Принцип работы и устройство электродвигателя: типы, устройство, принцип работы, параметры, производители

Содержание

История создания электродвигателя

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

1800, Вольта

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Первый электродвигатель Фарадея, 1821 г.

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат «О некоторых новых электромагнитных движениях и о теории магнетизма», где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

Вращающееся устройство Йедлика, 1827/28 гг.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Электродвигатель Стёрджена
Strurgejn’s Annals of Electricity, 1836/37, vol. 1

1833, Стёрджен

Британский физик, Уильям Стёрджен, публично продемонстрировал

электродвигатель на постоянном токе в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.

1833, Ленц

В начале в электромеханике разграничивали магнито-электрические машины (электрические генераторы) и электро-магнитные машины (электрические двигатели). Российский физик (немецкого происхождения), Эмилий Христианович Ленц, опубликовал статью о законе взаимности магнито-электрических явлений, то есть о взаимозаменяемости электрического двигателя и генератора.

Май 1834, Якоби

Первый вращающийся электродвигатель. Якоби, 1834

Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.

1836 — 1837, Дэвенпорт

Проводя эксперименты с магнитами, американский кузнец и изобретатель, Томас Дэвенпорт, создает свой первый электромотор в июле 1834 года. В декабре этого же года он впервые продемонстрировал свое изобретение. В 1837 году Дэвенпорт получил первый патент (патент США №132) на электрическую машину.

1839, Якоби

Используя электродвигатель питающийся от 69 гальванических элементов Грове и развивающий 1 лошадиную силу, в 1839 г. Якоби построил лодку способную двигаться с 14 пассажирами по Неве против течения. Это было первое практическое применение электродвигателя.

1837 — 1842, Дэвидсон

Шотландский изобретатель, Роберт Дэвидсон, занимался разработкой электродвигателя с 1837 года. Он сделал несколько приводов для токарного станка и моделей транспортного средства. Дэвидсон изобрел первый электрический локомотив.

1856, Сименс

Немецкий инженер, изобретатель, ученый, промышленник, основатель фирмы Siemens, Вернер фон Сименс изобрел электрический генератор с двойным T-образным якорем. Он первый разместил обмотки в пазах.

1861-1864, Максвелл

Британский физик, математик и механик, Джеймс Клерк Максвелл, обобщил знания об электромагнетизме в четырех фундаментальных уравнениях. Вместе с выражением для силы Лоренца уравнения Максвелла образуют полную систему уравнений классической электродинамики.

1871-1873, Грамм

Бельгийский изобретатель, Зеноб Теофил Грамм, устранил недостаток электрических машин с двух-Т-образным якорем Сименса, который заключался в сильных пульсациях вырабатываемого тока и быстром перегреве. Грамм предложил конструкцию генератора с самовозбуждением, который имел кольцевой якорь.

1885, Феррарис

Итальянский физик и инженер, Галилео Феррарис, изобрел первый двухфазный асинхронный электродвигатель. Однако Феррарис думал, что такой двигатель не сможет иметь КПД выше 50%, поэтому он потерял интерес и не продолжал улучшать асинхронный электродвигатель. Считается, что Феррарис первым объяснил явление вращающегося магнитного поля.

1887, Тесла

Американец сербского происхождения, изобретатель, Никола Тесла, работая независимо от Феррариса, изобрел и запатентовал двухфазный асинхронный электродвигатель с явно выраженными полюсами статора (сосредоточенными обмотками). Тесла ошибачно считал что двухфазная система токов оптимальна с экономической точки зрения среди всех многофазных систем.

1889-1891, Доливо-Добровольский

Русский электротехник польского происхождения, Михаил Осипович Доливо-Добровольский, прочитав доклад Феррариса о вращающемся магнитном поле изобрел ротор в виде «беличьей клетки». Дальнейшая работа в этом направлении привела к разработке трехфазной системы переменных токов и трехфазного асинхронного электродвигателя, получившего широкое применение в промышленности и практически не изменившегося до нашего времени.

Широкое внедрение электромеханических устройств в России начинается после Октябрьской революции 1917 г., когда электрификация всей страны стала основой технической политики нового государства. Можно сказать, что XX век стал веком становления и широкого распространения электромеханики.

Выбор между двухфазной и трехфазной системой

Доливо-Добровольский справедливо считал, что увеличение числа фаз в двигателе улучшает распределение намагничивающей силы по окружности статора. Переход к трехфазной системы от двухфазной уже дает большой выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как приводит к значительному увеличению расходов металла на провода.

Для Теслы же казалось очевидным, что чем меньше число фаз, тем меньше требуется проводов, и следовательно тем дешевле устройство электропередачи. При этом двухфазная система передачи требовала применения четырех проводов, что представлялось не желательным в сравнении с двух проводными системами постоянного или однофазного переменного токов. Поэтому Тесла предлагал применять трех проводную линию для двухфазной системы, делая один провод общим. Но это не сильно уменьшало количество затрачиваемого на систему металла, так как общий провод должен был быть большего сечения.

Таким образом трехфазная система токов предложенная Доливо-Добровольским была оптимальной для передачи энергии. Она практически сразу нашла широкое применение в промышленности и до наших дней является основной системой передачи электрической энергии во всем мире.

Устройство, принцип работы и подключения электродвигателей переменного тока | Полезные статьи

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Асинхронный двигатель с креплением к фланцу

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Устройство асинхронного электродвигателя

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Устройство синхронного электродвигателя

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.


Устройство и принцип работы электродвигателя переменного тока

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

Принцип действия электродвигателя

Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями. Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла. Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.


Принцип работы электродвигателя — основные функциональные элементы


Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором. Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой. Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.


Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа. Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.


Принцип работы электродвигателя — разновидности и типы

 

 

 

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.


Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

 

 

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.


Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%. Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом,  они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ. К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.

Электрический двигатель — принцип работы электромотора классификация и технические характеристики

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Содержание:

Электрический двигатель: вид в разрезе

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Картинка кликабельна.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Классификация электрических двигателей

Все электродвигатели между собой классифицируют в первую очередь по типу тока, протекающему через них. В свою очередь, каждая из этих групп тоже делить на несколько видов, в зависимости от технологических особенностей.
Двигатели постоянного тока

На маломощных двигателях постоянного тока магнитное поле создается постоянным магнитом, устанавливаемым в корпусе устройства, а обмотка якоря закрепляется на вращающемся валу. Принципиальная схема ДПТ выглядит следующим образом:

Обмотка, расположенная на сердечнике, изготавливается из ферромагнитных материалов и состоит из двух частей, последовательно соединенных между собой. Своими концами они подсоединяются к коллекторным пластинам, к которым прижимаются графитовые щетки. На одну из них подается положительный потенциал от источника постоянного тока, а на другую – отрицательный.

После подачи питания на двигатель происходит следующее:

  1. Ток от нижней «плюсовой» щетки подается на ту коллекторную пластину, к контактной платформе которой она подключена.
  2. Прохождение тока по обмотке на коллекторную пластину (обозначено пунктирной красной стрелкой), подключенную к верхней «отрицательной» щетке создает электромагнитное поле.
  3. Согласно правилу буравчика, в правой верхней части якоря возникает магнитное поле южного, а в левой нижней — северного магнитного полюса.
  4. Магнитные поля с одинаковым потенциалом отталкиваются друг от друга и приводят ротор во вращательное движение, обозначенное на схеме красной стрелкой.
  5. Устройство коллекторных пластин приводит к смене направления протекания тока по обмотке во время инерционного вращения, и рабочий цикл повторяется вновь.

Самый простой электрический двигатель

При очевидной простоте конструкции существенным недостатком таких двигателей является низкий КПД, обусловленный большими потерями энергии. Сегодня ДПТ с постоянными магнитами используются в простых бытовых приборах и детских игрушках.

Устройство двигателей постоянного тока большой мощности, используемых в производственных целях, не предусматривает использование постоянных магнитов (они занимали бы слишком много места). В этих машинах используется следующая конструкция:

  • обмотка состоит из большего количества секций, представляющих собой металлический стержень;
  • каждая обмотка отдельно подключается к положительному и отрицательному полюсу;
  • количество контактных площадок на коллекторном устройстве соответствует количеству обмоток.

Таким образом, снижение потерь электроэнергии обеспечивается плавным подключением каждой обмотки к щеткам и источнику питания. На следующей картинке представлена конструкция якоря такого двигателя:

Устройство электрических двигателей постоянного тока позволяет легко обратить направление вращения ротора с помощью простой смены полярности на источнике питания.

Функциональные особенности электродвигателей определяются наличием некоторых «хитростей», к которым относится сдвиг токосъемных щеток и несколько схем подключения.

Сдвиг узла токосъемных щеток относительно вращения вала происходит после запуска двигателя и изменения подаваемой нагрузки. Это позволяет компенсировать «реакцию якоря» — эффект, снижающий эффективность машины за счет торможения вала.

Есть три способа подключения ДПТ:

  1. Схема с параллельным возбуждением предусматривает параллельное подключение независимой обмотки, как правило, регулируемой реостатом. Так обеспечивается максимальная стабильность скорости вращения и её плавная регулировка. Именно благодаря этому двигатели с параллельным возбуждением находят широкое применение в грузоподъемном оборудовании, на электрическом транспорте и станках.
  2. Схема с последовательным возбуждением тоже предусматривает использование дополнительной обмотки, но подключается она последовательно с основной. Это позволяет при необходимости резко увеличить крутящий момент двигателя, к примеру, на старте движения железнодорожного состава.
  3. Смешанная схема использует преимущества обоих способов подключения, описанных выше.

Биполярный электрический двигатель

Двигатели переменного тока

Главным отличием этих двигателей от описанных ранее моделей заключается в токе, протекающем по их обмотке. Он описывает по синусоидальному закону и постоянно меняет свое направление. Соответственно и питание этих двигателей осуществляется от генераторов со знакопеременной величиной.

Одним из главных конструктивных отличий является устройство статора, представляющего собой магнитопровод со специальными пазами для расположения витков обмотки.

Двигатели переменного тока классифицируют по принципу работы на синхронные и асинхронные. Коротко говоря, это означает, что в первых частота вращения ротора совпадает с частотой вращения магнитного поля в статоре, а во вторых – нет.

Настоятельно рекомендуем прочитать нашу статью об устройстве электродвигателей переменного тока.

Синхронные двигатели

В основе работы синхронных электродвигателей переменного тока тоже лежит принцип взаимодействия полей, возникающих внутри устройства, однако в их конструкции постоянные магниты закрепляются на роторе, а по статору проводится обмотка. Принцип их действия демонстрирует следующая схема:

Проводники обмотки, по которой проходит ток, показанные на рисунке в виде рамки. Вращение ротора происходит следующим образом:

  1. На определенный момент времени ротор с закрепленным на нем постоянным магнитом находится в свободном вращении.
  2. На обмотке в момент прохождения через нее положительной полуволны формируется магнитное поле с диаметрально противоположными полюсами Sст и Nст. Оно показано на левой части приведенной схемы.
  3. Одноименные полюса постоянного магнита и магнитного поля статора отталкиваются друг от друга и приводят двигатель в положение, показанное на правой части схемы.

В реальных условиях для создания постоянного плавного вращения двигателя используется не одна катушка обмотки, а несколько. Они поочередно пропускают через себя ток, благодаря чему создается вращающееся магнитное поле.

Асинхронные двигатели

А асинхронном двигателе переменного тока вращающееся магнитное поле создается тремя (для сети 380 В) обмотками статора. Их подключение к источнику питания осуществляется через клеммную коробку, а охлаждение — вмонтированным в двигатель вентилятором.

Ротор, собранный из нескольких замкнутых между собой металлических стержней, жестко соединен с валом, составляя с ним одно целое. Именно из-за соединения стержней межу собой этот тип ротора называется короткозамкнутым. Благодаря отсутствию токопроводящих щеток в данной конструкции значительно упрощается техническое обслуживание двигателя, увеличивается срок службы и надежность. Главной причиной выхода из строя двигателей этого типа является износ подшипников вала.

Принцип работы асинхронного двигателя основывается на законе электромагнитной индукции – если частота вращения электромагнитного поля обмоток статора превышает частоту вращения ротора, в нем наводится электродвижущая сила. Это важно, поскольку при одинаковой частоте ЭДС не возникает и, соответственно, не возникает вращения. В действительности нагрузка на вал и сопротивление от трения подшипников всегда замедляет ротор и создает достаточные для работы условия.

Главным недостатком двигателей данного типа является невозможность получения постоянной частоты вращения вала. Дело в том, что рабочие характеристики устройства изменяются в зависимости от различных факторов. К примеру, без нагрузки на вал циркулярная пила вращается с максимальной скоростью. Когда мы подводим к пильному полотну доску и начинаем её резать, частота вращения диска заметно снижается. Соответственно, снижается и скорость вращения ротора относительно электромагнитного поля, что приводит к наведению еще большей ЭДС. Это увеличивает потребляемый ток и рабочая мощность мотора увеличивается до максимальной.

Принцип работы электрического мотора

Важно подбирать двигатель подходящей мощности – слишком низкая приведет к повреждению короткозамкнутого ротора из-за превышения расчетного максимума ЭДС, а слишком высокая приводит к необоснованным энергозатратам.

Асинхронные двигатели переменного тока рассчитаны на работу от трехфазной электрической сети, однако могут быть подключены и в однофазную сеть. Так, например, они используются в стиральных машинах и станках для домашних мастерских. Однофазный двигатель имеет примерно на 30% более низкую мощность, по сравнению с трехфазным – от 5 до 10 кВт.

Ввиду простоты исполнения и надежности асинхронные двигатели переменного тока наиболее распространены не только в производственном оборудовании, но и в бытовой технике.

Универсальные коллекторные двигатели

Во многих бытовых электроприборах необходимо наличие высокой скорости вращения двигателя и крутящего момента при малых пусковых токах и плавной регулировке. Всем этим требования удовлетворяют коллекторные двигатели, называемые универсальными. По своему устройству они очень похожи на двигатели постоянного тока с последовательным возбуждением.

Главным отличием от ДПТ является магнитная система, комплектуемая несколькими изолированными друг от друга листами электротехнической стали, к полюсам которых подсоединены по две секции обмотки. Такая конструкция снижает нагрев элементов токами Фуко и перемагничивание.

Высокая синхронность магнитных полей в универсальных коллекторных двигателях сохраняет высокую скорость вращения даже под большой нагрузкой на вал. Поэтому их используют в маломощном быстроходном оборудовании и домашней технике. При подключении в цепь регулируемого трансформатора появляется возможность плавной настройки частоты вращения.

Главный недостаток таких электромоторов заключается в низком моторесурсе, обусловленном быстрым стиранием графитовых щеток.

Принцип работы электродвигателя постоянного тока, устройство электромотора.

Электродвигатель постоянного тока был изобретен раньше других типов машин, преобразующих электрическую энергию в механическую. Несмотря на то, что позднее самое широкое распространение получили двигатели переменного тока, существуют сферы применения, в которых нет альтернативы электродвигателям постоянного тока.

Подробно о классификации и принципах работы электрических моторов, рекомендуем прочитать в нашей отдельной статье.

Содержание:

Электродвигатель постоянного и переменного тока

История изобретения

Электродвигатель Якоби.

Для того чтобы понять принцип работы электрических двигателей постоянного тока (ДПТ) мы обратимся к истории его создания. Итак, первые опытные доказательства того, что электрическую энергию можно превращать в механическую, продемонстрировал Майкл Фарадей. В 1821 году он провел опыт с проводником, опущенным в сосуд, наполненный ртутью, на дне которого располагался постоянный магнит. После подачи электричества на проводник, тот начинал вращаться вокруг магнита, демонстрируя свою реакцию на имеющееся в сосуде магнитное поле. Эксперимент Фарадея не нашел практического применения, но доказал возможность создания электрических машин, и дал старт развитию электромеханики.

Первый электрический двигатель постоянного тока, в основу которого был положен принцип вращения подвижной части (ротора) был создан русским физиком-механиком Борисом Семеновичем Якоби в 1834 году. Это устройство работало следующим образом:

  1. После подачи питания вокруг якоря-ротора создавалось электромагнитное поле, чьи полюса располагались напротив друг друга по правилу буравчика и отклонялись от одноименных полюсов индуктора.
  2. Перед тем, как электромагнитное поле якоря устанавливалось на максимальном приближении к разноименным полюсам индуктора, специальный коммутатор отключал питание, и якорь продолжал вращаться по инерции.
  3. После того, как якорь выходил из-под полюсов индуктора, коммутатор включал питание с обратной полярностью и появившееся «перевернутое» электромагнитное поле отталкивалось от полюсов индуктора, делая полный оборот якоря.

    1-4 — металлические кольца, 5 — скользящий контакт, 6 — батарея

Описанный принцип использовался в двигателе, который Якоби установил на лодке с 12 пассажирами в 1839 году. Судно двигалось рывками со скоростью в 3 км/ч против течения (по другим данным — 4.5 км/ч), но успешно пересекло реку и высадило пассажиров на берег. В качестве источника питания использовалась батарея с 320 гальваническими элементами, а движение осуществлялось с помощью лопастных колес.

Дальнейшее изучение вопроса привело исследователей к разрешению массы вопросов, касаемо того, какие источники питания лучше использовать, как улучшить его рабочие характеристики и оптимизировать габариты.

В 1886 году Фрэнком Джулиан Спрэгом впервые был сконструирован электродвигатель постоянного тока, близкий по конструкции тем, которые применяются в наши дни. В нем был реализован принцип самовозбуждения и принцип обратимости электрической машины. К этому моменту все двигатели данного типа перешли на питание от более подходящего источника – генератора постоянного тока.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части машины

Устройство и принцип работы

В современных ДПТ используется все тот же принцип взаимодействия заряженного проводника с магнитным полем. С усовершенствованием технологий устройство лишь дополняется некоторыми элементами, улучшающими производительность. К примеру, в наши дни постоянные магниты используются лишь в двигателях низкой мощности, поскольку в крупных аппаратах они занимали бы слишком много места.

Основной принцип

Первоначальные прототипы двигателей данного типа были заметно проще современных аппаратов. Их примитивное устройство включало в себя лишь статор из двух магнитов и якорь с обмотками, на которые подавался ток. Изучив принцип взаимодействия магнитных полей, конструкторы определили следующий алгоритм работы двигателя:

  1. Подача питания создает на обмотках якоря электромагнитное поле.
  2. Полюса электромагнитного поля отталкиваются от одноименных полюсов поля постоянного магнита.
  3. Якорь вместе с валом, на котором он закреплен, вращается в соответствии с отталкивающимся полем обмотки.

Данный алгоритм отлично работал в теории, однако на практике перед создателями первых двигателей вставали характерные проблемы, препятствовавшие функционированию машины:

  • Мертвое положение, из которого двигатель невозможно запустить – когда полюса точно сориентированы друг перед другом.
  • Невозможность пуска из-за сильного сопротивления или слабого отталкивания полюсов.
  • Ротор останавливается после совершения одного оборота. Это связано с тем, что после прохождения половины окружности притягивание магнита не разгоняло, а тормозило вращение ротора.

Решение первой проблемы было найдено довольно быстро – для этого было предложено использовать более двух магнитов. Позднее в устройство двигателя стали включать несколько обмоток и коллекторно-щеточный узел, который подавал питание только на одну пару обмоток в определенный момент времени.

Коллекторно-щеточная система подачи тока решает и проблему торможения ротора – переключение полярности происходит до того момента, когда вращение ротора начинает замедляться. Это значит, что во время одного оборота двигателя происходит как минимум два переключения полярности.

Проблема слабых пусковых токов рассматривается ниже в отдельном разделе.

Конструкция

Итак, постоянный магнит закрепляется на корпусе двигателя, образуя вместе с ним статор, внутри которого располагается ротор. После подачи питания на обмотке якоря возникает электромагнитное поле, вступающее во взаимодействие с магнитным полем статора, это приводит к вращению ротора, жестко посаженного на вал. Для передачи электрического тока от источника к якорю двигатель оснащается коллекторно-щеточным узлом, состоящим из:

  1. Коллектора. Он представляет собой токосъемное кольцо из нескольких секций, разделенных диэлектрическим материалом, подключается к обмоткам якоря и крепится непосредственно на валу двигателя.
  2. Графитовых щеток. Они замыкают цепь между коллектором и источником питания с помощью щеток, которые прижимаются к контактным площадкам коллектора прижимными пружинами.

Обмотки якоря одними концами соединяются между собой, а другими – с секциями коллектора, образуя таким образом цепь, по которой ток идет по следующему маршруту: входная щетка –> обмотка ротора -> выходная щетка.

Приведенная принципиальная схема (рис. 3) демонстрирует принцип работы примитивного электродвигателя постоянного тока с коллектором из двух секций:

  1. В этом примере мы будет считать стартовым положением ротора то, которое нарисовано на схеме. Итак, после подачи питания на нижнюю щетку, помеченную знаком «+», ток протекает по обмотке и создает вокруг нее электромагнитное поле.
  2. По правилу буравчика в левой нижней части формируется северный полюс якоря, а на правой верхней – южный. Располагаясь вблизи одноименных полюсов статора, они начинают отталкиваться, приводя тем самым ротор в движение, которое продолжается до тех пор, пока противоположные полюса не окажутся на минимальном друг от друга расстоянии, то есть придут в окончательное положение (рис. 1).
  3. Конструкция коллектора на данном этапе приведет к переключению полярности на обмотках якоря. В результате этого полюса магнитных полей снова окажутся на близком расстоянии и начнут отталкиваться.
  4. Ротор совершает полный оборот, и коллектор снова меняет полярность, продолжая его движение.

Детали электродвигателя постоянного тока

Здесь, как уже было отмечено, продемонстрирован принцип работы примитивного прототипа. В настоящих двигателях используется более двух магнитов, а коллектор состоит из большего числа контактных площадок, благодаря чему обеспечивается плавное вращение.

В высокомощных двигателях использование постоянных магнитов не представляется возможным из-за их большого размера. Альтернативой для них служит система из нескольких токопроводящих стержней, на каждой из которых имеется своя обмотка, подключаемая к питающим шинам. Одноименные полюса включаются в сеть последовательно. На корпусе может присутствовать от 1 до 4 пар полюсов, а их количеству должно соответствовать число токосъемных щеток на коллекторе.

Электродвигатели, рассчитанные на большую мощность, обладают рядом функциональных преимуществ перед более «легкими» аналогами. К примеру, здешнее устройство токосъемных щеток поворачивает их на определенный угол относительно вала для компенсации торможения вала, названного «реакцией якоря».

Пусковые токи

Постепенное оснащение ротора двигателя дополнительными элементами, обеспечивающими его бесперебойную работу и исключающими секторальное торможение, возникает проблема его запуска. Но все это увеличивает вес ротора – с учетом сопротивления вала столкнуть его с места становится сложнее. Первым решением этой проблемы, приходящим в голову, может быть увеличение силы тока, подаваемой на старте, но это может привести к неприятным последствиям:

  • защитный автомат линии не выдержит тока и отключится;
  • провода обмотки сгорят от перегрузки;
  • секторы переключения на коллекторе приварятся от перегрева.

Поэтому такое решение можно назвать скорее рискованной полумерой.

Вообще, данная проблема является главным недостатком электродвигателей постоянного тока, но включает в себя основное их преимущество, благодаря которому они незаменимы в некоторых областях. Преимущество это заключается в прямой передаче момента вращения сразу же после пуска – вал (если тронется с места) будет крутиться с любой нагрузкой. Двигатели переменного тока на такое не способны.

Решить эту проблему полностью до сих пор не удалось. На сегодняшний день для пуска таких двигателей используется автомат-стартер, чей принцип работы схож с автомобильной коробкой передач:

  1. Сначала ток постепенно поднимается до пускового значения.
  2. После «сдвига» с места значение тока резко падает и снова плавно поднимается «подгоняя вращение вала».
  3. После подъема до предельного значения сила тока снова снижается и «подгоняется».

Данный цикл повторяется 3-5 раз (рис. 4) и решает необходимость старта двигателя без возникновения критических нагрузок в сети. Фактически, «плавный» запуск по-прежнему отсутствует, однако оборудование работает безопасно, а главное достоинство электродвигателя постоянного тока – крутящий момент – сохраняется.

Схемы подключения

Подключение ДПТ выполняется несколько сложнее, в сравнении с двигателями со спецификацией на переменный ток.

У двигателей высокой и средней мощности, как правило, есть специальные контакты обмотки возбуждения (ОВ) и якоря, вынесенные в клеммную коробку. Чаще всего на якорь подают выходное напряжение источника, а на ОВ – ток, отрегулированный, как правило, реостатом. Скорость вращения двигателя напрямую зависит от силы тока, поданного на обмотку возбуждения.

Есть три основные схемы включения якоря и обмотки возбуждения электродвигателей постоянного тока:

  1. Последовательное возбуждение используется в моторах, от которых требуется большая сила тока на старте (электрический транспорт, прокатное оборудование и т.п.). Данная схема предусматривает последовательное подключение ОВ и якоря к источнику. После подачи напряжения по обмоткам якоря и ОВ проходят токи одинаковой величины.Следует учитывать, что снижение нагрузки на вал даже на четверть при последовательном возбуждении приведет к резкому повышению оборотов, что может привести к поломке двигателя, поэтому эта схема и используется в условиях постоянной нагрузки.
  2. Параллельное возбуждение применяется в моторах, обеспечивающих работу станкового, вентиляторного и прочего оборудования, которое в момент пуска не оказывает высокую нагрузку на вал. В этой схеме для возбуждения ОВ используется независимая обмотка, регулируемая, чаще всего, реостатом.
  3. Независимое возбуждение очень схоже с параллельным, но в данном случае для подачи питания ОВ используется независимый источник, что исключает появление электрической связи между якорем и обмоткой возбуждения.

В современных электрических двигателях постоянного тока могут применяться смешанные схемы, основанные на базе трех описанных.

Регулировка скорости вращения

Способ регулирования оборотов ДПТ зависит от схемы его подключения:

  1. В моторах с параллельным возбуждением снижение оборотов относительно номинала можно производить изменяя напряжение якоря, а повышение – ослабляя поток возбуждения. Для увеличения оборотов (не более чем в 4 раза относительно номинальной величины) в цепь ОВ добавляется реостат.
  2. При последовательном возбуждении регулировка легко осуществляется переменным сопротивлением в цепи якоря. Правда этот метод подходит только для снижения оборотов и лишь в соотношениях 1:3 или 1:2 (кроме того, это приводит к большим потерям в реостате). Повышение осуществляется с помощью регулировочного реостата в цепи ОВ.

Данные схемы редко применяются в современном высокотехнологичном оборудовании, поскольку обладают узким диапазоном регулировки и другими недостатками. В наши дни для этих целей все чаще создают электронные схемы управления.

Реверсирование

Для того чтобы реверсировать (обратить) вращение двигателя постоянного тока необходимо:

  • при последовательном возбуждении – просто изменить полярность входных контактов;
  • при смешанном и параллельном возбуждении – необходимо менять направление тока в обмотке якоря; разрыв ОВ может привести к критическому повышению нагнетаемой электродвижущей силы и пробою изоляции проводов.

Сфера применения

Как вы уже поняли, использование электродвигателей постоянного тока целесообразно в условиях, когда постоянное беспрерывное подключение к сети неосуществимо. Хорошим примером здесь может служить автомобильный стартер, толкающий двигатель внутреннего сгорания «с места», или детские игрушки с моторчиком. В данных случаях для запуска двигателя используются аккумуляторные батареи. В промышленных целях ДПТ применяются на прокатных станах.

Основная же сфера применения ДПТ – электрический транспорт. Пароходы, электровозы, трамваи, троллейбусы и другие аналогичные имеют очень большое пусковое сопротивление, преодоление которого возможно только с помощью двигателей постоянного тока с их мягкими характеристиками и широкими пределами регулировки вращения. С учетом стремительного развития и популяризации экологических транспортных технологий, сфера применения ДПТ лишь увеличивается.

Самый простой щёточно-коллекторный узел

Достоинства и недостатки

Резюмируя все вышесказанное, можно описать характерные для электродвигателей постоянного тока достоинства и недостатки относительно их аналогов, рассчитанных на работу от переменного тока.

Основные достоинства:

  • ДПТ незаменимы в ситуациях, когда необходим сильный пусковой момент;
  • скорость вращения якоря легко регулируется;
  • двигатель постоянного тока является универсальной электрической машиной, то есть может применяться в качестве генератора.

Главные недостатки:

  • ДПТ имеют высокую производственную стоимость;
  • использование щеточно-коллекторного узла приводит к необходимости частого техобслуживания и ремонта;
  • для работы нужен источник постоянного тока или выпрямители.

Электродвигатели постоянного тока, безусловно, проигрывают своим «переменным» сородичам по стоимости и надежности, однако используются и будут использоваться, поскольку плюсы от их использования в определенных сферах категорические перечеркивают все минусы.

Двигатели постоянного тока

| Принцип работы | Ресурсы для инженеров

Электродвигатели, работающие на электромагнетизме. Однако существуют и другие типы двигателей, в которых используются электростатические силы или пьезоэлектрический эффект. В случае двигателя PMDC (постоянного магнита постоянного тока) движение создается электромагнитом (якорем), взаимодействующим с магнитом с фиксированным полем (корпус в сборе).

В щеточном двигателе электрический ток протекает через клеммы двигателя в узле торцевой крышки, который входит в контакт с коммутатором в узле якоря через угольные щетки или щеточные листы.Электрический ток питает катушки, создавая магнитное поле, заставляющее якорь вращаться, когда он взаимодействует с магнитами, заключенными в корпус в сборе. Правило левой руки Флемминга помогает определить направление силы, тока и магнитного потока.

В бесщеточном двигателе, когда электричество подается на вывод двигателя, ток течет через фиксированное поле статора и взаимодействует с движущимся постоянным магнитом или движущимся индуцированным магнитным полем внутри ротора / якоря.После того, как движение и силовая нагрузка будут удовлетворены доступным источником тока, он возвращается обратно к источнику, выходящему из двигателя.

Ключевые элементы, взаимодействующие для создания движения

Магнитный поток — Двигатель может иметь катушку с фиксированной обмоткой или статор с постоянным магнитом и якорь с подвижной обмоткой или ротор с постоянными магнитами, которые будут иметь взаимодействующие поля магнитного потока для создания силы и движения.

Сила — Величина тока, протекающего через электромагнитное поле, пропорциональна величине силы взаимодействующего электромагнитного поля, необходимой для достижения противоположной рабочей нагрузки.Помимо силы и движения, необходимых для устройства, необходимо учитывать любую потерю эффективности при преобразовании электроэнергии в механическую работу (ватты).


Обзор шагового двигателя

Что такое шаговый двигатель

Шаговые двигатели работают иначе, чем другие двигатели постоянного тока, которые просто вращаются при подаче напряжения. Вращательный шаговый двигатель — это электромеханическое устройство, которое может разделить один полный оборот (360 °) на большое количество шагов вращения. Шаговые двигатели управляются электроникой и не требуют дорогостоящих устройств обратной связи.Линейный шаговый двигатель подобен вращающемуся двигателю, за исключением того, что вал движется линейно или продольно. Оба типа имеют две схемы обмотки для своих электромагнитных катушек: униполярную и биполярную. Униполярный означает, что каждый конец катушки имеет одну полярность. Рекомендуемый стабилитрон используется для обеспечения быстрого спада тока в отключенной катушке. Это приведет к увеличению крутящего момента двигателя, особенно на более высоких частотах.

Биполярный означает, что каждый конец катушки имеет обе полярности.Катушка будет положительной и отрицательной во время каждого цикла движения. Поскольку каждая катушка используется полностью, двигатель имеет более высокий крутящий момент по сравнению с униполярной катушкой. Биполярный драйвер может включать в себя возможность управления постоянным током, называемую приводом прерывателя. Это обеспечит увеличенный выходной крутящий момент на более высоких частотах и ​​снизит влияние колебаний температуры и напряжения питания.

Основы шагового двигателя

Шаговый двигатель PM или «консервная банка» — это недорогое решение для ваших приложений позиционирования с типичным углом шага 7.5 ° — 15 °. Меньшие углы шага можно получить с помощью Microstepping. Вал двигателя перемещается с определенным шагом при подаче электрических управляющих импульсов. Текущая полярность и частота подаваемых импульсов определяют направление и скорость движения вала.

Одним из наиболее значительных преимуществ шагового двигателя является его способность точно регулироваться в системе с разомкнутым контуром. Управление без обратной связи означает, что обратная связь о положении вала не требуется.Этот тип управления устраняет необходимость в дорогостоящих устройствах обратной связи, просто отслеживая входные ступенчатые импульсы. Шаговый двигатель — хороший выбор, когда требуется контролируемое движение. Они рекомендуются в приложениях, где необходимо контролировать угол поворота, скорость, положение и синхронизм. Возможности фиксации, удержания, втягивания и извлечения крутящего момента, скорости (об / мин) и шагов на оборот (угол шага) характеризуют шаговый двигатель.

Момент фиксации — определяет максимальный крутящий момент, который может быть приложен к обесточенному двигателю, не вызывая вращения двигателя.

Удерживающий момент — определяет максимальный крутящий момент, с которым двигатель, находящийся под напряжением, может быть нагружен, не вызывая вращательного движения.

Pull-In — производительность определяет способность двигателя запускаться или останавливаться. Это максимальная частота, при которой двигатель может запускаться или останавливаться мгновенно, с приложенной нагрузкой, без потери синхронизации.

Pull-Out определяет максимальный крутящий момент при применении рампы ускорения / замедления без потери шагов.Он определяет максимальную частоту, на которой двигатель может работать без потери синхронизма.

Наш шаговый двигатель можно комбинировать с полной линейкой редукторов для увеличения крутящего момента и снижения скорости.

Электродвигатель

| Encyclopedia.com

Двигатель постоянного тока

Типы двигателей постоянного тока

Двигатели переменного тока

Принципы работы трехфазного двигателя

Ресурсы

Электродвигатель — это машина, используемая для преобразования электрической энергии в механическую.Электродвигатели важны для современной жизни, они используются в пылесосах, посудомоечных машинах, компьютерных принтерах, факсах, водяных насосах, производстве, автомобилях (как обычных, так и гибридных), станках, печатных станках, системах метро и т. Д.

Основные физические принципы работы электродвигателя известны как закон Ампера и закон Фарадея. Первая гласит, что электрический проводник, находящийся в магнитном поле, будет испытывать силу, если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к ​​этому полю.Изменение направления тока или магнитного поля приведет к возникновению силы, действующей в противоположном направлении. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет создавать разность потенциалов между концами проводника.

Электродвигатель состоит из двух основных элементов. Первый, статический компонент, который состоит из магнитных материалов и электрических проводников для создания магнитных полей желаемой формы, известен как статор .Второй, который также сделан из магнитных и электрических проводников для создания определенных магнитных полей, которые взаимодействуют с полями, создаваемыми статором, известен как ротор . Ротор содержит движущийся компонент двигателя, имеющий вращающийся вал для соединения с приводимой в действие машиной и некоторые средства поддержания электрического контакта между ротором и корпусом двигателя (обычно угольные щетки, прижатые к контактным кольцам). В процессе работы электрический ток, подаваемый на двигатель, используется для создания магнитных полей как в роторе, так и в статоре.Эти поля сталкиваются друг с другом, в результате чего ротор испытывает крутящий момент и, следовательно, вращается.

Электродвигатели делятся на две широкие категории, в зависимости от типа применяемой электроэнергии: двигатели постоянного (DC) и переменного тока (AC).

Первый электродвигатель постоянного тока был продемонстрирован Майклом Фарадеем в Англии в 1821 году. Поскольку единственными доступными электрическими источниками были электродвигатели постоянного тока, первые коммерчески доступные электродвигатели были электродвигателями постоянного тока, которые стали популярными в 1880-х годах.Эти двигатели использовались как для маломощных, так и для больших мощностей, таких как электрические уличные железные дороги. Только в 1890-х годах, когда появилась электроэнергия переменного тока, двигатель переменного тока был разработан, в первую очередь, корпорациями Westinghouse и General Electric. В течение этого десятилетия было решено большинство проблем, связанных с однофазными и многофазными двигателями переменного тока. Следовательно, все основные характеристики электродвигателей были разработаны к 1900 году.

Работа двигателя постоянного тока зависит от взаимодействия полюсов статора с частью ротора или якоря.Статор содержит четное количество полюсов переменной магнитной полярности, каждый полюс состоит из электромагнита, образованного из обмотки полюса, намотанной на сердечник полюса. Когда через обмотку протекает постоянный ток, создается магнитное поле. Якорь также содержит обмотку, в которой ток течет в указанном направлении. Этот ток якоря взаимодействует с магнитным полем в соответствии с законом Ампера, создавая крутящий момент, который поворачивает якорь.

Если бы обмотки якоря вращались вокруг следующего полюса противоположной полярности, крутящий момент работал бы в противоположном направлении, останавливая якорь.Чтобы предотвратить это, ротор содержит коммутатор, который изменяет направление тока якоря для каждого полюсного наконечника, мимо которого вращается якорь, таким образом гарантируя, что все обмотки, проходящие, например, через полюс северной полярности, будут иметь ток, протекающий в в том же направлении, в то время как обмотки, проходящие через южные полюса, будут иметь противоположный ток, чтобы создать крутящий момент в том же направлении, что и крутящий момент, создаваемый северными полюсами. Коммутатор обычно состоит из разъемного контактного кольца, по которому движутся щетки, протекающие по постоянному току.

Вращение обмоток якоря через поле статора создает на якоре напряжение, известное как противо-ЭДС (электродвижущая сила), поскольку оно противодействует приложенному напряжению: это следствие закона Фарадея. Величина противо-ЭДС зависит от напряженности магнитного поля и скорости вращения якоря. При первоначальном включении двигателя постоянного тока нет противодействия ЭДС, и якорь начинает вращаться. Счетчик ЭДС увеличивается с вращением.Действующее напряжение на обмотках якоря — это приложенное напряжение за вычетом противо-ЭДС.

Двигатели постоянного тока встречаются чаще, чем мы думаем. Автомобиль может иметь до 20 двигателей постоянного тока для привода вентиляторов, сидений и окон. Они бывают трех разных типов, классифицируемых в зависимости от используемой электрической схемы. В параллельном двигателе якорь и обмотки возбуждения соединены параллельно, поэтому токи через каждую из них относительно независимы. Ток через обмотку возбуждения можно регулировать с помощью реостата возбуждения (переменного резистора), что позволяет изменять скорость двигателя в широких пределах в широком диапазоне условий нагрузки.Этот тип двигателя используется для привода станков или вентиляторов, для которых требуется широкий диапазон скоростей.

В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря, что приводит к очень высокому пусковому моменту, поскольку как ток якоря, так и напряженность поля максимальны. Однако, как только якорь начинает вращаться, противо-ЭДС снижает ток в цепи, тем самым уменьшая напряженность поля. Серийный двигатель используется там, где требуется большой пусковой крутящий момент, например, в автомобильных стартерах, кранах и подъемниках.

Составной двигатель представляет собой комбинацию последовательного и параллельного двигателей с параллельными и последовательными обмотками возбуждения. Этот тип двигателя имеет высокий пусковой момент и способность изменять скорость и используется в ситуациях, требующих обоих этих свойств, таких как пробивные прессы, конвейеры и лифты.

Двигатели

переменного тока встречаются гораздо чаще, чем двигатели постоянного тока, потому что почти все системы электроснабжения работают с переменным током. Существует три основных типа двигателей: многофазные асинхронные, многофазные синхронные и однофазные.Поскольку трехфазные источники питания являются наиболее распространенными многофазными источниками, большинство многофазных двигателей работают от трехфазных. Трехфазные источники питания широко используются в коммерческих и промышленных условиях, тогда как однофазные источники питания почти всегда используются в домашних условиях.

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения.По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается. Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3 600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а

Ключевые термины

AC — Переменный ток, при котором ток, проходящий через цепь, меняет направление потока через равные промежутки времени.

DC— Постоянный ток, при котором ток в цепи примерно постоянен во времени.

Ротор— Та часть электродвигателя, которая может свободно вращаться, включая вал, якорь и связь с машиной.

Статор — Та часть электродвигателя, которая не может вращаться, включая катушки возбуждения.

Крутящий момент — Способность или сила, необходимые для поворота или скручивания вала или другого объекта.

— это, по сути, короткие замыкания. Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних песчанок. Когда двигатель первоначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, распространяющееся с синхронной скоростью.Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться. Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован.Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей.В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока. Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные двигатели и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным принципам, описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с разделенной фазой, конденсаторным пуском или с экранированными полюсами. Небольшие синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. П., Основаны на конструкциях с реактивным сопротивлением или гистерезисом.

КНИГИ

Красильщик. Катушки силы тока: как сделаны и как используются: с описанием электрического света, электрических звонков, электродвигателей, телефона, микрофона и фонографа . Бостон: Adamant Media Corporation, 2005.

Эмади, Али. Энергоэффективные электродвигатели . Нью-Йорк: CRC, 2004.

Hughes, Austin. Электродвигатели и приводы . Оксфорд, Великобритания: Newnes, 2005.

Иэн А. Макинтайр

Электродвигатели: что это такое и как они работают?

Электродвигатели используются постоянно для питания устройств, которые мы используем каждый день.Будь то вентилятор, охлаждающий вас в жаркий день, двигатель воздуходувки для листьев или электромобиль, без электродвигателей, мир был бы совсем другим.

Что такое электродвигатель?

Электродвигатель — это машина, которая может преобразовывать электрическую энергию в механическую (в частности, кинетическую энергию или энергию движения). Обычно это достигается за счет использования взаимосвязи между электричеством и магнетизмом.

Электродвигатели могут питаться от переменного тока, например, от сетевой розетки, или постоянного тока, например от аккумулятора.

Как работает электродвигатель?

Основной принцип, лежащий в основе электродвигателя, заключается в том, что должна быть катушка с проволокой, которая могла бы свободно вращаться в присутствии внешнего магнитного поля.

Когда ток проходит через катушку с проволокой, взаимодействие между током и полем создает крутящий момент, заставляющий катушку вращаться. Это вращение можно использовать, например, для вращения шин игрушечной машины, или оно может приводить в движение коленчатый вал и преобразовывать вращательное движение в поступательное.

Как сделать свой собственный электродвигатель

Иногда лучший способ понять, как работает двигатель, — это построить его самостоятельно. Вы можете построить простой двигатель постоянного тока из обычных предметов домашнего обихода.

Посылая ток через провод тщательно продуманной формы в присутствии магнитного поля, мы можем создать часть нашей цепи, которая будет вращаться, позволяя нам преобразовывать электрическую энергию в механическую.

    Сделайте катушку из проволоки, обернув ее вокруг ячейки «D» 1.Аккумулятор 5 В несколько раз (аккумулятор служит формой; снимите катушку, когда закончите намотку). Оставьте примерно 2-3 см торча с обоих концов. Убедитесь, что все витки намотаны в одном направлении.

    Катушка должна быть хорошо сбалансирована на этих концах, чтобы она могла легко поворачиваться при установке в подставку, предусмотренную скрепками. Вы должны удерживать катушку вместе, скручивая последнюю петлю вокруг катушек, чтобы намотать катушки вместе.

    Когда катушка находится в показанном положении, с одного из концов провода, который будет контактировать со скрепками, изоляция должна быть удалена только с нижней стороны.Другой конец должен быть полностью обнажен в месте контакта со скрепкой. Таким образом, примерно половину времени через катушку будет проходить ток.

    Согните две скрепки так, чтобы они удерживали катушку, как показано, и закрепили их на месте.

    Поместите постоянный магнит под катушку.

    Подключите источник питания, например батарею D, которую вы использовали в качестве формы, к скрепкам.

    Попробуйте запустить двигатель, слегка покрутив катушку. Попробуйте, настройте, попробуйте, настройте, попробуйте и снова настройтесь, пока не добьетесь успеха!

Как это работает?

Если катушка ориентирована, как показано на изображении, ток проходит через катушку по часовой стрелке, а магнитное поле направлено вверх, тогда верх катушки будет ощущать силу, указывающую наружу (относительно экрана компьютера, на котором вы это смотрите. ), и нижняя часть катушки почувствует направленную внутрь силу.Это заставит катушку вращаться.

Когда ваша катушка повернется на 180 градусов, ток будет течь против часовой стрелки. Однако, поскольку вы сняли половину провода, ток не будет течь, пока катушка перевернута. Это сделано для того, чтобы у нас не возникла сила в противоположном направлении, заставляющая катушку реверсировать, а не продолжать.

При условии, что первоначальный толчок из-за поля достаточно силен, катушка перевернется на 180 градусов, сделав полный оборот, к концу которого ток течет таким образом, что сила заставляет ее сделать еще один оборот, как и раньше. .Если все достаточно хорошо сбалансировано, мотор должен вращаться довольно быстро и долго.

Детали коммерческого двигателя

К компонентам коммерческого двигателя относятся следующие:

Якорь является силовой частью двигателя. Он может быть расположен на роторе (вращающаяся часть) или на статоре (неподвижная часть). Якорь состоит из катушек проволоки, которые взаимодействуют с магнитным полем при прохождении тока.В нашем самодельном двигателе катушка была якорем и ротором, а скрепки — статором.

Щетки позволяют передавать ток на ротор при его вращении. В нашем самодельном моторе точка контакта скрепок и медного провода служила той же цели.

Коммутатор служит для периодического изменения направления тока. Это необходимо для двигателя постоянного тока или двигателя постоянного тока, но обычно не требуется для двигателя переменного тока или двигателя переменного тока, потому что ток уже меняет направление.Мы добились включения / выключения тока в нашем двигателе, оставив одну сторону контактного провода изолированной.

Полевой магнит или полевые катушки (электромагниты) создают необходимое магнитное поле.

Ось представляет собой стержневую деталь, выровненную с осью вращения ротора, так что она вращается вместе с ротором. Горизонтальные концы нашего самодельного мотора были по сути осью.

Шестерня — это небольшая шестерня, которая может использоваться для передачи движения двигателя другому объекту или части машины.

Типы электродвигателей

Существует множество различных типов электродвигателей. Хотя сначала они подразделяются на двигатели переменного или постоянного тока, возможны и многие другие варианты. Будь то тяжелые, легкие, сельскохозяйственные или общие, здесь перечислены лишь некоторые из множества типов.

Однофазный двигатель работает от одного источника переменного тока.

Трехфазный двигатель — это двигатель, который приводится в действие тремя переменными токами одинаковой частоты, не совпадающими по фазе друг с другом.

Синхронный двигатель — это двигатель, период вращения которого кратен частоте переменного тока.

В асинхронном двигателе или электрический ток в роторе создается за счет электромагнитной индукции из магнитного поля обмотки статора.

Шаговый двигатель — это бесщеточный двигатель постоянного тока, который прерывает полное вращение на равные ступени. Мотор может двигаться и удерживаться на любом из шагов.

Электрогенераторы

Электрогенераторы являются реверсом электродвигателей; они берут механическую энергию и преобразуют ее в электрическую. Это можно сделать разными способами.

Например, энергия ветра может использоваться для вращения лопастей вентилятора ветрогенератора, которые вращают ротор внутри генератора, и возникающая в результате электромагнитная индукция вызывает протекание тока. Подобным образом работают гидроэлектростанции: падающая вода вращает лопасти турбины.

Принцип электродвигателя — HiSoUR — Hi So You Are

🔊 Аудиочтение

Электродвигатель — это электромеханический преобразователь (электрическая машина), преобразующий электрическую энергию в механическую. В обычных электродвигателях генерируются магнитные поля в катушках с токонесущими проводниками, силы взаимного притяжения и отталкивания которых реализуются в движении. Таким образом, электродвигатель является аналогом очень похожего по конструкции генератора, который преобразует мощность двигателя в электрическую.Электродвигатели обычно генерируют вращательные движения, но их также можно использовать для поступательных движений (линейный привод). Электродвигатели используются для привода многих видов оборудования, машин и транспортных средств.

Принцип действия
Электродвигатели — это устройства, преобразующие электрическую энергию в механическую. Средством преобразования энергии в электродвигателях является магнитное поле. Существуют разные типы электродвигателей, и каждый тип имеет разные компоненты, структура которых определяет взаимодействие электрических и магнитных потоков, которые вызывают силу или крутящий момент двигателя.

Фундаментальный принцип, который описывает, как сила вызывается взаимодействием точечного электрического заряда q в электрическом и магнитном полях, — это закон Лоренца:


где:

q: точечный электрический заряд
E: электрическое поле
v: скорость частицы
B: плотность магнитного поля
В случае чисто электрического поля выражение уравнения сводится к:


Сила в этом случае определяется только зарядом q и электрическим полем E.Это кулоновская сила, которая действует вдоль проводника, порождающего электрический поток, например, в катушках статора асинхронных машин или в роторе двигателей постоянного тока.

В случае чисто магнитного поля:


Сила определяется зарядом, плотностью магнитного поля B и скоростью груза v. Эта сила перпендикулярна магнитному полю и направлению скорости груза. Обычно в движении находится много грузов, поэтому выражение удобно переписать в терминах плотности заряда Fv (сила на единицу объема):


Для продукта это известно как плотность тока J (ампер на квадратный метр):


Тогда полученное выражение описывает силу, создаваемую взаимодействием тока с магнитным полем:


Это основной принцип, объясняющий, как возникают силы в электромеханических системах, таких как электродвигатели.Однако полное описание каждого типа электродвигателя зависит от его компонентов и конструкции.

Линейный двигатель
Линейный двигатель — это, по сути, любой электродвигатель, который был «раскручен» так, что вместо создания крутящего момента (вращения) он создает прямолинейную силу по своей длине.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Линейные двигатели обычно используются во многих американских горках, где быстрое движение безмоторного железнодорожного вагона контролируется рельсом.Они также используются в поездах на магнитной подвеске, где поезд «летает» над землей. В меньшем масштабе перьевой плоттер HP 7225A 1978 года использовал два линейных шаговых двигателя для перемещения пера по осям X и Y.

Электромагнетизм

Сила и крутящий момент
Основной целью подавляющего большинства электродвигателей в мире является электромагнитное индуцирование относительного движения в воздушном зазоре между статором и ротором для создания полезного крутящего момента или линейной силы.

Согласно закону силы Лоренца сила проводника обмотки может быть просто выражена как:


или более широко, для работы с проводниками любой геометрии:


Наиболее общие подходы к вычислению сил в двигателях используют тензоры.

Мощность
Где об / мин — частота вращения вала, а T — крутящий момент, механическая выходная мощность двигателя Pem определяется выражением

.

в британских единицах с T, выраженным в фут-фунтах,

(лошадиные силы) и
в единицах СИ с угловой скоростью вала, выраженной в радианах в секунду, и T, выраженным в ньютон-метрах,

(Вт).
Для линейного двигателя с силой F, выраженной в ньютонах, и скоростью v, выраженной в метрах в секунду,

(Вт).
В асинхронном или асинхронном двигателе соотношение между скоростью двигателя и мощностью воздушного зазора без учета скин-эффекта определяется следующим образом:

, где
Rr — сопротивление ротора
I r 2 — квадрат индуцированного тока в роторе
s — скольжение двигателя; я.е., разница между синхронной скоростью и скоростью скольжения, которая обеспечивает относительное движение, необходимое для индукции тока в роторе.

Задняя ЭДС

Поскольку обмотки якоря двигателя постоянного тока или универсального двигателя движутся через магнитное поле, в них возникает индуцированное напряжение. Это напряжение имеет тенденцию противодействовать напряжению питания двигателя и поэтому называется «противоэлектродвижущей силой (ЭДС)». Напряжение пропорционально скорости вращения двигателя. Обратная ЭДС двигателя плюс падение напряжения на внутреннем сопротивлении обмотки и щетках должны равняться напряжению на щетках.Это обеспечивает основной механизм регулирования скорости в двигателе постоянного тока. Если механическая нагрузка увеличивается, двигатель замедляется; в результате возникает ЭДС нижней части спины, и больше тока потребляется от источника питания. Этот увеличенный ток обеспечивает дополнительный крутящий момент для уравновешивания новой нагрузки.

В машинах переменного тока иногда полезно учитывать источник обратной ЭДС внутри машины; Например, это особенно важно при точном регулировании скорости асинхронных двигателей на частотно-регулируемых приводах.

Потери
Потери электродвигателя в основном связаны с резистивными потерями в обмотках, потерями в сердечнике и механическими потерями в подшипниках, а также имеют место аэродинамические потери, особенно при наличии охлаждающих вентиляторов.

Потери также возникают при коммутации, искрообразовании в механических коммутаторах и электронных коммутаторах, а также при рассеивании тепла.

КПД
Для расчета КПД двигателя механическая выходная мощность делится на входную электрическую:

,
где — эффективность преобразования энергии, — входная электрическая мощность и — механическая выходная мощность:



где — входное напряжение, — входной ток, T — выходной крутящий момент и — выходная угловая скорость.Можно аналитически вывести точку максимальной эффективности. Обычно он составляет менее 1/2 крутящего момента при остановке.

Различные регулирующие органы во многих странах приняли и внедрили законы, поощряющие производство и использование электродвигателей с более высоким КПД.

Фактор качества
Эрик Лэйтуэйт предложил метрику для определения «качества» электродвигателя:

Где:

— коэффициент качества (коэффициенты выше 1, вероятно, будут эффективными)
— площади поперечного сечения магнитной и электрической цепи
— длины магнитной и электрической цепей
— проницаемость сердечника
— угловая частота двигатель приводится в движение на
Из этого он показал, что наиболее эффективные двигатели, вероятно, будут иметь относительно большие магнитные полюса.Однако это уравнение напрямую относится только к двигателям без ПМ.

Рабочие параметры

Крутящий момент типов двигателей
Все электромагнитные двигатели, включая упомянутые здесь типы, получают крутящий момент из векторного произведения взаимодействующих полей. Для расчета крутящего момента необходимо знать поля в воздушном зазоре. После того, как они были установлены с помощью математического анализа с использованием FEA или других инструментов, крутящий момент может быть вычислен как интеграл всех векторов силы, умноженный на радиус каждого вектора.Ток, протекающий в обмотке, создает поля, и для двигателя, использующего магнитный материал, поле не линейно пропорционально току. Это затрудняет расчет, но компьютер может выполнить множество необходимых расчетов.

Как только это будет сделано, число, связывающее ток с крутящим моментом, можно использовать в качестве полезного параметра для выбора двигателя. Максимальный крутящий момент двигателя будет зависеть от максимального тока, хотя обычно его можно использовать только до тех пор, пока не будут преобладать тепловые соображения.

При оптимальном проектировании в пределах заданного ограничения по насыщению сердечника и для заданного активного тока (т. Е. Тока крутящего момента), напряжения, числа пар полюсов, частоты возбуждения (т. Е. Синхронной скорости) и плотности магнитного потока в воздушном зазоре, все категории электрических двигатели или генераторы будут демонстрировать практически одинаковый максимальный постоянный крутящий момент на валу (то есть рабочий крутящий момент) в пределах заданной области воздушного зазора с пазами обмотки и глубиной задней части, которая определяет физический размер электромагнитного сердечника.Для некоторых приложений требуются всплески крутящего момента, превышающие максимальный рабочий крутящий момент, например, короткие всплески крутящего момента для ускорения электромобиля с места. Всегда ограниченная насыщением магнитного сердечника или безопасным повышением рабочей температуры и напряжения, способность к скачкам крутящего момента сверх максимального рабочего крутящего момента значительно различается между категориями электродвигателей или генераторов.

Способность к скачкам крутящего момента не следует путать с возможностью ослабления поля. Ослабление поля позволяет электрической машине работать за пределами расчетной частоты возбуждения.Ослабление поля выполняется, когда максимальная скорость не может быть достигнута путем увеличения приложенного напряжения. Это относится только к двигателям с полями, управляемыми током, и поэтому не может быть достигнуто с двигателями с постоянными магнитами.

Электрические машины без трансформаторной топологии схемы, такие как WRSM или PMSM, не могут реализовать всплески крутящего момента, превышающие максимальный расчетный крутящий момент, без насыщения магнитного сердечника и исключения любого увеличения тока как бесполезного. Кроме того, узел постоянного магнита PMSM может быть непоправимо поврежден, если будут предприняты попытки увеличения крутящего момента, превышающего максимально допустимый рабочий крутящий момент.

Электрические машины с топологией трансформаторной схемы, такие как асинхронные машины, индукционные электрические машины с двойным питанием и асинхронные или синхронные машины с двойным питанием с фазным ротором (WRDF), демонстрируют очень высокие всплески крутящего момента, поскольку наведенный ЭДС активный ток на обе стороны трансформатора противостоят друг другу и, таким образом, не вносят никакого вклада в плотность потока магнитного сердечника трансформатора, что в противном случае привело бы к насыщению сердечника.

Электрические машины, основанные на индукционных или асинхронных принципах, закорачивают один порт цепи трансформатора, и в результате реактивное сопротивление цепи трансформатора становится доминирующим по мере увеличения скольжения, что ограничивает величину активного (т.е.е., реальный) ток. Тем не менее, всплески крутящего момента, которые в два-три раза превышают максимальный расчетный крутящий момент, возможны.

Бесщеточная машина с синхронным двойным питанием с фазным ротором (BWRSDF) — единственная электрическая машина с действительно двухпортовой топологией трансформаторной схемы (т. Е. Оба порта возбуждаются независимо без короткозамкнутого порта). Топология схемы с двумя портами трансформатора, как известно, нестабильна и требует многофазного узла контактного кольца-щетки для передачи ограниченной мощности на обмотку ротора.Если бы были доступны прецизионные средства для мгновенного управления углом крутящего момента и скольжением для синхронной работы во время движения или генерации, одновременно обеспечивая бесщеточную мощность для обмотки ротора, активный ток машины BWRSDF не зависел бы от реактивного сопротивления цепи трансформатора и всплески крутящего момента, значительно превышающие максимальный рабочий крутящий момент и намного превосходящие практические возможности любого другого типа электрической машины, были бы возможны.Были рассчитаны всплески крутящего момента, превышающие рабочий крутящий момент в восемь раз.

Плотность постоянного крутящего момента
Плотность постоянного крутящего момента обычных электрических машин определяется размером области воздушного зазора и глубиной задней части, которые определяются номинальной мощностью комплекта обмотки якоря, скоростью машины, и достижимая магнитная индукция в воздушном зазоре до насыщения сердечника. Несмотря на высокую коэрцитивную силу неодимовых или самариево-кобальтовых постоянных магнитов, постоянная плотность крутящего момента практически одинакова для электрических машин с оптимально спроектированными наборами обмоток якоря.Постоянная плотность крутящего момента относится к способу охлаждения и допустимому периоду эксплуатации до разрушения из-за перегрева обмоток или повреждения постоянного магнита.

Другие источники утверждают, что различные топологии электронных машин имеют разную плотность крутящего момента. Один источник показывает следующее:

Тип электрической машины Удельная плотность крутящего момента (Нм / кг)
SPM — бесщеточный переменный ток, токопроводимость 180 ° 1,0
SPM — бесщеточный переменный ток, токопроводимость 120 ° 0.9-1,15
ИМ, асинхронная машина 0,7–1,0
IPM, машина с внутренним постоянным магнитом 0,6-0,8
VRM, машина двойного сопротивления 0,7–1,0

где — удельная плотность крутящего момента нормирована на 1,0 для SPM — бесщеточный переменный ток, проводимость тока 180 °, SPM — это машина с поверхностным постоянным магнитом.

Плотность крутящего момента для электродвигателей с жидкостным охлаждением примерно в четыре раза больше, чем для электродвигателей с воздушным охлаждением.

Источник, сравнивающий постоянный ток (DC), асинхронные двигатели (IM), синхронные двигатели с постоянными магнитами (PMSM) и реактивные реактивные двигатели (SRM), показал:

Характеристика постоянного тока IM PMSM SRM
Плотность крутящего момента 3 3,5 5 4
Плотность мощности 3 4 5 3.5

Другой источник отмечает, что синхронные машины с постоянными магнитами мощностью до 1 МВт имеют значительно более высокую плотность крутящего момента, чем асинхронные машины.

Постоянная плотность мощности
Постоянная плотность мощности определяется произведением постоянной плотности крутящего момента и диапазона скорости постоянного крутящего момента электрической машины.

Специальные магнитные двигатели

Поворотный

Двигатель с ротором без сердечника или без сердечника.
Ни в одном из описанных выше двигателей не требуется, чтобы железные (стальные) части ротора действительно вращались.Если магнитомягкий материал ротора выполнен в виде цилиндра, то (за исключением эффекта гистерезиса) крутящий момент действует только на обмотки электромагнитов. Преимущество этого факта — двигатель постоянного тока без сердечника или железа, специализированная форма двигателя постоянного тока с постоянными магнитами. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника. Ротор может иметь форму цилиндра, заполненного обмоткой, или самонесущей конструкции, содержащей только магнитный провод и связующий материал.Ротор может помещаться внутри магнитов статора; магнитомягкий неподвижный цилиндр внутри ротора обеспечивает обратный путь для магнитного потока статора. Во второй конструкции корзина обмотки ротора окружает магниты статора. В этой конструкции ротор помещается внутри магнитомягкого цилиндра, который может служить корпусом для двигателя, а также обеспечивает обратный путь для магнитного потока.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее одной мс.Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом. Перегрев может быть проблемой для двигателей постоянного тока без сердечника. Современное программное обеспечение, такое как Motor-CAD, может помочь повысить тепловой КПД двигателей еще на стадии проектирования.

Среди этих типов есть типы дискового ротора, более подробно описанные в следующем разделе.

Виброзвонок сотовых телефонов иногда генерируется крошечными цилиндрическими типами постоянного магнита, но есть также дискообразные типы, которые имеют тонкий многополярный дисковый магнит поля и намеренно несбалансированную конструкцию ротора из формованного пластика с двумя соединенными катушками без сердечника. . Металлические щетки и плоский коммутатор переключают питание на катушки ротора.

Соответствующие приводы с ограниченным ходом не имеют сердечника и катушки, размещенной между полюсами тонких постоянных магнитов с высокой магнитной индукцией.Это быстрые позиционеры головки для жестких дисков («жестких дисков»). Хотя современный дизайн значительно отличается от громкоговорителей, он все еще свободно (и неправильно) называется структурой «звуковой катушки», потому что некоторые более ранние головки жесткого диска двигались по прямым линиям и имели структуру привода, очень похожую на что из громкоговорителя.

Двигатель с цилиндрическим или осевым ротором.
Якорь с печатным рисунком или двигатель с осевым ротором имеет обмотки в форме диска, движущиеся между массивами магнитов с большим магнитным потоком.Магниты расположены по кругу напротив ротора с промежутком между ними, образуя осевой воздушный зазор. Эта конструкция широко известна как двигатель-блинчик из-за ее плоского профиля. С момента своего создания у технологии было много торговых марок, таких как ServoDisc.

Якорь с печатным рисунком (первоначально сформированный на печатной плате) в двигателе с печатным рисунком якоря изготовлен из перфорированных медных листов, которые ламинированы вместе с использованием современных композитов, чтобы сформировать тонкий жесткий диск. Печатный якорь имеет уникальную конструкцию в мире щеточных двигателей, поскольку он не имеет отдельного кольцевого коммутатора.Щетки движутся непосредственно по поверхности якоря, что делает всю конструкцию очень компактной.

Альтернативный метод производства заключается в использовании намотанного медного провода, уложенного плоско с центральным обычным коммутатором, в форме цветка и лепестка. Обмотки обычно стабилизируются электрическими системами заливки эпоксидной смолой. Это эпоксидные смолы с наполнителем, которые имеют умеренную смешанную вязкость и длительное время гелеобразования. Они отличаются низкой усадкой и низким экзотермическим эффектом и, как правило, признаны UL 1446 в качестве заливочного компаунда с изоляцией до 180 ° C, класс H.

Уникальным преимуществом двигателей постоянного тока без железа является отсутствие зубцов (изменения крутящего момента, вызванные изменением притяжения между железом и магнитами). Паразитные вихревые токи не могут образовываться в роторе, поскольку он полностью не содержит железа, хотя железные роторы являются слоистыми. Это может значительно повысить эффективность, но контроллеры с регулируемой скоростью должны использовать более высокую частоту переключения (> 40 кГц) или постоянный ток из-за уменьшения электромагнитной индукции.

Изначально эти двигатели были изобретены для привода шпиля (ов) магнитных лентопротяжных устройств, где минимальное время для достижения рабочей скорости и минимальный тормозной путь были критическими.Блинные двигатели широко используются в высокопроизводительных сервоуправляемых системах, роботизированных системах, промышленной автоматизации и медицинских устройствах. Благодаря разнообразию конструкций, доступных в настоящее время, технология используется в приложениях от высокотемпературных военных до недорогих насосов и базовых сервоприводов.

Другой подход (Magnax) заключается в использовании одного статора, зажатого между двумя роторами. Одна такая конструкция обеспечивает пиковую мощность 15 кВт / кг, постоянную мощность около 7,5 кВт / кг. Этот двигатель с осевым потоком без ярма обеспечивает более короткий путь потока, удерживая магниты дальше от оси.Конструкция позволяет иметь нулевой вылет обмотки; Активны 100 процентов обмоток. Это усилено использованием медного провода прямоугольного сечения. Двигатели можно штабелировать для параллельной работы. Нестабильность сводится к минимуму за счет того, что два диска ротора прикладывают равные и противоположные силы к диску статора. Роторы соединены напрямую друг с другом через кольцо вала, что нейтрализует магнитные силы.

Размеры двигателей

Magnax варьируются от 15 до 5,4 метра (5,9–17 футов 8,6 дюйма) в диаметре.

Серводвигатель
Серводвигатель — это двигатель, очень часто продаваемый в виде готового модуля, который используется в системе управления положением или скоростью с обратной связью. Серводвигатели используются в таких приложениях, как станки, перьевые плоттеры и другие технологические системы. Двигатели, предназначенные для использования в сервомеханизмах, должны иметь хорошо задокументированные характеристики скорости, крутящего момента и мощности. Кривая зависимости скорости от крутящего момента очень важна и является высоким соотношением для серводвигателя. Также важны характеристики динамического отклика, такие как индуктивность обмотки и инерция ротора; эти факторы ограничивают общую производительность контура сервомеханизма.В больших, мощных, но медленно реагирующих сервоконтурах могут использоваться обычные двигатели переменного или постоянного тока и приводные системы с обратной связью по положению или скорости на двигателе. По мере увеличения требований к динамическому отклику используются более специализированные конструкции двигателей, такие как двигатели без сердечника. Превосходная удельная мощность и характеристики ускорения двигателей переменного тока по сравнению с двигателями постоянного тока имеют тенденцию к предпочтению синхронных приводов с постоянными магнитами, BLDC, индукционных приводов и приводов SRM.

Сервосистема отличается от некоторых приложений с шаговыми двигателями тем, что обратная связь по положению является непрерывной, пока двигатель работает.Шаговая система по своей сути работает с разомкнутым контуром — полагаясь на двигатель, который не «пропускает шаги» для кратковременной точности — с любой обратной связью, такой как «исходный» переключатель или датчик положения, являющиеся внешними по отношению к двигательной системе. Например, когда запускается типичный компьютерный принтер с точечной матрицей, его контроллер заставляет шаговый двигатель печатающей головки перемещаться в крайнее левое положение, где датчик положения определяет исходное положение и останавливает шаг. Пока питание включено, двунаправленный счетчик в микропроцессоре принтера отслеживает положение печатающей головки.

Шаговый двигатель
Шаговый двигатель — это тип двигателя, который часто используется, когда требуется точное вращение. В шаговом двигателе внутренний ротор, содержащий постоянные магниты, или магнитно-мягкий ротор с явными полюсами управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и вращающимся соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, шаговый двигатель не может вращаться непрерывно; вместо этого он «шагает» — запускается и затем быстро останавливается — от одного положения к другому, поскольку обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности, ротор может вращаться вперед или назад, и он может произвольно менять направление, останавливаться, ускоряться или замедляться в любое время.

Простые драйверы шаговых двигателей полностью включают или полностью обесточивают обмотки возбуждения, приводя ротор к «зубчатой ​​передаче» в ограниченное количество положений; более сложные драйверы могут пропорционально управлять мощностью обмоток возбуждения, позволяя роторам располагаться между точками шестерен и, таким образом, вращаться чрезвычайно плавно.Этот режим работы часто называют микрошагом. Шаговые двигатели с компьютерным управлением — одна из самых универсальных форм систем позиционирования, особенно когда они являются частью цифровой системы с сервоуправлением.

Шаговые двигатели

можно легко поворачивать на определенный угол дискретными шагами, и, следовательно, шаговые двигатели используются для позиционирования головки чтения / записи в дисководах компьютерных гибких дисков. Они использовались для той же цели в компьютерных дисковых накопителях до гигабайтной эры, где точность и скорость, которые они предлагали, были достаточными для правильного позиционирования головки чтения / записи жесткого диска.По мере увеличения плотности накопителей, ограничения точности и скорости шаговых двигателей сделали их устаревшими для жестких дисков — ограничение точности сделало их непригодными для использования, а ограничение скорости сделало их неконкурентоспособными — таким образом, в новых жестких дисках используются системы привода головки на основе звуковой катушки. (Термин «звуковая катушка» в этой связи является историческим; он относится к структуре в типичном (конусном) громкоговорителе. Эта структура некоторое время использовалась для размещения головок. Современные приводы имеют поворотное крепление катушки; катушка качается вперед и назад, что-то вроде лопасти вращающегося вентилятора.Тем не менее, подобно звуковой катушке, современные проводники катушки исполнительного механизма (магнитный провод) движутся перпендикулярно магнитным силовым линиям.)

Шаговые двигатели были и до сих пор часто используются в компьютерных принтерах, оптических сканерах и цифровых копировальных аппаратах для перемещения оптического сканирующего элемента, каретки печатающей головки (матричных и струйных принтеров) и валика или подающих роликов. Точно так же многие компьютерные плоттеры (которые с начала 1990-х были заменены широкоформатными струйными и лазерными принтерами) использовали роторные шаговые двигатели для перемещения пера и валика; типичными альтернативами здесь были либо линейные шаговые двигатели, либо серводвигатели с аналоговыми системами управления с обратной связью.

Так называемые кварцевые аналоговые наручные часы содержат самые маленькие обычные шаговые двигатели; они имеют одну катушку, потребляют очень мало энергии и имеют ротор с постоянными магнитами. Такой же двигатель приводит в действие кварцевые часы с батарейным питанием. Некоторые из этих часов, например хронографы, содержат более одного шагового двигателя.

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока, шаговые двигатели и SRM классифицируются как двигатели с регулируемым сопротивлением. Шаговые двигатели были и до сих пор часто используются в компьютерных принтерах, оптических сканерах и станках с числовым программным управлением (ЧПУ), таких как маршрутизаторы, плазменные резаки и токарные станки с ЧПУ.

Немагнитные двигатели
Электростатический двигатель основан на притяжении и отталкивании электрического заряда. Обычно электростатические двигатели являются двойными по сравнению с обычными двигателями с катушкой. Обычно для них требуется высоковольтный источник питания, хотя в очень маленьких двигателях требуется более низкое напряжение. Вместо этого обычные электродвигатели используют магнитное притяжение и отталкивание и требуют высокого тока при низких напряжениях. В 1750-х годах первые электростатические двигатели были разработаны Бенджамином Франклином и Эндрю Гордоном.Сегодня электростатический двигатель часто используется в микроэлектромеханических системах (МЭМС), где их управляющее напряжение ниже 100 вольт, а в движущихся заряженных пластинах гораздо проще изготовить, чем катушки и железные сердечники. Кроме того, молекулярные механизмы, управляющие живыми клетками, часто основаны на линейных и вращающихся электростатических двигателях.

Пьезоэлектрический двигатель или пьезодвигатель — это тип электродвигателя, основанный на изменении формы пьезоэлектрического материала при приложении электрического поля.Пьезоэлектрические двигатели используют обратный пьезоэлектрический эффект, при котором материал производит акустические или ультразвуковые колебания для создания линейного или вращательного движения. В одном механизме удлинение в одной плоскости используется для последовательного растяжения и удержания положения, подобно тому, как движется гусеница.

В двигательной установке космического корабля с электроприводом используется технология электродвигателя для приведения космического корабля в космическое пространство, большинство систем основано на электрическом приводе топлива в высокую скорость, а некоторые системы основаны на принципах электродинамической привязки движения к магнитосфере.

Источник из Википедии

Электродвигатель

— Энциклопедия Нового Света

Вращающееся магнитное поле как сумма магнитных векторов от трех фазных катушек

Электродвигатель преобразует электрическую энергию в кинетическую. Обратная задача — преобразование кинетической энергии в электрическую — выполняется генератором или динамо-машиной. Во многих случаях два устройства различаются только своим применением и незначительными деталями конструкции, а некоторые приложения используют одно устройство для выполнения обеих ролей.Например, тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оснащен динамическими тормозами.

Большинство электродвигателей работают за счет электромагнетизма, но также существуют двигатели, основанные на других электромеханических явлениях, таких как электростатические силы и пьезоэлектрический эффект. Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой токоведущий провод, находящийся внутри магнитного поля, действует механическая сила. Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю.

Большинство магнитных двигателей являются вращающимися, но существуют и линейные двигатели. В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть — статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент. Двигатель содержит электромагниты, намотанные на раму. Хотя эту раму часто называют арматурой, этот термин часто используют ошибочно. Правильно, якорь — это та часть двигателя, на которую подается входное напряжение.В зависимости от конструкции машины в качестве якоря может выступать либо ротор, либо статор.

Двигатели постоянного тока

Электродвигатели различных типоразмеров. Ротор от маленького мотора постоянного тока 3В. Этот двигатель имеет 3 катушки, и коммутатор можно увидеть на ближнем конце.

Один из первых электромагнитных роторных двигателей был изобретен Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в бассейн с ртутью. Постоянный магнит был помещен в середину ртутной ванны.Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода. Этот мотор часто демонстрируется на школьных уроках физики, но иногда вместо токсичной ртути используется рассол (соленая вода). Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздняя доработка — Колесо Барлоу.

В другой ранней конструкции электродвигателя использовался поршень возвратно-поступательного действия внутри переключаемого соленоида; концептуально его можно рассматривать как электромагнитную версию двухтактного двигателя внутреннего сгорания.Томас Давенпорт построил небольшой электродвигатель постоянного тока в 1834 году, используя его для управления игрушечным поездом по круговой дороге. Он получил на нее патент в 1837 году.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил вращающуюся динамо-машину со вторым аналогичным устройством, приведя его в действие как двигатель. Машина Грамма была первым промышленно полезным электродвигателем; более ранние изобретения использовались в качестве игрушек или лабораторных диковинок.

Классический двигатель постоянного тока имеет вращающийся якорь в виде электромагнита.Поворотный переключатель, называемый коммутатором, меняет направление электрического тока дважды за цикл, чтобы он протекал через якорь, так что полюса электромагнита толкаются и притягиваются к постоянным магнитам на внешней стороне двигателя. Когда полюса электромагнита якоря проходят через полюса постоянных магнитов, коммутатор меняет полярность электромагнита якоря. В этот момент переключения полярности импульс поддерживает классический двигатель в нужном направлении.(См. Диаграммы ниже.)

  • Вращение двигателя постоянного тока
  • Простой электродвигатель постоянного тока. Когда катушка запитана, вокруг якоря создается магнитное поле. Левая сторона якоря отодвигается от левого магнита и тянется вправо, вызывая вращение.

  • Якорь продолжает вращаться.

  • Когда якорь выравнивается по горизонтали, коммутатор меняет направление тока через катушку на противоположное, изменяя направление магнитного поля.Затем процесс повторяется.

Электродвигатель постоянного тока с возбуждением от возбуждения

Постоянные магниты на внешней стороне (статоре) двигателя постоянного тока могут быть заменены электромагнитами. Изменяя ток возбуждения, можно изменять соотношение скорость / крутящий момент двигателя. Обычно обмотка возбуждения размещается последовательно (последовательная обмотка) с обмоткой якоря для получения низкоскоростного двигателя с высоким крутящим моментом, параллельно (параллельная обмотка) с якорем для получения высокоскоростного двигателя с низким крутящим моментом или имеют обмотку частично параллельно и частично последовательно (составная обмотка) для баланса, обеспечивающего стабильную скорость в диапазоне нагрузок. Раздельное возбуждение также является обычным, с фиксированным напряжением поля, скорость регулируется изменением напряжения якоря. Дальнейшее уменьшение тока возбуждения возможно для получения еще более высокой скорости, но, соответственно, более низкого крутящего момента, что называется режимом «слабого поля».

Теория

Если вал двигателя постоянного тока вращается под действием внешней силы, двигатель будет действовать как генератор и создавать электродвижущую силу (ЭДС). Это напряжение также генерируется при нормальной работе двигателя.Вращение двигателя создает напряжение, известное как противо-ЭДС (CEMF) или противо-ЭДС, поскольку оно противодействует приложенному напряжению на двигателе. Следовательно, падение напряжения на двигателе состоит из падения напряжения из-за этой CEMF и паразитного падения напряжения, возникающего из-за внутреннего сопротивления обмоток якоря.

Поскольку CEMF пропорциональна скорости двигателя, при первом запуске или полном останове электродвигателя CEMF отсутствует. Следовательно, ток через якорь намного выше.Этот высокий ток создаст сильное магнитное поле, которое запустит вращение двигателя. По мере вращения двигателя CEMF увеличивается до тех пор, пока не станет равным приложенному напряжению за вычетом паразитного падения напряжения. В этот момент через двигатель будет протекать меньший ток.

Регулировка скорости

Обычно скорость вращения двигателя постоянного тока пропорциональна приложенному к нему напряжению, а крутящий момент пропорционален току. Регулировка скорости может быть достигнута с помощью регулируемых выводов аккумуляторной батареи, переменного напряжения питания, резисторов или электронного управления.Направление двигателя постоянного тока с обмоткой возбуждения можно изменить, поменяв местами подключения возбуждения или якоря, но не то и другое вместе. Обычно это делается с помощью специального набора контакторов (контакторов направления).

Эффективное напряжение можно изменять, вставляя последовательный резистор или используя переключающее устройство с электронным управлением, состоящее из тиристоров, транзисторов или, ранее, ртутных дуговых выпрямителей. В цепи, известной как прерыватель, среднее напряжение, приложенное к двигателю, изменяется путем очень быстрого переключения напряжения питания.Поскольку отношение «включено» к «выключено» изменяется для изменения среднего приложенного напряжения, скорость двигателя изменяется. Процент времени включения, умноженный на напряжение питания, дает среднее напряжение, приложенное к двигателю.

Поскольку двигатель постоянного тока с последовательным возбуждением развивает максимальный крутящий момент на низкой скорости, он часто используется в тяговых устройствах, таких как электровозы и трамваи. Другое применение — стартеры для бензиновых и небольших дизельных двигателей. Серийные двигатели никогда не должны использоваться в приложениях, где привод может выйти из строя (например, ременные передачи).По мере ускорения двигателя ток якоря (и, следовательно, возбуждения) уменьшается. Уменьшение поля заставляет двигатель ускоряться (см. «Слабое поле» в последнем разделе), пока он не разрушит себя. Это также может быть проблемой для железнодорожных двигателей в случае потери сцепления, поскольку, если быстро не взять под контроль двигатели, они могут развивать скорость намного выше, чем при нормальных обстоятельствах. Это может вызвать проблемы не только для самих двигателей и шестерен, но и из-за разницы в скорости между рельсами и колесами, это также может вызвать серьезные повреждения рельсов и ступеней колес, поскольку они быстро нагреваются и охлаждаются.Ослабление поля используется в некоторых электронных элементах управления для увеличения максимальной скорости электромобиля. В простейшей форме используется контактор и резистор ослабления поля, электронное управление контролирует ток двигателя и подключает резистор ослабления поля в цепь, когда ток двигателя уменьшается ниже заданного значения (это будет, когда двигатель работает на полной расчетной скорости). Как только резистор включен в цепь, двигатель увеличит скорость выше своей нормальной скорости при номинальном напряжении. Когда ток двигателя увеличивается, система управления отключает резистор и становится доступным крутящий момент на низкой скорости.

Одним из интересных методов управления скоростью двигателя постоянного тока является управление Уорда-Леонарда. Это метод управления двигателем постоянного тока (обычно с шунтирующей или составной обмоткой) и был разработан как метод обеспечения двигателя с регулируемой скоростью от источника переменного тока (переменного тока), хотя он не лишен своих преимуществ в схемах постоянного тока. Источник переменного тока используется для привода двигателя переменного тока, обычно асинхронного двигателя, который приводит в действие генератор постоянного тока или динамо-машину. Выход постоянного тока от якоря напрямую подключен к якорю двигателя постоянного тока (обычно идентичной конструкции).Шунтирующие обмотки возбуждения обеих машин постоянного тока возбуждаются через переменный резистор от якоря генератора. Этот переменный резистор обеспечивает исключительно хорошее управление скоростью от состояния покоя до полной скорости и постоянный крутящий момент. Этим методом управления был метод de facto от его разработки до тех пор, пока он не был заменен твердотельными тиристорными системами. Она нашла применение практически в любой среде, где требовалось хорошее управление скоростью, от пассажирских лифтов до обмотки головок большой шахты и даже промышленного технологического оборудования и электрических кранов.Его основным недостатком было то, что для реализации схемы требовалось три машины (пять в очень больших установках, поскольку машины постоянного тока часто дублировались и управлялись тандемным переменным резистором). Во многих случаях установка мотор-генератор часто оставалась постоянно работающей, чтобы избежать задержек, которые в противном случае были бы вызваны ее запуском по мере необходимости. Есть множество устаревших установок Ward-Leonard, которые все еще используются.

Универсальные двигатели

Вариантом электродвигателя постоянного тока с обмоткой является универсальный электродвигатель . Название происходит от того факта, что он может использовать переменный ток или постоянный ток, хотя на практике они почти всегда используются с источниками переменного тока. Принцип заключается в том, что в двигателе постоянного тока с обмоткой поля ток как в поле, так и в якоре (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) в одно и то же время, и, следовательно, генерируемая механическая сила всегда в одном и том же направлении. . На практике двигатель должен быть специально разработан для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и получаемый в результате двигатель обычно менее эффективен, чем эквивалентный чистый двигатель DC .При работе на нормальных частотах линии электропередачи максимальная мощность универсальных двигателей ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного железнодорожного тягового двигателя. В этом приложении для поддержания высокого электрического КПД они работали от очень низкочастотных источников переменного тока с частотой 25 Гц и 16 2 / 3 Гц. Поскольку это универсальные двигатели, локомотивы, использующие эту конструкцию, также обычно могли работать от третьего рельса с питанием от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют типичные характеристики двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект — проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами. Непрерывное управление скоростью универсального двигателя, работающего на переменном токе, очень легко достигается с помощью тиристорной схемы, в то время как ступенчатое управление скоростью может быть выполнено с помощью нескольких отводов на катушке возбуждения.Бытовые блендеры, рекламирующие много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает на полуволновом постоянном токе с 0,707 среднеквадратичного напряжения линии питания переменного тока).

В отличие от двигателей переменного тока, универсальные двигатели могут легко превышать один оборот за цикл сетевого тока. Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где требуется высокая скорость работы. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, Dremel и другие подобные миниатюрные шлифовальные машины часто превышают 30 000 об / мин.Теоретический универсальный двигатель, которому разрешено работать без механической нагрузки, будет превышать скорость, что может привести к его повреждению. В реальной жизни, однако, различное трение подшипников, «парусность» якоря и нагрузка любого встроенного охлаждающего вентилятора — все это предотвращает превышение скорости.

Из-за очень низкой стоимости полупроводниковых выпрямителей в некоторых приложениях, где раньше использовался универсальный двигатель, теперь используется чистый двигатель постоянного тока, обычно с полем постоянного магнита. Это особенно верно, если полупроводниковая схема также используется для регулирования скорости.

Преимущества универсального двигателя и распределения переменного тока сделали установку низкочастотной системы распределения тягового тока экономичной для некоторых железнодорожных установок. На достаточно низких частотах характеристики двигателя примерно такие же, как если бы двигатель работал от постоянного тока.

Двигатели переменного тока (переменного тока)

В 1882 году Никола Тесла определил принцип вращающегося магнитного поля и впервые применил вращающееся силовое поле для работы машин.Он использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. В 1885 году Галилео Феррарис независимо исследовал эту концепцию. В 1888 году Феррарис опубликовал свое исследование в докладе Королевской академии наук в Турине.

Внедрение двигателя Теслы с 1888 г. и далее положило начало так называемой Второй промышленной революции, сделав возможным эффективное производство и распределение электроэнергии на большие расстояния с использованием системы передачи переменного тока, также изобретенной Тесла (1888 г.).До изобретения вращающегося магнитного поля двигатели работали, непрерывно пропуская проводник через постоянное магнитное поле (как в униполярных двигателях).

Тесла предположил, что коммутаторы из машины могут быть удалены, и устройство может работать во вращающемся силовом поле. Его учитель профессор Пошель заявил, что это было бы похоже на создание вечного двигателя. [1] Tesla позже получит патент США 0416194 (PDF), Electric Motor (декабрь 1889 г.), который напоминает двигатель, изображенный на многих фотографиях Теслы.Этим классическим электромагнитным двигателем переменного тока был асинхронный двигатель .

Энергия статора Энергия ротора Всего отпущено энергии Мощность развиваемая
10 90 100 900
50 50 100 2500

В асинхронном двигателе , поле и якорь в идеале имели равные напряженности поля, а сердечники поля и якоря были одинакового размера.Полная энергия, потребляемая для работы устройства, равна сумме энергии, затраченной на якорь и катушку возбуждения. [2] Мощность, развиваемая при работе устройства, равна произведению энергии, затрачиваемой в катушках якоря и возбуждения. [3]

Михаил Осипович Доливо-Добровольский позже изобрел трехфазный «клеть-ротор» в 1890 году. Успешная коммерческая многофазная система генерации и передачи на большие расстояния была спроектирована Алмерианом Декером в Mill Creek No.1 [4] в Редлендс, Калифорния. [5]

Детали и типы

Типичный двигатель переменного тока состоит из двух частей:

  1. Внешний неподвижный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  2. Внутренний ротор, прикрепленный к выходному валу, которому крутящий момент создает крутящий момент.

В зависимости от типа используемого ротора существует два основных типа двигателей переменного тока:

  • Синхронный двигатель, который вращается точно с частотой питающей сети или долей частоты питающей сети, и;
  • Асинхронный двигатель, который вращается немного медленнее и обычно (хотя и не всегда) имеет форму двигателя с короткозамкнутым ротором.

Трехфазные асинхронные двигатели переменного тока

Трехфазные асинхронные двигатели переменного тока мощностью 1 л.с. (746 Вт) и 25 Вт с небольшими двигателями от проигрывателя компакт-дисков, игрушек и привода считывателя компакт-дисков и DVD-дисков.

Там, где имеется многофазный источник питания, обычно используется трехфазный (или многофазный) асинхронный двигатель переменного тока, особенно для двигателей большей мощности. Разность фаз между тремя фазами многофазного источника питания создает вращающееся электромагнитное поле в двигателе.

Благодаря электромагнитной индукции вращающееся магнитное поле индуцирует ток в проводниках в роторе, который, в свою очередь, создает уравновешивающее магнитное поле, которое заставляет ротор вращаться в направлении вращения поля.Ротор всегда должен вращаться медленнее, чем вращающееся магнитное поле, создаваемое многофазным источником питания; в противном случае в роторе не будет создаваться уравновешивающее поле.

Асинхронные двигатели являются рабочими лошадками промышленности, и двигатели мощностью до 500 кВт (670 лошадиных сил) производятся в строго стандартизированных размерах корпуса, что делает их практически полностью взаимозаменяемыми между производителями (хотя стандартные размеры в Европе и Северной Америке различаются). Очень большие синхронные двигатели могут иметь выходную мощность в десятки тысяч кВт для трубопроводных компрессоров, приводов в аэродинамической трубе и наземных преобразовательных систем.

В асинхронных двигателях используются два типа роторов.

Роторы с короткозамкнутым ротором: В большинстве двигателей переменного тока используется ротор с короткозамкнутым ротором, который можно найти практически во всех бытовых и легких промышленных двигателях переменного тока. Беличья клетка получила свое название от своей формы — кольца на обоих концах ротора, с перемычками, соединяющими кольца по всей длине ротора. Обычно это литой алюминий или медь, залитые между железными пластинами ротора, и обычно видны только концевые кольца.Подавляющее большинство токов ротора будет проходить через стержни, а не через ламинаты с более высоким сопротивлением и обычно покрытые лаком. Очень низкие напряжения при очень высоких токах типичны для шин и концевых колец; В двигателях с высоким КПД часто используется литая медь для уменьшения сопротивления ротора.

В работе двигатель с короткозамкнутым ротором можно рассматривать как трансформатор с вращающейся вторичной обмоткой — когда ротор не вращается синхронно с магнитным полем, индуцируются большие токи ротора; большие токи ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора.Двигатель с короткозамкнутым ротором без нагрузки при синхронной скорости будет потреблять электроэнергию только для поддержания скорости ротора с учетом потерь на трение и сопротивление; по мере увеличения механической нагрузки будет увеличиваться и электрическая нагрузка — электрическая нагрузка по своей природе связана с механической нагрузкой. Это похоже на трансформатор, где электрическая нагрузка первичной обмотки связана с электрической нагрузкой вторичной обмотки.

Вот почему, например, электродвигатель воздуходувки с короткозамкнутым ротором может приводить к затемнению света в доме при запуске, но не приглушает свет при снятии его ремня вентилятора (и, следовательно, механической нагрузки).Кроме того, остановившийся двигатель с короткозамкнутым ротором (перегруженный или с заклинившим валом) будет потреблять ток, ограниченный только сопротивлением цепи, при попытке запуска. Если что-то еще не ограничивает ток (или не отключает его полностью), вероятным результатом является перегрев и разрушение изоляции обмотки.

Практически каждая стиральная машина, посудомоечная машина, отдельный вентилятор, проигрыватель и т. Д. Использует какой-либо вариант двигателя с короткозамкнутым ротором.

Ротор с обмоткой: Альтернативная конструкция, называемая ротором с обмоткой, используется, когда требуется регулировка скорости.В этом случае ротор имеет такое же количество полюсов, что и статор, а обмотки выполнены из проволоки, соединенной с контактными кольцами на валу. Угольные щетки подключают контактные кольца к внешнему контроллеру, например, к переменному резистору, который позволяет изменять скорость скольжения двигателя. В некоторых мощных приводах с регулируемой скоростью вращения ротора энергия частоты скольжения улавливается, выпрямляется и возвращается в источник питания через инвертор.

По сравнению с роторами с короткозамкнутым ротором, двигатели с фазным ротором дороги и требуют обслуживания контактных колец и щеток, но они были стандартной формой для регулирования скорости до появления компактных силовых электронных устройств.Транзисторные инверторы с частотно-регулируемым приводом теперь можно использовать для управления скоростью, а двигатели с фазным ротором становятся все реже. (Транзисторные инверторные приводы также позволяют использовать более эффективные трехфазные двигатели, когда доступен только однофазный сетевой ток, но это никогда не используется в бытовых приборах, потому что это может вызвать электрические помехи и из-за высоких требований к мощности.)

Используются несколько способов запуска многофазного двигателя. Там, где допустимы большой пусковой ток и высокий пусковой момент, двигатель можно запустить через линию, подав полное линейное напряжение на клеммы (Direct-on-line, DOL).Там, где необходимо ограничить пусковой пусковой ток (если двигатель большой по сравнению с мощностью короткого замыкания источника питания), используется пуск с пониженным напряжением с использованием последовательных катушек индуктивности, автотрансформатора, тиристоров или других устройств. Иногда используется метод пуска со звезды на треугольник, когда катушки двигателя сначала соединяются звездой для ускорения нагрузки, а затем переключаются на треугольник, когда нагрузка достигает скорости. Этот метод более распространен в Европе, чем в Северной Америке.Транзисторные приводы могут напрямую изменять приложенное напряжение в зависимости от пусковых характеристик двигателя и нагрузки.

Этот тип двигателя становится все более распространенным в тяговых приложениях, таких как локомотивы, где он известен как асинхронный тяговый двигатель.

Скорость в этом типе двигателя традиционно изменялась за счет наличия дополнительных наборов катушек или полюсов в двигателе, которые можно включать и выключать для изменения скорости вращения магнитного поля. Однако развитие силовой электроники означает, что частота источника питания теперь также может быть изменена, чтобы обеспечить более плавное управление скоростью двигателя.

Трехфазные синхронные двигатели переменного тока

Если соединения с обмотками ротора трехфазного двигателя сняты на контактных кольцах и подают отдельный ток возбуждения для создания непрерывного магнитного поля (или если ротор состоит из постоянного магнита), результат называется синхронным. двигатель, потому что ротор будет вращаться синхронно с вращающимся магнитным полем, создаваемым многофазным источником питания.

Синхронный двигатель также может использоваться в качестве генератора переменного тока.

В настоящее время синхронные двигатели часто приводятся в действие транзисторными частотно-регулируемыми приводами. Это значительно облегчает запуск массивного ротора большого синхронного двигателя. Они также могут запускаться как асинхронные двигатели с использованием обмотки с короткозамкнутым ротором, которая имеет общий ротор: как только двигатель достигает синхронной скорости, ток в обмотке с короткозамкнутым ротором не индуцируется, поэтому он мало влияет на синхронную работу двигателя. , помимо стабилизации скорости двигателя при изменении нагрузки.

Синхронные двигатели иногда используются в качестве тяговых двигателей.

Двухфазные серводвигатели переменного тока

Типичный двухфазный серводвигатель переменного тока имеет короткозамкнутый ротор и поле, состоящее из двух обмоток: 1) главной обмотки постоянного напряжения (AC) и 2) обмотки управляющего напряжения (AC) в квадратуре с основная обмотка так, чтобы создавать вращающееся магнитное поле. Электрическое сопротивление ротора намеренно повышено, чтобы кривая скорость-крутящий момент была достаточно линейной.Двухфазные серводвигатели — это по своей сути высокоскоростные устройства с низким крутящим моментом, которые в значительной степени приспособлены для управления нагрузкой.

Однофазные асинхронные двигатели переменного тока

Трехфазные двигатели по своей природе создают вращающееся магнитное поле. Однако, когда доступна только однофазная мощность, вращающееся магнитное поле должно создаваться другими способами. Обычно используются несколько методов.

Обычным однофазным двигателем является двигатель с экранированными полюсами, который используется в устройствах, требующих низкого крутящего момента, таких как электрические вентиляторы или другие небольшие бытовые приборы.В этом двигателе небольшие одновитковые медные «затеняющие катушки» создают движущееся магнитное поле. Часть каждого полюса окружена медной катушкой или лентой; индуцированный ток в перемычке противодействует изменению потока через катушку (закон Ленца), так что максимальная напряженность поля перемещается через поверхность полюса в каждом цикле, создавая необходимое вращающееся магнитное поле.

Другой распространенный однофазный двигатель переменного тока — это асинхронный двигатель с расщепленной фазой , обычно используемый в основных бытовых приборах, таких как стиральные машины и сушилки для одежды.По сравнению с двигателями с экранированными полюсами эти двигатели обычно могут обеспечивать гораздо больший пусковой крутящий момент за счет использования специальной пусковой обмотки в сочетании с центробежным переключателем.

В двигателе с расщепленной фазой пусковая обмотка спроектирована с более высоким сопротивлением, чем рабочая обмотка. Это создает цепь LR, которая немного сдвигает фазу тока в пусковой обмотке. Когда двигатель запускается, пусковая обмотка подключается к источнику питания через набор подпружиненных контактов, на которые нажимает еще не вращающийся центробежный переключатель.

Фаза магнитного поля в этой пусковой обмотке сдвинута по сравнению с фазой сетевого питания, что позволяет создать движущееся магнитное поле, которое запускает двигатель. Когда двигатель достигает скорости, близкой к расчетной, срабатывает центробежный выключатель, размыкая контакты и отсоединяя пусковую обмотку от источника питания. Тогда двигатель работает только на ходовой обмотке. Пусковую обмотку необходимо отключить, так как это приведет к увеличению потерь в двигателе.

В конденсаторном пусковом двигателе , пусковой конденсатор вставлен последовательно с пусковой обмоткой, создавая LC-цепь, которая способна к гораздо большему фазовому сдвигу (и, следовательно, гораздо большему пусковому крутящему моменту). Конденсатор, естественно, увеличивает стоимость таких двигателей.

Другой вариант — двигатель с постоянным разделенным конденсатором (PSC) (также известный как конденсаторный двигатель запуска и работы). Этот двигатель работает аналогично двигателю с конденсаторным пуском, описанному выше, но здесь нет переключателя центробежного пуска, а вторая обмотка постоянно подключена к источнику питания.Двигатели PSC часто используются в кондиционерах, вентиляторах и воздуходувках, а также в других случаях, когда требуется регулируемая скорость.

Отталкивающие двигатели — это однофазные двигатели переменного тока с фазным ротором, аналогичные универсальным двигателям. В отталкивающем двигателе щетки якоря закорочены вместе, а не соединены последовательно с полем. Было изготовлено несколько типов отталкивающих двигателей, но наиболее часто использовался асинхронный двигатель с отталкивающим пуском и индукционным приводом (RS-IR).Двигатель RS-IR имеет центробежный переключатель, который закорачивает все сегменты коммутатора, так что двигатель работает как асинхронный двигатель после разгона до полной скорости. Двигатели RS-IR используются для обеспечения высокого пускового момента на ампер в условиях низких рабочих температур и плохого регулирования напряжения источника. По состоянию на 2006 год продано немного отталкивающих двигателей любого типа.

Однофазные синхронные двигатели переменного тока

Небольшие однофазные двигатели переменного тока также могут быть спроектированы с намагниченными роторами (или несколькими вариантами этой идеи).Роторы в этих двигателях не требуют индуцированного тока, поэтому они не скользят назад против частоты сети. Вместо этого они вращаются синхронно с частотой сети. Из-за высокой точности скорости такие двигатели обычно используются для питания механических часов, проигрывателей виниловых пластинок и ленточных накопителей; раньше они также широко использовались в приборах точного времени, таких как ленточные самописцы или механизмы привода телескопа. Синхронный двигатель с расщепленными полюсами — это одна из версий.

Моментные двигатели

Моментный двигатель — это особый вид асинхронного двигателя, который может работать неограниченное время при остановке (с заблокированным от вращения ротором) без повреждений.В этом режиме двигатель будет прикладывать постоянный крутящий момент к нагрузке (отсюда и название). Обычное применение моментного двигателя — это двигатели подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимые в действие низким напряжением, характеристики этих двигателей позволяют приложить к ленте относительно постоянное легкое натяжение независимо от того, протягивает ли ведущую ленту мимо головок ленты. Управляемые более высоким напряжением (и, следовательно, обеспечивающие более высокий крутящий момент), моментные двигатели также могут работать в режиме быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты.В компьютерном мире моментные двигатели используются с рулевыми колесами с обратной связью по усилию.

Шаговые двигатели

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты или большой железный сердечник с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, в его применении двигатель не может вращаться непрерывно; вместо этого он «шагает» из одного положения в другое, поскольку обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности ротор может вращаться вперед или назад.

Двигатель с постоянными магнитами

Двигатель с постоянными магнитами аналогичен обычному двигателю постоянного тока, за исключением того факта, что обмотка возбуждения заменена постоянными магнитами. Таким образом, двигатель будет действовать как двигатель постоянного тока с постоянным возбуждением (двигатель постоянного тока с независимым возбуждением).

Эти двигатели обычно имеют небольшую мощность, до нескольких лошадиных сил. Они используются в небольших приборах, транспортных средствах с батарейным питанием, в медицинских целях, в другом медицинском оборудовании, таком как рентгеновские аппараты. Эти двигатели также используются в игрушках и в автомобилях в качестве вспомогательных двигателей для регулировки сиденья, электрических стеклоподъемников, люка в крыше, регулировки зеркал, электродвигателей нагнетателя, вентиляторов охлаждения двигателя и т.п.

Последняя разработка — двигатели ПСМ для электромобилей.- Высокая эффективность — Минимальный запирающий момент и крутящий момент неровности поверхности — Небольшая занимаемая площадь, компактные размеры — Низкий вес источник [3]

Бесщеточные двигатели постоянного тока

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. На более высоких скоростях щеткам становится все труднее поддерживать контакт. Щетки могут отскакивать от неровностей поверхности коллектора, создавая искры.Это ограничивает максимальную скорость машины. Плотность тока на единицу площади щеток ограничивает мощность двигателя. Неидеальный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию. Сборка коммутатора на большой машине — дорогостоящий элемент, требующий точной сборки многих деталей.

Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением ротора.Бесщеточные двигатели обычно имеют КПД 85-90 процентов, тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80 процентов.

На полпути между обычными двигателями постоянного тока и шаговыми двигателями лежит область бесщеточных двигателей постоянного тока. Построенные аналогично шаговым двигателям, они часто используют внешний ротор с постоянным магнитом , три фазы приводных катушек, одно или несколько устройств на эффекте Холла для определения положения ротора и соответствующую приводную электронику. В специализированном классе контроллеров бесщеточных двигателей постоянного тока для определения положения и скорости используется обратная связь по ЭДС через основные фазовые соединения вместо датчиков Холла.Эти двигатели широко используются в электрических радиоуправляемых транспортных средствах и упоминаются моделистами как двигатели outrunner (поскольку магниты находятся снаружи).

Бесщеточные двигатели постоянного тока обычно используются там, где требуется точное управление скоростью, в дисководах компьютеров или в видеомагнитофонах, шпинделях в приводах компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных изделий, таких как вентиляторы, лазерные принтеры и копировальные аппараты. . У них есть несколько преимуществ перед обычными моторами:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока.Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток бесщеточный двигатель может использоваться в электрически чувствительных устройствах, таких как звуковое оборудование или компьютеры.
  • Те же устройства на эффекте Холла, которые обеспечивают коммутацию, могут также обеспечивать удобный сигнал тахометра для приложений с обратной связью (сервоуправлением).В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Бесщеточные двигатели не имеют шансов искрообразования, в отличие от щеточных двигателей, что делает их более подходящими для сред с летучими химическими веществами и топливом.

Современные бесщеточные двигатели постоянного тока имеют мощность от долей ватта до многих киловатт. В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт.Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника

Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов. Этим фактом пользуется бесщеточный электродвигатель постоянного тока , специализированная форма щеточного электродвигателя постоянного тока. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника.Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блинчика (возможно, сформированного на печатной монтажной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются путем пропитки эпоксидной смолой.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс.Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Эти двигатели обычно использовались для привода приводов магнитных лент и до сих пор широко используются в высокопроизводительных системах с сервоуправлением.

Двигатели линейные

Линейный двигатель — это, по сути, электродвигатель, который был «раскручен» так, что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подвеске (Transrapid), где поезд «летит» над землей.

Электродвигатель с двойным питанием

Электродвигатели с двойным питанием или Электромашины с двойным питанием включают в себя две группы многофазных обмоток с независимым питанием, которые активно участвуют в процессе преобразования энергии (т. Е. С двойным питанием), по крайней мере, с одним из комплектов обмоток с электронным управлением для синхронной работы скорость от субсинхронной до сверхсинхронной.В результате электродвигатели с двойной подачей питания представляют собой синхронные машины с эффективным диапазоном скоростей с постоянным крутящим моментом, который в два раза превышает синхронную скорость для данной частоты возбуждения. Это вдвое больше диапазона скоростей с постоянным крутящим моментом, чем у электрических машин с одиночным питанием, в которых используется одна активная обмотка. Теоретически этот атрибут имеет привлекательные разветвления по стоимости, размеру и эффективности по сравнению с электрическими машинами с одинарным питанием, но двигатели с двойным питанием трудно реализовать на практике.

Электромашины с двойным питанием и бесщеточным ротором с двойным питанием и так называемые бесщеточные электрические машины с двойным питанием — единственные примеры синхронных электрических машин с двойным питанием.

Электродвигатель с однополярным питанием

Электродвигатели с однополярным питанием или Электромашины с однополярным питанием включают в себя одну многофазную обмотку, которая активно участвует в процессе преобразования энергии (т. Е. С однополярным питанием). Электромашины с однополярным питанием работают либо по индукционным (т.е. асинхронным), либо по синхронным принципам. Комплект активной обмотки может иметь электронное управление для оптимальной производительности. Индукционные машины демонстрируют пусковой момент и могут работать как автономные машины, но синхронные машины должны иметь вспомогательные средства для запуска и практической работы, такие как электронный контроллер.

Асинхронные двигатели (т. Е. С короткозамкнутым ротором или с фазным ротором), синхронные двигатели (т. Е. Двигатели с возбуждением от поля, двигатели с постоянными магнитами или бесщеточные двигатели постоянного тока, реактивные двигатели и т. примеры двигателей с однополярным питанием. Безусловно, двигатели с однополярным питанием — это преимущественно устанавливаемые двигатели.

Двигатель с двумя механическими портами

Электродвигатели с двумя механическими портами (или электродвигатели DMP) считаются новой концепцией электродвигателей.Точнее, электродвигатели DMP — это на самом деле два электродвигателя (или генератора), занимающие один и тот же корпус. Каждый двигатель работает по традиционным принципам электродвигателя. Электрические порты, которые могут включать в себя электронную опору электродвигателей, связаны с одним электрическим портом, в то время как два механических порта (вала) доступны снаружи. Теоретически ожидается, что физическая интеграция двух двигателей в один увеличит удельную мощность за счет эффективного использования в противном случае ненужной площади магнитного сердечника.Механика интеграции, например, для двух механических валов, может быть довольно экзотической.

Наномотор с нанотрубками

Исследователи из Калифорнийского университета в Беркли разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (размером порядка 100 нм) к внешней оболочке подвешенной многослойной углеродной нанотрубки (например, вложенных углеродных цилиндров), они могут электростатически вращать внешнюю оболочку относительно внутреннего ядра.Эти подшипники очень прочные; Устройства колебались тысячи раз без признаков износа. Работа была сделана на месте в SEM. Эти наноэлектромеханические системы (НЭМС) являются следующим шагом в миниатюризации, которая в будущем может найти свое применение в коммерческих целях.

На этом рендере можно увидеть процесс и технологию.

Пускатели двигателя

Противо-ЭДС помогает сопротивлению якоря ограничивать ток через якорь. При первом подаче питания на двигатель якорь не вращается.В этот момент противоэдс равна нулю, и единственным фактором, ограничивающим ток якоря, является сопротивление якоря. Обычно сопротивление якоря двигателя меньше одного Ом; поэтому ток через якорь при подаче питания будет очень большим. Этот ток может вызвать чрезмерное падение напряжения, что повлияет на другое оборудование в цепи. Или просто отключите устройства защиты от перегрузки.

  • Следовательно, возникает необходимость в дополнительном сопротивлении, включенном последовательно с якорем, для ограничения тока до тех пор, пока вращение двигателя не сможет создать противоэдс.По мере увеличения вращения двигателя сопротивление постепенно снижается.

Пускатель трехточечный

Входящая мощность обозначается как L1 и L2. Компоненты, обозначенные пунктирными линиями, образуют трехточечный стартер. Как следует из названия, есть только три соединения с пускателем. Подключения к якорю обозначены как A1 и A2. Концы катушки возбуждения (возбуждения) обозначены как F1. и F2. Для управления скоростью полевой реостат соединен последовательно с шунтирующим полем.Одна сторона линии соединена с рычагом стартера (на схеме обозначена стрелкой). Рычаг подпружинен, поэтому он вернется в положение «Выкл.», Которое не удерживается ни в каком другом положении.

  • На первом этапе плеча полное линейное напряжение прикладывается к полю шунта. Поскольку полевой реостат обычно устанавливается на минимальное сопротивление, скорость двигателя не будет чрезмерной; кроме того, двигатель будет развивать большой пусковой крутящий момент.
  • Стартер также соединяет электромагнит последовательно с шунтирующим полем.Он будет удерживать рычаг в положении, когда рычаг соприкасается с магнитом.
  • Между тем это напряжение подается на шунтирующее поле, а пусковое сопротивление ограничивает прохождение тока к якорю.
  • По мере того, как двигатель набирает скорость, нарастает противо-ЭДС, рычаг медленно перемещается в положение короткого замыкания.

Стартер четырехпозиционный

Четырехточечный стартер устраняет недостаток трехточечного стартера. В дополнение к тем же трем точкам, которые использовались с трехточечным стартером, другая сторона линии, L1, является четвертой точкой, подведенной к стартеру.Когда рычаг перемещается из положения «Выкл.», Катушка удерживающего магнита подключается к линии. Удерживающий магнит и пусковые резисторы работают так же, как и в трехпозиционном пускателе.

  • Возможность случайного размыкания цепи возбуждения весьма мала. Четырехточечный пускатель обеспечивает защиту двигателя от обесточивания. В случае сбоя питания двигатель отключается от сети.

См. Также

Компоненты:

  • Центробежный переключатель
  • Коммутатор (электрический)
  • Контактное кольцо

Ученые и инженеры:

Приложения:

  • Настольная пила
  • Электромобиль
  • Коррекция коэффициента мощности

Другое:

  • Электротехника
  • Электрический элемент
  • Электрогенератор
  • Список тем по электронике
  • Список технологий
  • Теорема о максимальной мощности
  • Мотор-генератор
  • Контроллер мотора
  • Способ движения
  • Электроэнергия однофазная
  • Хронология развития двигателей и двигателей

Примечания

  1. ↑ Tesla’s Early Years PBS.org .
  2. ↑ Патент США 0416194, «Электродвигатель», декабрь 1889 г.
  3. ↑ Патент США 0416194, «Электродвигатель», декабрь 1889 г.
  4. ↑ [1] electrichistory.com .
  5. ↑ [2] redlandsweb.com .

Список литературы

  • Бедфорд Б. Д., Р. Г. Хофт и др. 1964. Принципы инверторных схем. Нью-Йорк: John Wiley & Sons, Inc. ISBN 0471061344. (Для управления скоростью двигателя с регулируемой частотой используются схемы инвертора)
  • Чиассон, Джон Н.2005. Моделирование и высокопроизводительное управление электрическими машинами. , Нью-Йорк, Нью-Йорк: Wiley-IEEE Press. ISBN 047168449X.
  • Fink, Donald G .; Бити, Х. Уэйн (1978). Стандартный справочник для инженеров-электриков, одиннадцатое издание. Нью-Йорк, Нью-Йорк: Макгроу-Хилл. ISBN 007020974X.
  • Фицджеральд, А. Э., Чарльз Кингсли младший, Стивен Д. Уманс. 2002. Электрические машины. Колумбус, Огайо: McGraw-Hill Science / Engineering / Math. ISBN 0073660094.
  • Хьюстон, Эдвин Дж.; Артур Кеннелли, (1902) Последние типы динамо-электрических машин. , авторское право American Technical Book Company 1897, Нью-Йорк, Нью-Йорк: P.F. Кольер и сыновья. ASIN: B000874XH6
  • Купхальдт, Тони Р. Уроки электрических цепей — Том II. 2000-2006. Глава 13 ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА. дата обращения 11 апреля 2006 г.
  • Пелли, Б. Р. (1971). Тиристорные преобразователи с фазовым управлением и циклоконвертеры. Хобокен, Нью-Джерси: John Wiley & Sons. ISBN 0471677906
  • Шейнфилд Д.Дж. (2001). Промышленная электроника для инженеров, химиков и техников. Норвич, Нью-Йорк: Издательство Уильяма Эндрю. ISBN 0815514670.
  • Смит, А.О. Электродвигатели переменного и постоянного тока. [4]. accessdate 11.04.2006

Внешние ссылки

Все ссылки получены 18 сентября 2017 г.

Кредиты

Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, участников, так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Электродвигатель — Energy Education

Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]

Электродвигатель — это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору. Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу.Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.

Как они работают

У двигателей

есть много разных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность. Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки. Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.

Основные части двигателя постоянного тока включают: [3]

  • Статор: Неподвижная часть двигателя, а именно магнит.Электромагниты часто используются для увеличения мощности.
  • Ротор: Катушка, которая установлена ​​на оси и вращается с высокой скоростью, обеспечивая систему механической энергией вращения.
  • Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, и его можно увидеть на рисунках 3 и 4. Без него ротор не смог бы вращаться непрерывно из-за противодействующих сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
  • Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
  • Двигатель постоянного тока
  • Рисунок 3: Базовая установка двигателя постоянного тока. [3]

  • Рисунок 4: Анимация двигателя в действии. Коммутатор вращается, чтобы ротор вращался непрерывно. [3]

Список литературы

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Принцип работы асинхронного двигателя может быть разработан, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимальным положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т.е. одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения. положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, объединенный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. Картина токов ротора за мгновение t 1 рисунка показана на этом рисунке. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности и до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *