т.к. за один период оно пробежит только пол оборота. Чем больше полюсов, тем медленней вращается поле.
 

С учетом количества полюсов синхронная скорость вычисляется так: n1=60*f/p ,где p — число катушек в одной фазе. Правда тут стоит учитывать такой случай, что катушки можно намотать так, что две будут вести себя как одна. В этом случае, естественно, считаем ее за одну, хоть их физически и две.
 

На этом принципе, кстати, в некоторых случаях делают управление скоростью двигателя. Т.е. хитро переключая катушки делают, например, либо два полюса, либо четыре. Ступенчато переключая скорость.
 

▌Реверс поля
Тут даже и говорить нечего — меняем местами две фазы и поле поехало в другую сторону. Элементарно 🙂
 

▌Асинхронный двигатель
Вы наверняка все знаете его. Помнишь как в детстве, разбираешь движок, надеешься на нямку и ништяки, а оттуда выпадает тупая алюминиевая блямба и обламывает весь кайф. Вот такой вот, малята, АД. В смысле асинхронный двигатель.
 

Асинхронный двигатель это король электропривода. Он технологичен, а значит дешев. Надежен, там трутся только подшипники. Прост и легко запускается. Не требует никакого дорогостоящего барахла, вроде редкоземельных магнитов. Есть у него и недостатки — сложности регулирования скорости и своебразная механическая характеристика, но все это решается умной электроникой.
 

Как же он работает то? Сейчас разберем.
 

Итак, у нас есть статор и его вращающееся поле:

в него мы помещаем короткозамкнутую обмотку ака «беличье колесо»

Она состоит из штырей закороченных на лобовые кольца. А обычно еще проще делают. Набирают шихтованный ротор (т.е. из изолированных пластин, чтобы гасить вихервые токи) окаливают его, создавая тем самым изоляцию, а потом заливают в пазы цельнолитую алюминиевую обмотку. Дешево, просто, технологично.
 

Так вот, поле бежит мимо этих штырей наводя в них ЭДС. А так как обмотка замкнута, то эта ЭДС порождает ток. Но если у нас есть ток и есть магнитное поле статора, то должна неминуема появиться сила Ампера. И она появляется. Обмотка начинает увлекаться за полем. Но догнать его не может никогда, ведь если она его догонит, то движение поля относительно обмоток станет равным нулю и сила пропадет. Вот так и плетется она в конце на подсинхронной частоте. Потому и зовется двигатель асинхронным. А относительная разность скорости поля и ротора зовется скольжением.
 

s=(n1-n)/n1
 

Измеряется в единицах или процентах. Обычно, на номинальном моменте, скольжение составляет 2-7% С ростом нагрузки скольжение растет. А скорость вращения движка завязана на скорость поля. Что сильно обламывает любителей регулировать скорость. Потому то асинхронные двигатели до сих пор не вытеснили те же коллекторные отовсюду откуда можно. Мало того, что им нужна переменка, так еще и не погазуешь нифига.
 

▌Механическая характеристика АД. Пуск и регулирование скорости
Она весьма извилистая, с рядом приколов. Вот такая:

Обратите внимание на разницу между пусковым и максимальным моментом. Т.е. движок должен стартануть в относительно тепличных условиях и лишь потом можно его грузить. Да и то до некоторого предела, до точки Ж, где случается жопа. Машина теряет устойчивость, момент резко снижается, а обороты падают до нуля. Движок лишь беспомощно дергается и очень сильно греется. Ведь в этот момент он превращается в обычный трансформатор у которого ротор это вторичная обмотка и она закорочена наглухо.
 

Вариантов борьбы с этим явлением несколько. Обычно конструктивные, делают либо две беличьи клетки одна над другой, либо просто глубокие пазы, т.е. клетка получается не из прутьев, а из пластин. Это снижает разницу между моментом критическим и пусковым. Еще, в особо тяжелых случаях, вроде кранового привода, делают фазный ротор. Т.е. обмотка не беличья клетка, а нормальная обмотка трехфазная. Из провода, ее концы с одной стороны соединены звездой, а с другой вытащены наружу через контактные кольца. Вот как на этой картинке под четвертым номером:
 

 

С них заводят на пусковые сопротивления:

И при пуске вводят все сопротивления в ротор, при этом ток падает, механическая характеристика проседает, а пусковой момент увеличивается. Потом, по мере разгона, сопротивления выводят посекционно, а движок переходит с одной характеристики на другую, пока не выйдет на естественную. Делается это автоматом, по реле времени или через реле контроля скорости.
 

Впрочем, это вам так, для общего развития. Не думаю, что с таким пуском столкнетесь вживую. Разве что вы не работаете цеховым электриком и колупаете краны выпуска еще прошлого века. Сейчас все это активно отмирает и заменяется на частотное регулирование.
 

Снижение напряжения фазного дает лишь некоторое смягчение характеристики, с падением момента. Но обороты остаются в целом прежними.

 

Т.е. по простому скоростью не порулишь как хочется. Что делать? На помощь тут идет электроника и частотное регулирование. Т.е. мы сетевое напряжение сначала выпрямляем, а потом на инверторе вкручиваем любую частоту какая нам нужна. И профиты сплошные. выглядит это так:

 
Но тут мы наблюдаем другую проблему — разгоняя частоту мы теряем в критическом моменте и снижается пусковой момент. Почему? А дело все в том, что поток завязан на частоту.
 
Если пренебречь падением напряжения на обмотках статора, то ЭДС примерно будет равна напряжению на фазах движка.
 

Uф≈K Φ f1

 

К — конструктивный коэффициент.
 
Т.е. у нас поток Ф зависит от частоты. Повышаем частоту и чтобы уравнение выполнялось должен снизиться поток, со всеми последствиями в виде провала по моменту.
 

Но что если заложить номинальную частоту в максимум возможного для данного двигателя, а регулировать вниз? Тут тоже проблемы возникнут. Поток будет расти, но бесконечно расти он не сможет, железо магнитопровода перенасытится и упадет КПД. Это просто энергетически невыгодно, зачем нам грелка, когда нужна крутилка?
 
Так что при изменении частоты не помешает и подкорректировать напряжение так, чтобы держать поток в пределах номинального, так потерь меньше.
 

▌Синхронный двигатель
Еще одна забавная машинка, работающая на вращающемся поле. Вспомним картинку вращающегося поля и сунем в ее чрево постоянный магнит.

Опа, магнит вращается синхронно полю. Механическую характеристику этого безобразия я даже не буду рисовать. Она скучна как пульс у трупа. Скорость жестко завязана на скорость поля и не зависит от момента, совсем. Абсолютно жесткая механическая характеристика.
 

Разумеется это не навсегда, если момент будет сильней поля, то он может оторвать его от поля, движок выпадет из синхронизма и настанет жопа — сам он в синхронный режим уже не вернется. Тут ситуация еще хуже чем с асинхронным двигателем. Синхронный двигатель даже нормально запуститься не сможет. Т.е. если его воткнуть в сеть то фиг он куда поедет, будет стоять и беспомощно дрыгаться. Вот такая, херня, малята.
 

Дети, давайте поможем дедушке двигателю стартануть! Что надо сделать? Правильно, Петя, надо подружить его с асинхронным двигателем — сунуть ему в нутро до кучи еще и беличью клетку. Это будет пусковая обмотка. Она рванет движок со старта, доведет его до подсинхронной частоты, а там он втянется в синхронизм как удав в пылесос. Правда момент такого пуска слабоват, но хоть что то. Но такие проблемы это геморрой еще прошлого века.
 

Сейчас есть новые, усовершенствованные методы старта синхронного двигателя. Потому, что у нас прогресс, модернизация в стране и нанотехнологии. В первую очередь я имею ввиду частотный пуск. Т.е. когда при старте поле статора не рвет с нуля на номинальные обороты, а нежно хватает движок за торчащие из ротора яй… эээ силовые линии магнитного поля и начинает плавно разгонять пока не выведет в номинал. Еще в начале может быть ориентирующий рывок, когда напряжение подается статично, на одну из фаз, чтобы придать ротору какой-то определенный ориентир, а дальше уже разгон.
 

Наиболее наглядно это можно увидеть на приводе шпинделя жесткого диска. Если у вас есть убитый жесткач, то разберите его и подайте питание на плату. Увидите, как движок плавно стартанет, но если его затормозить, то он встанет и будет лишь вяло вяло крутиться — выпал из синхронизма. Если сможете разогнать его до 7200 оборотов, то он втянется, и будет дальше вращаться как ни в чем не бывало.
 

Устранение этого недостатка может быть только одно — контроль положения ротора, т.е. система управления зорко глядит на то куда повернут ротор и не дает полю его упустить. Если движок нагружается, поле притормаживает, следуя за ротором так, чтобы получить наибольший момент. Способов следить много. Это и сельсины и датчики холла и энкодеры и оптика всякая. Есть еще и извращенские способы по замеру индукции на обмотке, что часто практикуется в модельных инверторах. И со всей этой тряхомудией это уже получается самый настоящий BLDC о которых я тоже когда-нибудь расскажу. Через пару лет, ага. Бугагага!
 

Регулирование синхронного двигателя сходно с асинхронным. Те же приколы связи частоты, потока и напряжения. Т.к. статор там точно такой же. Разве что скольжения нет, но есть критический момент, а он завязан на поток.
 

Векторное управление для асинхронного электродвигателя «на пальцах»


В предыдущей статье «Векторное управление электродвигателем «на пальцах» рассматривалась векторная система управления для синхронных электродвигателей. Статья получилась большой, поэтому вопрос про асинхронные электродвигатели (induction motors) был вынесен в отдельную публикацию. Данная статья является продолжением предыдущей и опирается на приведенные там объяснения принципов работы электродвигателей. Она расскажет об особенностях работы асинхронного двигателя применительно к векторному управлению, а также покажет отличия в структуре векторной системы управления между синхронной и асинхронной машиной.
Как работает асинхронный электродвигатель? Наиболее популярное объяснение говорит что-то типа «статор создает вращающееся магнитное поле, которое наводит ЭДС в роторе, из-за чего там начинают течь токи, в результате ротор увлекается полем статора и начинает вращаться». Лично я от такого объяснения всю физику процесса понимать не начинаю, поэтому давайте объясню по-другому, «на пальцах».

Все же видели видео, как магнит взаимодействует с медным цилиндром? Особенно обратите внимание на диапазон времени с 0:49 до 1:03 – это уже самый настоящий асинхронный двигатель:

Эффект происходит из-за появления в цилиндре вихревых токов. Согласно закону электромагнитной индукции, открытого Майклом Фарадеем, при изменении магнитного потока замкнутого контура в нем возникает ЭДС (по-простому считайте, что напряжение). Эта ЭДС, применительно к медному цилиндру, тут же вызывает появление в цилиндре тока. При этом этот ток тоже создает свой, ответный магнитный поток, направленный ровно в противоположную сторону от изменения потока магнита, который мы подносим:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Это можно понимать так, что замкнутый контур сопротивляется изменению магнитного потока внутри себя. Если вы резко поднесёте магнит к медному цилиндру, т.е. сделаете резкое изменение магнитного потока, то в цилиндре потекут такие ответные токи, что магнитное поле внутри цилиндра в первый момент времени будет равно нулю: магнитное поле поднесенного магнита будет полностью скомпенсировано магнитным полем токов цилиндра (с допущениями, конечно). Если магнит поднести и держать, то токи в цилиндре из-за наличия активного сопротивления меди постепенно спадут, а поле цилиндра, создаваемое его токами, пропадет: магнитный поток постоянного магнита «прорвется» внутрь цилиндра, как будто никакого цилиндра и нет. Но стоит попытаться убрать магнит, как цилиндр отреагирует снова – теперь он будет пытаться сам «воссоздать» внутри себя пропадающий магнитный поток, т.е. будет опять сопротивляться изменению магнитного потока, в данном случае его исчезновению. Но что значит «воссоздать магнитный поток»? Это значит, что на какое-то время медный цилиндр можно считать условно «постоянным магнитом» – в нем циркулирует вихревой ток, создающий магнитное поле (на этом же принципе «висят» сверхпроводники в магнитном поле, но это совсем другая история).

Давайте теперь обратимся к конструкции асинхронного двигателя. Ротор асинхронного двигателя условно можно представлять себе также в виде медного цилиндра. Но в реальных конструкциях это некая решётка в виде «беличьей клетки» (рисунок 1) из меди или алюминия, совмещенная с магнитопроводом (шихтованное железо).


Рисунок 1. Ротор асинхронного двигателя типа «беличья клетка» с током в одной из «рамок» беличьей клетки, реагирующей на нарастание внешнего магнитного поля.

На рисунке схематично показано протекание тока в одной из «рамок», т.е. в некоторых прутьях беличьей клетки, если сверху поднести магнит (создать ток в статоре). На самом деле ток в этом случае протекает во всех прутьях, кроме, условно, верхнего и нижнего, для которых изменения потока нет (но они бы среагировали на горизонтально поднесенный магнит).

Помните ещё из начала прошлой статьи картинку со схематическим изображением двухфазной синхронной машины, где ротором был магнит? Давайте теперь сделаем из неё асинхронный двигатель: вместо магнита поставим две перпендикулярные короткозамкнутые катушки, символизирующие медный цилиндр ротора (рисунок 2).


Рисунок 2. Схематическое изображение двухфазного асинхронного двигателя с короткозамкнутым ротором.

Замена цилиндра на две катушки для пояснения принципа работы (или моделирования) корректна, точно также как корректна замена трехфазной обмотки на двухфазную. Только в этом случае мы заменяем… «бесконечнофазную обмотку» цилиндра (бесконечное число рамок) на две катушки с эквивалентной индуктивностью и сопротивлением. Ведь двумя катушками можно создать точно такой же вектор тока и магнитного потока, как и цилиндром.

А теперь давайте сделаем на короткое время из асинхронной машины синхронную. Подадим в катушку оси β постоянный ток и подождем секунды две-три, пока в роторе перестанут течь ответные токи: «поднесем внешний магнит». То есть дождемся спадания токов в роторе, чтобы магнитное поле статора «пронзило ротор» и никто ему не мешал. Что теперь будет, если выключить ток в статоре? Правильно, на те же две-три секунды, пока ток ротора этому противится, мы из ротора получим «обычный магнит» (рисунок 3).


Рисунок 3. Асинхронный двигатель, когда только что выключили постоянный ток по фазе β – течет ток в роторе ird.

Что же мы ждем? Быстрее, пока магнит не пропал, рисуем вдоль него привычную ось d (как в синхронной машине) и перпендикулярную ей ось q, привязанные к ротору. Включаем структуру векторного управления синхронной машиной, подаем ток по оси q, создавая момент, поехали!

Так можно даже действительно сделать несколько оборотов, пока наш сахарный магнит не растаял, а ось d не ушла в небытие. Что же делать? Давайте не будем выключать ток по оси d, подпитывая наш магнит! И опять же сохраним структуру векторного управления синхронной машиной, просто подав задание по оси d (раньше там был ноль). Итак, смотрим на рисунок 4: оси d, q по датчику положения «приделаны» к ротору, двигатель стоит, подан ток по оси d в статоре, что в данном случае для стоячей машины совпадает с осью β. Тока по оси q пока нет: ждем, пока ротор «намагнитится». И вот подаем ток isq (s – статор)! Поехали!


Рисунок 4. Подадим ток в ось d, намагнитив машину, подготовив всё для подачи тока в ось q статора.

Далеко ли мы уедем таким методом барона Мюнхгаузена? К сожалению, нет. Смотрите, что произошло (рисунок 5):


Рисунок 5. А магнит-то сполз!

Двигатель начал крутиться, но через некоторое время после того, как мы подали ток в ось q, образовав суммарный ток is и «прибив» этот вектор к положению ротора, магнит в роторе «съехал»! И встал ровно вдоль вектора is. Ротор же не понимает, где мы нарисовали ему оси d, q… Ему все равно, крутился он или нет. Важно, что его внутренний «наведенный магнит» в конечном счете хочет стать сонаправленным с магнитным потоком статора, «подчиниться» внешнему потоку. Из-за съехавшего магнита двигатель перестанет крутиться: мало того, что между магнитом ротора и током iq нет желаемых 90 градусов, так еще и ток оси d теперь его тянет в противоположную сторону, компенсируя момент, создаваемый током iq. Метод барона Мюнхгаузена не удался.

Что же делать с ускользающим магнитом ротора? А давайте сделаем структуру векторного управления асинхронного двигателя не в осях d,q, приделанных к ротору, а в других осях, приделанных именно к текущему положению «магнита ротора» – назовем их оси x,y, чтобы отличать от d,q. По «научному» – это оси, ориентированные по потокосцеплению ротора. Но как же узнать, где конкретно сейчас это потокосцепление ротора, т.е. куда повернут магнит в роторе? Его положение зависит… во-первых, от положения самого ротора (датчик положения у нас есть, хорошо), во-вторых, от токов статора (создающих поток статора, по которому и собирается в конечном счете повернуться магнит ротора), а в-третьих от параметров роторной цепи – индуктивности и сопротивления «медного цилиндра» (он же беличья клетка, он же роторная обмотка, он же цепь ротора). Поэтому… зная всё это, положение «магнита» ротора можно просто вычислять по нескольким дифференциальным уравнениям. Делает это так называемый наблюдатель потокосцепления ротора, выделенный цветом на итоговой структурной схеме векторного управления асинхронным двигателем (рисунок 6).


Рисунок 6. Векторная датчиковая структура управления асинхронным двигателем

В наблюдатель заводятся показания с датчика положения ротора, а также текущие токи статора в осях α, β. На выходе наблюдателя – положение «магнита» ротора, а именно угол наблюдаемого потокосцепления ротора . В остальном структура полностью аналогична таковой для синхронной машины, только оси d,q переименованы в x,y, а на ось x подано задание тока, который будет поддерживать наш «магнит» в роторе. Также на многих обозначениях добавлен индекс “s”, чтобы показать, что данная величина имеет отношение к статору, а не к ротору. Также надо отметить, что в западной литературе не используют оси x,y: у них ось d всегда направлена по полю ротора, что для асинхронного двигателя, что для синхронного. Наши ученые еще в советское время разделили оси d,q и x,y, чтобы исключить путаницу: d,q прикреплены к ротору, а x,y к полю ротора.

Что же получается? Магнит ротора всё время скользит, сползает от текущего положения на роторе в сторону тока оси y. Чем больше этот ток, тем сильнее скольжение. Наблюдатель в реальном времени вычисляет положение этого магнита и «подкручивает» оси x,y всё время вперед по отношению к осям d,q (положению ротора). Ось x всегда соответствует текущему положению потокосцепления в роторе – положению «магнита». Т.е. оси x,y бегут всегда (в двигательном режиме) немного быстрее вращения ротора, компенсируя скольжение в нем. Токи в роторе, если их измерить или промоделировать, получаются синусоидальными. Только изменяются они не с частотой статорных токов, а с частотой этого скольжения, т.е. очень медленно. Если в статоре промышленного асинхронника 50Гц, то при работе под нагрузкой частота тока в роторе – единицы герц. Вот, собственно, и весь секрет векторного управления для асинхронного двигателя.

Чем векторное управление асинхронным двигателем лучше, чем скалярное? Скалярное управление это такое, когда к двигателю прикладывается напряжение заданной частоты и амплитуды – например, 380В 50Гц. И от нагрузки на роторе оно не зависит – никаких регуляторов токов, векторов… Просто задается частота напряжения и его амплитуда – скалярные величины, а токи и потоки в двигателе пусть сами себе удобное место находят, как хотят. В установившемся режиме работы двигателя векторное управление неотличимо от скалярного – векторное точно также будет прикладывать при номинальной нагрузке те же, скажем, 380В, 50Гц. Но в переходных режимах… если нужно быстро запустить двигатель с заданным моментом, если нужно отрабатывать диаграмму движения, если есть импульсная нагрузка, если нужно сделать генераторный режим с определенным уровнем мощности – всё это скалярное управление или не может сделать, или делает это с отвратительными, медленными переходными процессами, которые могут к тому же «выбить защиту» преобразователя частоты по превышению тока или напряжения звена постоянного тока (двигатель колеблется и может запрыгивать в генераторный режим, к которому преобразователь частоты не всегда приспособлен).

В векторной же структуре «всё под контролем». Момент вы задаете сами, поток тоже. Можно ограничить их на нужном уровне, чтобы не превысить уставок защиты. Можно контролируемо форсировать токи, если кратковременно нужно сделать в несколько раз больший момент. Можно регулировать не только момент двигателя, но и поток (ток оси x): если нагрузка на двигателе мала, то нет никакого смысла держать полный поток в роторе (делать магнит «номинального режима») – можно ослабить его, уменьшив потери. Можно стабилизировать скорость регулятором скорости с высокой точностью и быстродействием. Можно использовать асинхронный привод в качестве тягового (в транспорте), задавая требуемый момент тяги. В общем, для сложных применений с динамичной работой двигателя векторное управление асинхронным двигателем незаменимо.

Также есть отличительные особенности векторного управления асинхронного двигателя от синхронного. Первая – это датчик положения. Если для синхронного привода нам нужно знать абсолютное положение ротора, чтобы понять, где магнит, то в асинхронном приводе этого не требуется. Ротор не имеет какой-то выраженной полюсной структуры, «магнит» в нем постоянно скользит, а если посмотреть в формулы наблюдателя потокосцепления ротора, то там не требуется знания положения: в формулы входит только частота вращения ротора (на самом деле есть разные формулы, но в общем случае так). Поэтому на датчике можно сэкономить: достаточно обычного инкрементального энкодера для отслеживания частоты вращения (или даже тахогенератора), абсолютные датчики положения не требуются. Вторая особенность – управление потоком в асинхронном электродвигателе. В синхронной машине с постоянными магнитами поток не регулируется, что ограничивает максимальную частоту вращения двигателя: перестает хватать напряжения на инверторе. В асинхронном двигателе, когда это случается… просто уменьшаете задание по оси x и едете дальше! Максимальная частота не ограничена! Да, от этого будет снижаться момент двигателя, но, главное, ехать «вверх» можно, в отличие от синхронной машины (по-правде там тоже можно, но недалеко, не для всех двигателей и с кучей проблем).

Точно также существуют бездатчиковые алгоритмы векторного управления асинхронным двигателем, которые оценивают угол потокосцепления ротора не используя сигнал датчика положения (или скорости) вала ротора. Точно также, как и для синхронных машин, в работе таких систем есть проблемы на низкой частоте вращения ротора, где ЭДС двигателя мала.

Также следует сказать пару слов о роторе. Если для промышленных асинхронных двигателей его удешевляют, используя алюминиевую беличью клетку, то в тяге, где массогабаритные показатели важнее, наоборот, могут использовать медный цилиндр. Так, во всеми любимом электромобиле Tesla стоит именно асинхронный электродвигатель с медным ротором (рисунок 7)


Рисунок 7. Ротор асинхронного электродвигателя Tesla Model S в стальной обшивке (фото из разных источников за разные годы)

Вот, собственно, и всё, что я хотел сказать про асинхронный двигатель. В данной обзорной статье не рассмотрены многие тонкости, такие как регулятор потока ротора, возможное построение векторной структуры в других осях координат, математика наблюдателя потокосцепления ротора и многое другое. Как и в конце прошлой статьи, за дальнейшими подробностями отсылаю читателя к современным книгам по приводу, например к «Анучин А. С. Системы управления электроприводов. МЭИ, 2015».

На каком микроконтроллере можно сделать полноценное векторное управление, читайте, например, в статье «Новый отечественный motor-control микроконтроллер К1921ВК01Т ОАО «НИИЭТ», а как это отлаживать в статье «Способы отладки ПО микроконтроллеров в электроприводе». Также наша фирма ООО «НПФ Вектор» предлагает разработку на заказ систем управления электродвигателями и другим электрооборудованием, примеры выполненных проектов можно посмотреть на нашем сайте.

P.S.
У специалистов прошу прощения за не совсем корректное обращение с некоторыми терминами, в частности с терминами «поток», «потокосцепление», «магнитное поле» и другими – простота требует жертв…

Управление электродвигателями переменного тока | Полезные статьи

Современная схема управления электродвигателем переменного тока чаще всего включает в себя преобразователь частоты. Данная система управления начала набирать популярность благодаря развитию микропроцессорной электроники, на принципах которой и работают современные частотные преобразователи. Такой блок управления асинхронным двигателем отличается высокой надежностью и приемлемой ценой. Кроме того, установка таких систем управления может сэкономить около 40 % потребляемой энергии. Трехфазные двигатели переменного тока могут управляться с применением двух различных принципов:

  • вольт-частотное регулирование;
  • векторный метод управления.

Вольт-частотное управление асинхронным электродвигателем еще называют скалярным. Изменение скорости вращения вала при этом достигается изменением частоты и напряжения в обмотке статора. При этом одновременно изменяется модуль данного напряжения. В результате как частота, так и напряжение являются регулирующими факторами. Для работы двигателя переменного тока важно, чтобы отношение напряжения на статоре и его частота оставались постоянными. То есть снижение или увеличения частоты должно быть синхронизировано напряжением. При этом КПД электродвигателя практически не изменяется. Подобная схема управления электродвигателем переменного тока удобна тем, что позволяет одновременно работать с группой устройств, что является важнейшим преимуществом при работе со сложными технологическими линиями, например при контроле движения конвейера. При использовании вольт-частотного регулирования можно добиться диапазонов 1/40, чего вполне достаточно для решения большинства производственных задач. Но при этом необходимо отметить, что данная система управления не позволяет контролировать вращающий момент и режим позиционирования. Чаще всего данный способ управления применяется в вентиляторах, насосах, конвейерных системах и т. д.

Векторное управление электродвигателем переменного тока позволяет осуществлять не только скалярное управление, но и работать с магнитным потоком. В основе данной системы лежит представление об основных параметрах электромагнитной системы двигателей как о векторах, расположенных в пространстве. Микросхемы для управления электродвигателя позволяют контролировать и изменять не только амплитуду, но и фазу статорного тока, фактически изменяя его вектор. В результате появляется возможность управления вращающим моментном электродвигателя.

 

Для эффективного управления фазой тока, а значит, и магнитным потоком относительно ротора, необходимо знать его точное состояние в любой момент времени. Для решения этой проблемы используется либо внешний датчик положения ротора, либо система определения его положения по параметрам напряжения и токов обмоток статора. Управление электродвигателем переменного тока с устройством контроля обратной связи скорости позволяют ее регулирование в диапазоне 1–1000. При этом точность контроля скорости составляет сотые доли процента. Точность регулирования момента несколько ниже — около 2 процентов.

 

Отправить ответ

avatar
  Подписаться  
Уведомление о