ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ — это… Что такое ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ?
- ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
- ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
основная часть машины, несущая на себе обмотку, в к-рой при работе машины в качестве генератора (см. Генератор электрический) индуктируется электродвижущая сила, а при работе ее в качестве мотора (см. Электродвигатель) циркулирует ток от сети.
статор) и укрепляется обычно в станине машины.» />
Взаимодействие к-рого с магнитным полем машины вызывает ее вращение. В машинах постоянного тока и в коллекторных моторах переменного тока якорь является вращающейся частью машины (ротором) и представляет собой барабан, собранный с целью уменьшения вредного действия вихревых токов из отдельных железных листов толщиной примерно 0,5 мм, разделенных между собой тонкой бумагой или покрытых лаком для изоляции друг от друга; в продольных пазах на боковой поверхности барабана укладывается обмотка.
Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941.
.
- ЯДРО НАСЫПИ
- ЯНУШЕВСКОГО ВКЛАДЫШ
Смотреть что такое «ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ» в других словарях:
якорь электрической машины — в США та часть коллекторной или синхронной машины, в которой индуцируется эдс и протекает ток нагрузки в Великобритании ротор с обмоткой, соединенной с коллектором — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по… … Справочник технического переводчика
якорь (электрической машины) — — [Я.
ОБМОТКА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ — система проводников или витков, соединённых между собой и расположенных на неподвижной (статор) или вращающейся части машины (ротор, якорь), для создания магнитного поля млн. для индуцирования электрического тока. О. э. м. разделяются на обмотки… … Большая политехническая энциклопедия
ЯКОРЬ — (1) судовой стальной стержень с лапами, укреплённый на цепи и опускаемый на дно для удержания на месте судна при его стоянке, а также бакена, плавучего маяка и др. По конструкции они бывают с неподвижными двумя и более лапами и с вращающимися… … Большая политехническая энциклопедия
ЯКОРЬ — электрической машины подвижная часть электрич. машины (обычно пост. тока). На валу Я. набирается сердечник из листов электро технич. стали с пазами (см. рис.) для укладки обмоток, в к рых при вращении индуктируется эдс. Концы обмоток соединяются… … Большой энциклопедический политехнический словарь
ЯКОРЬ (электрич.) — (Armature) та часть электрической машины, в которой возбуждается электрическое напряжение благодаря вращению в магнитном поле индукторов. В машинах переменного тока в зависимости от типа машины и ее конструкции Я. может быть и статор, и ротор.… … Морской словарь
ЯКОРЬ — ЯКОРЬ, я, мн. я, ей, муж. 1. Металлический стержень с лапами, укреплённый на цепи и опускаемый на дно для удержания на месте судна, бакена, плавучего маяка. Стать на я. Стоять на якоре. Отдать я. (опустить). Выбирать якоря (поднимать). Бросить я … Толковый словарь Ожегова
Якорь (электромашины) — Якорь электромашины, вращающаяся часть электрической машины. Термин «Я.» обычно употребляют применительно к постоянного тока машинам (в отличие от ротора).
якорь — я; мн. якоря, ей; м. 1. Приспособление для удержания на месте судов, плавучих маяков и т.п. в виде металлического стержня с лапами, которые зацепляются за грунт. Стоять на якоре. Поднять я. Отдать я. (опустить). Выбирать якоря (поднимать).… … Энциклопедический словарь
Якорь (значения) — Якорь: В Викисловаре есть статья «якорь» Корабельный якорь одна из конструкций для удержания судна на одном месте. Якорь … Википедия
Ремонт якоря электродвигателя
Причин поломки взрывозащищенного электродвигателя может быть действительно много. Иногда это случается из-за человеческой халатности и неаккуратным обращением с техникой, иногда некоторые детали просто выходят из строя в силу тех или иных причин. Если причина поломки — якорь электродвигателя, то починить его не будет стоить много денег или времени.
Неисправности якоря могут быть вызваны многими причинами. К примеру, разрыв обмотки или короткозамкнутые витки в ней. Также случается увеличенное сопротивление изоляции между обмоткой и валом якоря. Более того, существует множество механических неполадок, как неполный прижим щеток к коллектору или неправильный наклон укладки обмоток.
В любом случае, профессиональный механик всегда найдет причину поломки и устранит ее в кратчайшие сроки.
Ниже представлены основные этапы работы при ремонте якоря:
- Разборка двигателя, его детальный осмотр.
- Замер изоляционного сопротивления и установление количества обмоточных витков.
- Удаление обмотки и снятие коллектора для их очистки.
- Проделывание пазов в якоря, с которых будут установлены концы катушки. В такой паз далее устанавливают гильзу (выполнена из картона).
- Изоляция обмотки.
- Тестирование якоря амперметром.
- Фрезеровка межламельного пространства.
- Балансировка якоря, дополнительная чистка и шлифовка.
- Дополнительная проверка якоря.
- Сборка электродвигателя.
- Проверка двигателя на замыкание и правильное функционирование.
Во время ремонта двигателей проделывается огромная работа, так как на кону может стоять даже безопасность пользователя. Именно поэтому мастера проводят несколько проверок каждого механизма, исключают возможность замыкания и других поломок. Поэтому вы можете быть уверены, что опытный ремонтник справится с любой задачей и точно не разочарует вас результатом своей работы.
Ремонт ротора
Возврат к спискуПроисхождение терминов «якорь» и «ротор»
01.04.2015
Во времена развития мореплавания и географических открытий ощущалась острая необходимость в магнитных компасах, основным элементом которых являлась магнитная стрелка. Стрелки делали из металла и намагничивали при помощи природных магнитов, иного способа не было. Для качественного намагничивания требовались мощные магниты, которые усиливали армированием из железа и прикрепляли к камням оправами из меди, серебра или золота. Все это стилизовалось орнаментами, надписями и различными фигурками.
Стоили магниты в то время довольно дорого. В комплект с магнитом входил съемный железный брусок, который крепился к полюсам. С одной стороны брусочек имел кольцо, или крючок для подвешивания гиревой чашки. Силу с которой магнит держит брусочек всегда можно было измерить весом гирьки, которая укладывалась в чашку. Так сам брусок с крючком и был именован «якорь магнита».
С изобретением электромагнитов в 1825 году, способ измерения их силы не изменился. Так, в 1838 году российский академик Б.С. Якоби в своем труде «О притяжении магнитов» пишет о том, что сила притяжения магнитов определялась весом гирь, которые накладывались до тех пор, пока якорь не отрывался.
Позже, когда открылось, что электромагниты могут создавать сильные магнитные поля, американский ученый Дж. Генри разработал электромагнит, якорь которого мог удерживать тяжесть весом в одну тонну. Но главной его заслугой стало то, что он сумел поставить якорь электромагнита на шарнир и заставил его при притяжении ударять по специальному колокольчику. Именно так появился первый электромагнитный звонок. Позже, приспособив к подвижному якорю контакты, ученый смог получить ранее неизвестное приспособление — реле для автоматического преобразования электрических цепей по сигналу извне, что позволило передавать телеграфные сообщения на любые расстояния.
От простых изобретений к электродвигателю
После ряда своих открытий Дж. Генри сделал магнитопровод с катушкой, который устанавливался горизонтально, как коромысло лабораторных весов. Когда якорь качался, контакты, прикрепленные на концах коромысла, касались выводов двух гальванических элементов, которые питали катушку токами различного направления. Качаясь, коромысло притягивалось к двум постоянным магнитам, которые входили в систему.
Установка могла работать непрерывно, сообщая якорю в минуту 75 качаний. Именно так возникла одна из первых конструкций электродвигателя возвратно-поступательного движения. А превратить его в двигатель вращательного движения в то время труда не составляло. Стоит отметить, что машины с возвратно-поступательным движением в то время не поимели популярности, так как технологически более удобными были признаны электродвигатели с вращающимся якорем.
Позже пришла эра трехфазного переменного тока. Крутящиеся узлы двигателя переменного тока перестали называть якорем. Вращающееся магнитное поле стали именовать вихрем, а вращающуюся чать — ротором. Однако, в машинах постоянного тока терминология сохранилась. Якорь вращался, а полюсной наконечник получил название башмак.
Сегодня распространение получают многофазные линейные электродвигатели для поездов монорельсового типа. В качестве ротора применяется прикрепленный намертво монорельс, а статором служат обмотки, которые устанавливаются на магнитопроводе быстро мчащихся электропоездов.
Предприятие ЗАО «ПромЭлектроРемонт» имеет все необходимые сертификаты на оказание таких работ как:
Другие событияЯкорь электродвигателя — Энциклопедия по машиностроению XXL
Для изготовления печатных плат, используемых в электронике, в низковольтном аппарато- и приборостроении, а также для якорей электродвигателей малой мощности применяют фольгированные гетинакс и стеклотекстолит. Это — слоистые пластики, облицованные с одной или двух сторон медной оксидированной фольгой, наносимой при прессовании собранных пакетов пропитанной бумаги или стеклоткани с применением клея. В некоторых случаях используется хромированная фольга, а в фольгированных тонких диэлектриках на основе стеклоткани иногда применяется никелевая фольга. Фольгированный гетинакс выпускается несколь-ких марок толщиной от 1,0 до 3,0 мм. Он предназначен [c.190]ИЛИ ДЛЯ ограничения тока в якоре электродвигателя при осуществлении разгона машин. [c.105]
Пластина якоря электродвигателя [c.519]
Ток /я и напряжение t/я в цепи якоря электродвигателя Д привода ползуна, а также напряжение Утр тахогенератора. Масштабные коэффициенты указанных параметров для исследуемых скоростей 1, 23, 100, 500, 1150 мм/мин соответственно были [c.134]
Подъём и опускание переднего конца хобота осуществляются от вала электродвигателя 10 через муфту п, червячный редуктор 12, два подъёмных барабана 13, устанавливаемых на концах выходного вала редуктора, и канатные блоки 14 соединённые с хоботом 15. Тормоз 16 находится на свободном конце вала якоря электродвигателя. [c.814]
Низкие устойчивые скорости, необходимые для точной остановки многих механизмов и для выполнения некоторых производственных операций, получаются при использовании схемы шунтирования якоря электродвигателя (фиг. 3). [c.411]
Вследствие этого якорь электродвигателя вращается с переменной скоростью и направлением, поддерживая неизменной некоторую среднюю величину промежутка, на которую отрегулирована работа данной системы. Некоторые конструктивные формы приводов электродвигателей-регуляторов показаны на фиг, 49. [c.96]
Фиг, 48. Электрическая схема электродвигателя регулятора а — элементы схемы I — потенциометр 2 — якорь электродвигателя 3 — обмотка возбуждения 4 — разрядный контур электроискрового станка 5 — балластное сопротивление 6 — источник питания б — направление токов и полярность на якоре при отсутствии разрядов между электродами в — направление токов и полярность на якоре при коротком замыкании электродов. [c.98]
Погрешность скорости вращения якоря электродвигателя зависит от погрешностей сопротивления Rя обмотки якоря, переходного падения напряжения на щетках, числа проводников со обмотки якоря, магнитного потока Ф в зазоре. Эти погрешности рассматриваются как случайные. Число оборотов якоря электродвигате,ля определяется по формуле [c.375]
Принимая, что распределение погрешностей подчиняется закону нормального распределения, погрешность скорости вращения якоря электродвигателя, возникающая из-за возможных отклонений рассматриваемых параметров [c. 376]
Примером станка с АПУ на базе микроЭВМ может служить трехкоординатный вертикально-фрезерный станок, управляемый от ЭВМ РР-320 [24]. Программатор формирует программу обработки и, в частности, такие ее параметры, как вращающий момент на шпинделе и силу тока в цепи якоря электродвигателя. Он осуществляет также интерполяцию подачи на основании информации о скорости подачи. При этом грубая интерполяция осуществляется по гибкому алгоритму, вычисляющему длину хорды по [c.125]
Для привода вентилятора отопителя кабины и обдува ветрового стекла применяют электродвигатель (рис. 111), состоящий из корпуса, двух обмоток возбуждения с полюсными башмаками, якоря с коллектором, фланцев с само-устанавливающимися втулками, пропитанных маслом, и двух щеток с щеткодержателями. Обмотки возбуждения включены последовательно с якорем. Электродвигатель включается в цепь через реостат, при помощи которого можно менять чи-сло оборотов вала вентилятора. [c.179]
Внутренний цилиндр вращается от электродвигателя постоянного тока, возбуждаемого постоянным магнитом. Наружный цилиндр — неподвижен. Обмотка якоря электродвигателя включена в мост постоянного тока. В основу измерения вязкости шлаков положен принцип регистрации изменения силы тока в роторе электродвигателя при погружении внутреннего цилиндра в расплавленный шлак. Прибор предназначен для измерения вязкости от 0,04 до 20,0 н-сек-м- — Rn = 1,2 = [c.161]
Вязкость материалов подсчитывается по уравнению т) = А Век, где А — показания амперметра В — коэффициент, учитывающий положение переключателя пределов измерения с — число оборотов якоря электродвигателя к — тарировочная константа. К прибору может быть подключен самописец. [c.167]
I — генератор импульсов СС 2 — обмотка возбуждения электродвигателя 3 — якорь электродвигателя 4 — потенциометр 5 — вспомогательный источник постоянного тока. [c.307]
Отыскать обрыв пли плахой контакт и устранить неисправность проверить равномерность вращения якоря электродвигателя, при необходимости добиться легкого вращения [c. 107]
Назовите марку проводов, применяемых для обмотки якоря электродвигателя и полюсны.х катушек. [c.12]
Ротором в теории балансировки (уравновешивания) называется любое вращающееся тело. Поэтому ротором является якорь электродвигателя, коленчатый вал компрессора, ц]пиндель токарного станка, баланс часов и т. п. [c.211]
Рис. 3-59. Якорь электродвигателя, опрессован-ный пластмассой в литьевой форме. |
Создана установка для усталостных испытаний микрообразцов диаметром 1,9—2,0 мм [57]. Указанные размеры образцов позволяют разместить цанговый патрон для их крепления непосредственно на оси якоря электродвигателя АОЛ-22. Гнездо под цангу протачивают после запрессовки насадки на ось якоря, что исключает биение насадки. Образец крепят в цанге, затягиваемой накидной гайкой. [c.185]
Осциллографировались скорость электродвигателя, по колебаниям которой вычислялись значения амплитуды углового перемещения 1вала. Последние для сопоставимости результатов приводились к амплитуде колебаний ползуна. При расшифровке осциллограмм определялись время переходного процесса и его постоянная времени в режиме пуска (после 12—15 мин. пребывания ползуна в неподвижном состоянии) и торможения. Для режима 14°Н дополнительно исследовалась динамика переходных процессов при реверсе ползуна. При изучении энергетических затрат осциллографировались ток и напряжение в цепи якоря электродвигателя. По результатам расшифровки осциллограмм вычислялась мощ ность. [c.87]
Анализ полученных результатов выявляет кажущееся противоречие с физикой явления. Его сущность —в уменьшении времени переходного процесса торможения при стабилизации и минимизации силы трения направляющих, которые обеспечиваются АСССН. Исследование этого явления показало, что тормозной ток в цепи якоря электродвигателя в режимах АНС больше, чем при БНС. Последнее было установлено расшифровкой осциллограмм. [c.92]
Для более точной оценки энергетических параметров проведена расшифровка нусшвых и тормозных токов в цепи якоря электродвигателя привода ползуна. Результаты представлены на графиках, показанных на рис. 5. Ранее отмечалось, что пусковые токи (рис. 5, а) в режимах А мало отличаются от значений, имеющих место в режимах Б. Первые превышают вторые не более чем на [c.98]
Якоря электродвигателей, вентиляторы, детали станков, коленчатые валы многоцилиндровых двигателей (четырехколенные и выше). . . 5—25 [c.469]
В задатчике мощности преобразуются сигналы, пропорциональные току и напряжению дуги. Результирующий сигнал с задатчика мощности поступает на вход полупроводникового усилителя через блок сравнения, куда в качестве отрицательной обратной связи подается напряжение с якоря электродвигателя перемещения электродов. Узел токоограни-чения обеспечивает снижение сигнала на выходе усилителя при перегрузке двигателя перемещения электродов. [c.221]
При малых отклонениях режима работы печи от заданного скорость двигателя перемещения электродов мала и напряжение на его якоре меньше величины уставки элемента ограничения обратной связи, при этом регулятор работает в пропорциональном режиме. При больщих отклонениях режима работы печи от уставок напряжение на якоре электродвигателя превышает уставку элемента ограничения, что приводит к ограничению отрицательной обратной связи по напряжению и полному отпиранию полупроводникового усилителя за счет сигнала с блока сравнения. Двигатель перемещения электрода начинает работать на максимальной скорости, ликвидируя отклонение от заданного режима работы печи. С уменьшением отклонения режима работы печи от заданного до величины, при которой напряжение на якоре двигателя становится меньше величины уставки элемента ограничения, регулятор [c.221]
Наладка регулятора производилась при полностью введенном сопротивлении регулятора тока дуги фазы, находящегося на пульте управления. Уставки блоков токоограничения каждой фазы настроены на ток в цепи якоря электродвигателя перемещения электродов, равный 18 А. Регулятор эксплуатируется на действующей электросталеплавильной печи свыше двух лет и обеспечивает высокую степень надежности при значительно уменьшенном по сравнению с электромашинным регулятором объеме обслуживания. За все время эксплуатации было три случая изменения параметров двух транзисторов и одного резистора, что привело к нарушению нормального режима работы блоков регулятора. После замены транзисторов и резистора новыми регулятор продолжал работу в нормальном режиме. [c.222]
Магнитные стали разделяются на магнитномягкие и магнитнотвердые. К магнитномягким относятся динамная и трансформаторная стали марок ЭИ, Э12, Э31, Э32 и др., из которых изготовляют сердечники трансформаторов, якоря электродвигателей и т. п. Из магнитнотвердых сталей изготовляют постоянные магниты, магнето и т. п. [c.19]
Целевые условия, контролируемые эстиматором, заключаются в поддержании момента на фрезе и силы тока в цепи якоря электродвигателя главного движения в заданных пределах. Для обеспечения выполнения этих условий в процессе обработки служит пропорционально-интегральный регулятор с обратной связью по указанным переменным. При этом величина подачи не изменяется, если момент не превышает заданного порога. В противном случае (например, при скачкообразном увеличении момента вследствие изменения глубины или ширины резания) автоматически включается адаптатор, осуществляющий самонастройку коэффициентов усиления регулятора в соответствии с изменением скорости подачи. [c.126]
Модель Mi ro-Hami является чувствительной установкой для динамического уравновешивания гиромоторов, якорей электродвигателей и приводных устройств. Электронное оборудование станка обладает чувствительностью по условному смещению центра тяжести до 0,005 мк и позволяет уравновешивать роторы весом от 10 г до 10 кг. Балансировочный станок состоит из следующих основных блоков [c.553]
В МИИТе и во ВНИМ электромеханики разработано балаи-снровочиое оборудование для уравновешивания якорей электродвигателей непосредственно в статоре. Это позволяет компенсировать не только механические дисбалансы, ио и первые гармоники электромагнитных сил, действующих на якорь при номинальной нагрузке. В МИИТе также был разработан новый принцип уравновешивания колесных пар подвижного состава, заключающийся в совмещении главной центральной оси инерции с прямой, проходящей через геометрические центры кругов катания бандажей. Балансировочная машина на этом принципе, разработанная ЭНИМСом, успешно эксплуатируется на Калининском вагоностроительном заводе с 1967 г. [c.12]
Так как момент инерции /i якоря электродвигателя с наносным колесом гидромуфты значительно меньше Jonpli%. то пренебрегают снижением частоты вращения турбинного колеса на первом этапе, обусловленным действием внешнего сопротивления Л1с.пр и [c.97]
Градуировка датчиков параметров углового движения. Для градуировки этих датчиков разработаны электромеханические образцовые установки В одной из них якорь электродвигателя с возбуждением постоянным током, связанный с основанием торсионом, возбуждается переменным током на собственной частоте системы, что позволяет получить угловые ускорения до 1000 рад/с» при частотах до 20 Гц [8 Перспективны также специальные электродинамические виброустановки, схема одной из таких установок японской фирмы Shinken o. , Ltd показана на рис 2. [c.306]
У всех приборов П. А. Иванова вращается внутренний цилиндр, соединенный с якорем электродвигателя, который включен в электрическую схему. Наружный цилиндр фиксирован. Например, в приборах ВИР-45 и ВИОТ-46 якорь электродвигателя постоянного тока включен в одно из плеч моста, который перед проведением измерения уравновешивают. При погружении внутреннего цилиндра в исследуемый материал изменяется динамическое сопротивление электродвигателя, что вызывает изменение параметров электрической схемы. Одновременно с этим нарушается равновесие моста. Момент сопротивления вращению, создаваемый на валу электродвигателя, при установившемся течении пропорционален вязкости жидкости. Равновесие моста восстанавливают поворотом движка потенциометра, лимб которого предварительно был проградуирован при измерении вязкости калибровочной жидкости. Скорость вращения цилиндра является функцией вязкости исследуемого материала. [c.156]
Наружный цилиндр неподвижен. Внутренний цилиндр связан с ротором электродвигателя и вращается с постоянной скоростью. Обмотка якоря электродвигателя включена в самобалансирующуюся мостовую схему. Определяют изменение тока электродвигателя. Этот ток пропорционален крутящему моменту или напряжению сдвига. Пределы измерения вязкости от 5 10 до..0,3 н-сек-м . Скорость деформации изменяется в соотношении 1 2 4 8 16 (от 4 до 60 сек ) Рассмотрим схему работы прибора (рис. 77). На станине 1 прибора укреплен наружный цилиндр 2, окруженный термостатной рубашкой 3. Внутренний цилиндр 4 сочленен с якорем электродвигателя 5 через муфту 6. Зазор между внутренним и наружным цилиндром заполняют исследуемым материалом. Электродвигатель вместе с внутренним цилиндром посредством кремальеры 7 может быть поднят или опущен. Обмотка якоря электродвигателя включена в одно из плеч моста постоянного тока. В его соседнем уравнительном плече включены последовательно два сопротивления и равные сопротивлению якоря электродвигателя. Параллельно сопротивлению подключен набор сопротивлений. Каждое из них подбирают соответствующей величины и подсоединяют к мосту переключателем К- Эти сопротивления находятся под напряжением нормального элемента НЭ и предназначены для ступенчатого изменения скорости вращения ротора электродвигателя 5. В одну из диагоналей моста включен зеркальный галь- [c.166]
Проверка якоря тестером – рекомендации специалистов
Даже при бережном отношении и правильной эксплуатации техника может выходить из строя под влиянием различных факторов. Среди поломок узлов и деталей электрической системы болгарки чаще всего встречаются неисправности якоря коллекторного электродвигателя. Он может выходить из строя вследствие износа, перегрева или неустойчивого напряжения в сети. Если во время эксплуатации угловая шлифмашина внезапно перестала работать, включать ее и пытаться отремонтировать самостоятельно не стоит, а вот диагностировать причину вполне под силу даже мастеру-самоучке. Проверка якоря болгарки тестером может выполняться в домашних условиях. Для этого, кроме основного инструмента, потребуются специальные приспособления. Вы можете проконсультироваться со специалистами интернет-магазина «ToolParts», чтобы узнать, как прозвонить якорь мультиметром. Необходимая информация предоставляется бесплатно.
Проверка якоря болгарки тестером – возможные результаты диагностики
Среди наиболее распространенных причин выхода оборудования из строя чаще всего встречается межвитковое замыкание якоря болгарки. Его можно обнаружить – прозвонить – с помощью тестера. Мультиметр представляет собой электроизмерительный прибор, который включает функции амперметра, вольтметра и омметра. Им можно не только проверить наличие межвиткового замыкания в обмотке болгарки, но и измерить сопротивление между ламелями. Более простым прибором является тестер. Проверяя с его помощью якорь углошлифовальной машины, можно обнаружить неисправности, вызванные вследствие короткого замыкания.
Как прозвонить якорь мультиметром?
Для выполнения этой процедуры вам понадобится сам измерительный электроприбор и инструменты, чтобы произвести разборку устройства. Как прозвонить якорь мультиметром – инструкция:
- Подготовьте рабочую поверхность. Места должно быть достаточно, чтобы расположить необходимые инструменты и изъятые из прибора детали.
- Выполните разборку болгарки и достаньте якорь.
- Очистите деталь от грязи и пыли.
- Пользуясь рекомендациями в представленном видео, вы сможете самостоятельно прозвонить якорь мультиметром.
На начальном этапе диагностики значение измерительного прибора выставляется на отметке 200 кОм. Если в вашем мультиметре нет такой шкалы, то можно ограничиться и 20 кОм. Для прозвона якоря один щуп измерительного прибора прикладывается на массу, а вторым касаются к каждой из пластин. Если на шкале аналогового мультиметра или экране цифрового не появляются никакие показатели, скорее всего в обмотке якоря есть межвитковое замыкание. Точно диагностировать проблему можно с помощью специального прибора, который имеется у профессиональных слесарей.
Особенности выполнения проверки якоря болгарки тестером
Диагностическая процедура поможет точно определить неисправность детали электродвигателя. Выполнить проверку якоря болгарки тестером позволит прибор, который имеется в арсенале инструментов многих электриков-любителей. С помощью тестера можно проверять не только якоря болгарок, но и статорные обмотки других электромоторов. В представленном ниже видео можно увидеть один из таких самодельных измерительных приборов в действии.
При включении тестера в сеть загорается индикатор. Красный свет без прикладывания технического приспособления к якорю означает готовность устройства к выполнению проверки. Рабочая активная поверхность измерительного прибора имеет две точки соприкосновения с исследуемой. Одна из них – это катушка генератора, вторая – катушка завитков связи. Во время проверки якоря болгарки тестером подставлять эту поверхность необходимо к исследуемому пазу. Проследите, чтобы датчики не выходили за пластины якоря одновременно с обеих сторон.
Если электродеталь исправна или перемотана, то во время ее проверки тестером напротив каждого из пазов индикатор будет гореть зеленым светом. При наличии неисправности в якоре угловой шлифовальной машины, в частности, межвиткового замыкания, в месте его локализации на индикаторе прибора будет отмечаться красный свет. Будьте внимательны при выполнении диагностической процедуры, чтобы добиться правильного соприкосновения поверхностей при проверке якоря болгарки тестером. Не следует исключать из причин выхода угловой шлифовальной машины из строя механические повреждения, которые можно заметить визуально без прозвона мультиметром. Они могут быть как значительными, так и мелкими. Вы можете заметить поломку при осмотре, разобрав болгарку. Диагностировать такие неисправности необходимо до проверки якоря на межвитковое замыкание.
Если вы не имеете опыта разборки электроинструмента или подготовки к работе с измерительными приборами для прозвона якоря мультиметром и не уверены в собственных силах, не стоит вмешиваться в конструкцию болгарки. Не экспериментируйте, чтобы не повредить угловую шлифовальную машину. В таком случае для обнаружения причины поломки электроинструмента и выполнения проверки якоря болгарки тестером лучше обратиться в сервисный центр или к квалифицированным слесарям, которые специализируются на ремонте оборудования.
Какие проблемы в работе прибора можно обнаружить при проверке якоря болгарки тестером
Если вы обладаете достаточными знаниями для выполнения правильной разборки электроинструмента, то в ряде случаев сможете собственноручно диагностировать причину поломки устройства. Проверка якоря болгарки тестером на межвитковое замыкание позволит определить дальнейшие действия относительно обнаружения неисправностей или ремонта техники. Если деталь не повреждена, но инструмент по-прежнему не работает, обращайтесь за помощью к квалифицированным специалистам. Проверка якоря болгарки тестером позволила точно обнаружить причину выхода оборудования из строя? Ремонт техники при наличии необходимого инструмента можно выполнить самостоятельно в таких случаях:
- поврежденную в верхних видимых слоях обмотку можно попытаться запаять. Такой якорь прослужит еще некоторое время. После запайки его необходимо проверить или прозвонить мультиметром;
- при межвитковом замыкании требуется перемотка обмотки или же замена якоря.
Диагностика поломки и ремонт угловой шлифовальной машины может выполняться под напряжением. Эту работу, ради собственной безопасности, перепоручите профессионалам.
Рекомендации по поводу того, как прозвонить якорь мультиметром, вы можете получить у менеджеров интернет-магазина «ToolParts». На сайте надежного поставщика представлены якоря, стартера, конденсаторы, подшипники, диски и прочие детали для различных инструментов. Доступные цены на нашу продукцию позволят вам недорого отремонтировать дрель, перфоратор, бензопилу, мотокосу и другое, необходимое в хозяйстве оборудование. Также покупайте в магазине «ToolParts» запчасти для ремонта бытовой техники, в частности, пылесоса. Вы можете сделать заказ на сайте в любой удобный момент или оформить покупку в телефонном режиме в рабочее время. Доставка товаров совершается во все населенные пункты Украины.
Ротор электродвигателя » Гиброид.ру
Ротор электродвигателя — это подвижная часть, в машинах переменного тока его роль исполняет якорь. Электродвигатель – это машина, которая преобразует электрическую энергию в механическую. Электрическая машина состоит из неподвижной и подвижной частей – статора и ротора. Ротор электродвигателя постоянного тока часто называют якорем.
Различают короткозамкнутые и фазные роторы. Фазные используются с обмоткой и применяются в тех случаях, когда необходимо уменьшить пусковой ток, а также регулировать частоту вращения асинхронного электродвигателя. Такие двигатели раньше использовались в крановых установках, теперь же на смену фазным роторам пришли преобразователи частоты.
При включении машины в электрическую сеть в статоре возникает магнитное поле, которое пронизывает обмотку ротора, тем самым, наводя в ней ток индукции и приводя его во вращение. Если используется преобразователь частоты вращения, то часто вращение ротора устанавливается вручную. Если же такое устройство не применяется, то частота вращения зависит от числа пар полюсов и частоты питающего напряжения. Разность между частотами вращения магнитного поля подвижной и неподвижной частей характеризуется скольжением. Если эти частоты не совпадают между собой, то двигатель называется асинхронным. Конструкция подвижной части синхронного двигателя отличается. Она выполнена либо с постоянным магнитом, либо с электромагнитом, который имеет в себе часть беличьей клетки для запуска. В синхронных двигателях частоты вращения магнитных полей статора и ротора совпадают.
Ротор асинхронного электродвигателя состоит из листов электромеханической стали, и может быть выполнен с контактными кольцами либо короткозамкнутым с беличьей клеткой. При короткозамкнутой конструкции обмотка состоит из металлических стержней (чаще всего бронза, медь или алюминий), которые располагаются в пазах и соединены на концах кольцами. Соединение колец осуществляется с помощью припоя или сварки. Если же стержни изготавливаются из алюминия или алюминиевых сплавов, то припой и сварку провести нельзя. В таком случае необходимо выполнять кольца, вместе с расположенными на них лопастями, в виде литой детали или же штамповкой под давлением.
Ротор электродвигателя с контактными кольцами в пазах имеет трехфазную обмотку, которая очень похожа на обмотку статора, включенную в цепь соединением типа «Звезда». Начала фаз соединяются с контактными кольцами, которые закреплены на концах валов. Для регулирования частоты вращения и для плавного пуска двигателя можно к фазам обмотки через кольца и щетки подключить реостаты. После того, как подвижная часть двигателя успешно разгонится, контактные кольца накоротко замыкаются.
В шаговых электродвигателях ротор устанавливается с дискретным угловым перемещением. Заданное положение вала фиксируется с помощью подачи питания на соответствующую обмотку. Для того чтобы перейти в другое положение необходимо снять напряжение с одной обмотки и подать на другую. В вентильных электродвигателях питание обмоток осуществляется с помощью полупроводниковых элементов.
Устройство якоря стартера
Якорь стартера служит для установки и крепления элементов якоря и обгонной муфты. Якорь стартера это ось, выполненная из специальной легированной стали, которая вращается на подшипниках скольжения. На ось якоря крепится сердечник якоря (запрессовывается), и устанавливаются коллекторные пластины. Устройство сердечника якоря стартера предполагает пазы, на которые укладываются обмотки якоря. Концы обмоток якоря закрепляются на коллекторных пластинах. Обмотка якоря стартера, как правило, одно- или двух витковая, выполненная из неизолированного провода (провод прямоугольного сечения). Коллекторные пластины устанавливаются по кругу на диэлектрической основе.
Коллектор якоря стартера может быть как торцевым, так и цилиндрическим и состоит из медных пластин и меканитовых прокладок (использующихся в качестве изоляции), как показано на схеме якоря стартера.
Схема устройства якоря стартерав сборе:1 – коллектор; 2 – проволока бандажа якоря; изоляционный материал якоря; 4 – вал; 5 – крепежная скоба бандажа; 6 – прокладка под бандаж.
Схема обмотки якоря стартера:1 –изоляция паза; 2 – провод ПММ.
Крепление якоря стартера
Якорь стартера крепится при помощи втулок подшипников в передней и задней крышке стартера.
Ремонт якоря стартера своими рукамиПричины неисправности якоря стартера двигателя:
Прежде, чем приступать к ремонту якоря стартера следует проверить якорь стартера на биение вала, что можно провести на специальном стенде. Визуально осмотрите вал якоря на предмет дефектов, целостности обмотки и изоляции.
Характеристики исправного якоря стартера:
Биение валаякоря стартера в пределах: 0,08 мм.
Сопротивление изоляции якоря стартера в пределах: 10 кОм.
Во время проверки якоря стартера внимательно осмотрите коллектор на наличие подгорания, следов нагрева пластин.
Компоненты, работа и их применение
Первый якорь использовался хранителями магнитов в 19 веке. Связанные части оборудования выражаются как электрические, так и механические. Хотя эти два набора терминов определенно разделены, они обычно используются одинаково, включая один электрический термин, а также один механический термин. Это может быть причиной путаницы при работе со сложными машинами, такими как бесщеточные генераторы .В большинстве генераторов частью ротора является полевой магнит, который будет активен, что означает вращение, тогда как часть статора — это якорь, который будет неактивен. Как генераторы, так и двигатели могут быть спроектированы с неактивным якорем и активным (вращающимся) полем, в противном случае активный якорь является неактивным полем. Вал стабильного магнита, иначе говоря, электромагнита, а также подвижный металлический элемент соленоида, особенно если последний работает как переключатель или реле, можно называть якорями.В этой статье обсуждается обзор арматуры и ее работа с приложениями.
Что такое арматура?
Якорь можно определить как элемент, генерирующий энергию в электрической машине, где якорь может быть вращающейся частью, в противном случае — неподвижной частью машины. Взаимодействие якоря с магнитным потоком может осуществляться в воздушном зазоре, полевой элемент может включать в себя любые стабильные магниты, в противном случае электромагниты, которые имеют форму проводящей катушки, как другой якорь, известный как электрическая машина с двойным питанием.Якорь всегда работает как проводник, наклоняясь перпендикулярно как полю, так и направлению движения, в противном случае — к силе. Схема якоря приведена ниже.
АрматураОсновная роль арматуры универсальна. Основная роль заключается в передаче тока через поле, таким образом создавая крутящий момент на валу в активной машине, иначе — в линейной машине. Вторая роль якоря — производить ЭДС (электродвижущая сила) .При этом ЭДС может возникать как при относительном движении якоря, так и в поле. Поскольку машина используется в качестве двигателя, ЭДС противодействует току якоря и преобразует электрическую энергию в механическую, которая имеет форму крутящего момента, и, наконец, передает ее через вал.
Всякий раз, когда машина используется как генератор, электродвижущая сила якоря управляет током якоря, а также движение вала изменяется на электрическую энергию.В генераторе вырабатываемая мощность будет поступать от статора. Гроулер в основном используется для обеспечения арматуры, предназначенной для открытий, площадок, а также шорт.
Компоненты якоря
Якорь может быть спроектирован с использованием ряда компонентов, а именно сердечника, обмотки, коллектора и вала.
Детали якоряСердечник
Сердечник якоря может быть сконструирован с множеством тонких металлических пластин, которые называются слоистыми. Толщина ламелей приблизительно равна 0.5 мм, и это зависит от частоты, на которую будет рассчитана работа якоря. Металлические пластины штампуются при нажатии.
Они имеют круглую форму с отверстием, выбитым в сердечнике, когда вал запрессован, а также пазами, которые выбиты в области кромки, где катушки в конечном итоге будут сидеть. Металлические пластины соединяются вместе для создания сердечника. Сердечник может быть построен из уложенных друг на друга металлических пластин вместо использования стальной детали для получения суммы потерянной энергии при нагревании сердечника.
Потери энергии известны как потери в стали, которые возникают из-за вихревых токов. Эти мельчайшие вращающиеся магнитные поля образуются в металле из-за вращающихся магнитных полей, которые могут быть обнаружены всякий раз, когда устройство работает. Если в металлических пластинах используются вихревые токи, они могут формироваться в одной плоскости, что значительно снижает потери.
Обмотка
Перед тем, как начнется процесс намотки, прорези сердечника будут защищены от медного провода внутри прорезей, контактирующих с ламинированным сердечником.Катушки размещаются в пазах якоря, а также прикрепляются к коммутатору поочередно. Это можно сделать разными способами в зависимости от конструкции арматуры.
Якоря подразделяются на два типа, а именно якорь с внахлесткой и волновой якорь . При намотке внахлест последний конец одной катушки присоединяется к сегменту коммутатора, а также к первичному концу соседней катушки. В волновой намотке два конца катушки будут связаны с сегментами коммутатора, которые разделены на некоторое расстояние между полюсами.
Это позволяет последовательно складывать напряжения в обмотках между щетками. для такой намотки требуется всего одна пара щеток. В первой арматуре количество дорожек равно количеству полюсов и щеток. В некоторых конструкциях якоря они будут иметь две или более разных катушек в одном слоте, прикрепленных к соседним сегментам коммутатора. Это можно сделать, если требуемое напряжение на катушке будет считаться высоким.
При распределении напряжения по трем отдельным сегментам, так как катушки будут находиться в одном слоте, напряженность поля в слоте будет высокой, однако это уменьшит искрение на коммутаторе, а также сделает устройство более мощным. компетентный.В некоторых арматурах щели также перекручены, это достигается за счет того, что каждая пластина несколько не совпадает. Это может быть сделано для уменьшения зубчатого зацепления, а также для обеспечения перехода уровня от одного полюса к другому.
Коммутатор
Коммутатор надвигается на верхнюю часть вала и удерживается крупной накаткой, похожей на сердечник. Конструкция коммутатора может быть выполнена с использованием медных шин, а изоляционный материал будет разделять шины. Обычно этот материал представляет собой термореактивный пластик, однако в старых арматурах использовалась листовая слюда.
Коммутатор должен быть точно соединен с пазами сердечника всякий раз, когда его нажимают на верхнюю часть вала, потому что провода от каждой катушки будут выходить из пазов, а также присоединяться к стержням коммутатора. Для эффективной работы магнитной цепи важно, чтобы катушка якоря имела точное угловое смещение от стержня коллектора, к которому она прикреплена.
Вал
Вал якоря представляет собой твердый стержень одного типа, установленный между двумя подшипниками, которые описывают оси компонентов, размещенных на нем.Он должен быть достаточно широким, чтобы передавать крутящий момент, необходимым для двигателя, и жестким, чтобы контролировать некоторые силы, которые не сбалансированы. Для гармонических искажений выбираются длина, скорость и точки опоры. Якорь может быть спроектирован с рядом основных компонентов , а именно сердечником, обмоткой, валом и коммутатором.
Функция якоря или работа якоря
Вращение якоря может быть вызвано взаимодействием двух магнитных полей .Одно магнитное поле может быть создано обмоткой возбуждения, а второе может быть создано с помощью якоря, в то время как напряжение прикладывается к щеткам, чтобы войти в контакт с коммутатором. Когда ток проходит через обмотку якоря, он создает магнитное поле. Это не соответствует полю, создаваемому катушкой возбуждения.
Это вызовет силу притяжения к одному полюсу, а также отвращение к другому. Когда коммутатор подключен к валу, он также будет перемещаться с такой же степенью, как и полюс.Якорь будет продолжать преследовать полюс, чтобы вращаться.
Если напряжение не подается на щетки, поле будет возбуждено, а якорь будет приводиться в движение механически. Приложенное напряжение переменного тока, поскольку оно приближается и течет от полюса. Однако коммутатор связан с валом и часто активирует полярность, потому что он вращается, подобно тому, как реальный выходной сигнал может наблюдаться через щетки в постоянном токе.
Обмотка якоря и реакция якоря
Обмотка якоря — это обмотка, на которую может наводиться напряжение.Точно так же обмотка возбуждения — это обмотка, в которой основной поток поля может генерироваться всякий раз, когда через обмотку протекает ток. Обмотка якоря имеет некоторые из основных терминов, а именно виток, катушку и обмотку.
Реакция якоря является результатом потока якоря поверх потока основного поля. Обычно двигатель постоянного тока включает в себя две обмотки, такие как обмотка якоря, а также обмотка возбуждения. Всякий раз, когда мы стимулируем обмотку возбуждения, она генерирует поток, который соединяется через якорь, и это вызывает ЭДС и, следовательно, поток тока в якоре.
Области применения арматуры
Области применения арматуры включают следующее.
- Якорь используется в электрической машине для выработки энергии.
- Якорь можно использовать как ротор, иначе статор.
- Используется для контроля тока в двигателях постоянного тока.
Таким образом, это все о обзоре якоря , который включает в себя, что такое якорь, компоненты, работа и приложения. Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что якорь является важным компонентом, используемым в электрической машине для выработки энергии.Он может быть как на вращающейся части, так и на неподвижной части машины. Вот вам вопрос, как работает арматура ?
Якорь двигателя в электродвигателе, Производитель якоря стартера
Якорь стартера — это внутренний компонент стартера. Несмотря на то, что он скрыт от глаз, он играет большую роль в работе систем запуска автомобиля. Эта статья представляет собой обзор арматуры статера автомобиля. Он включает информацию о его значении, дизайне и работе.Также есть раздел часто задаваемых вопросов, в котором можно найти ответы на общие вопросы, связанные с компонентом.
Определение якоря стартера
Якорь стартера — это вращающаяся часть. Он состоит из обмоток, железного сердечника, опирающегося на вал, и коммутатора. Якорь не увидеть, не разобрав мотор. Однако вы можете почувствовать его работу, когда двигатель вращается, чтобы запустить двигатель вашего автомобиля.
Якорь — одна из основных частей стартера, и в этом отношении очень важная.Он содержит детали, которые приводят в движение ведущие шестерни стартера или любой другой механизм. Таким образом, он составляет важную часть процесса запуска двигателя.
Давайте теперь посмотрим, как работает якорь стартера, приводя во вращение. Также почему мотор не может работать без исправного якоря.
Какова функция якоря стартера?
Стартерные двигатели транспортных средств содержат подвижную катушку и другую неподвижную катушку. Стационарная катушка часто технически называется статором и состоит из электромагнита или постоянного магнита.В большинстве современных пускателей используются двигатели с постоянными магнитами, которые являются более мощными и энергоэффективными.
Подвижная или поворотная катушка является якорем стартера. Он становится магнитом только тогда, когда на двигатель подается электрический ток. Якорь в сборе, являясь подвижной частью, обеспечивает вращение вала двигателя. Это составляет вращение двигателя, которое выполняет полезную работу по запуску двигателя.
Таким образом, мы можем определить якорь стартера как часть, преобразующую электрический ток в необходимое вращательное движение.Это позволяет двигателю преодолевать внешнюю силу и проворачивать двигатель.
Происходит гораздо больше, чем простое объяснение, данное здесь, как вы узнаете далее.
Как работает якорь стартера
Якоря стартера существуют в широком диапазоне размеров. Это зависит от предполагаемого применения, которое может быть маломощным или тяжелым. Однако все они работают одинаково, используя электрический ток для вращения.
Якорь стартера содержит железный сердечник с прорезями, вокруг которого намотано множество витков проводов. Когда через эти обмотки протекает ток, создается магнитный поток.
Катушки на якоре заканчиваются в части, называемой коммутатором. Сам коммутатор состоит из сегментов. Каждый сегмент представляет собой проводящую поверхность и изолирован от других. Сегменты позволяют различным секциям катушки получать ток в разное время во время вращения.
Якорь стартера окружает магнитное поле статора. Статор двигателя может быть катушечной обмоткой на магнитопроводе или постоянном магните.Когда поле исходит от электромагнита, провода подключаются к батарее.
Вот что происходит при повороте ключа зажигания и что завершается вращением якоря стартера.
- Поворот ключа зажигания или нажатие кнопки для запуска двигателя приводит к протеканию тока на соленоид стартера. В некоторых автомобилях дистанционное реле замыкает цепь соленоида. Активированный соленоид, в свою очередь, приводит в действие цепь стартера, переключая его связь с аккумулятором.
- Ток протекает через щетки стартера к обмоткам коллектора и якоря стартера. Часть катушки, принимающая ток, возбуждается, создавая вокруг себя магнитное поле.
- Этот магнитный поток взаимодействует с магнитным потоком статора или катушек возбуждения, что приводит к двухтактной реакции или так называемой реакции обмотки якоря стартера. Якорь движется в магнитном поле, обычно от более высокой до более низкой напряженности поля.
- При вращении якоря вместе с ним вращается и коммутатор, в результате чего секции, контактирующие со щеткой, изменяются.В результате в следующей секции ток передается на обмотки якоря. Соседняя часть катушки запитывается, и процесс повторяется.
- Изменяющийся контакт коммутатора вызывает непрерывное вращение якоря до тех пор, пока он не пройдет мимо оси коллектора.
- Через пол-оборота другая часть коммутатора подает ток на обмотки якоря. Это вызывает изменение полярности, обеспечивая непрерывность вращения. Поэтому якорь вращается без остановки до тех пор, пока в двигатель течет ток.
- Множество сегментов или контактных планок коммутатора имеют два преимущества. Во-первых, они помогают производить плавное вращение якоря. Во-вторых, сегменты увеличивают силу вращения, обеспечивая магнитную силу для каждого небольшого поворота якоря в сборе.
События, описанные здесь, стали возможными благодаря различным компонентам якоря. Вот посмотрите на каждую часть и ту роль, которую она играет.
Детали якоря стартера и их функции
Глядя на якорь стартера в сборе, легко выделить четыре части: цилиндрическую секцию с прорезями, проволочные обмотки, сегментированное кольцо и центральный вал.
Сердечник якоря стартера
Сердцевиной якоря стартера является его самая большая часть. Он состоит из тонких круглых и щелевых слоев железа, также называемых пластинами. Детали изолированы друг от друга для уменьшения вихревых токов. Если бы это был сплошной металлический блок, возникли бы вихревые токи и потеря электроэнергии в виде тепла.
В сердечнике якоря используется железо из-за его превосходных магнитных свойств. Он производит сильный магнит, необходимый для крутящего момента, необходимого для запуска двигателя.По всему сердечнику есть пазы для крепления обмоток катушки. Прорези проходят по всей длине якоря в сборе.
Обмотки катушки якоря стартера
Обмотка якоря стартера обмотана петлей вокруг сердечника. Это довольно толстые медные провода, которые проводят ток с наименьшим сопротивлением. Во избежание короткого замыкания и других проблем провода катушки якоря стартера имеют тонкий слой изоляции.
Обмотки катушки якоря стартера заканчиваются в коммутаторе, где они прикрепляются к определенным сегментам.Это позволяет изменять электрические соединения с обмотками. Это также позволяет изменять полярность и, следовательно, непрерывность вращения якоря.
Как мы видели, катушки вместе с железным сердечником должны создавать сильную вращающую силу. По этой причине используются несколько различных петель, которых может быть до 30 в одном ядре. Каждая катушка также имеет множество витков провода, чтобы помочь увеличить силу магнитного поля и, следовательно, крутящий момент.
Коммутатор якоря стартера
Коммутатор находится в задней части корпуса двигателя и является частью якоря в сборе. Обычно круглый и сегментированный, его основная функция — передача тока на якорь в необходимой последовательности. Это стало возможным благодаря сегментам или медным стержням, по которым скользят щетки двигателя.
Каждый сегмент или полоса на коммутаторе передает ток определенной катушке. Для повышения эффективности контактные поверхности изготовлены из проводящего материала, обычно меди.Прутки также отделены друг от друга непроводящим материалом, например слюдой. Это помогает предотвратить короткое замыкание.
Щетки подают ток на коммутатор. Щетки подпружинены, что обеспечивает постоянный контакт с коммутатором и сводит к минимуму возможность выхода из строя. Расположение щеток может варьироваться от одного двигателя к другому. В некоторых двигателях они находятся по бокам вала, а в других — на концевой пластине.
Вал якоря стартера
Это центральный стержень, который проходит через якорь стартера в сборе. Он удерживает детали, из которых состоит якорь, от сердечника, обмоток до коммутатора. Подшипники на обоих концах поддерживают вал, позволяя ему свободно вращаться.
Для запуска двигателя вал прямо или косвенно раскручивает приводной механизм стартера. Это может быть ведущая шестерня на конце вала или набор редукторов и других деталей. Для прочности вал обычно стальной. Обычно он изолирован от медных шин коллектора.
Крутящий момент якоря стартера
Якорь стартера в сборе преобразует электрическую энергию во вращательное движение.Сила вращения должна быть достаточно большой, чтобы двигатель ожил. Для этого необходимо несколько конструктивных характеристик. К ним относятся увеличение количества обмоток якоря или возбуждения, использование постоянных магнитов и использование определенной схемы подключения.
Якоря большинства стартеров содержат до 30 сегментов катушки. Обычно этого достаточно, чтобы обеспечить плавное вращение и высокий крутящий момент. Многие двигатели также используют постоянные магниты, которых может быть несколько для дальнейшего улучшения крутящего момента.Электромагниты зависят от батареи по току. Помимо разряда батареи, это также означает снижение мощности.
Другой способ увеличения крутящего момента — использование катушек определенной конфигурации. Для обмоток цепи или якоря стартера можно использовать разные схемы. У каждого есть свои плюсы и минусы. Следующая часть представляет собой описание каждого из них, включая преимущества и недостатки.
Схема расположения обмоток якоря стартера
Производители электродвигателей используют три различных способа намотки проводов якоря: шунтирующий, последовательный и составной.
Рана серииКатушки возбуждения или статора включены последовательно с катушками якоря. Ток идет по непрерывному пути от полевых проводов, щетки, коммутатора к обмоткам якоря и обратно к щетке на другой стороне.
Электродвигатели сериисоздают большое вращательное усилие сразу после запуска. Это значительно снижается по мере увеличения скорости вращения. Такое расположение соответствует требованиям систем запуска автомобилей, в которых начальный крутящий момент имеет наибольшее значение.Поэтому якоря большинства автомобильных стартеров имеют шунтирующую намотку.
Другие конфигурации включают следующее.
Шунтирующая рана
Катушка якоря имеет параллельное соединение с катушками возбуждения. Этот тип схемы намотки не обеспечивает достаточно высокий крутящий момент. Однако увеличение скорости вращения не приводит к уменьшению крутящего момента. Из-за небольшого усилия, создаваемого якорем, двигатели с параллельной обмоткой не подходят для систем пуска. Вместо этого они в основном используются в автомобильных аксессуарах.
Сложная рана
В этой схеме подключения якоря часть катушек якоря последовательно соединена с таковыми из статора (или катушек возбуждения). Другая секция подключается параллельно. Схема позволяет двигателю использовать преимущества как параллельной, так и последовательной схемы. В результате крутящий момент якоря остается достаточно высоким и постоянным на протяжении всей работы двигателя.
Якорь стартера Часто задаваемые вопросы
Мы отправились на поиски вопросов, которые задают многие автовладельцы и автолюбители по арматуре стартера.Вот их ответы.
1 кв. Какие материалы используются для изготовления якоря стартера?
A. Большая часть конструкции якоря стартера изготовлена из меди. К ним относятся проволочные или катушечные обмотки. Коллекторные пластины или стержни тоже. Медь используется, помимо прочего, из-за ее исключительной способности проводить электричество. Сердечник якоря обычно представляет собой пластину из мягкого железа.
Изоляция присутствует на всех компонентах, от поверхностей между металлическими пластинами сердечника до проводов якоря.Сегменты коммутатора также имеют изоляционный материал. Вал, на котором крепятся элементы якоря, изготовлен из стали.
2 кв. Что такое сопротивление якоря стартера?
A. Это заданное сопротивление цепи якоря или обмоток сердечника. Для измерения сопротивления можно использовать вольт или омметр. Изменения показаний можно использовать для диагностики якоря, особенно катушек.
Высокое сопротивление указывает на перегоревшую катушку или сломанные части схемы.Он также может показать грязные контакты и коммутатор при измерении на клеммах. С другой стороны, значительное падение сопротивления произошло бы из-за короткого замыкания.
3 кв. В чем причины неисправности якоря стартера?
A. Неисправность якоря стартера может быть вызвана изношенными, корродированными или короткозамкнутыми проводниками или сгоревшими проводами. Трение между движущимися частями вызывает износ поверхностей. Изоляция может выйти из строя и закоротить компоненты, а токовые перегрузки могут вызвать перегорание катушек.Если масло или вода попадут в двигатель, возникнет коррозия.
В большинстве случаев проблема заключается в коммутаторе. Он может быть изношен или покрыт грязью и не может эффективно передавать ток. Когда это является причиной отказа, вы можете очистить грязные детали. Некоторые неисправности требуют покупки нового якоря в сборе или замены неисправных компонентов с помощью стартового комплекта якоря
.4 кв. Какие признаки показывают неисправность якоря стартера?
A. Отказ якоря также является отказом стартера.Знаки включают в себя двигатель, который не вращается или вращается с низким крутящим моментом. Шумный запуск также указывает на плохие детали стартера, в том числе якорь. Признаки неудачи должны указать вам на проблему. Вы можете проверить якорь на наличие проблем со схемой или использовать визуальное наблюдение, чтобы найти изношенные или корродированные детали.
При проведении испытания якоря стартера для определения сопротивления настоятельно рекомендуется использовать подходящие инструменты. Также рекомендуется знать рисунок усилителя компонента и другие параметры.
5 квартал. Какие есть варианты ремонта якоря стартера?
A. Вы можете заменить отдельные детали или полностью заменить арматуру в сборе. Многие автовладельцы выбирают перемотку якоря стартера, чтобы исправить сгоревшие катушки. Это может сэкономить ваши деньги, особенно когда рассматриваемый двигатель является дорогостоящим.
В случае загрязнения коммутатора его очистка является одним из способов восстановления эффективности. Тем не менее, мы рекомендуем сначала определить проблему, прежде чем приступать к ремонту.Вот видео, объясняющее, как проверить якорь стартера.
Q6. Как проводится проверка якоря стартера?
A. Существует несколько методов тестирования якоря стартера. Чаще всего используется проверка силы тока или потребляемого тока. Если электрические пути или схемы неисправны, это проявится как высокое сопротивление.
В руководстве по эксплуатации автомобиля указаны значения сопротивления проводов якоря стартера. Вы найдете его полезным при проведении теста, а также других диагностических действий на различных частях якоря.
Q7. Можно ли заменить якорь на стартер?
A. Можно. Фактически, замена узла обычно является одним из способов спасти стартер вашего автомобиля. Это если вы не хотите заменять сам двигатель. Многие энтузиасты DIY предпочитают делать это сами (это довольно простой процесс). Однако обращаться к услугам механика всегда удобнее и безопаснее.
8 кв. Какая цена стартерного якоря?
А. Стоимость варьируется от 20 до 100 и более долларов. Многое зависит от типа двигателя, для которого построена арматура. Кроме того, его качество и то, является ли это послепродажным товаром или оригинальным. В игру вступают и другие факторы, например производитель. Разные производители автозапчастей могут устанавливать разные цены на аналогичные якоря стартера.
Заключение
Якорь стартера, хотя и не виден, выполняет важную функцию в работе стартера. Это гарантирует, что ток из цепи системы зажигания без сбоев преобразуется в крутящий момент.К сожалению, этот компонент является одним из наиболее подверженных поломкам и выходу из строя. С информацией, содержащейся в этом руководстве, вы теперь понимаете работу и полезность якоря в автомобильном стартере.
Катушка якоря — обзор
Бесщеточные приводы двигателей
Эти двигатели пытаются электронным образом копировать действие щеток и коммутатора на постоянном токе. машина. Такое расположение гарантирует, что токи якоря-катушки меняются (коммутируются), когда катушки вращаются под влиянием одной полярности поля на противоположную полярность.Таким образом, общая сила и крутящий момент сохраняют одинаковое направление. Коммутатор и щетки в постоянном токе. машина действует как датчик положения вала. Якорь и м.д.с. поля имеют фиксированное угловое смещение δ , иногда называемое углом крутящего момента (φ fa ), что схематично показано на рисунке 7.25a, где предполагается, что якорь намотан так, что его общая м.д.с. идет в том же направлении, что и ток в щетке.
Рисунок 7.25. Бесщеточный d.c. двигатель, (а) Нормальный постоянный ток машина; (б) якорь на статоре; (c) схема управления главной цепью; (d) крутящий момент.
Для полностью бесщеточной машины, для которой поле должно быть постоянным магнитом, катушки якоря намотаны на неподвижный (внешний) элемент (рисунок 7.25b) и соединены через полупроводниковые переключатели, которые активируются из положения вала ( Рисунок 7.25c), так что их токи аналогичным образом меняются на противоположные, чтобы соответствовать полярности полюса вращающегося поля. Таким образом, частота переключения автоматически синхронизируется со скоростью вращения вала, как при обычном d.c. мотор. При δ = 90 ° крутящий момент пропорционален F a × F f и, при любом другом угле, предполагая синусоидальную m.m.f. распределений крутящий момент пропорционален F a F f sin δ . При движении ротора δ изменяется от 0 ° до 180 °; затем питание переключается, чтобы снова вернуть δ к нулю, и цикл повторяется. Таким образом, крутящий момент будет пульсировать, как однофазная выпрямленная синусоида (рисунок 7.25г). Это устройство эквивалентно постоянному току. машина только с двумя сегментами коммутатора и имеет нулевое минимальное значение крутящего момента. Обычно имеется не менее трех ответвлений от трехфазной обмотки, которые в свою очередь питаются от трехфазного мостового инвертора. Это срабатывает под управлением детектора положения, так что его выходная частота автоматически регулируется скоростью вала. Пульсации крутящего момента теперь будут похожи на форму выходного сигнала трехфазного мостового выпрямителя; поскольку нулевой крутящий момент отсутствует, пусковой крутящий момент доступен всегда.Профилирование поверхности полюса магнита дополнительно улучшает плавность крутящего момента в течение полного цикла. Моменты переключения можно легко изменить, чтобы получить эффекты, аналогичные смещению оси кисти, которое иногда в умеренной степени используется на обычном постоянном токе. машины. См. Пример 3.1. Характеристики скорости / нагрузки бесщеточной машины аналогичны характеристикам постоянного тока. машина с фиксированным возбуждением, то есть скорость немного падает с увеличением крутящего момента.
Бесщеточный постоянный ток приводы обычно используются для приложений с позиционным управлением в области промышленного управления.Поскольку продолжительность цикла зависит от движения ротора, ШИМ обычно не применяется к этим приводам. Поток ротора создается постоянными магнитами на роторе, обеспечивая трапециевидную МПС. Вариант с фасонными магнитами для создания синусоидальной МПД. известен как «бесщеточный переменный ток». Бесщеточная машина обычно питается от трехфазного инвертора, и регенерация снова становится простой, если предоставляется подходящая схема силового электронного преобразователя. Несмотря на то, что значительные исследовательские усилия были затрачены на повышение скорости отклика или устранение необходимости в дорогостоящих датчиках на бесщеточных d.c. В большинстве промышленных контроллеров используются простые датчики вала на эффекте Холла и фиксированные углы проводимости с переменным постоянным током. напряжение связи. Коммерческие единицы часто включают в себя контроллеры PI или PID (стр. 197).
Ответы на семь общих вопросов по эксплуатации генератора и двигателя
Вращающееся оборудование настолько распространено, но настолько неправильно понимается, что даже опытные электрики и инженеры часто задаются вопросами об их работе. Эта статья ответит на семь наиболее часто задаваемых вопросов.Объяснения краткие и практичные из-за нехватки места; однако они позволят вам лучше понять это оборудование.
Вопрос № 1: Якорь, поле, ротор, статор: что есть что?
По определению, статор включает в себя все невращающиеся электрические части генератора или двигателя. Также по определению ротор включает в себя все вращающиеся электрические части.
Поле машины — это часть, которая генерирует прямое магнитное поле.Ток в поле не чередуется. Обмотка якоря — это то, что генерирует или имеет приложенное к ней переменное напряжение.
Обычно термины «якорь» и «поле» применяются только к генераторам переменного тока, синхронным двигателям, двигателям постоянного тока и генераторам постоянного тока.
Генераторы переменного тока . Поле синхронного генератора — это обмотка, к которой приложен постоянный ток возбуждения. Якорь — это обмотка, к которой подключена нагрузка.В небольших генераторах обмотки возбуждения часто находятся на статоре, а обмотки якоря — на роторе. Однако большинство больших машин имеют вращающееся поле и неподвижный якорь.
Синхронный двигатель практически идентичен синхронному генератору. Таким образом, якорь — это статор, а поле — это ротор.
Машины постоянного тока . В машинах постоянного тока, как в двигателях, так и в генераторах, якорь — это ротор, а поле — статор. Поскольку якорь всегда является ротором в машинах постоянного тока, многие электрики и инженеры ошибочно полагают, что якорь является ротором всех двигателей и генераторов.
Вопрос № 2: Я ослабил натяжение пружин на щетках, но они все еще изнашиваются слишком быстро. Почему?
Износ щеток возникает по двум основным причинам: механическое трение и электрический износ. Механическое трение вызывается трением щеток о коллектор или контактное кольцо. Электрический износ вызывается искрением и искрением от щетки при ее перемещении по коммутатору. Механическое трение увеличивается с давлением щетки; электрический износ уменьшается с давлением щетки.
Для любой конкретной установки щетки существует оптимальное давление щетки.Если давление снижается ниже этой величины, общий износ увеличивается, поскольку увеличивается электрический износ. Если давление увеличивается выше оптимальной величины, общий износ снова увеличивается из-за увеличения механического трения.
Всегда проверяйте, чтобы давление щетки было установлено на уровне, рекомендованном производителем. Если износ по-прежнему чрезмерный, вам следует изучить тип и размер используемой щетки. Помните, что плотность тока (в амперах на квадратный дюйм кисти) должна соответствовать области применения.Надлежащая плотность тока необходима для образования смазывающей проводящей пленки на коммутаторе или контактном кольце. Эта пленка состоит из влаги, меди и углерода. Недостаточная плотность тока препятствует образованию этой пленки и может привести к чрезмерному износу щетки.
Кроме того, среда с очень низкой влажностью не обеспечивает достаточно влаги для образования смазочной пленки. Если чрезмерный износ щеток является проблемой в такой среде, возможно, вам придется увлажнить область, в которой работает машина.
Вопрос № 3: Что такое коэффициент обслуживания?
Сервисный коэффициент — это нагрузка, которая может быть приложена к двигателю без превышения допустимых значений. Например, если двигатель мощностью 10 л.с. имеет коэффициент обслуживания 1,25, он будет успешно выдавать 12,5 л.с. (10 x 1,25) без превышения указанного повышения температуры. Обратите внимание, что при приведении в действие таким образом выше номинальной нагрузки на двигатель должны подаваться номинальное напряжение и частота.
Однако имейте в виду, что мотор мощностью 10 л.с. с 1.25 — это не 12,5-сильный мотор. Если двигатель мощностью 10 л.с. будет непрерывно работать с мощностью 12,5 л.с., срок его службы изоляции может сократиться на две трети от нормального. Если вам нужен мотор мощностью 12,5 л.с., купите его; коэффициент эксплуатации следует использовать только в условиях кратковременной перегрузки.
Вопрос № 4: Что такое вращающееся магнитное поле и почему оно вращается?
Вращающееся магнитное поле — это поле, северный и южный полюсы которого движутся внутри статора, как если бы стержневой магнит или магниты вращались внутри машины.
Посмотрите на статор трехфазного двигателя, показанный на прилагаемой схеме. Это 2-полюсный статор с тремя фазами, разнесенными с интервалами 120 [градусов]. Ток от каждой фазы входит в катушку на одной стороне статора и выходит через катушку на противоположной стороне. Таким образом, если одна из катушек создает магнитный северный полюс, другая катушка (для той же фазы) создаст магнитный южный полюс на противоположной стороне статора.
В позиции 1 B-фаза создает сильный северный полюс в верхнем левом углу и сильный южный полюс в нижнем правом углу.Фаза А создает более слабый северный полюс в нижнем левом углу и более слабый южный полюс внизу. C-фаза создает общее магнитное поле, северный полюс которого находится в верхнем левом углу, а его южный полюс — в нижнем правом углу.
В позиции 2, фаза А создает сильный северный полюс в нижнем левом углу и сильный южный полюс в верхнем правом углу; таким образом, сильные столбы повернулись на 60 [градусов] против часовой стрелки. (Обратите внимание, что это магнитное вращение на 60 [градусов] точно соответствует электрическому изменению фазных токов на 60 [градусов].) Слабые полюса также повернуты на 60 [градусов] против часовой стрелки. Это, по сути, означает, что полное магнитное поле повернулось на 60 [градусов] относительно положения 1.
При более подробном анализе мы можем показать, что напряженность магнитного поля плавно вращается из положения 1 в положение 2, поскольку токи в каждой из фаз изменяются более чем на 60 электрических градусов. Анализ положений 3, 4, 5 и 6 показывает, что магнитное поле продолжает вращаться.
Скорость вращения магнитного поля называется синхронной скоростью и описывается следующим уравнением:
S = (f x P) / 120, где S = скорость вращения в оборотах в минуту f = частота подаваемого напряжения (Гц) P = количество магнитных полюсов во вращающемся магнитном поле
Если бы в этот статор был помещен постоянный магнит с валом, который позволял ему вращаться, его бы толкали (или тянули) с синхронной скоростью.Именно так работает синхронный двигатель, за исключением того, что магнитное поле ротора (поле) создается электромагнетизмом, а не постоянным магнитом.
Ротор асинхронного двигателя состоит из короткозамкнутых обмоток, и ток индуцируется в обмотках ротора, когда вращающееся магнитное поле прорезает их. Этот ток создает поле, которое противостоит вращающемуся полю. В результате ротор толкается (или тянется) вращающимся полем. Обратите внимание, что ротор асинхронного двигателя не может вращаться с синхронной скоростью, поскольку вращающееся поле должно прорезать обмотки ротора для создания крутящего момента.Разница между синхронной скоростью и фактической скоростью ротора называется проскальзыванием в процентах; он выражается в процентах.
Однофазные двигатели также имеют вращающееся магнитное поле. Вращающееся поле, необходимое для запуска двигателя, создается второй обмоткой, называемой пусковой обмоткой. После того, как двигатель набирает обороты, пусковая обмотка отключается, и вращающееся поле создается за счет взаимодействия основной обмотки статора и ротора.
Вопрос № 5: Как работает индукционный генератор?
Асинхронный генератор по конструкции идентичен асинхронному двигателю.Обмотки статора подключены к трехфазной системе питания, и три фазы создают вращающееся магнитное поле. Ротор индукционного генератора вращается первичным двигателем, который вращается быстрее, чем синхронная скорость. Когда обмотки ротора прорезают вращающееся поле, в них индуцируется ток. Этот индуцированный ток создает поле, которое, в свою очередь, прорезает обмотки статора, создавая выходную мощность на нагрузку.
Таким образом, индукционный генератор получает возбуждение от энергосистемы, к которой он подключен.Асинхронный двигатель должен иметь синхронные генераторы, подключенные к его статору, чтобы начать генерацию. После того, как индукционный генератор заработает, для возбуждения можно использовать конденсаторы.
Вопрос № 6: Почему подшипники генератора и двигателя изолированы?
Магнитное поле внутри двигателя или генератора не полностью однородно. Таким образом, когда ротор вращается, на валу в продольном направлении (непосредственно вдоль вала) создается напряжение. Это напряжение может вызвать прохождение микротоков через смазочную пленку на подшипниках.Эти токи, в свою очередь, могут вызвать незначительное искрение, нагрев и, в конечном итоге, выход подшипника из строя. Чем больше машина, тем хуже становится проблема.
Чтобы избежать этой проблемы, сторона ротора корпуса подшипника часто изолирована от стороны статора. В большинстве случаев, по крайней мере, один подшипник будет изолирован, обычно это самый дальний от первичного двигателя для генераторов и самый дальний от нагрузки для двигателей. Иногда оба подшипника изолированы.
Вопрос № 7: Как генераторы переменного тока управляют переменными, напряжением и мощностью?
Хотя элементы управления генератора взаимодействуют, верны следующие общие положения.
* Выходная мощность генератора регулируется его первичным двигателем.
* Напряжение и / или переменная мощность генератора регулируются уровнем тока возбудителя.
Например, предположим, что к выходу генератора подключена дополнительная нагрузка. Дополнительный ток увеличивает силу магнитного поля якоря и замедляет работу генератора. Чтобы поддерживать частоту, регулятор генератора увеличивает мощность, потребляемую первичным двигателем.Таким образом, дополнительная мощность, необходимая для генератора, регулируется входом первичного двигателя.
В нашем примере чистый магнитный поток в воздушном зазоре будет уменьшаться, поскольку увеличение якоря противодействует потоку поля. Если поток поля не увеличивается, чтобы компенсировать это изменение, выходное напряжение генератора будет уменьшаться. Таким образом, ток возбуждения используется для управления выходным напряжением.
Давайте рассмотрим другой пример в качестве дальнейшего пояснения. Допустим, к нашему генератору добавлена дополнительная нагрузка var.В этом случае выходной ток генератора снова увеличится. Однако, поскольку новая нагрузка не является «реальной» мощностью, первичный двигатель необходимо увеличить ровно настолько, чтобы преодолеть дополнительное падение ИК-излучения, создаваемое дополнительным током.
В качестве последнего примера предположим, что у нас есть два или более генератора, работающих параллельно и питающих нагрузку. Генератор 1 (G1) несет всю нагрузку (реальную и реактивную), а генератор 2 (G2) работает с нулевой мощностью и нулевой мощностью. Если оператор G2 открывает дроссель первичного двигателя, G2 начинает подавать ватт в систему.Поскольку подключенная нагрузка не изменилась, оба генератора будут ускоряться, если G1 не дросселируется.
Поскольку G2 принимает на себя дополнительную долю нагрузки, ему требуется увеличенный магнитный поток. Если оператор G2 не увеличивает поле G2, G2 будет получать дополнительное возбуждение от G1, требуя от G1 увеличения уровня возбуждения. Если ни G1, ни G2 не увеличивают уровень возбуждения, общее напряжение системы упадет.
Cadick, P.E. является президентом Cadick Professional Services, Гарланд, Техас., международная ассоциация электрических испытаний. (NETA) член.
Что такое коммутатор? — Советы по управлению движением
Принцип работы двигателя постоянного тока основан на взаимодействии между магнитным полем вращающегося якоря и магнитным полем неподвижного статора. Когда северный полюс якоря притягивается к южному полюсу статора (и наоборот), на якорь создается сила, заставляющая его вращаться. Коммутация — это процесс переключения поля в обмотках якоря для создания постоянного крутящего момента в одном направлении, а коммутатор — это устройство, подключенное к якорю, которое обеспечивает такое переключение тока.
Плечо рычага для крутящего момента, создаваемого на якоре, изменяется в зависимости от угла катушки (cos α). Следовательно, когда катушка перпендикулярна (вертикальна) магнитному полю статора, крутящий момент не создается. Вот почему двигатели постоянного тока имеют несколько катушек; поэтому механизм якоря будет продолжать испытывать силу, даже если одна катушка перпендикулярна магнитному полю.Изображение предоставлено Государственным университетом Джорджии
Основная цель коммутации — гарантировать, что крутящий момент, действующий на якорь, всегда в одном и том же направлении.Напряжение, генерируемое в якоре, имеет переменный характер, и коммутатор преобразует его в постоянный ток. Проще говоря, коммутатор включает и выключает катушки, чтобы контролировать направление электромагнитных полей. С одной стороны катушки электричество всегда должно течь «прочь», а с другой стороны, электричество всегда должно течь «навстречу». Это гарантирует, что крутящий момент всегда создается в одном и том же направлении. В противном случае катушка повернулась бы на 180 градусов в одну сторону, а затем изменила бы направление.
Чтобы наглядно показать, как ток переключается в зависимости от положения катушек и щеток, см. Эту статью из Университета Юты.
Сам коммутатор представляет собой разрезное кольцо, обычно сделанное из меди, причем каждый сегмент кольца прикреплен к каждому концу катушки якоря. Если якорь имеет несколько катушек, коммутатор также будет иметь несколько сегментов — по одному на каждый конец каждой катушки. Подпружиненные щетки располагаются по обе стороны от коммутатора и контактируют с коммутатором при его вращении, подавая напряжение на сегменты коммутатора и соответствующие катушки якоря.
Изображение предоставлено: electric4u.comКогда щетки проходят через зазоры в коммутаторе, поставляемый электрический заряд переключает сегменты коммутатора, который переключает электрическую полярность катушек якоря. Такое переключение полярности в катушках поддерживает вращение якоря в одном направлении. Напряжение между щетками колеблется по амплитуде от нуля до максимального значения, но всегда сохраняет одинаковую полярность.
Как упоминалось ранее, коммутатор состоит из сегментов, изолированных друг от друга.Когда щетки переходят от одного сегмента к другому, наступает момент, когда щетки контактируют с обоими сегментами одновременно. Это называется нейтральной плоскостью, и в этой точке индуцированное напряжение равно нулю. В противном случае щетки закоротят концы катушки вместе и вызовут искрение из-за высокого напряжения.
Термин «щетки» был придуман на заре двигателей постоянного тока, когда они были сделаны из жилы медной проволоки. Эти устройства требовали частой замены и повредили кольца коммутатора.В современных двигателях постоянного тока обычно используются «щетки» из угля, которые изнашиваются медленнее и меньше повреждают коммутатор.Важно отметить, что вышеприведенное обсуждение относится к традиционным щеточным электродвигателям постоянного тока, которые переключаются с помощью механических средств. Бесщеточные двигатели постоянного тока также требуют коммутации, но в бесщеточных конструкциях коммутация осуществляется электронно, через энкодер или датчики на эффекте Холла, которые контролируют положение ротора, чтобы определить, когда и как подавать питание на катушки.
Изображение предоставлено: Groschopp, Inc.
Определение основных терминов для электродвигателей Glendale
Как ваш поставщик услуг по ремонту и восстановлению электродвигателей в Глендейле, наряду с продажей как новых электродвигателей, так и восстановленных электродвигателей, мы хотели бы познакомить вас с некоторыми из терминологии, используемой при обсуждении электродвигателей.
1. AC (переменный ток)
Переменный ток — это наиболее распространенная электрическая энергия.В электродвигателе, чтобы ротор оставался вращающимся, необходимо, чтобы полярность электромагнита изменяла направление его потока или чередовалась.
2. Воздушный зазор
В электродвигателе пространство между статором и ротором называется воздушным зазором. Вообще говоря, наименьший воздушный зазор обеспечивает лучшую эффективность.
3. Арматура
Вращающаяся часть магнитного компонента в электродвигателе называется якорем. В нем используется непрерывный ряд обмоток для создания электромагнита.
4. Кондуктор
Проводником может быть любой материал, обладающий низким сопротивлением прохождению электрического тока. Металлы — одни из лучших проводников электрического тока. Для поддержания электрического тока, проходящего через проводящий провод, потребуется изолирующий материал.
5. Коммутатор
Коммутатор — это элемент цилиндрической формы, состоящий из медных сегментов, соединенных с якорем. Каждый медный сегмент содержит обмотки.
6.DC (постоянный ток)
Постоянный ток течет в электрической цепи только в одном направлении.
7. Электромагнит
Электромагнит — это магнит, содержащий железный сердечник с намотанной на него катушкой из изолированного провода. Он намагничивается, когда электрический ток течет по проводу, и теряет свое магнитное поле, когда ток устраняется.
8. Герметизированная обмотка
Герметизированная обмотка означает, что каждый провод в обмотке покрыт высокоизолирующим материалом, позволяющим выдерживать воздействие суровых условий.
9. Ротор
Ротор — это подвижная часть электродвигателя, отвечающая за вращение вала для создания механической энергии. Обычно он состоит из многослойных пластин.
10. Статор
Этот статор является неподвижным элементом магнитной конструкции электродвигателя и соединен с обмотками. Он состоит из пластин и имеет отверстие в центре, через которое ротор может вращаться.
11. КПД
КПД двигателя — это отношение его полезной выходной мощности к общей потребляемой мощности и выражается в процентах.
Некоторые из этих условий могут озадачить многих из нас, но не специалистов по ремонту двигателей и восстановлению электродвигателей в Run ‘Em Again Electric Motors в Глендейле, штат Аризона, . Мы специализируемся на электродвигателях мощностью до 50 л.с. как для бытового, так и для коммерческого использования. У нас есть большой выбор запчастей и принадлежностей для большинства основных брендов, таких как шкивы, лопасти вентиляторов, ремни и т. Д., А также широкий выбор восстановленных электродвигателей и насосов. Кроме того, если вы рассматриваете возможность приобретения нового электродвигателя, мы являемся официальными дистрибьюторами большинства крупных брендов, включая Leeson, Century, Armstrong, Taco, Hyundai, Bell & Gossett, Worldwide, Marathon и FASCO.
Run ‘Em Again Electric Motors — это 50-летний совместный опыт ремонта двигателей и восстановления электродвигателей для вашего дома или бизнеса в Глендейле, штат Аризона. Свяжитесь с нами сегодня по телефону (623) 388-6898 для тестирования.
Тестирование включает:
- Общий осмотр
- Тестирование двигателей
- Тестирование насосов
- Проверка обмотки
Наши услуги включают:
- Жилой
- Коммерческий
- Промышленное
- Ремонт насоса бассейна
- Ремонт двигателя кондиционера
- Ремонт электродвигателя
- Ремонт двигателя
- Заводские авторизованные продажи большинства основных марок электродвигателей и насосов
типов электродвигателей — Thomson Lamination Company, Inc.
Электродвигателиможно найти во многих сферах применения: от обычных предметов домашнего обихода до различных видов транспорта и даже передовых аэрокосмических приложений. Здесь мы делимся руководством, которое поможет вам лучше понять доступные варианты.
Электродвигатели и генераторы
Электродвигатели и генераторы представляют собой электромагнитные устройства с обмоткой якоря или ротором, который вращается внутри обмотки возбуждения или статора; однако у них противоположные функции.Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую.
Два типа электродвигателей
Обмотка возбуждения в электродвигателях обеспечивает электрический ток для создания фиксированного магнитного поля, которое обмотка якоря использует для создания крутящего момента на валу электродвигателя. Различия между различными типами электродвигателей связаны с их уникальной работой, напряжением и требованиями к применению. Существует не менее десятка различных типов электродвигателей, но есть две основные классификации: переменного тока (AC) или постоянного тока (DC).То, как обмотки в двигателях переменного и постоянного тока взаимодействуют друг с другом для создания механической силы, создает дополнительные различия в каждой из этих классификаций.
Двигатели постоянного тока
Матовые двигателиЩеточные двигатели состоят из четырех основных компонентов:
- Статор
- Ротор или якорь
- Кисти
- Коммутатор
Существует четыре основных типа щеточных двигателей, в том числе:
- Двигатели серии. Статор включен последовательно или идентичен ротору, поэтому их токи возбуждения идентичны. Характеристики: используется в кранах и лебедках, большой крутящий момент на низкой скорости, ограниченный крутящий момент на высокой скорости.
- Параллельные двигатели. Катушка возбуждения параллельна (шунтируется) ротору, благодаря чему ток двигателя равен сумме двух токов. Характеристики: используется в промышленности и автомобилестроении, отличное управление скоростью, высокий / постоянный крутящий момент на низких скоростях.
- Кумулятивные составные двигатели. Этот тип сочетает в себе аспекты как последовательного, так и закрытого типов, делая ток двигателя равным сумме последовательных и шунтирующих токов поля. Характеристики: используется в промышленности и автомобилестроении, объединяет преимущества как серийных, так и параллельных двигателей.
- Двигатели PMDC (постоянный магнит). Самый распространенный тип щеточных электродвигателей, электродвигатели с постоянным постоянным током, в которых для создания поля статора используются постоянные магниты. Характеристики: используется в коммерческом производстве игрушек и бытовой техники, дешевле в производстве, хороший крутящий момент на нижнем конце, ограниченный крутящий момент на верхнем конце.
Двигатели бесколлекторной категории не имеют коллектора и щеток. Вместо этого ротор представляет собой постоянный магнит, а катушки находятся на статоре. Вместо того, чтобы управлять магнитными полями на роторе, бесщеточные двигатели управляют магнитными полями статора, регулируя величину и направление тока в катушках. Одним из основных преимуществ бесщеточных двигателей является их эффективность, которая позволяет лучше контролировать и производить крутящий момент в более компактной сборке.
Двигатели переменного тока
Двигатели, относящиеся к классификации двигателей переменного тока, бывают синхронными или асинхронными, которые в первую очередь различаются по скорости ротора относительно скорости статора. Скорость ротора относительно статора в синхронном двигателе равна, но скорость ротора меньше, чем его синхронная скорость в асинхронном двигателе. Кроме того, синхронные двигатели имеют нулевое скольжение и требуют дополнительного источника питания, в то время как асинхронные или асинхронные двигатели имеют скольжение и не требуют вторичного источника питания.
Синхронный двигательСинхронный двигатель — это машина с двойным возбуждением, то есть он имеет два электрических входа. В обычном трехфазном синхронном двигателе один вход, обычно трехфазный переменный ток, питает обмотку статора, создавая трехфазный вращающийся магнитный поток. Питание ротора обычно осуществляется постоянным током, который возбуждает или запускает ротор. Как только поле ротора сцепляется с полем статора, двигатель становится синхронным.
Асинхронный (индукционный)В отличие от синхронных двигателей, асинхронные двигатели позволяют запускать асинхронные двигатели, подавая питание на статор без подачи питания на ротор.Асинхронные двигатели имеют конструкцию с возбуждением или с короткозамкнутым ротором. Вот некоторые примеры асинхронных асинхронных двигателей:
- Индукционные двигатели с конденсаторным пуском. Это однофазный двигатель с ротором и двумя обмотками статора, запускаемый конденсатором. Их использование включает компрессоры и насосы в холодильниках и системах переменного тока с частым запуском и остановом.
- Асинхронные двигатели с короткозамкнутым ротором. Трехфазное питание создает магнитное поле в обмотке статора в этом двигателе, который включает в себя ротор с короткозамкнутым ротором, сделанный из листовой стали с высокой проводимостью.Это недорогие, низкие эксплуатационные расходы и высокоэффективные двигатели, используемые в центробежных насосах, промышленных приводах, больших нагнетателях и вентиляторах, станках, токарных станках и другом токарном оборудовании.
- Двигатели с двойным короткозамкнутым ротором. Эти двигатели решают проблемы с низким пусковым крутящим моментом в двигателях с короткозамкнутым ротором. Их конструкция уравновешивает отношение реактивного сопротивления к сопротивлению между внешней и внутренней клеткой, увеличивая пусковой крутящий момент при сохранении общей эффективности.
Щелкните, чтобы развернуть
Идентификация электродвигателя
Выбор двигателя, наиболее подходящего для конкретного применения, зависит от четырех характеристик:
- Мощность и скорость
- Моторная рама
- Требования к напряжению
- Корпуса и монтажные позиции
Металлическая табличка, прикрепленная к двигателю, содержит важную информацию, относящуюся к этим характеристикам, за исключением информации о корпусе.
Номинальная мощность и скорость электродвигателя
И номинальная мощность, и номинальная частота вращения (об / мин) должны соответствовать требованиям к нагрузке для установленного приложения. Двигатели бывают разных категорий мощности, в том числе: дробные двигатели (от 1/20 до 1 л.с.), встроенные двигатели (от 1 до 400 л.с.) и большие двигатели (от 100 до 50 000 л.с.). Номинальные значения частоты вращения включают 3600 об / мин (2 полюса), 1800 об / мин (4 полюса) и 1200 об / мин (6 полюсов).
Рама электродвигателя
Размер рамы двигателя не указывает на его рабочие характеристики, особенно на номинальную мощность в лошадиных силах.Национальная ассоциация производителей электрооборудования (NEMA) разработала номера корпусов, соответствующие монтажным размерам, с их цифрами, относящимися к их размеру «D» или расстоянию от центра вала до центра нижней части крепления. Как правило, двухзначные метки предназначены для дробных двигателей, но в них можно встроить двигатели большей мощности.
Требования к напряжению
Напряжение, частота и фаза — все это часть требований к напряжению. В большинстве случаев в Северной Америке и Европе трехфазные двигатели оснащены дисплеями с двойным напряжением, например 230/460.Стандартная рабочая частота для большинства электродвигателей составляет 60 Гц, хотя в Европе распространены двигатели с частотой 50 Гц. Это изменение в герцах указывает на то, что двигатель будет работать со скоростью 5/6 от нормальной скорости вращения. Фаза — это последний бит информации, включенный в требования к напряжению двигателя, указывающий тип требуемого источника питания, например трехфазный, однофазный и постоянный ток.
Корпуса и монтажные позиции
Информация о корпусе зависит от среды, в которой установлен двигатель.Есть две основные категории корпусов: открытые двигатели и закрытые двигатели.
Открытые двигателиОткрытые двигатели применяются в относительно чистых и сухих помещениях, что важно, поскольку открытые кожухи двигателей обеспечивают циркуляцию воздуха через обмотки.
Закрытые двигателиЭти типы не допускают свободного воздухообмена между внешней и внутренней частью двигателя. Различия в герметичности корпуса и характеристиках охлаждения дополнительно различают двигатели закрытого типа, в том числе:
- Полностью закрытый вентилятор с охлаждением (TEFC)
- Полностью закрытые, невентилируемые (TENV)
- Полностью закрытый воздуховод (TEAO)
- Полностью закрытая промывка (TEWD)
- Взрывозащищенные корпуса (EXPL)
- Опасная зона (HAZ)
Найдите электродвигатель, наиболее подходящий для вашего применения
Thomson Lamination Company — ведущий производитель штампованных компонентов для ламинирования двигателей, способный производить большие партии пластин ротора и статора из металлов с высокой проводимостью.
Ознакомьтесь с нашими возможностями по производству ламинации или свяжитесь с нами, чтобы узнать больше о наших решениях для ламинирования с электродвигателем.