Обмоточные данные электродвигателей серии а: Обмоточные данные электродвигателей серий А, АД, АЛ, АОЛ

Обмоточные данные электродвигателей серий А, АД, АЛ, АОЛ
Обмоточные данные электродвигателей серий А, АД, АЛ, АОЛ — ООО ПФ «КРЭДО»
Типn
об/мин.
Р
кВт
Ток
А
UСоединение
фаз
Nd
мм
у
аМ
кг
DaDiL1Z1Кл.
изол.
АДМ100S2У2 3000 4.0 7.9 380 Y 36 1.00х2 11;9 1 3,6 173 88 100 24
АДММ71А4 1500 0,5 1,8 380 Y 84 0,45 11;9;7 1 115 70 60 36
АЛ80В4 1500 1,5 380 Y 70 0,80 5 1 138 83 112 24
АДМ112М2У3 3000 7,5 15,0 380 Y 36 1,16 17;15;13 2 4,5 202 112 105 36
АДМ80В4У2 1500
1,5
3,78 380 Y 54 0,75 11;9;7 1 1,5 137 83 90 36
АД90L2У3 3000 3,0 6,2 380 Y 41 0,63х2 11;9 1 135 75 120 24
АДМ132М6У2 1000 7,5 17,5 380 Y 21 1,32+1,06 5 1 36
АОЛ32-12М 4000 1,7 8,3 220 f=400Гц Δ 17 0,56х2 5 1 1,2 142 110 65 72
АОЛ31-12М 4000 1,0 5,7 220 f=400Гц Δ 22 0,67 5 1 0,9 142 110 55 72
А132S6У3 1000 5,5 12,1 380 Y 25 0,85х3 5 1 206 146 170 36
А180М8 750 15,0 60,0/35,0 220/380 Δ/Y 25 0,80х5 5 2 10,3 274 196 228 48
АДН112М4У2 1500 5,5 12,0 380 Y 51 0,75х2 11;9;7 2 4,7 205 125 117 36
АДМ80В2У3 3000 2,2 4,86 380 Y 48
0,95
11;9 1 135 73 95 24
А132S4У3 1500 7,5 16,0 380 Y 21+42 0,95х2 9;7 2 207 128 150 36
АДМ112М6 1000 4,0 9,4 380 Y 32 1,00х2 7;5 1 204 136 132 36
АЛ132М4У3 1500 11,0 22,4 380 Y 33 1,08х2 11;9;7 2 224 144 160 36
АДМ100L6У2 954 2,2 6,1 380 Y 41 1,00 7;5 1 170 115 120 36 F
А132М6 960 7.5 17.0 380 Y 18 0,85х4 5 1 207 145 213 36 F
АДМ132М2У3 2910
11,0
22,0 380 Y 27 1,06х2 17;15;13 2 5,7 202 105 160 36 F
А132М2У3 2890 11,0 37,0/22,0 220/380 Δ/Y 13 1,04х4 17;15;13 1 207 113 155 36 F
А132М4 1500 7,5 380/660 Δ/Y 28 0,95х3 9;7+7 1 215 136 200
36
АДМ100L2У3 2850 5,5 10,7 380 Y 30 1,06х2 11;9 1 170 89 130 24 F
АД90L6У3 935 1,5 4,1 380 Y 49 0,8 7;5 1 149 100 115 36 F
АД-120У3 2790 0,12 0,4 380 Y 250 0,25 9;7+7 1 75 52 48 18 А
АДМ100L2У2 2850 5,5 19,7/11,4 220/380 Δ/Y 30 1,06х2 11;9 1 172 89 132 24 F
А132М4У3 1450 11,0 38,0/22,0 220/380 Δ/Y 31 1,06+1,00 11;9;7 2 226 145 165 36 F
АДМ160М6У3 970 15,0 54,2/31,3 220/380
Δ/Y
11 1,45х3 9;7+7 1 9,8 274 192 200 54 F
АД80В4У2 1400 1,5 3,5 380 Y 48 0,80 11;9;7 1 1,8 135 80 95 36 В
АДМ100S4У3 1410 3,0 7,17 380 Y 38 1,06 11;9;7 1 3,0 172 102 100 36 F
А180М4 1465 30,0 57,5/33,2 380/660 Δ/Y 12+12 1,40+1,30 10 2 13,0 295 185 245 48 F
АДМ90L2 2830 3,0 7,03 380 Y 43 1,18 11;9 1 2,7 151 82 100 24 F
А280L2У3 2940 45,0 82,0/47,0 380/660 Δ/Y 10+11 1,25х5 15 2 24,6 296 163 280 36
АДМ112А6У2 950 3,0 13,0/7,6 220/380 Δ/Y 40 0,9х2 7;5 1 3,9 204 134 105 36 F
А250М6У4 1000 45,0 380/660 Δ/Y 9+9 1,15х7 8 2 31 398 240 250 60
AL90S/2-0,4 1400 1,5 5,79/3,35 220/380 Δ/Y 54 0,71 11;9;7 1 132 96 85 36 F

^
наверх DIV >

Обмоточные данные электродвигателей серии 5А

Обмоточные данные электродвигателей серии 5А — ООО ПФ «КРЭДО»
Типn
об/мин.
Р
кВт
Ток
А
UСоединение
фаз
Nd
мм
у
Шаг
аМ
кг
DaDiL1Z1Кл.
изол.
5АИ63А14 1500 0,25 1,37/0,79 220/380 Δ/Y 190 0,40 5 1 110 65 54 24 F
5АИ71В6У3 1000 0,55 2,9/1,73 220/380 Δ/Y 85 0,56 5 1 1,35 111 68 100 36 F
5АИ80В6У2 1000 1,1 3,0 380 Y 65 0,71 7;5 1 132 90 117 36 F
5АИ80В4У2 1390 1,5 6,83/3,95 220/380 Δ/Y 68 0,74 5 1 130 79 107 24 F
5АИ80А2У3 3000 1,5 5,7/3,5 220/380 Δ/Y 74 0,56х2 9;7+7 1 122 68 94 18 F
5АИ80В4У3 1400 1.5 220/380 Δ/Y 70 0.74 5 1 24 F
5АИ80В2У3 3000 2,2 8,1/4,7 220/380 Δ/Y 55 0,65х2 9;7+7 1 120 67 120 18 F
5АИ100S2У35 3000 4,0 14,6/8,45 220/380 Δ/Y 25 0,80х2 11;9 1 1,8 160 72 138 24 F
5АИ100S2У3 3000 4,0 14,6/8,15 220/380 Δ/Y 25 0,80х2 11;9 2 1,8 162 86 136 24 F
5АИ100S2У3 3000 4,0 14,6/6,45 220/380 Δ/Y 19 0,90х2 11;9 1 2,0 152 84 180 24 F
5АИ100 1500 4,0 8,4 380 Y 28 0,90х2 11;9;7 1 174 106 120 36 F
5АИ112М4У3 1450 5,5 20,0/11,7 220/380 Δ/Y 26 1,06х2 9;7+7 1 188 124 126 36 F
5АИ112М4У3 1450 5,5 11,7 380 Y 24 1,06х2 9;7+7 1 4,2 190 120 125 36 F
5АИ112М2 3000 7,6 25,0/14,8 220/380 Δ/Y 17 0,95х3 15;13;11+13;11 1 176 98 140 30 F
5АИ132S6У3 965 5,5 22,0/12,9 220/380 Δ/Y 25 1,00х2 5 1 210 148 150 36 F
5АИ132S4У3 1500 7,5 26,9/15,6 220/380 Δ/Y 21 0,95х3 9;7+7 1 4,68 210 140 142 36 F
5АИ132М4У3 1500 11,0 39,6/23,1 220/380 Δ/Y 16 0,9х5 9;7+7 1 213 136 184 36 F
5АИ132М4У35 1500 11,0 38,2/22,1 220/380 Δ/Y 11 1,04х3 11;9;7 1 3,9 213 135 232 36 F
5АИ132М2У3 3000 11,0 37,8/21,8 220/380 Δ/Y 11 0,95х4 15;13;11+13;11 1 3,9 212 116 170 30 F
5АМХ132М2У3 2910 11,0 21,0 380 Y 29 1,12+1,06 17;15;13 2 220 124 130 36 F
5АИ160S6У3 1000 11,0 23,5/13,5 380/660 Δ/Y 28 0,95х3 5 1 6,8 260 179 170 36 F
5АМХ160М4 1500 18,5 63,0/36,5 220/380 Δ/Y 21;11;10 1,18х3 11;9;7 2 11,8 270 165 190 48 F
5АИ160М4У3 1450 18,5 35,0/20,2 380/660 Δ/Y 20 1,00х4 9;7+7 1 260 178 192 36 F
5А160S2У2 3000 15,0 380 Δ 24+24 1,10х2 13 2 260 140 143 36 F
5АИ160S2У3 2940 15,0 29,4/17,0 380/660 Δ/Y 21+21 0,95х2 13 2 260 150 145 36 F
5АМХ160М2У3 3000 18,5 60,5/35,0 220/380 Δ/Y 12+12 1,25х3 13 2 254 138 153 36 F
5А160М2У3 2920 18,5 60,5/35,0 220/380 Δ/Y 13+12 1,25х3 13 2 12,6 261 140 150 36 F
5АИ180М2 3000 30,0 56.9/32.9 380/660 Δ/Y 13+13 1,00х4 12 2 15,0 290 165 215 36 F
5АМХ180S2У3 2930 22,0 71,5/41,5 220/380 Δ/Y 12+12 1,16х4 12 2 295 146 130 36 F
5А200М4У3 1470 37,0 124,0/72,0 220/380 Δ/Y 7+8 1,18х6 10 2 20,0 329 207 205 48 F
5А225М4У3 1500 55,0 220/380 Δ/Y 10+9 1,18х4 10 4 15,0 347 215 282 48 F
5АМ250М4У3 1500 90,0 164,0/94,0 380/660 Δ/Y 13+13 1,20х5 12 4 51,0 60 F
5АИ250М4У2 1480 90,0 165,6/95,6 380/660 Δ/Y 13+13 1,40х4 10 4 43 400 282 350 48 F
5АИ250S2У3 3000 75,0 134,6/77,5 380/660 Δ/Y 8+9 1,68х4 11 2 400 230 230 36 F
5АМ280М4Y3 1480 132,0 241,0/139,0 380/660 Δ/Y 9+9 1,56х6 12 4 90,0 60 F
5А180М4 1460 30,0 98,0/57,0 220/380 Δ/Y 14 1,18х3+1,1х2 10 2 13,2 274 170 266 48 F
5АИ80В2 2820 2,2 8,62/4,99 220/380 Δ/Y 59 0,63х2 9;7+7 1 130 72 107 18 F
3000 15,0 380/660 Δ/Y 21+21 0,95+0,9 13 2 7,2 260 150 135 36 F
5АМ112М2У3 2925 7,5 23,8/13,8 220/380 Δ/Y 18 1,06х2+1,12 17;15;13 1 5,7 190 110 130 36 F
5А160S4У3 1450 15,0 51,0/30,0 220/380 Δ/Y 25;13;12 1,30х2 11;9;7 2 10,0 260 162 160 48 F
5АМ112МВ6У3 950 4,0 15,5/9,2 220/380 Δ/Y 23 0,90х2 11;9;7 1 3,1 192 132 130 54 F
5АИ200_6 980 30,0 50,5/34,4 380/660 Δ/Y 11+11 1,06х3 8 2 13,8 330 230 255 54 F
5А200М8УОУ3 735 18,5 71,0/41,0 220/380 Δ/Y 19+19 1,06х2 7 4 15,6 330 235 205 72 F
5АИ100L2У2 2870 5,5 19,0/11,0 220/380 Δ/Y 22 0,85+0,90 15;13;11+13;11 1 2,3 175 100 120 30 F
5АИ100L4У2 1425 4,0 15,2/8,8 220/380 Δ/Y 28 0,83х2 8;8+7 1 2,4 175 110 120 36 F
5АИ132М2У3 2930 11,0 37,6/21,8 220/380 Δ/Y 16 1,04х4 15;13;11+13;11 1 214 117 144 30 F
5А225М4У3 1470 55,0 107,7/62,0 380/660 Δ/Y 17+17 1,06х3 11 4 20 375 245 265 48 F
5АИ112М4У2 1440 5,5 20,8/12,0 220/380 Δ/Y 21 0,67х4 9;7+7 1 2,8 175 110 150 36 F
5АИ100S4У2 1420 3,0 11,6/6,7 220/380 Δ/Y 35 0,67х2 9;7+7 1 2,3 160 97 120 36 F
5А200М6УПУ3 975 22,0 44,5/26,0 380/660 Δ/Y 20+20 1,00х2 10 3 326 236 200 72 F
5АИ90L4У3 1410 2,2 9,1/5,3 220/380 Δ/Y 45 0,63х2 5 1 133 90 155 24 F
5АИ80В2У2 2840 2,2 8,0/4,6 220/380 Δ/Y 26+26 0,80 6 1 119 68 122 18 F
5АМ250S2У3 2960 75,0 132,/76,0 380/660 Δ/Y 9+8 1,50х6 14 2 44 439 233 215 48 F
5АМ315S2 2970 160,0 278,0/160,0 380/660 Δ/Y 5+5 1,62х12 17 2 81 540 285 295 48 F
5АИ80А4У2 1400 1,1 4,7/2,7 220/380 Δ/Y 81 0,71 5 1 1,2 121 75 95 24 F
5АИ132М4Y2 1445 11,0 22,3/130 380/660 Δ/Y 27 1,06х2 11;9;7 1 212 135 180 36 F
5А180 1500 22,0 380 Y 38 1,12х2 11;9 4 272 172 195 48 F

^
наверх DIV >

Обмоточные данные электродвигателей серий АИР и АИС
АИР71А2, АИС80А2 0,74 3,0/1,7 62,8 68 24 11;9 1 78 0,63 1,1
АИР71В2, АИС80В2 1,1 4,4/2,5 62,8 77 24 11;9 1 66 0,63 0,97
АИР71А4, АИС80А4 0,55 2,8/1,6 67,8 65 36 11;9;7 1 91 0,5 0,96
АИР71В4, АИС80В4 0,75 3,3/1,9 67,8 76 36 11;9;7 1 72 0,56 1,07
АИР71А6, АИС80А6 0,37 2,3/1,3 77,8 65 36 7;5 1 110 0,45 0,82
АИР71В6, АИС80В6 0,55 3,0/1,7 77,8 90 36 7;5 1 86 0,5 0,93
АИС80А8 0,18 1,3/0,8 76,8 62 36 5;3+5 1 158 0,355 0,71
АИР71В8, АИС80В8 0,25 1,8/1,0 76,8 73 36 5;3+5 1 133 0,4 0,84
АИР80А2 1,5 5,7/3,3 72,8 78 24 11;9 1 61 0,8 1,64
АИР80В2 2,2 8,0/4,6 72,8 102 24 11;9 1 50 0,9 1,86
АИР80А4 1,1 4,7/2,7 85,8 78 36 11;9;7 1 60 0,63 1,15
АИР80В4 1,5 6,1/3,5 85,8 98 36 11;9;7 1 48 0,71 1,25
АИР80А6 0,75 3,9/2,3 88,8 78 36 7;5 1 78 0,56 1,03
АИР80В6 1,1 5,3/3,1 88,8 98 36 7;5 1 57 0,71 1,46
АИР80А8 0,37 2,7/1,05 85,8 78 36 5;3+5 1 100 0,5 1,14
АИР80В8 0,55 3,6/2,1 85,8 115 36 5;3+5 1 80 0,56 1,24
АИР90L2 3 10,6/6,1 81,8 100 24 11;9 1 42 1,12 2,61
АИР90L4 2,2 8,6/5,0 95,8 100 36 11;9;7 1 41 0,85 1,62
АИР90L6 1,5 7,2/4,2 99,8 110 36 7;5 1 52 0,8 1,82
АИР90L8 0,75 3,6/2,1 105,8 100 48 7;5 1 68 0,63 1,72
АИР100S2, АИС112М2 4,0 13,7/7,9 88,8 105 24 11;9 1 37 х 2 1,0 3,08
АИР100L2 5,5 18,4/10,7 88,8 136 24 11;9 1 30 х 2 1,12 4,5
АИР100S4, АИС100L4 3,0 11,6/6,7 103,8 98 36 11;9;7 1 38 1,12 2,96
АИР100L4, АИС112М4 4,0 14,7/8,5 103,8 127 36 11;9;7 1 29 1,32 3,52
АИР100L6, АИС112М6 2,2 9,6/5,6 112,8 120 36 7;5 1 42 1,06 2,6
АИР100L8, АИС112М8 1,5 6,8/3,9 116,8 120 48 7;5 1 50 0,85 2,72
АИР112М2У2 7,5 26,0/15,0 108 125 36 17;15;13 1 18 х 2 1,25 5,08
АИР112М4У2 5,5 20,0/11,0 120 125 36 11;9;7 1 26 х 2 1,06 3,88
АИР112МА6У2 3,0 13,0/17,4 132 100 54 11;9;7 1 28 1,12 2,9
АИР112МВ6У2 4,0 16,0/9,1 132 125 54 11;9;7 1 24 1,25 3,46
АИР112МА8У2 2,2 11,0/6,1 132 100 48 7;5 1 40 1,06 3,18
АИР112МВ8У2 3,0 13,0/7,8 132 130 48 7;5 1 31 1,18 3,48
АИР132М2У2 11,0 37,0/21,0 127 130 36 17;15;13 2 29 х 2 1,12 7,29
АИР132S4У2 7,5 36,0/15,0 140 115 36 11;9;7 1 23 х 2 1,32 5,67
АИР132М4У2 11,0 38,0/22,0 140 160 36 11;9;7 2 33 х 2 1,12 6,84
АИР132S6У2 5,5 21,0/12,0 154 115 54 11;9;7 1 21 х 2 1,06 4,43
АИР132М6У2 7,5 28,0/16,0 154 160 54 11;9;7 1 15 х 2 1,25 5,2
АИР132S8У2 4,0 18,0/10,0 158 115 48 7;5 2 28 1,4 4,3
АИР132М8У2 5,5 24,0/14,0 158 160 48 7;5 1 21 х 2 1,12 4,95
АИС132SA2У2 5,5 19,0/11,0 108 100 36 17;15;13 1 23 х 2 1,12 4,84
АИС132SB2У2 7,5 26,0/15,0 108 125 36 17;15;13 2 18 х 2 1,25 5,08
АИС132S4У2 5,5 20,0/11,0 120 125 36 11;9;7 1 26 х 2 1,06 3,88
АИС132М4У2 7,5 27,0/15,0 120 175 36 11;9;7 1 19 х 3 1,0 4,73
АИС132S6У2 3,0 13,0/7,4 132 100 54 11;9;7 1 28 1,12 2,9
АИС132МА6У2 4,0 16,0/9,8 132 125 54 11;9;7 1 24 1,25 3,46
АИС132МВ6У2 5,5 22,0/12,0 132 175 54 11;9;7 1 17 х 2 1,06 4,06
АИС132S8У2 2,2 11,0/6,1 132 100 48 7;5 1 40 1,06 3,18
АИС132М8У2 3,0 13,0/7,8 132 130 48 7;5 1 31 1,18 3,49

Ошибка 404. Страница не найдена!

Ошибка 404. Страница не найдена!

К сожалению, запрошенная вами страница не найдена на портале. Возможно, вы ошиблись при написании адреса в адресной строке браузера, либо страница была удалена или перемещена в другое место.

Обмоточные данные электродвигателей серии А2 и АО2
Обмоточные данные электродвигателей серии А2 и АО2 — ООО ПФ «КРЭДО»
ТипР
кВт
Nd
мм
уаМ
кг
DaDiL1Z1Z2
АОЛ2-11-2 0,8 97 0,64 11;9 1 1.48 133 73 54 24 20
АОЛС2-11-2 0,9 93 0,64 11;9 1 1,41 133 73 54 24 20
АО2-11-2 0,8 97 0,64 11;9 1 1,46 133 73 52 24 20
АОС2-11-2 0,9 93 0,64 11;9 1 1,40 133 73 52 24 20
АОЛ2-12-2 1,1 78 0,72 11;9 1 1,58 133 73 67 24 20
АОЛС2-12-2 1,3 75 0,72 11;9 1 1,51 133 73 67 24 20
АО2-12-2 1,1 78 0,72 11;9 1 1,56 133 73 65 24 20
АОС2-12-2 1,3 75 0,72 11;9 1 1,60 133 73 65 24 20
АОЛ2-11-4 0,6 129 0,57 7;5 1 1,25 133 80 54 24 30
АОЛС2-11-4 0,6 124 0,57 7;5 1 1,19 133 80 54 24 30
АО2-11-4 0,6 129 0,57 7;5 1 1,19 133 80 52 24 30
АОС2-11-4 0,6 128 0,57 7;5 1 1,18 133 80 52 24 30
АОЛ2-12-4 0,8 107 0,62 7;5 1 1,31 133 80 67 24 30
АОЛС2-12-4 0,9 101 0,64 7;5 1 1,32 133 80 67 24 30
АО2-12-4 0,8 107 0,62 7;5 1 1,26 133 80 65 24 30
АОС2-12-4 0,9 98 0,64 7;5 1 1,23 133 80 65 24 30
АОЛ2-11-6 0,4 120 0,55 7;5 1 1,51 133 80 67 36 26
АОЛС2-11-6 0,4 120 0,55 7;5 1 1,51 133 80 67 36 26
АО2-11-6 0,4 122 0,55 7;5 1 1,51 133 80 65 36 26
АОС2-11-6 0,4 120 0,57 7;5 1 1,60 133 80 65 36 26
АОЛ2-12-6 0,6 95 0,64 7;5 1 1,73 133 80 77 36 26
АОЛС2-12-6 0,6 94 0,64 7;5 1 1,69 133 80 77 36 26
АО2-12-6 0,6 95 0,64 7;5 1 1,70 133 80 75 36 26
АОС2-12-6 0,6 94 0,64 7;5 1 1,68 133 80 75 36 26
АОЛ2-21-2 1.5 69 0.86 11;9 1 2.15 153 86 65 24 20
АОЛС2-21-2 1,8 66 0,90 11;9 1 2,25 153 86 65 24 20
АО2-21-2 1,5 69 0,86 11;9 1 2,12 153 86 63 24 20
АОС2-21-2 1,8 66 0,90 11;9 1 2,22 153 86 63 24 20
АОЛ2-22-2 2,2 54 0,96 11;9 1 2,32 153 86 92 24 20
АОЛС2-22-2 2,5 50 1,0 11;9 1 2,34 153 86 92 24 20
АО2-22-2 2,2 54 0,96 11;9 1 2,30 153 86 90 24 20
АОС2-22-2 2,5 50 1,0 11;9 1 2,32 153 86 90 24 20

^
наверх DIV >

Обмоточные данные асинхронных двигателей серии А, АО, АК 3-7 габаритов — Таблицы — Справочник
Нормальные обмоточные данные статоров асинхронных электродвигателей единой серии А, АО, АК 3 — 7 габаритов.
 Тип
электро-
двигателя
Мощ-
ность
Р2,
кВт
Напряжение
U1, В
Соеди-
нение
фаз
Ток
I1, А
Скорость
вращения
n, об/мин
Размеры пакета статора
Воздушный
зазор δ, мм
Статор
 Наружный
диаметр
Da, мм
Внутренн.
диаметр
Di, мм
Длина
l, мм
  Число
пазов
z1
Число
провод
ников в пазу
Sп
Диаметр
голого
провода
d, мм
Сопротив-
ление
фазы при
15ºС r1, Ом
Средняя
длина
витка
lср, мм
Вес
меди
Gм, кг
 А31-2
АО31-2
АОЛ31-2
1,0
1,0
1,0
127/220
220/380
500
 Δ/Υ
Δ/Υ
Υ
6,6/3,8
3,8/2,2
1,7
2850
2850
2850
 145
145
145
82
82
82
64
64
64
0,35
0,35
0,35
24
24
24
43
74
97
0,93
0,67
0,57
2,15
7,05
12,80
480
480
480
1,57
1,43,
1,37
 А32-2
АО32-2
АОЛ32-2
1,7
1,7
1,7
 127/220
220/380
500
 Δ/Υ
Δ/Υ
Υ
 11,1/6,4
6,4/3,7
2,8
 2850
2850
2850
145
145
145
82
82
82
100
100
100
 0,35
0,35
0,35
 24
24
24
29
49
65
1,12
0,83
0,72
 1,135
3,51
6,2
552
552
552
1,77
1,66
1,66
А31-4
АО31-4
АОЛ31-4
0,6
0,6
0,6
 127/220
220/380
500
 Δ/Υ
Δ/Υ
Υ
 4,8/2,8
2,8/1,6
1,2
1410
1410
1410
 145
145
145
89
89
89
64
64
64
0,25
0,25
0,25
24
24
24
68
118
155
0,77
0,57
0,47
3,70
11,70
22,50
360
360
360
1,3
1,25
1,13
А32-4
АО32-4
АОЛ32-4
1,0
1,0
1,0
 127/220
220/380
500
 Δ/Υ
Δ/Υ
Υ
 7,3/4,2
4,2/2,4
1,8
 1410
1410
1410
145
145
145
89
89
89
100
100
100
0,25
0,25
0,25
24
24
24
46
80
105
0,96
0,72
0,59
 1,92
5,93
11,60
430
430
430
 1,62
1,60
1,43
 А31-6
АО31-6
АОЛ31-6
0,4
0,4
0,4
127/220
220/380
500
 Δ/Υ
Δ/Υ
Υ
 3,9/2,25
2,25/1,3
1,0
935
935
935
 145
145
145
 89
89
89
 64
64
64
0,25
0,25
0,25
36
36
36
72
125
164
0,72
0,53
0,44
 5,81
18,6
35,4
328
328
328
1,64
1,56
1,44
А32-6
АО32-6
АОЛ32-6
0,6
0,6
0,6
127/220
220/380
500
 Δ/Υ
Δ/Υ
Υ
 5,3/3,1
3,1/1,8
1,35
940
940
940
145
145
145
89
89
89
100
100
100
0,25
0,25
0,25
36
36
36
47
81
107
0,93
0,69
0,57
2,95
9,11
17,7
400
400
400
2,15
2,06
1,88

А41-2
2,8
2,8
2,8
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
17,3/10,0
10,0/5,8
4,4
2870
2870
2870
182
182
182
104
104
104
75
75
75
0,5
0,5
0,5
24
24
24
27
47
62
1,40
1,12
0,96
0,715
1,96
3,55
580
580
580
2,70
3,02
2,93

А42-2
4,5
4,5
4,5
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
27,0/15,7
15,7/9,1
6,8
2870
2870
2870
182
182
182
104
104
104
115
115
115
0,5
0,5
0,5
24
24
24
18х3
31
41
1,00
1,35
1,20
0,36
1,01
1,7
660
660
660
3,17
3,27
3,42

АО41-2
АОЛ41-2
1,7
1,7
1,7
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
10,7/6,2
6,2/3,6
2,8
2880
2880
2880
182
182
182
104
104
104
75
75
75
0,5
0,5
0,5
24
24
24
31
53
70
1,35
1,04
0,90
0,885
2,58
4,55
580
580
580
2,88
2,95
2,92
АО42-2

АОЛ42-2

2,8
2,8
2,8
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
17,3/10,0
10,0/5,8
4,4
2880
2880
2880
182
182
182
104
104
104
115
115
115
0,5
0,5
0,5
24
24
24
23х3
39
51
0,90
1,16
1,04
0,568
1,70
2,84
660
660
660
3,27
3,05
3,22
А41-4
АО41-4
АОЛ41-4
1,7
1,7
1,7
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
11,6/6,7
6,7/3,9
2,9
1420
1420
1420
182
182
182
112
112
112
75
75
75
0,3
0,3
0,3
36
36
36
31
53
70
1,30
0,96
0,83
1,07
3,58
5,99
460
460
460
3,18
2,98
2,96
А42-4
АО42-4
АОЛ42-4
2,8
2,8
2,8
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
18,2/10,5
10,5/6,1
4,6
1420
1420
1420
182
182
182
112
112
112
115
115
115
0,3
0,3
0,3
36
36
36
20х2
36
46
1,12
1,20
1,00
0,575
1,81
3,33
540
540
540
3,59
3,70
3,31
А41-6
АО41-6
АОЛ41-6
1,0
1,0
1,0
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
8,2/4,8
4,8/2,8
2,1
930
930
930
182
182
182
112
112
112
75
75
75
0,3
0,3
0,3
36
36
36
44
76
100
1,04
0,77
0,67
2,14
6,82
11,40
390
390
390
2,47
2,36
2,35
А42-6
АО42-6
АОЛ42-6
1,7
1,7
1,7
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
13,0/7,5
7,5/4,3
3,3
930
930
930
182
182
182
112
112
112
115
115
115
0,3
0,3
0,3
36
36
36
29
50
66
1,35
1,00
0,86
1,03
3,20
5,71
470
470
470
3,02
2,86
2,85

А51-2
7,0
7,0
7,0
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
41,0/24,0
24,0/13,8
10,5
2890
2890
2890
245
245
245
140
140
140
90
90
90
0,6
0,6
0,6
24
24
24
(9+9)4
(16+16)2
(21+21)2
1,2
1,3
1,12
0,19
0,575
1,01
680
680
680
6,22
6,50
6,34

А52-2
10,0
10,0
10,0
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
58,5/33,8
33,8/19,5
15,0
2890
2890
2890
245
245
245
140
140
140
140
140
140
0,6
0,6
0,6
24
24
24
(6+6)4
(11+11)3
(14+14)2
1,5
1,25
1,4
0,092
0,326
0,50
780
780
780
7,40
7,10
7,54
АО51-2,
АОЛ51-2
4,5
4,5
4,5
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
27,0/15,6
15,6/9,1
6,9
2900
2900
2900
245
245
245
140
140
140
90
90
90
0,6
0,6
0,6
24
24
24
(11+11)4
(19+19)2
(25+25)2
1,08
1,16
1,0
0,285
0,855
1,52
680
680
680
6,20
6,15
6,05
АО52-2
АОЛ52-2
7,0
7,0
7,0
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
41,0/24,0
24,0/13,8
10,5
2900
2900
2900
245
245
245
140
140
140
140
140
140
0,6
0,6
0,6
24
24
24
(8+8)4
(13+13)3
(17+17)2
1,3
1,16
1,25
0,164
0,447
0,757
780
780
780
7,44
7,22
7,3
А51-4
АО51-4
АОЛ51-4
4,5
4,5
4,5
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
28,2/16,3
16,3/9,4
7,2
1440
1440
1440
245
245
245
152
152
152
90
90
90
0,4
0,4
0,4
36
36
36
18х3
32х2
42
1,25
1,12
1,4
0,303
0,97
1,69
590
590
590
6,58
6,26
6,40

АК51-4
2,8
2,8
2,8
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
18,9/10,9
10,9/6,3
4,8
1370
1370
1370
245
245
245
152
152
152
90
90
90
0,4
0,4
0,4
36
36
36
22х3
39х2
51х2
1,12
1,00
0,86
0,46
1,54
2,74
590
590
590
6,45
6,14
6,40
А52-4
АО52-4
АОЛ52-4
7,0
7,0
7,0
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
42,6/24,6
24,6/14,2
10,8
1440
1440
1440
245
245
245
152
152
152
140
140
140
0,4
0,4
0,4
36
36
36
25х2
22х2
29х2
1,3
1,4
1,2
0,171
0,52
0,93
690
690
690
7,66
7,82
7,60

АК52-4
4,5
4,5
4,5
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
29,4/17,1
17,1/19,9
7,3
1440
1440
1440
245
245
245
152
152
152
140
140
140
0,4
0,4
0,4
36
36
36
30х2
26х2
34х2
1,2
1,3
1,08
0,241
0,710
1,34
690
690
690
7,85
8,00
7,25
А51-6
АО51-6
АОЛ51-6
2,8
2,8
2,8
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
19,7/11,4
11,4/6,6
5,0
950
950
950
245
245
245
152
152
152
90
90
90
0,4
0,4
0,4
36
36
36
27х2
47
62
1,25
1,35
1,16
0,555
1,66
2,95
480
480
480
5,34
5,42
5,28

АК51-6
1,7
1,7
1,7
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
14,4/8,3
8,3/4,8
3,7
905
905
905
245
245
245
152
152
152
90
90
90
0,4
0,4
0,4
36
36
36
32х2
56
74
1,12
1,2
1,04
0,82
2,50
4,40
480
480
480
5,10
5,11
5,11
А52-6
АО52-6
АОЛ52-6
4,5
4,5
4,5
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
30,3/17,5
17,5/10,1
7,7
950
950
950
245
245
245
152
152
152
140
140
140
0,4
0,4
0,4
36
36
36
18х3
31х2
41
1,25
1,16
1,4
0,298
0,894
1,630
580
580
580
6,45
6,40
6,14
АК52-62,8
2,8
2,8
127/220
220/380
500
Δ/Υ
Δ/Υ
Υ
22,2/12,8
12,8/7,4
5,6
920
920
920
245
245
245
152
152
152
140
140
140
0,4
0,4
0,4
36
36
36
21х3
36х2
47х2
1,16
1,04
0,93
0,40
1,29
2,13
580
580
580
6,50
6,00
5,26

А61-2
14,0
14,0
220/380
500
Δ/Υ
Υ
47,0/27,5
21,0
2900
2900
327
327
180
180
75
75
0,75
0,75
36
36
(9+10)3
(12+13)2
1,40
1,56
0,355
0,564
820
820
12,10
13,00

А62-2
20,0
20,0
220/380
500
Δ/Υ
Υ
66,0/38,0
29,0
2920
2920
327
327
180
180
100
100
0,75
0,75
36
36
(14+14)2
18+18)2
1,40
1,20
0,208
0,365
870
870
12,50
11,85
АО62-210,0
10,0
220/380
500
Δ/Υ
Υ
34,0/19,5
15,0
2930
2930
327
327
180
180
100
100
0,75
0,75
36
36
(18+18)2
(12+12)2
1,30
1,62
0,309
0,534
870
870
14,40
14,65

АО63-2
14,0
14,0
220/380
500
Δ/Υ
Υ
46,5/27,4
20,5
2930
2930
327
327
180
180
135
135
0,75
0,75
36
36
(14+14)2
(18+18)2
1,45
1,30
0,210
0,335
940
940
14,90
19,50
А61-4
10,0
10,0
220/380
500
Δ/Υ
Υ
34,1/19,7
15,0
1450
1450
327
327
200
200
75
75
0,4
0,4
36
36
(14+14)2
(18+18)2
1,35
1,20
0,587
0,956
570
570
7,60
7,78
АК60-47,0
7,0
220/380
500
Δ/Υ
Υ
27,0/15,5
12,0
1400
1400
327
327
200
200
55
55
0,4
0,4
36
36
(16+16)2
(21+21)2
1,35
1,16
0,708
1,325
600
600
9,16
8,92
АК61-410,0
10,0
220/380
500
Δ/Υ
Υ
37,0/21,5
16,5
1420
1420
327
327
200
200
75
75
0,4
0,4
36
36
(12+12)2
(16+16)2
1,50
1,30
0,454
0,810
6409,00
9,10
А62-414,0
14,0
220/380
500
Δ/Υ
Υ
47,5/27,5
20,8
1450
1450
327
327
200
200
100
100
0,4
0,4
36
36
(10+10)2
(13+13)2
1,62
1,40
0,316
0,551
620
620
8,45
8,25
АО62-67,0
7,0
220/380
500
Δ/Υ
Υ
27,0/15,5
12,0
980
980
327
327
200
200
100
100
0,4
0,4
36
36
(14+14)2
(19+19)2
1,35
1,16
0,566
1,035
550
550
7,60
7,72
АО63-610,0
10,0
220/380
500
Δ/Υ
Υ
36,5/21,0
16,0
980
980
327
327
200
200
135
135
0,4
0,4
36
36
21+21
(14+14)2
1,62
1,40
0,333
0,592
620
620
9,14
9,20
А61-84,5
4,5
4,5
4,5
220/380
500
220/380
500
Δ/Υ
Υ
Δ/Υ
Υ
19,0/11,0
8,5
19,0/11,0
8,5
730
730
730
730
327
327
327
327
230
230
230
230
75
75
75
75
0,4
0,4
0,4
0,4
48
48
54
54
(18+18)2
24+24
(16+16)2
21+21
1,20
1,45
1,16
1,45
1,095
2,00
1,12
1,89
490
490
480
480
8,94
8,60
8,43
8,50
АК61-84,5
4,5
220/380
500
Δ/Υ
Υ
21,0/12,0
9,5
700
700
327
327
230
230
75
75
0,4
0,4
48
48
(18+18)2
24+24
1,20
1,45
1,095
2,00
490
490
8,94
8,60

Обмоточные данные электродвигателей серии 4А

Обмоточные данные электродвигателей серии 4А — ООО ПФ «КРЭДО»

U=220/380 Вольт.

ТипР
кВт
Ток
А
Nd
мм
аМ
кг
уDaDiL1 при размере:Z1Z2
4А50А2 0,09 0,31 450 0,27 1 0,44 7;5 81 41 42 12 9
4А50В2 0,12 0,46 394 0,31 1 0,53 7;5 81 41 50 12 9
4А50А4 0,06 0,31 635 0,27 1 0,48 3 81 46 42 12 15
4А50В4 0,09 0,46 500 0,31 1 0,55 3 81 46 50 12 15
4А56A2 0.18 0,55 166 0.29 1 0.4 11;9 89 48 47 24 18
4A56B2 0.25 0,73 143 0.33 1 0.46 11;9 89 48 56 24 18
4A56A4 0.12 0,44 254 0.29 1 0.5 7;5 89 55 47 24 18
4A56B4 0.18 0,67 203 0.33 1 0.55 7;5 89 55 56 24 18
4A63A2 0.37 0,93 126 0.38 1 0.55 11;9 100 54 56 24 18
4A63B2 0.55 1,33 101 0.44 1 0.62 11;9 100 54 65 24 18
4A63A4 0.25 0,86 169 0.38 1 0.61 7;5 100 61 56 24 18
4A63B4 0.37 1,2 137 0.41 1 0.61 7;5 100 61 65 24 18
4A63A6 0.18 0,79 170 0.33 1 0.62 7;5 100 65 56 36 28
4A63B6 0.25 1,04 131 0.41 1 0.85 7;5 100 65 75 36 28
4A71A2 0.75 1,7 89 0.53 1 0.91 11;9 116 65 65   24 20
4A71B2 1.1 2,5 73 0.59 1 0.96 11;9 116 65 74 24 20
4A71A4 0.55 1,7 113 0.53 1 0.92 7;5 116 70 65 24 18
4A71B4 0.75 2,17 95 0.57 1 0.94 7;5 116 70 74 24 18
4A71A6 0.37 2,17 114 0.47 1 0.97 7;5 116 76 65 36 28
4A71B6 0.55 1,26 85 0.53 1 108 7;5 116 76 90 36 28
4A71B8 0.25 1,05 148 0.41 1 0.95 5;3+5 116 76 74 36 28
4A80A2 1.5 3,3 61 0.8 1 1.59 11;9 131 74 78 24 20
4A80B2 2.2 48 0.93 1 1.82 11;9 131 74 98 24 20
4A80A4 1.1 2,7 60 0.67 1 1.36 11;9;7 131 84 78 36 28
4A80B4 1.5 3,5 49 0.74 1 1.49 11;9;7 131 84 98 36 28
4A80A6 0.75 1,35 82 0.59 1 1.24 7;5 131 88 78 36 28
4A80B6 1.1 1,75 58 0.72 1 1.58 7;5 131 88 115 36 28
4A80A8 0.37 0,85 121 0.49 1 1.16 5;3+5 131 88 78 36 28
4A80B8 0.55 1,15 91 0.57 1 1.33 5;3+5 131 88 98 36 28
4A90L2 3.0 6,1 44 1.08 1 2.51 11;9 149 84 100 24 20
4A90L4 2.2 5,02 40 0.9 1 1.92 11;9;7 149 95 100 36 28
4A90L6 1.5 4,1 51 0.83 1 1.95 7;5 149 100 110 36 28
4A90LA8 0.75 2,7 74 0.67 1 1.58 5;3+5 149 100 100 36 28
4A90LB8 1.1 3,5 58 0.77 1 1.91 5;3+5 149 100 130 36 28

^
наверх DIV >

90000 4 Types of DC Motors and Their Characteristics 90001 90002 DC Motor Characteristics 90003 90004 As you already know, there are two electrical elements of a DC motor, 90005 the field windings 90006 and 90005 the armature 90006 .The armature windings are made up of current carrying conductors that terminate at a commutator. 90009 90010 90010 4 Types of DC Motors and Their Characteristics (on photo: Collector of 575kw DC motor; credit: Pedro Raposo) 90004 DC voltage is applied to the armature windings through carbon brushes which ride on the commutator.In small DC motors, permanent magnets can be used for the stator. However, in large motors used in industrial applications the stator is an electromagnet. 90009 90004 When voltage is applied to stator windings an electromagnet with north and south poles is established. The resultant magnetic field is static (non-rotational). 90009 90004 For simplicity of explanation, the stator is represented by permanent magnets in the following illustration. 90009 90018 90018 DC Motor Construction 90004 90005 The field of DC motors can be: 90006 90009 90024 90025 Permanent magnet (Permanent magnet stator), 90026 90025 Electromagnets connected in series (Wound stator), 90026 90025 Shunt (Wound stator), or 90026 90025 Compound (Wound stator).90026 90033 90004 Let’s see the basics of each type as well as their advantages and disadvantages. 90009 90036 90037 1. Permanent Magnet Motors 90038 90039 90039 Permanent Magnet Motor 90004 The permanent magnet motor uses 90005 a magnet to supply field flux 90006. Permanent magnet DC motors have excellent starting torque capability with good speed regulation. A disadvantage of permanent magnet DC motors is they are limited to the amount of load they can drive.These motors can be found on low horsepower applications.90009 90004 Another disadvantage is that torque is usually limited 90005 to 150% of rated torque 90006 to prevent demagnetization of the permanent magnets. 90009 90004 Go back to Index ↑ 90009 90036 90037 2. Series Motors 90038 90054 90054 Series DC motor 90004 In a series DC motor the field is connected in series with the armature.The field is wound with a few turns of large wire because it must carry the full armature current. 90009 90004 A characteristic of series motors is the motor develops a large amount of starting torque.However, speed varies widely between no load and full load. Series motors can not be used where a constant speed is required under varying loads. 90009 90004 Additionally, 90005 the speed of a series motor with no load 90006 increases to the point where the motor can become damaged. Some load must always be connected to a series-connected motor. 90009 90004 Series-connected motors generally are not suitable for use on most variable speed drive applications. 90009 90004 Go back to Index ↑ 90009 90036 90037 3.Shunt Motors 90038 90071 90071 DC Shunt Motor 90004 In a shunt motor the field is connected in parallel (shunt) with the armature windings. The shunt-connected motor offers good speed regulation. The field winding can be separately excited or connected to the same source as the armature. 90009 90004 90005 An advantage to a separately excited shunt field 90006 is the ability of a variable speed drive to provide independent control of the armature and field. 90009 90004 90005 The shunt-connected motor offers simplified control for reversing.This is especially beneficial in regenerative drives. 90006 90009 90004 Go back to Index ↑ 90009 90036 90037 4. Compound Motors 90038 90088 90088 Compound DC motor 90004 Compound motors have a field connected in series with the armature and a separately excited shunt field. The series field provides 90005 better starting torque 90006 and the shunt field provides 90005 better speed regulation 90006. 90009 90004 However, the series field can cause 90005 control problems in variable speed drive applications 90006 and is generally not used in four quadrant drives.90009 90004 Go back to Index ↑ 90009 90036 90037 DC Motor — Explained (VIDEO) 90038 90004 90106 90107 90009 90004 90110 Cant see this video? Click here to watch it on Youtube. 90111 90009 90004 90110 90005 Reference: 90006 Basics of DC Drives — SIEMENS (Download) 90111 90009 .90000 Classification of Electric Motors ~ Electrical Knowhow 90001 90002 In the previous topic «90003 Electrical Motors Basic Components «90004, I explained the construction and basic components of the main motor types of motors; AC and DC motors. 90005 Today, I will explain the different types in electric motors world as follows. 90006 90005 90003 90009 Main Types of Motor 90010 90004 90006 90005 90003 90009 90002 90010 90004 90002 Electric motors are broadly classified into two categories as follows: 90006 90021 90022 AC Motors.90023 90022 DC Motors. 90023 90026 Within those two main categories there are subdivisions as shown in the below image. 90003 90004 90005 90003 Motor Types 90004 90006 90003 90004 90002 90003 Notes: 90004 Recently, with the development of economical and reliable power electronic components, there are numerous ways to design a motor and the classifications of these motors have become less rigorous and many other types of motor have appeared. Our classification of motors will be comprehensive as can as possible.90005 90003 90009 First: DC motors 90010 90004 90006 90002 90045 90046 90047 90048 90049 90050 90047 90048 90003 DC motors 90004 90049 90050 90057 90058 90002 DC power systems are not very common in the contemporary engineering practice. However, DC motors have been used in industrial applications for years Coupled with a DC drive, DC motors provide very precise control DC motors can be used with conveyors, elevators, extruders, marine applications, material handling, paper, plastics, rubber, steel, and textile applications, automobile, aircraft, and portable electronics, in speed control applications.90005 90003 90009 Advantages of DC motors: 90010 90004 90006 90002 90021 90022 It is easy to control their speed in a wide range; their torque-speed characteristic has, historically, been easier to tailor than that of all AC motor categories. This is why most traction and servo motors have been DC machines. For example, motors for driving rail vehicles were, until recently, exclusively DC machines. 90023 90022 Their reduced overall dimensions permit a considerable space saving which let the manufacturer of the machines or of plants not to be conditioned by the exaggerated dimensions of circular motors.90023 90026 90002 90003 90009 Disadvantages of DC motors 90010 90004 90002 90021 90022 Since they need brushes to connect the rotor winding. Brush wear occurs, and it increases dramatically in low-pressure environment. So they can not be used in artificial hearts. If used on aircraft, the brushes would need replacement after one hour of operation. 90023 90022 Sparks from the brushes may cause explosion if the environment contains explosive materials. 90023 90022 RF noise from the brushes may interfere with nearby TV sets, or electronic devices, Etc.90023 90022 DC motors are also expensive relative to AC motors. 90023 90026 90002 Thus all application of DC motors have employed a mechanical switch or commutator to turn the terminal current, which is constant or DC, into alternating current in the armature of the machine. Therefore, DC machines are also called commutating machines. 90005 90003 90009 Types of DC motors: 90010 90004 90006 90002 90045 90046 90047 90048 90049 90050 90047 90048 90003 Types of DC motors 90004 90049 90050 90057 90058 90003 90009 90002 90010 90004 90002 The DC motors are divided mainly to: 90002 90021 90022 Brush DC motors (BDC).90023 90022 Brushless DC motors (BLDC). 90023 90026 90002 90003 90009 1. A Brush DC motors 90010 90004 90002 90045 90046 90047 90048 90049 90050 90047 90048 90003 Brush DC motors 90004 90049 90050 90057 90058 90002 A brushed DC motor (BDC) is an internally commutated electric motor designed to be run from a direct current power source. 90005 90003 90009 Applications: 90010 90004 90002 Brushed DC motors are widely used in applications ranging from toys to push-button adjustable car seats.90006 90005 90003 90009 Advantages: 90010 90004 90002 Brushed DC (BDC) motors are inexpensive, easy to drive, and are readily available in all sizes and shapes 90006 90005 90003 90009 Construction 90010 90004: 90006 90045 90046 90047 90048 90049 90050 90047 90048 90003 Brushed DC motor Construction 90004 90049 90050 90057 90058 All BDC motors are made of the same basic components: a stator, rotor, brushes and a commutator. 90005 90003 1 Stator 90004 90002 The stator generates a stationary magnetic field that surrounds the rotor.This field is generated by either permanent magnets or electromagnetic windings. 90006 90005 90003 2 Rotor 90004 90006 90002 90045 90046 90047 90048 90049 90050 90047 90048 90003 Rotor (Armature) 90004 90049 90050 90057 90058 90002 The rotor, also called the armature, is made up of one or more windings. When these windings are energized they produce a magnetic field. The magnetic poles of this rotor field will be attracted to the opposite poles generated by the stator, causing the rotor to turn.As the motor turns, the windings are constantly being energized in a different sequence so that the magnetic poles generated by the rotor do not overrun the poles generated in the stator. This switching of the field in the rotor windings is called commutation. 90005 90003 3 Brushes and Commutator 90004 90006 90045 90046 90047 90048 90045 90046 90047 90048 90003 90004 90049 90050 90047 90048 90003 Commutator Example 90004 90049 90050 90057 90058 90003 90002 90002 90004 90002 90045 90046 90047 90048 90003 90004 90049 90050 90047 90048 90003 90002 90004 90049 90050 90057 90058 90049 90050 90057 90058 90254 90002 90003 90004 90002 90003 90004 90002 Unlike other electric motor types (i.e., brushless DC, AC induction), BDC motors do not require a controller to switch current in the motor windings. Instead, the commutation of the windings of a BDC motor is done mechanically. A segmented copper sleeve, called a commutator, resides on the axle of a BDC motor. As the motor turns, carbon brushes (ride on the side of the commutator to provide supply voltage to the motor) slide over the commutator, coming in contact with different segments of the commutator. The segments are attached to different rotor windings, therefore, a dynamic magnetic field is generated inside the motor when a voltage is applied across the brushes of the motor.It is important to note that the brushes and commutator are the parts of a BDC motor that are most prone to wear because they are sliding past each other. 90005 90003 How the Commutator Works: 90004 90006 90045 90046 90047 90048 90049 90050 90047 90048 90005 90003 How the Commutator Works 90004 90006 90049 90050 90057 90058 As the rotor turns, the commutator terminals also turn and continuously reverse polarity of the current it gets from the stationary brushes attached to the battery.90005 90003 90009 Types of BDC motors: 90010 90004 90002 90003 90009 90002 90010 90004 90006 90045 90046 90047 90048 90049 90050 90047 90048 90003 Types of DC motors 90004 90049 90050 90057 90058 90002 90003 90009 90002 90010 90004 90002 The different types of BDC motors are distinguished by the construction of the stator or the way the electromagnetic windings are connected to the power source. These types are: 90021 90022 Permanent Magnet. 90023 90022 Shunt-Wound.90023 90022 Series-Wound. 90023 90022 Compound-Wound. 90023 90022 Separately excited DC motor. 90023 90022 Universal Motor. 90023 90022 Servo Motors. 90023 90026 90002 90009 A- Permanent Magnet 90010 90002 90045 90046 90047 90048 90049 90050 90047 90342 90050 90057 90058 90002 90002 90045 90046 90047 90048 90049 90050 90047 90048 90003 Permanent Magnet Motor 90004 90049 90050 90057 90058 90002 A permanent magnet DC (PMDC) motor is a motor whose poles are made out of permanent magnets to produce the stator field.90005 90003 90009 Advantages: 90010 90004 90006 90002 90021 90022 Since no external field circuit is needed, there are no field circuit copper losses. 90023 90022 Since no field windings are needed, these motors can be considerable smaller. 90023 90022 Widely used in low power application. 90023 90022 Field winding is replaced by a permanent magnet (simple construction and less space). 90023 90022 No requirement on external excitation. 90023 90026 90002 90003 90009 Disadvantages: 90010 90004 90002 90021 90022 Since permanent magnets produces weaker flux densities then externally supported shunt fields, such motors have lower induced torque.90023 90022 There is always a risk of demagnetization from extensive heating or from armature reaction effects (Some PMDC motors have windings built into them to prevent this from happening). 90023 90026 90005 90003 90009 B- Shunt-Wound 90010 90004 90006 90045 90046 90047 90048 90049 90050 90047 90048 90003 Shunt-Wound Motor 90004 90049 90050 90057 90058 90002 Shunt-wound Brushed DC (SHWDC) motors have the field coil in parallel (shunt) with the armature. 90005 The speed is practically constant independent of the load and therefore suitable for commercial applications with a low starting load, such as centrifugal pump, machine tools, blowers fans, reciprocating pumps, etc.90006 90005 90003 90009 Advantages: 90010 90004 90006 90002 90021 90022 The current in the field coil and the armature are independent of one another. as a result, these motors have excellent speed control. 90023 90022 Loss of magnetism is not an issue in SHWDC motors so they are generally more robust than PMDC motors. 90023 90022 Speed ​​can be controlled by either inserting a resistance in series with the armature (decreasing speed) or by inserting resistance in the field current (increasing speed).90023 90026 90002 90003 90009 Disadvantages: 90010 90004 90002 90021 90022 Shunt-wound Brushed DC (SHWDC) motors have drawbacks in reversing applications, however, because winding direction relative to the shunt winding must be reversed when armature voltage is reversed. Here, reversing contactors must be used. 90023 90026 90002 90003 90009 C- Series-Wound 90010 90004 90045 90046 90047 90048 90049 90050 90047 90048 90003 Series-Wound Motor 90004 90049 90050 90057 90058 90002 Series-wound Brushed DC (SWDC) motors have the field coil in series with the armature.These motors are ideally suited for high-torque applications such as traction vehicles (cranes and hoists, electric trains, conveyors, elevators, electric cars) because the current in both the stator and armature increases under load. 90005 90003 90009 Advantages: 90010 90004 90006 90002 90021 90022 The torque is proportional to I2 so it gives the highest torque per current ratio over all other dc motors. 90023 90026 90002 90003 90009 Disadvantages: 90010 90004 90002 90021 90022 A drawback to SWDC motors is that they do not have precise speed control like PMDC and SHWDC motors have.90023 90022 Speed ​​is restricted to 5000 RPM. 90023 90022 It must be avoided to run a series motor with no load because the motor will accelerate uncontrollably. 90023 90026 90005 90003 90009 D- Compound-Wound 90010 90004 90006 90045 90046 90047 90048 90049 90050 90047 90048 90003 Compound-Wound Motor 90004 90049 90050 90057 90058 90002 Compound Wound (CWDC) motors are a combination of shunt-wound and series-wound motors. 90005 CWDC motors employ both a series and a shunt field.The performance of a CWDC motor is a combination of SWDC and SHWDC motors. CWDC motors have higher torque than a SHWDC motor while offering better speed control than SWDC motor. 90006 90005 It is used in Applications such as Rolling mills, sudden temporary loads, heavy machine tools, punches, etc. 90006 90005 90003 90009 Advantages: 90010 90004 90006 90002 90021 90022 This motor has a good starting torque and a stable speed. 90023 90026 90005 90009 Disadvantages: 90010 90006 90002 90021 90022 The no-load speed is controllable unlike in series motors.90023 90026 90005 90003 90009 E- Separately excited DC motor 90010 90004 90006 90045 90046 90047 90048 90049 90050 90047 90048 90003 Separately excited DC motor 90004 90049 90050 90057 90058 90002 In a separately excited DC motor the field coils are supplied from an independent source, such as a motor-generator and the field current is unaffected by changes in the armature current. The separately excited DC motor was sometimes used in DC traction motors to facilitate control of wheel slip.90005 90003 90009 F- Universal Motor 90010 90004 90006 90045 90046 90047 90048 90049 90050 90047 90048 90003 Universal Motor 90004 90049 90050 90057 90058 90002 The universal motor is a rotating electrical machine similar to DC series motor, designed to operate either from AD or DC source. The stator & rotor windings of the motor are connected in series through the rotor commutator. The series motor is designed to move large loads with high torque in applications such as crane motor or lift hoist.90005 90003 90009 G- Servo Motors 90010 90004 90006 90045 90046 90047 90048 90049 90050 90047 90048 90003 Servo Motors 90004 90049 90050 90057 90058 90005 90002 Servo Motors are mechanical devices that can be instructed to move the output shaft attached to a servo wheel or arm to a specified position. Servo Motors are designed for applications involving position control, velocity control and torque control. 90006 90045 90046 90047 90048 90049 90050 90047 90048 90049 90050 90057 90058 90002 A servo motor mainly consists of a DC motor, gear system, a position sensor which is mostly a potentiometer, and control electronics.90002 90045 90046 90047 90048 90049 90050 90047 90048 90045 90046 90047 90048 90003 Servo Motors Applications 90004 90049 90050 90057 90058 90049 90050 90057 90058 90002 90002 In the next Topic, I will explain 90003 the Brushless DC Motor (BDLC) & AC Motors Types 90004. So, please keep following. 90003 Note: 90004 these topics about Motors in this course EE-1: Beginner’s electrical design course is an introduction only for beginners to know general basic information about Motors and Pumps as a type of Power loads.But in other levels of our electrical design courses, we will show and explain in detail the Motor and Pumps Loads calculations. .90000 12 Basic Motor Types Used For Industrial Electric Drives 90001 90002 Few Words About Electric Drives 90003 90004 Almost all modern industrial and commercial undertakings 90005 employ electric drive 90006 in preference to mechanical drive because it possesses the following advantages: 90007 90008 12 Basic Motor Types Used For Industrial Electric Drives (photo from: DOE Navigant Master Presentation) 90009 90010 It is simple in construction and has less maintenance cost 90011 90010 Its speed control is easy and smooth 90011 90010 It is neat, clean and free from any smoke or flue gases 90011 90010 It can be installed at any desired convenient place thus affording more flexibility in the layout 90011 90010 It can be remotely controlled 90011 90010 Being compact, it requires less space 90011 90010 It can be started immediately without any loss of time 90011 90010 It has comparatively longer life.90011 90026 90004 90005 However, electric drive system has two inherent disadvantages: 90006 90007 90031 90010 It comes to stop as soon as there is failure of electric supply and 90011 90010 It can not be used at far off places which are not served by electric supply. 90011 90036 90004 However, the above two disadvantages can be overcome 90005 by installing diesel-driven DC generators 90006 and turbine-driven 3-phase alternators which can be used either in the absence of or on the failure of normal electric supply.90040 90007 90040 90002 Motor types for industrial electric drives 90003 90004 Ok, let’s take a short overview of twelve most basic motor types used for different industrial electric drives: 90007 90031 90010 DC Series Motor 90011 90010 DC Shunt Motor 90011 90010 Cumulative Compound Motor 90011 90010 Three phase Synchronous Motor 90011 90010 Squirrel Cage Induction Motor 90011 90010 Double Squirrel Cage Motor 90011 90010 Slip ring Induction Motor 90011 90010 Single phase Synchronous Motor 90011 90010 Single phase Series Motor 90011 90010 Repulsion Motor 90011 90010 Capacitor start Induction run Motor 90011 90010 Capacitor start and run Motor 90011 90036 90040 90074 1.DC Series Motor 90075 90004 Since it has 90005 high starting torque and variable speed 90006, it is used for 90005 heavy duty applications 90006 such as electric locomotives, steel rolling mills, hoists, lifts and cranes. 90007 90004 90083 90084 90007 90004 Go back to Motor Types ↑ 90007 90074 2. DC Shunt Motor 90075 90004 90005 It has medium starting torque and a nearly constant speed. 90006 90007 90004 DC shunt motor is used for driving constant speed line shafts, lathes, vacuum cleaners, wood-working machines, laundry washing machines, elevators, conveyors, grinders and small printing presses etc.90007 90004 90097 90084 90007 90004 Go back to Motor Types ↑ 90007 90074 3. Cumulative Compound Motor 90075 90004 90005 Cumulative compound motor is a varying speed motor with high starting torque 90006 and is used for driving compressors, variable head centifugal pumps, rotary presses, circular saws, shearing machines, elevators and continuous conveyors etc. 90007 90004 90109 90084 90007 90004 Go back to Motor Types ↑ 90007 90074 4. Three-phase Synchronous Motor 90075 90004 90005 Because its speed remains constant under varying loads 90006, 3-phase synchronous motor is used for driving continuously operating equipment at constant speed such as ammonia and air compressors, motor generator sets, continuous rolling mills, paper and cement industries.90007 90004 90121 90084 90007 90004 Go back to Motor Types ↑ 90007 90074 5. Squirrel Cage Induction Motor 90075 90004 90005 This motor is quite simple but rugged and possesses high overload capacity. 90006 It has a nearly constant speed and poor starting torque. 90007 90004 Squirrel cage induction motor is used for 90005 low and medium power drives 90006 where speed control is not required as for water pumps, tube wells, lathes, drills, grinders, polishers, wood planers, fans, blowers, laundary washing machines and compressors etc .90007 90004 90137 90084 90007 90004 Go back to Motor Types ↑ 90007 90074 6. Double Squirrel Cage Motor 90075 90004 90005 It has high starting torque, large overload capacity and a nearly constant speed. 90006 90007 90004 Double squirrel cage motor is used for driving loads which require high starting torque such as compressor pumps, reciprocating pumps, large refrigerators, crushers, boring mills, textile machinery, cranes, punches and lathes etc. 90007 90150 90150 Double squirrel cage blower fan motor — 3 speed; 110V 90004 Go back to Motor Types ↑ 90007 90074 7.Slip Ring Induction Motor 90075 90004 90005 It has high starting torque and large overload capacity. 90006 The speed of slip ring induction motor can be changed up to 50% of its normal speed. 90007 90004 Slip ring induction motor is used for those industrial drives which require 90005 high starting torque and speed control 90006 such as lifts, pumps, winding machines, printing presses, line shafts, elevators and compressors etc. 90007 90164 90164 6,000 kW slip ring induction motor for compressor test bench (photo credit: emz.de) 90004 Go back to Motor Types ↑ 90007 90074 8. Single Phase Synchronous Motor 90075 90004 90005 Because of its constant speed 90006, single phase synchronous motor is used in teleprinters, clocks, all kinds of timing devices, recording instruments, sound recording and reproducing systems. 90007 90174 90174 Synchronous motor / single-phase / IP65 (photo credit: directindustry.com) 90004 Go back to Motor Types ↑ 90007 90074 9. Single Phase Series Motor 90075 90004 90005 It possesses high starting torque and its speed can be controlled over a wide range.90006 Single phase series motor is generally used for driving small domestic appliances like refrigerators and vacuum cleaners etc. 90007 90184 90184 Single-phase Series Motor 1,0 kW; 1000 Watt; 230 V 90004 Go back to Motor Types ↑ 90007 90074 10. Repulsion Motor 90075 90004 90005 It has high starting torque and is capable of wide speed control. 90006 90007 90004 Moreover, it has high speed at high loads. Repulsion motor is commonly used for drives which require large starting torque and adjustable but constant speed as in coil winding machines.90007 90004 90197 90084 90007 90004 Go back to Motor Types ↑ 90007 90074 11. Capacitor Start Induction Run Motor 90075 90004 90005 It has fairly constant speed and moderately high starting torque. 90006 Speed ​​control is not possible. Capacitor-start induction-run motor is generally used for compressors, refrigerators and small portable hoists. 90007 90004 90209 90084 90007 90004 Go back to Motor Types ↑ 90007 90074 12. Capacitor Start And Run Motor 90075 90004 Its operating characteristics are similar to the above motor 90005 except that it has better power factor and higher efficiency 90006.Hence, capacitor-start-and-run motors are commonly used for drives requiring quiet operations. 90007 90220 90220 Hitachi capacitor start capacitor run motor 90004 Go back to Motor Types ↑ 90007 90004 90225 90005 Reference // 90006 ASHRAE Handbook: Heating, Ventilating and Air-Conditioning Systems 2004 90228 90007 .90000 Different types of motors and their use 90001 90002 When purchasing a motor, it’s often asked which technology is better, AC or DC, but the fact is that it is application and cost dependent. 90003 90002 90003 90006 AC Motors 90007 90002 AC motors are highly flexible in many features including speed control (VSD — Variable Speed ​​Drives) and have a much larger installed base compared to DC motors, some of the key advantages are: 90003 90010 90011 Low power demand on start 90012 90011 Controlled acceleration 90012 90011 Adjustable operational speed 90012 90011 Controlled starting current 90012 90011 Adjustable torque limit 90012 90011 Reduced power line disturbances 90012 90023 90002 The current trend for VSD is to add more features and programmable logic control (PLC) functionality, which are advantages for the experienced used, but require greater technical expertise during maintenance.90003 90002 90003 90002 Click here for an example of an AC Motor from RS 90003 90002 Types of AC motor include: 90003 90032 Synchronous 90033 90002 In this type of motor, the rotation of the rotor is synchronized with the frequency of the supply current and the speed remains constant under varying loads, so is ideal for driving equipment at a constant speed and are used in high precision positioning devices like robots , instrumentation, machines and process control 90003 90002 Click here for an example Synchronous Motor from RS 90003 90032 Induction (Asynchronous) 90033 90002 This type of motor uses electromagnetic induction from the magnetic field of the stator winding to produce an electric current in the rotor and hence Torque.These are the most common type of AC motor and important in industry due to their load capacity with Single-Phase induction motors being used mainly for smaller loads, like used in house hold appliances whereas Three-Phase induction motors are used more in industrial applications including like compressors, pumps, conveyor systems and lifting gear. 90003 90002 Click here for an example Induction Motor from RS 90003 90006 DC Motors 90007 90002 DC motors were the first type of motor widely used and the systems (motors and drive) initial costs tend to be typically less than AC systems for low power units, but with higher power the overall maintenance costs increase and would need to be taken into consideration.The DC Motors speed can be controlled by varying the supply voltage and are available in a wide range of voltages, however the most popular type are 12 & 24V, with some of the advantages being: 90003 90010 90011 Easy installation 90012 90011 Speed ​​control over a wide range 90012 90011 Quick Starting, Stopping, Reversing and Acceleration 90012 90011 High Starting Torque 90012 90011 Linear speed-torque curve 90012 90023 90002 DC motors are widely used and can be used from small tools and appliances, through to electric vehicles, lifts & hoists 90003 90002 Click here for an example of DC Motors from RS 90003 90002 The two common types are: 90003 90032 Brushed 90033 90002 These are the more traditional type of motor and are typically used in cost-sensitive applications, where the control system is relatively simple, such as in consumer applications and more basic industrial equipment, these type of motors can be broken down as: 90003 90010 90011 90072 Series Wound 90073 — This is where the field winding is connected in series with rotor winding and speed control is by varying the supply voltage, however this type offers poor speed control and as the torque to the motor increase, then the speed falls.Applications include automotive, hoists, lifts and cranes as it has a high starting torque. 90012 90011 90072 Shunt Wound 90073 — This type has one voltage supply and the field winding is connected in parallel with the rotor winding and can deliver increased torque, without a reduction in speed by increasing the motor current. It has medium level of starting torque with constant speed, so suitable for applications include lathes, vacuum cleaners, conveyors & grinders. 90012 90011 90072 Compound Wound 90073 — This is a cumulative of Series and Shunt, where the polarity of the shunt winding is such that it adds to the series fields.This type has a high starting torque and run smoothly if the load varies slightly and is used for driving compressors, variable-head centrifugal pumps, rotary presses, circular saws, shearing machines, elevators and continuous conveyors 90012 90011 90072 Permanent Magnet 90073 — As the name suggests rather than electromagnet a permanent magnet is used and are used in applications where precise control and low torque, such as in robotics, servo systems. 90012 90023 90032 Brushless 90033 90002 Brushless motors alleviate some of the issues associated with the more common brushed motors (short life span for high use applications) and are mechanically much simpler in design (not having brushes).The motor controller uses Hall Effect sensors to detect the rotors position and using this the controller can accurately control the motor via current in the rotor coils) to regulate the speed. The advantages of this technology is the long life, little maintenance and high efficiency (85-90%), whereas the disadvantages are higher initial costs and more complicated controllers. These types of motors are generally used in speed and positional control with applications such as fans, pumps and compressors, where reliability and ruggedness are required.90003 90002 An example of brushless design are in Stepper Motors, which are primarily used in open-loop position control, with uses from printers through to industrial applications such as high speed pick and place equipment. 90003 90002 90003 90002 Brushless motors are also availble with a feedback device which allows the control of the Speed, Torque and Position of the motor and the intelligent electronics control all three so if more torque is required to accelerate quicker to a certain speed then more current is delivered, these are know as Brushless Servo Motors.90003 90002 Example of a DC Brushed and Brushless Motors 90003 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *