Асинхронный электродвигатель принцип: Асинхронный электродвигатель: устройство и принцип работы

Содержание

Асинхронный электродвигатель: устройство и принцип работы

Содержание

  1. Устройство асинхронного электродвигателя
  2. Принцип работы асинхронного двигателя
  3. Преимущества асинхронных двигателей

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.


Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию

. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «

беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины 

sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

  • Просмотров: 91067
  • устройство, принцип работы, виды, способы пуска

    Способы пуска и схемы подключения

    Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

    • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
    • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
    • понижение напряжения;
    • плавный пуск;
    •  изменение частоты питающего напряжения.

    Однофазного асинхронного двигателя.

    Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

    • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
    • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
    • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.

    Трехфазного асинхронного двигателя.

    Трехфазные асинхронные агрегаты могут подключаться такими способами:

    • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
    • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
    • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

    Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

    Рис. 9: прямая схема без возможности реверсирования

    Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

    Рисунок 10: схема прямого включения с реверсом

    Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

    Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.

    Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели — это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.

    Устройство и принцип действия асинхронных электродвигателей

    1. Устройство трехфазных асинхронных двигателей

    Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

    Рис. 1 Магнитопровод статора

    В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

    Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

    Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

    Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой

    Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

    Рис. 4. Общий вид асинхронного двигателя серии 4А

    Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

    2. Принцип действия трехфазных асинхронных двигателей

    Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.

    Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя

    Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом — вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.

    Алиев И.И.

    Асинхронный двигатель. Принцип работы. — Help for engineer

    Асинхронный двигатель. Принцип работы.

    Асинхронный двигатель – это асинхронная электрическая машина переменного тока в двигательном режиме, у которой частота вращения магнитного поля статора больше чем частота вращения ротора.

    Принцип работы берет основу из создания вращающегося магнитного поля статора, о чем подробнее вы можете почитать из указанной ссылки.

    Асинхронные двигатели – одни из самых распространённых электрическим машин, и зачастую являются одним из основных преобразователей электрической энергии в механическую энергию. Самым большим достоинством является отсутствие контакта между подвижными и подвижными частями ротора, я имею ввиду электрический контакт, к примеру, в двигателях постоянного тока через щетки и коллектор. Однако это справедливо только к АД с короткозамкнутым ротором, в асинхронных двигателях с фазным ротором, этот контакт имеет место, но об этом чуть позже.

    Конструкция асинхронного двигателя.

    Рассмотрим конструкцию, примером послужит асинхронный двигатель с короткозамкнутым ротором, но так же существует фазный тип ротора. Асинхронный двигатель состоит из статора и ротора между которыми воздушный зазор. Статор и ротор в свою очередь еще имеют так называемые активные части – обмотка возбуждения (отдельно статорная и отдельно роторная) и магнитопровод (сердечник). Все остальные детали АД, такие как: вал, подшипники, вентилятор, корпус, и т.п. – чисто конструктивные детали, обеспечивающие защиту от окружающей среды, прочность, охлаждение, возможность совершать вращение.

    Рисунок 1 – Конструкция асинхронного двигателя.

    Статор представляет собой трёх (или много)-фазную обмотку, проводники которой равномерно уложены в пазах по всей окружности, с угловым расстоянием в 120 эл. градусов. Концы обмотки статора обычно соединяют по схемам «звезда» или «треугольник», и подключаются к сети питающего напряжения. Магнитопровод выполняется из электротехнической шихтованной (набрано из тонких листов) стали.

    Как я уже сказал ранее, в асинхронном двигателе существует всего 2 типа роторов: это фазный тип ротора, и короткозамкнутый. Магнитопровод ротора также выполнен из шихтованной электротехнической стали. Короткозамкнутый ротор имеет вид так называемой «беличьей клетки» из-за схожести своей конструкции на эту клетку. Состоит эта клетка из медных стержней, которые накоротко замкнуты кольцами. Стержни непосредственно вставлены в пазы сердечника ротора. Для улучшения пусковых характеристики АД с таким типом ротора, применяют специальную форму паза, это дает возможность использования эффекта вытеснения тока, что влияет на увеличение активного сопротивления роторной обмотки при пуске (больших скольжения). Сами по себе, АД с короткозамкнутым ротором имеют малый пусковой момент, что пагубно сказывается на области их использования. Наибольшее распространение они нашли в системах которые не требуют больших пусковых моментов. Однако, данный тип ротора отличается тем, что на его обслуживание тратится меньше средств чем на обслуживание двигателя с фазным ротором, вследствие отсутствия физического контакта в типе ротора беличья клетка.

    Рисунок 2 – Ротор АД «беличья клетка»

    Фазный ротор состоит из трёхфазной обмотки, зачастую соединенной по схеме «звезда», и выведенную на контактные кольца, которые вращаются вместе с валом. Щетки выполнены из графита. Фазный ротор дает много преимуществ, таких как пуск звезда-треугольник, регулирование частоты вращения изменением сопротивления ротора.

    Режимы работы

    Подробнее рассмотреть механическую характеристику в моей ранней статье, а так же способы пуска с реверсом.

    К тормозным режимам стоит отнести несколько основных:

    – торможение противовключением;

    – торможение однофазным переменным током и конденсаторное торможение;

    – динамическое торможение.

    Асинхронный двигатель имеет низкую стоимость, надёжен, и очень дешевый в обслуживании, особенно если он выполнен с короткозамкнутым ротором.

    Недостаточно прав для комментирования

    Асинхронный двигатель – принцип работы и особенности управления

    Среди всех электродвигателей следует особо отметить асинхронный двигатель, принцип работы которого основан на взаимодействии магнитных полей статора с электрическим током, наводящимся с помощью этого поля в обмотке ротора. Вращающееся магнитное поле создается с помощью трехфазного переменного тока, проходящего по обмотке статора, включающего в себя три группы катушек.

    Асинхронный двигатель – принцип работы и применение

    Принцип действия асинхронного двигателя основан на возможности передачи электрической энергии в механическую работу для какой-либо технологической машины. При пересечении замкнутой обмотки ротора магнитное поле наводит в ней электрический ток. В результате вращающееся магнитное поле статора взаимодействует с токами ротора и вызывает возникновение вращающегося электромагнитного момента, который и приводит ротор в движение.

    Кроме того, механическая характеристика асинхронного двигателя основана на его работе в двух вариантах. Он может работать как генератор или электродвигатель. Благодаря этим качествам, его, чаще всего, используют как передвижной источник электроэнергии, а также во многих технологических приборах и оборудовании.

    Рассматривая устройство асинхронного двигателя, следует отметить его пусковые элементы, состоящие из пускового конденсатора и пусковой обмотки с повышенным сопротивлением. Они отличаются своей дешевизной и простотой, не требуют дополнительных фазосдвигающих элементов. В качестве недостатка необходимо отметить слабую конструкцию пусковой обмотки, которая нередко выходит из строя.


    Устройство асинхронного двигателя и правила обслуживания

    Схема пуска асинхронного двигателя может быть улучшена за счет последовательного включения с обмоткой пускового конденсатора. После отключения конденсатора происходит полное сохранение всех характеристик двигателя. Очень часто схема включения асинхронного двигателя имеет рабочую обмотку, разбиваемую на две последовательно соединяемые фазы. При этом пространственный сдвиг осей находится в пределах от 105 до 120 градусов. Для тепловых вентиляторов применяются двигатели с наличием экранированных полюсов.

    Устройство трехфазного асинхронного двигателя требует проведения ежедневного осмотра, внешней очистки и крепежных работ. Два раза в месяц и более двигатель должен продуваться изнутри с помощью сжатого воздуха. Особое внимание следует обращать на смазку подшипников, которая должна соответствовать конкретному типу двигателя.  Полная замена смазки производится дважды в течение года, с одновременной промывкой подшипников бензином.

    Принцип действия асинхронного двигателя – его диагностика и ремонт

    Для того чтобы управление трехфазным асинхронным  двигателем осуществлялось удобно и долго, необходимо следить за шумом подшипников во время работы. Следует избегать свистящих, хрустящих или царапающих звуков, свидетельствующих о недостатке смазки, а также глухих ударов, указывающих на то, что обоймы, шарики, сепараторы могут быть поврежденными.

    В случае возникновения нетипичного шума или перегревания, подшипники в обязательном порядке подвергаются разборке и осмотру. Происходит удаление старой смазки, после чего производится промывка бензином всех деталей. Перед тем как посадить на вал новые подшипники, они должны быть предварительно прогреты в масле до нужной температуры. Новая смазка должна заполнять рабочий объем подшипника примерно на одну третью часть, равномерно распределяясь по всей окружности.

    Состояние контактных колец заключается в систематической проверке их поверхности. В случае их поражения ржавчиной применяется зачистка поверхности мягкой наждачной бумагой и протирание керосином. В особых случаях делается их расточка и шлифовка. Таким образом, при нормальном уходе за двигателем он сможет отслужить свой гарантийный срок и проработать намного больше.

    Оцените статью: Поделитесь с друзьями!

    Принцип действия асинхронного двигателя


    Понять принцип действия асинхронного двигателя не сложно, если не пользоваться учебниками для вузов и школ. Зачастую академическая литература лишь препятствует пытливому уму разобраться в работе электромоторов и часто навсегда отбивает охоту заниматься изысканиями, связанными с электротехникой и электромеханикой. В последнее время у многих людей, не связанных напрямую с наладкой и проектированием машин, появился интерес к сборке самодельных станков, механизмов, летательных аппаратов и самодвижущихся машин. Поэтому в этой статье мы попытались доступно объяснить принцип действия асинхронного электродвигателя без сложных понятий и формул.

    Работа любого асинхронного двигателя построена на принципе вращающегося магнитного поля. Как его можно создать? Например, можно взять постоянный магнит и начать вращать его вокруг своей оси – получится вращающееся магнитное поле. А если крутить магнит возле медного диска, то он станет вращаться вслед за магнитом, пытаясь его догнать. Со стороны наблюдателя кажется, что между магнитом и диском есть невидимая вязкая связь. Их движение не синхронно, диск крутится с некоторым отставанием.

    Объяснить это явление можно тем, что магнит при вращении возбуждает в структуре диска индукционные токи или токи Фуко. Они всегда движутся по замкнутому кругу — нигде не начинаясь и нигде не заканчиваясь, и являются, по сути, токами короткого замыкания, которые разогревают металл и от которых обычно пытаются избавиться. Но в нашем случае они полезны, т.к. порождают во вращаемом диске магнитное поле, которое дальше взаимодействует с полем постоянного магнита.

    В асинхронных электродвигателях всё происходит по тому же принципу, только чтобы получить вращающееся поле, используют не постоянный магнит, а обмотки статора, в которых создаётся поле вращения. Условия для вращения можно создать только в многофазных системах, где ток сдвинут по фазе на определённый градус. В быту используются двухфазные электродвигатели, где вторая фаза создаётся искусственно с помощью сдвигающего конденсатора, катушки или сопротивления. В промышленности применяют трёхфазные системы.

    Первый трёхфазный асинхронный двигатель был сделан русским учёным Доливо-Добровольским. Схема его работы показана на рисунке. Статор состоял из трёх обмоток (полюсов), отдалённых друг от друга на 120°. Вверху показан график синусоидального тока всех трёх полюсов, наложенных на один рисунок. В момент, когда ток одной из фаз равен нулю (отмечено пунктиром), две другие имеют значения близкие к максимальным и отличаются по направлению тока. Так между двумя работающими обмотками создаются магнитное поле. В следующий момент ситуация меняется – один из работающих полюсов отключается, оставшийся в работе меняет полярность (т.к. в обмотке меняется направление тока), а полюс только что включившийся в работу, поддерживает сместившееся магнитное поле. Магнитные линии пересекают часть металлического ротора и в нём генерируются вихревые токи. Они взаимодействуют с вращающимся полем статора и увлекаются за ним, пытаясь его догнать, и ротор проворачивается.

    Основной принцип работы асинхронного двигателя, созданного в позапрошлом веке, остаётся актуальным и для современных электродвигателей. Только вместо дисковых и цилиндровых роторов стали использовать короткозамкнутые роторы по типу «беличья клетка» и фазные роторы. Также изменилась форма обмоток статора – вместо катушек с полюсными наконечниками теперь делают радиальные обмотки, уложенные в пазы.

    Асинхронные двигатели хороши тем, что они не имеют скользящих контактов (ток в роторе индуцируется бесконтактно), а направление вращения легко поменять, изменив направление тока в одной из обмоток (поменяв фазы на клеммах мотора). Выше была рассмотрена работа статора с одной парой рабочих полюсов (двухполюсного с тремя обмотками). Количество оборотов в минуту такого электромотора равно частоте тока, т.е. 50 об/сек или 3000 об/мин. Изготавливают также 4-х и 6-ти полюсные электродвигатели с шестью и девятью обмотками соответственно. Частота вращения таких моторов составляет 1500 и 1000 об/мин.

    Подведём итоги. Принцип действия асинхронного двигателя основывается на создании в обмотках статора вращающегося магнитного поля, которое пересекает контур ротора и индуцирует в нём электродвижущую силу. Поскольку он замкнут на коротко, то в нём возникает переменный ток. Магнитное поле этого тока вместе с вращающимся магнитным полем статора создают крутящий момент. Ротор начинает крутиться и пытается сравнять свою скорость со скоростью убегающего поля статора. Но как только частота вращения ротора совпадёт с частотой вращения магнитного поля статора, в роторе затухнут все электромагнитные процессы и крутящий момент станет равным нулю. Ротор начинает отставать и магнитное поле статора снова начинает возбуждать контур ротора. Этот процесс будет повторяться всё снова и снова. Таким образом, частота вращения ротора стремится догнать частоту вращения магнитного поля статора, но всё время отстаёт, т.е. вращается не синхронно, а значит асинхронно.

    В станкостроении асинхронные двигатели не заменимы. Ни какой другой тип электромоторов не имеет такой высокой износоустойчивости и универсальности. Поэтому такое оборудование как станок для сетки рабицы, правильно-отрезной и просечно-вытяжной станки, выпускаемые на нашем предприятии, оснащены именно асинхронными электроприводами. На видео хорошо объясняется принцип работы асинхронного электродвигателя, его устройство и отличительные особенности

    • Скачать принцип работы трёхфазного асинхронного двигателя

    


    Свежие записи:

    Строительство, работа, различия и применение

    В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, такими как синхронный двигатель, а также с асинхронным двигателем с их применением. Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем. Итак, в этой статье дается обзор асинхронного двигателя, конструкции, принципа работы и т. Д.


    Что такое асинхронный двигатель?

    Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель. Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора. В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора.В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.

    Асинхронный двигатель

    Это наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого мотора в том, что скорость не может быть изменена. Рабочая скорость этого двигателя в основном зависит от частоты источника питания, а также от номера.полюсов.

    Конструкция асинхронного двигателя

    В этой конструкции двигателя нет магнитов. В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован за счет индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение. Потому что магнитное поле ротора может быть создано за счет магнитного поля статора.Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой во времени. Таким образом, задержка между двумя магнитными полями может быть известна как «проскальзывание».

    Конструкция асинхронного двигателя

    Асинхронный двигатель работает

    Принцип работы этого двигателя почти такой же, как и у двигателя синхронного типа, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.У этих двигателей нет внешних устройств для стимуляции ротора внутри двигателя. Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.

    Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.

    Разница между синхронным и асинхронным двигателем

    Различия между синхронным и асинхронным двигателем указаны в следующей таблице.


    Асинхронный двигатель
    Функция Синхронный двигатель

    Асинхронный двигатель

    Определение Это один из видов машин, в котором скорость ротора и скорость магнитного поля статора эквивалентны.

    N = NS = 120f / P

    Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью.

    N меньше NS

    Тип Типы синхронных: переменное сопротивление, бесщеточный, гистерезисное и переключаемое сопротивление. AC также известен как асинхронный двигатель.
    Клинья Значение скольжения этого двигателя равно нулю Значение скольжения этого двигателя не равно нулю
    Стоимость Дорого Меньше стоимости
    КПД Высокоэффективный Низкоэффективный
    Скорость Скорость двигателя не зависит от разницы в нагрузке. Скорость двигателя уменьшается при увеличении нагрузки.
    Электропитание Электропитание может подаваться на ротор двигателя Ротор в этом двигателе не нуждается в токе.
    Самозапуск Этот двигатель не запускается автоматически Этот двигатель самозапускается
    Эффект крутящего момента Как только приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя Как только приложенное напряжение изменится, это повлияет на крутящий момент этого двигателя
    Коэффициент мощности Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. Он просто работает с отстающим коэффициентом мощности.
    Приложения Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве регулятора напряжения. Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, лифтах, компрессорах, текстильных фабриках и т. Д.

    Преимущества

    К преимуществам асинхронного двигателя можно отнести следующее.

    • Стоимость за вычетом
    • Простота обслуживания
    • КПД высокий при работе с частичной нагрузкой
    • Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER

    Приложения

    Большинство двигателей, используемых в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.

    • Центробежные насосы
    • Воздуходувки
    • Вентиляторы
    • Конвейеры
    • Компрессоры
    • Краны большой грузоподъемности
    • Подъемники
    • Станки токарные
    • Бумажные фабрики
    • Масляные Заводы
    • Текстиль

    Часто задаваемые вопросы

    1). Почему асинхронный двигатель еще называют асинхронным двигателем?

    Асинхронный двигатель зависит от индуцированного тока внутри ротора от вращающегося магнитного поля в статоре.

    2). Какие бывают типы асинхронных двигателей?

    Это однофазные и трехфазные двигатели

    3). В чем главная особенность асинхронного двигателя?

    Основной особенностью этого двигателя является то, что скорость не может изменяться.

    4). Каков коэффициент мощности асинхронного двигателя?

    Этот мотор работает просто на отстающей п.ф.

    Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру из-за высокой прочности и надежности.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?

    Принцип работы и типы асинхронного двигателя

    Асинхронные двигатели — наиболее часто используемые двигатели во многих областях. Их также называют асинхронными двигателями , потому что асинхронный двигатель всегда работает со скоростью ниже синхронной. Синхронная скорость означает скорость вращающегося магнитного поля в статоре.
    В основном существует 2 типа асинхронных двигателей в зависимости от типа входного источника питания — (i) однофазный асинхронный двигатель и (ii) трехфазный асинхронный двигатель.

    Или их можно разделить по типу ротора — (i) двигатель с короткозамкнутым ротором и (ii) двигатель с контактным кольцом или тип

    .

    Основной принцип работы асинхронного двигателя

    В двигателе постоянного тока необходимо подавать питание как на обмотку статора, так и на обмотку ротора. Но в асинхронном двигателе только обмотка статора питается переменным током.
    • Переменный поток создается вокруг обмотки статора из-за источника переменного тока. Этот переменный поток вращается с синхронной скоростью. Вращающийся поток называется «вращающимся магнитным полем» (RMF).
    • Относительная скорость между RMF статора и проводниками ротора вызывает индуцированную ЭДС в проводниках ротора согласно закону электромагнитной индукции Фарадея. Проводники ротора закорочены, и, следовательно, ток ротора возникает из-за наведенной ЭДС. Поэтому такие двигатели называются асинхронными двигателями . (Это действие аналогично тому, что происходит в трансформаторах, поэтому асинхронные двигатели могут называться вращающимися трансформаторами .)
    • Теперь индуцированный ток в роторе также будет создавать вокруг него переменный поток. Этот поток ротора отстает от потока статора. Направление индуцированного тока ротора, согласно закону Ленца, таково, что он будет иметь тенденцию противодействовать причине его возникновения.
    • Поскольку причиной возникновения тока ротора является относительная скорость между магнитным потоком вращающегося статора и ротором, ротор будет пытаться догнать RMF статора.Таким образом, ротор вращается в том же направлении, что и поток статора, чтобы минимизировать относительную скорость. Однако ротору никогда не удается догнать синхронную скорость. Это основной принцип работы асинхронного двигателя любого типа, однофазный или трехфазный.
    Синхронная скорость:

    где, f = частота подачи

    P = количество полюсов

    Квитанция:

    Ротор пытается догнать синхронную скорость поля статора, и, следовательно, он вращается.Но на практике ротор никогда не догоняет. Если ротор достигает скорости статора, не будет относительной скорости между потоком статора и ротором, следовательно, не будет индуцированного тока ротора и создания крутящего момента для поддержания вращения. Однако это не остановит двигатель, ротор замедлится из-за потери крутящего момента, крутящий момент снова будет действовать из-за относительной скорости. Вот почему ротор вращается со скоростью, которая всегда меньше синхронной скорости.

    Разница между синхронной скоростью (N s ) и фактической скоростью (N) ротора называется скольжением.
    Асинхронный двигатель

    : конструкция, работа и отличия

    Асинхронный двигатель является наиболее широко используемым двигателем в отрасли. Практически невозможно представить себе отрасль без использования этого двигателя, поскольку он работает на субсинхронной скорости, он известен как асинхронный двигатель. Взяв на себя такую ​​важную роль, становится необходимо изучить ее подробно. В этой статье обсуждается обзор асинхронного двигателя, такой как его определение, работа, конструкция, различия и применения.

    Что такое асинхронный двигатель?

    Определение: Двигатель переменного тока, в котором статор не синхронизирован с ротором и может свободно вращаться со скоростью, меньшей, чем синхронная скорость, из-за скольжения. Это связано с тем, что вращающееся магнитное поле не взаимодействует с индуцированным полем ротора. В этом двигателе крутящий момент создается, когда ротор не совпадает по фазе со статором, а ток, индуцируемый в роторе, подчиняется закону Ленца.

    асинхронный двигатель

    Однако, если каким-то образом ротор выровняется со статором, это приведет к блокировке ротора и крутящего момента не будет.Этот двигатель всегда работает с запаздывающим коэффициентом мощности, так как ротор отстает от статора. Коэффициент мощности этого двигателя в основном зависит от конструкции и тока нагрузки, в отличие от синхронного двигателя, где его можно легко изменить, изменив ток возбуждения.

    Работа асинхронного двигателя

    Этот двигатель работает по принципу закона Ленца, который гласит, что направление тока, индуцируемого в проводнике за счет изменения магнитного поля, таково, что магнитное поле, создаваемое индуцированным током, противодействует изменяющемуся магнитному полю, которое его создает.

    Изменяющееся магнитное поле создается трехфазным или разделенным фазным током, подаваемым в обмотку статора, и поскольку это магнитное поле разрезает проводники ротора, создавая индуцированный ток в роторе, который противодействует изменяющемуся магнитному полю статора. И, таким образом, производя вращательное движение.
    Работа этого мотора будет продолжена по мере обсуждения конструкции и дизайна.

    Конструкция асинхронного двигателя / Конструкция асинхронного двигателя

    Трехфазный асинхронный двигатель доступен в двух типах

    • скольжения — кольцевого типа или с фазным ротором
    • Тип с короткозамкнутым ротором или короткозамкнутым ротором

    асинхронный двигатель конструкции

    Первый тип, т.е. контактные кольца, состоит из реальной обмотки в пазах ротора, которая соединена с контактными кольцами.В этом двигателе мы можем создавать сопротивление ротора через контактные кольца и щетки. Это позволяет нам изменять пусковые характеристики двигателя.

    Беличья клетка имеет стержни ротора на роторе, которые закорочены кольцами с обеих сторон. Этот тип двигателя имеет фиксированные пусковые характеристики, которые нельзя изменить путем добавления дополнительного сопротивления.

    Тип контактных колец требует технического обслуживания, так как дополнительно имеет контактные кольца и щетки, которые подвержены износу.Остальные основные части — как под

    .
    • Статор
    • Ротор
    • Обмотки статора
    • Обмотки ротора (для ротора с фазным ротором) и планки сепаратора с короткозамыканием (для двигателей с короткозамкнутым ротором)
    • Кроме того, у этого мотора также есть:
    • Подшипники
    • Заглушки концевые
    • Мотор-вентилятор с крышкой.
    • Клеммная коробка

    Статор и ротор изготовлены из штамповок из кремнистой стали. Это сделано для уменьшения потерь из-за вихревых токов и гистерезиса. Статор может быть подключен к трехфазному источнику питания по схеме треугольника или звезды.

    Когда мы подаем питание на статор, потребляемый ток делится на две составляющие, одна из которых является составляющей возбуждения, а другая составляющей нагрузки. Создаваемое таким образом циркулирующее магнитное поле вызывает циркуляционное движение в роторе. Все перечисленные выше детали облегчают вращательное движение ротора.

    Разница между асинхронным двигателем и синхронным двигателем

    Основное различие между ними заключается в скорости, синхронный двигатель вращается со скоростью, которая является скоростью вращающегося магнитного поля и определяется как 120 f / p, где f — частота питания, а p — количество полюса.

    В то время как асинхронный двигатель имеет скорость, которая всегда меньше синхронной скорости из-за скольжения. Можно сказать, что Nas = 120f / p-скольжение. Где Nas означает асинхронную скорость, или мы также можем сказать Nas

    Разницу можно увидеть в разных аспектах:

    Технические характеристики Синхронный двигатель

    Асинхронный двигатель

    Тип

    Бесщеточные двигатели, самозапускающиеся двигатели и двигатели со статическим возбудителем — это двигатели, доступные в синхронном диапазоне. Асинхронный двигатель переменного тока с ротором в клетке или с фазным ротором является асинхронным двигателем.

    Наклейка

    В синхронном двигателе скольжение равно нулю В этом моторе токосъемное кольцо не нулевое

    Требование дополнительного источника питания

    В синхронном двигателе требуется дополнительный источник питания для возбуждения двигателя В случае асинхронного двигателя дополнительный источник питания не требуется

    Контактное кольцо и щетки

    В синхронном двигателе обычно требуются контактные кольца и щетки В этом двигателе контактное кольцо и щетки не требуются.

    Стоимость

    Стоимость синхронного двигателя выше

    Стоимость асинхронного двигателя ниже.

    Эффективность

    КПД синхронного двигателя выше КПД этого двигателя ниже.

    Коэффициент мощности

    В этом двигателе коэффициент мощности можно изменить, изменив ток возбуждения Этот двигатель всегда работает с отстающим коэффициентом мощности, который нельзя изменить.

    Скорость

    В этом двигателе скорость не зависит от нагрузки В этом двигателе скорость уменьшается с нагрузкой.

    Начиная с

    Синхронный двигатель не запускается автоматически, однако его можно запустить как трехфазный асинхронный двигатель, и после достижения почти синхронной скорости он может работать как синхронный двигатель.

    Этот двигатель самозапускается и может быть легко запущен с помощью подходящего распределительного устройства.

    Техническое обслуживание

    Синхронный двигатель требует технического обслуживания Асинхронный двигатель неприхотлив в обслуживании

    Момент

    Изменение напряжения не влияет на крутящий момент синхронного двигателя Крутящий момент этого двигателя пропорционален квадрату напряжения.

    Приложения

    Синхронный двигатель используется там, где требуется высокая мощность, например, на сталелитейных заводах / электростанциях и т. Д. Эти двигатели очень широко используются во всех небольших приложениях. Этот двигатель также используется в качестве синхронного конденсатора для повышения коэффициента мощности.

    Приложения

    • Этот двигатель находит самое широкое применение в промышленности, поскольку он очень надежен, не требует обслуживания и экономичен. Эти двигатели используют почти 70% энергии в промышленности.
    • Трудно представить себе отрасль, в которой не используются эти двигатели,
    • А именно: бумага, металл, пищевая, перерабатывающая промышленность, такая как цемент, удобрения, перекачка, транспортировка и т. Д.

    Часто задаваемые вопросы

    1) В чем основное отличие синхронного двигателя от асинхронного?

    Основное отличие заключается в том, что асинхронный двигатель — это двигатель с фиксированной скоростью (синхронный), тогда как скорость асинхронного двигателя всегда меньше синхронной скорости.

    2) Почему асинхронный двигатель находит очень широкое применение в промышленности, а синхронный — нет?

    Этот двигатель практически не требует обслуживания и экономичен.

    3) Можно ли изменить коэффициент мощности асинхронного двигателя?

    Нет, коэффициент мощности этого двигателя изменить нельзя, он немного изменится только в зависимости от нагрузки.

    4) Может ли асинхронный двигатель когда-либо работать с опережающим коэффициентом мощности, как в синхронном двигателе?

    Нет, этот двигатель никогда не может работать с опережающим коэффициентом мощности.

    5). Что произойдет с крутящим моментом асинхронного двигателя, если напряжение питания изменится?

    В этом двигателе крутящий момент прямо пропорционален квадрату напряжения

    6). каково будет влияние изменения частоты на асинхронный двигатель?

    Изменение частоты в некоторой степени влияет на частоту вращения двигателя.

    7). Можем ли мы каким-либо образом изменить частоту вращения асинхронного двигателя?

    Да, мы можем изменить частоту вращения этого двигателя, если мы изменим частоту и напряжение, одновременно сохраняя постоянное соотношение.

    8). Что произойдет, если асинхронный двигатель будет работать в условиях перегрузки?

    Если этот двигатель работает в условиях перегрузки, он потребляет чрезмерный ток и вызовет перегорание двигателя.

    Таким образом, мы можем сделать вывод из вышеизложенного, что асинхронные двигатели широко используются в промышленности, и они предлагают много преимуществ по сравнению с другими типами двигателей, с появлением технологии переменного напряжения и частоты их роль еще больше возросла. Эти двигатели эволюционировали от низкого КПД до очень высокого КПД.Вот вам вопрос, что такое асинхронный двигатель?

    Каков принцип работы асинхронного двигателя | by Starlight Generator

    Асинхронный двигатель

    Асинхронный двигатель, также известный как «асинхронный двигатель», представляет собой устройство, которое помещает ротор во вращающееся магнитное поле и получает вращающий момент под действием вращающегося магнитного поля. поле, тем самым вращая ротор.

    Статор — это не вращающаяся часть двигателя.Основная задача — создать вращающееся магнитное поле. Вращающееся магнитное поле не достигается механически. Вместо этого он подключен к паре электромагнитов переменным током, так что его свойства магнитного полюса меняются циклически, поэтому он эквивалентен вращающемуся магнитному полю.

    Принцип работы

    Вращающееся магнитное поле, создаваемое статором (скорость вращения — это синхронная скорость вращения n1) и относительное движение обмотки ротора, линия магнитной индукции, отсекающая обмотку ротора, создает наведенную электродвижущую силу, тем самым генерирование индуцированного тока в обмотке ротора.Индуцированный ток в обмотке ротора взаимодействует с магнитным полем, создавая электромагнитный момент, который заставляет ротор вращаться. Поскольку индуцированный ток постепенно уменьшается по мере того, как скорость ротора постепенно приближается к синхронной скорости, генерируемый электромагнитный крутящий момент также соответственно уменьшается. Когда асинхронный двигатель работает в состоянии двигателя, скорость ротора меньше синхронной скорости.

    Разница между синхронным двигателем и асинхронным двигателем

    Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока.Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора. Напротив, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора.

    Маленькие синхронные двигатели используются в системах хронометража, таких как синхронные часы, таймеры в приборах, магнитофонах и прецизионных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости — это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.

    Синхронные двигатели доступны от самовозбуждающихся субфракционных размеров в лошадиных силах до мощных промышленных размеров.

    Starlight Power обеспечивает синхронный генератор мощностью от 20 до 2500 кВт различных производителей, таких как Stamford, Siemens, Marathon, Engga, Leroy-Somer и генератор переменного тока Starlight. Свяжитесь с нами по электронной почте: [email protected]

    В диапазоне дробных лошадиных сил большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время.В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в работу. Во-вторых, он может работать с опережающим или единичным коэффициентом мощности и тем самым обеспечивать коррекцию коэффициента мощности.

    Асинхронный двигатель | Асинхронный двигатель

    Наиболее часто используемый двигатель в мире — это асинхронный двигатель или асинхронный двигатель. Это двигатель, который может работать без электрического подключения к ротору. В этом посте речь пойдет об асинхронных двигателях (асинхронных двигателях), это типы i.е. однофазный, трехфазный, беличий корпус, контактное кольцо и т. д., особенности, принцип работы, применение, преимущества и недостатки.

    Что такое асинхронный двигатель (асинхронный двигатель)

    Асинхронный двигатель или асинхронный двигатель — это самый основной и распространенный тип электродвигателя, который имеет только обмотку Armortisseur , что означает вспомогательную обмотку только на якоре. В асинхронном двигателе (или асинхронном двигателе) статорная часть двигателя передает электромагнитное поле своей обмоткой на роторную часть двигателя.Это генерирует электрический ток в роторе. Электрический ток создает крутящий момент, который приводит в движение.

    Рис. 1 — Введение в асинхронный двигатель (асинхронный двигатель)

    Он упоминается как «Асинхронный двигатель », поскольку он всегда будет работать со скоростью, меньшей, чем его синхронная скорость. Синхронная скорость определяется как скорость магнитного поля вращающейся машины, которая снова определяется количеством полюсов и частотой в машине.

    Так как в этом типе двигателя ротор получает поток и вращение за счет магнитного поля в статоре, существует задержка между токами в статоре и роторе. Из-за этого ротор никогда не достигает своей синхронной скорости. Отсюда термин «асинхронный двигатель». На рис. 2 показаны части асинхронного двигателя.

    Рис. 2 — Детали асинхронного двигателя (асинхронный двигатель)

    Конструкция асинхронного двигателя (асинхронный двигатель)

    Он состоит в основном из двух частей, а именно:

    Статор

    Это стационарная часть электродвигатель.Эта часть обеспечивает электромагнитное поле, необходимое для вращения вращающейся части двигателя. Он состоит из ряда штамповок с прорезями для трехфазной обмотки. Каждая обмотка отделена от другой обмотки на 120 градусов.

    Ротор

    Это вращающаяся часть двигателя. Более распространенный тип ротора в асинхронных двигателях (или асинхронных двигателях) — это ротор с короткозамкнутым ротором. Ротор имеет форму якоря с сердечником цилиндрической формы. Вокруг сердечника есть параллельные прорези, через которые проходит ток.Сердечник имеет стержень из алюминия, меди или сплава.

    Рис. 3 — Базовый ротор и статор

    Типы асинхронных двигателей (асинхронных двигателей)

    Он подразделяется на два типа:

    • Однофазный асинхронный двигатель
    • Трехфазный асинхронный двигатель

    Однофазный асинхронный двигатель

    Однофазный асинхронный двигатель

    не является самозапускающимся двигателем. Здесь двигатель подключен к однофазному источнику питания, который передает переменный ток к основной обмотке.Поскольку источник переменного тока представляет собой синусоидальную волну, он создает пульсирующее магнитное поле в обмотке статора.

    Пульсирующие магнитные поля — это два магнитных поля, вращающихся в противоположных направлениях; следовательно, крутящий момент не создается. Таким образом, после подачи тока ротор должен быть перемещен в любом направлении извне, чтобы двигатель заработал. Однофазный индуктор отсюда; Могут иметь разные разновидности в зависимости от устройства, которое используется для запуска двигателя, а именно:

    • Двигатель с расщепленной фазой
    • Двигатель с экранированными полюсами
    • Конденсаторный пусковой двигатель
    • Конденсаторный пусковой двигатель и конденсаторный двигатель

    Фиг.4 — Принципиальная схема (a) Однофазного (b) Трехфазного асинхронного двигателя

    Трехфазного асинхронного двигателя (асинхронного двигателя)

    Эти двигатели не требуют каких-либо внешних устройств, таких как конденсатор, центробежный переключатель или пусковая обмотка для запуск. Принцип работы этого двигателя основан на использовании трех однофазных фаз, разность фаз между которыми составляет 120 градусов. Таким образом, магнитное поле, вызывающее вращение, будет иметь одинаковую разность фаз между ними, это заставит ротор двигаться без какого-либо внешнего крутящего момента.

    Для дальнейшего упрощения предположим, что это три фазы: phase1, phase2 и phase3. Итак, первая фаза 1 намагничивается, и ротор начинает двигаться в этом направлении, вскоре после этого будет возбуждена фаза 2, и тогда ротор будет притягиваться к фазе 2, а затем, наконец, к фазе 3. Таким образом, ротор продолжит вращаться.

    Далее они подразделяются на категории в зависимости от типа используемого ротора:

    • Асинхронный двигатель с короткозамкнутым ротором
    • Асинхронный двигатель с скользящим кольцом или электродвигатель с фазным ротором
    Асинхронный двигатель с короткозамкнутым ротором

    В этом типе ротор имеет форму Беличья клетка, отсюда и название.Ротор изготовлен из стали с очень токопроводящими металлами, такими как алюминий и медь на его поверхности. Скорость асинхронного двигателя этого типа очень легко изменить, просто изменив форму стержней в роторе.

    Рис. 5 — Асинхронный двигатель с короткозамкнутым ротором

    Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором

    Он также известен как асинхронный двигатель с фазовой обмоткой. Здесь ротор подключен к внешнему сопротивлению через контактные кольца.Скорость ротора регулируется путем регулировки внешнего сопротивления. Поскольку у этого двигателя больше обмоток, чем у асинхронного двигателя с короткозамкнутым ротором, его также называют асинхронным двигателем с фазным ротором.

    Рис. 6 — Асинхронный двигатель с контактным кольцом

    Характеристики асинхронного двигателя (асинхронный двигатель)

    Ниже приведены характеристики двух различных типов асинхронных двигателей.

    Характеристики однофазного асинхронного двигателя
    • Здесь мы выделим некоторые характеристики, которые применимы только к однофазным асинхронным двигателям:
    • Однофазные асинхронные двигатели не самозапускаются и используют однофазное питание для вращения.
    • Чтобы изменить направление вращения в однофазных двигателях, лучше всего остановить двигатель и изменить его, иначе существует вероятность повреждения двигателя из-за момента инерции, который действует против направления, на которое необходимо изменить вращение.
    • Для запуска двигателя вам потребуется конденсатор и / или центробежный переключатель.
    • Пусковой крутящий момент у этих двигателей низкий.
    • Они в основном используются дома или в бытовых приборах из-за низкого коэффициента мощности и эффективности.

    Характеристики трехфазного асинхронного двигателя

    Ниже перечислены некоторые особенности трехфазного асинхронного двигателя, которые отличает его от однофазного двигателя: специальные закуски.

  • Имеются три однофазных линии с разностью фаз 120 градусов.
  • Он имеет более простое подключение и более надежен, чем однофазные асинхронные двигатели.
  • Пусковой момент у этих двигателей выше, чем у однофазных двигателей.
  • Они в основном используются на заводах и в промышленности из-за высокого коэффициента мощности и эффективности.
  • Как работает асинхронный двигатель (асинхронный двигатель) Работа

    Явление, которое заставляет асинхронные двигатели работать, весьма интересно. Двигатели постоянного тока нуждаются в двойном возбуждении для вращения, одно для статора, а другое для ротора.Но в этих двигателях мы должны отдавать это только статору, что делает это уникальным. Как следует из названия, принцип работы этого двигателя основан на индукции. Давайте предпримем ряд шагов, которые происходят при вращении этого двигателя:

    • Питание подается на обмотки статора, возникает ток и создается магнитный поток.
    • Обмотка в роторе устроена таким образом, что каждая катушка закорачивается.
    • Короткозамкнутая обмотка ротора обрезается магнитным потоком статора.

    Рис. 7 — Работа асинхронного двигателя

    Согласно законам электромагнитной индукции Фарадея, магнитное поле взаимодействует с электрической цепью, создавая ЭДС (электродвижущую силу). Итак, в соответствии с этим законом в катушках ротора начинает течь ток.

    • Ток в роторе генерирует другой поток.
    • Теперь есть два потока, один в статоре, а другой в роторе.
    • Поток ротора отстает от магнитного потока статора, что создает крутящий момент в роторе в направлении магнитного поля.

    Применения асинхронных двигателей

    Области применения включают:

    • Они широко используются в смесителях, игрушках, вентиляторах и т. Д.
    • Они также используются в насосах и компрессорах.
    • Малые асинхронные двигатели используются в электробритвах.
    • Они используются в сверлильных станках, лифтах, кранах и дробилках.
    • Они подходят для приводов текстильных фабрик и маслоэкстракционных заводов.

    Преимущества асинхронного двигателя

    Ниже приведены некоторые из преимуществ асинхронных двигателей:

    • Высокоэффективный и простой в конструкции.
    • Очень прочный и может работать в любых условиях.
    • Низкие эксплуатационные расходы, поскольку в них не так много деталей, как коммутаторы или щетки.
    • Они могут развивать очень высокую скорость, не беспокоясь о том, что они износятся, поскольку у них нет щеток.
    • Они просты в эксплуатации, поскольку к ротору не подключены электрические разъемы.
    • Поскольку у них нет щеток, искры не боятся, поэтому их можно использовать в загрязненных или взрывоопасных средах.
    • Скорость от малой нагрузки до номинальной изменяется меньше.

    Недостатки асинхронного двигателя

    Асинхронные двигатели имеют простую конструкцию, которая может иметь несколько недостатков, перечисленных ниже:

    • Трудно контролировать скорость асинхронного двигателя, поэтому его нельзя использовать в местах, где требуется точная работа. контроль скорости.
    • Падение КПД при малых нагрузках.
    • Они имеют высокие входные импульсные токи, что дает низкое напряжение при запуске двигателя.

    См. Также: Видео на Youtube по асинхронным двигателям

      Также прочтите:
    Маховик как накопитель энергии, расчеты и требования к роторам
    Повышающий трансформатор - работа, конструкция, применение и преимущества
    Синхронный двигатель - конструкция, принцип, типы, характеристики
    Что такое клещи (тестер) - типы, принцип работы и порядок эксплуатации  
    Трехфазный асинхронный двигатель

    : конструкция и принцип работы

    Трехфазные асинхронные двигатели являются наиболее широко используемыми электродвигателями в отрасли.Они работают по принципу электромагнитной индукции.

    Из-за схожести принципа действия трансформатора он также известен как вращающийся трансформатор .

    Они работают практически с постоянной скоростью от холостого хода до полной нагрузки. Однако скорость зависит от частоты, и, следовательно, эти двигатели нелегко приспособить для управления скоростью .

    Обычно мы предпочитаем двигатели постоянного тока, когда требуются большие изменения скорости.

    Давайте разберемся в конструкции трехфазного асинхронного двигателя, прежде чем изучать принцип работы.

    Конструкция трехфазного асинхронного двигателя

    Как и любой электродвигатель, трехфазный асинхронный двигатель имеет статор и ротор. Статор имеет 3-фазную обмотку (называемую обмоткой статора), в то время как ротор имеет короткозамкнутую обмотку (называемую обмоткой ротора).

    От трехфазной сети питается только обмотка статора.Обмотка ротора получает свое напряжение и мощность от обмотки статора, находящейся под внешним напряжением, через электромагнитную индукцию , отсюда и название.

    Трехфазный асинхронный двигатель состоит из двух основных частей

    1. Статор
    2. Ротор

    Ротор отделен от статора небольшим воздушным зазором , который составляет от 0,4 мм до 4 мм, в зависимости от мощности мотора.

    1. Статор трехфазного асинхронного двигателя

    Статор состоит из стального каркаса, в котором заключен полый цилиндрический сердечник, состоящий из тонких пластин кремнистой стали для уменьшения гистерезиса и потерь на вихревые токи.

    На внутренней периферии пластин имеется ряд равномерно расположенных прорезей. Изолированные проводники соединены в сбалансированную трехфазную цепь, соединенную звездой или треугольником.

    Наружная рама и статор трехфазного асинхронного двигателя

    Обмотка трехфазного статора намотана на определенное количество полюсов в соответствии с требованиями скорости. Чем больше число полюсов, тем меньше скорость двигателя и наоборот.

    Когда на обмотку статора подается трехфазное питание, создается вращающееся магнитное поле постоянной величины.Это вращающееся поле индуцирует токи в роторе за счет электромагнитной индукции.

    2. Ротор трехфазного асинхронного двигателя

    Ротор, установленный на валу, представляет собой полый многослойный сердечник с прорезями на внешней периферии. Обмотка, размещенная в этих пазах (называемая обмоткой ротора), может быть одного из следующих двух типов:

    1. Тип с короткозамкнутым ротором
    2. Тип ротора с обмоткой

    Принцип работы Трехфазный асинхронный двигатель

    Для объяснения принципа работы трехфазный асинхронный двигатель, рассмотрите часть трехфазного асинхронного двигателя, как показано на рисунке.

    Работа трехфазного асинхронного двигателя основана на принципе электромагнитной индукции.

    Когда трехфазная обмотка статора асинхронного двигателя питается от трехфазного источника питания, создается вращающееся магнитное поле , которое вращается вокруг статора с синхронной скоростью (N с ).

    Доля вращающегося магнитного поля в трехфазном асинхронном двигателе

    Синхронная скорость,

    Н с = 120 f / P

    Где,

    f = частота

    P = Количество полюсов

    ( Подробнее о вращающемся магнитном поле читайте в разделе «Создание вращающегося магнитного поля»).

    Это вращающееся поле проходит через воздушный зазор и разрезает проводники ротора, которые неподвижны.

    ЭДС индуцируется в каждом проводнике ротора из-за относительной скорости между вращающимся магнитным потоком и неподвижным ротором. Поскольку цепь ротора замкнута накоротко, в проводниках ротора начинают течь токи.

    Токоведущие проводники ротора помещаются в магнитное поле, создаваемое статором. Следовательно, на проводники ротора действует механическая сила .Сумма механических сил на всех проводниках ротора создает крутящий момент , который стремится перемещать ротор в том же направлении, что и вращающееся поле.

    Тот факт, что ротор вынужден следовать за полем статора (т. Е. Ротор движется в направлении поля статора), можно объяснить законом Ленца .

    Согласно закону Ленца направление токов ротора будет таким, что они будут противодействовать причине их возникновения.

    Итак, причиной возникновения токов ротора является относительная скорость между вращающимся полем и неподвижными проводниками ротора.

    Следовательно, чтобы уменьшить эту относительную скорость, ротор начинает вращаться в том же направлении, что и поле статора, и пытается его поймать. Так начинает работать трехфазный асинхронный двигатель.

    Скольжение в асинхронном двигателе

    Выше мы видели, что ротор быстро ускоряется в направлении вращающегося магнитного поля.

    На практике ротор никогда не может достичь скорости магнитного потока статора. Если бы это было так, не было бы относительной скорости между полем статора и проводниками ротора, не было бы индуцированных токов ротора и, следовательно, не было бы крутящего момента для вращения ротора.

    Трение и парусность немедленно вызывают замедление ротора. Следовательно, частота вращения ротора (N) всегда меньше, чем частота вращения статора (N s ). Эта разница в скорости зависит от нагрузки на двигатель.

    Разница между синхронной скоростью N с поля вращающегося статора и фактической скоростью N ротора в трехфазном асинхронном двигателе называется скольжением .

    Скольжение обычно выражается в процентах от синхронной скорости i.е.,

    Скольжение, s = (N с — N) / N с × 100%

    Величину N с — N иногда называют скоростью скольжения .

    Когда ротор неподвижен (т.е. N = 0), скольжение, s = 1 или 100%.

    В асинхронном двигателе изменение скольжения от холостого хода до полной нагрузки едва ли составляет от 0,1% до 3% , так что это, по сути, двигатель с постоянной скоростью .

    Видео: Работа трехфазного асинхронного двигателя

    Видео от learnengineering показывает работу трехфазных асинхронных двигателей в анимированной форме.

    Основные принципы асинхронных двигателей переменного тока

    В этой статье мы рассмотрим работу наиболее распространенного типа двигателей вентиляторов — асинхронных двигателей переменного тока.

    Асинхронные двигатели переменного тока

    В вентиляторах Fläkt Woods чаще всего используются асинхронные двигатели переменного тока. Они могут работать непосредственно от источника электроэнергии, они надежны, не требуют особого обслуживания и относительно невысоки.

    В трехфазном асинхронном двигателе переменного тока катушки изолированного провода находятся в пазах статора, расположенных в корпусе.Эти катушки сконфигурированы для обеспечения набора электромагнитных полюсов для каждой из трех электрических фаз (U, V и W) при включении.

    На рисунке 1 показан двигатель, в котором катушки расположены таким образом, чтобы обеспечить пару полюсов для каждой фазы (обозначены как U1 и U2, V1 и V2, W1 и W2). Поскольку у каждой фазы два полюса, это описывается как двухполюсная конфигурация; если бы для каждой фазы было две пары полюсов, это была бы 4-полюсная конфигурация и так далее.

    Когда катушки статора подключены к источнику переменного тока, электрический ток будет течь и создавать магнитное поле — катушки намотаны так, что полюса в каждой паре имеют противоположную полярность.

    Рисунок 1. Циклическое вращающееся магнитное поле в трехфазном асинхронном двигателе переменного тока

    Цикличность формы волны переменного тока приводит к тому, что магнитное поле вращается вокруг центральной оси статора с двумя северными и двумя южными полюсами одновременно. Скорость этого вращения определяется количеством пар полюсов и частотой электроснабжения (50 Гц или 60 Гц — см. «Основные двигатели, часть первая»).

    Если имеется одна пара полюсов, магнитное поле вращается один раз за электрический цикл; где есть две пары, магнитное поле вращается один раз за два цикла, а где есть три пары, оно вращается один раз за три цикла.

    Основное уравнение для определения синхронной скорости выглядит следующим образом:

    Синхронная скорость (об / мин) = 2 x Частота питания (Гц) x 60

    Количество полюсов для каждой фазы

    Итак, если бы двигатель на Рисунке 1 работал от источника питания 50 Гц, синхронная скорость была бы:

    2 x 50 x 60 = 3000 об / мин

    2

    Таким образом, можно видеть, что чем больше число полюсов, тем медленнее будет синхронная скорость — таким образом, двигатель с 12 полюсами на фазу будет иметь синхронную скорость всего 500 об / мин.

    Ротор

    Помимо статора, наиболее важной частью асинхронного двигателя переменного тока является ротор. Он состоит из стержней ротора, обычно изготовленных из алюминия или меди, которые на концах соединены с кольцами из того же материала. Иногда это называют ротором «беличья клетка» (см. Рисунок 2).

    Поскольку ротор расположен во вращающемся магнитном поле статора, образующиеся линии магнитного потока будут разрезать стержни ротора и индуцировать напряжение в роторе.Это, в свою очередь, приведет к протеканию электрического тока по стержням ротора (обозначенным на рисунке 2 красными стрелками), который создаст собственное магнитное поле вокруг стержней ротора. Это магнитное поле взаимодействует с магнитным полем статора, создавая силу на стержнях ротора, заставляя ротор вращаться вокруг своей оси.

    Рисунок 2. Ротор типа «беличья клетка»

    Далее: Двигатели Основная часть вторая: асинхронные двигатели переменного тока, двигатели переменного тока с постоянными магнитами и номинальные характеристики двигателей

    Поскольку напряжение в стержнях ротора создается магнитным полем в статоре, прорезающим стержни ротора, если ротор вращается с синхронной скоростью, не будет относительного движения между стержнями ротора и магнитным полем статора, что приведет к на стержнях ротора не возникает напряжения.

    Если к ротору приложена нагрузка, он начнет замедляться, и, следовательно, он начнет взаимодействовать с магнитным полем статора, и будет создаваться крутящий момент, как показано на рисунке 2. Это будет тот крутящий момент, который приводит в движение приложенную нагрузку. к ротору.

    Синхронная скорость является функцией частоты электросети и конфигурации обмотки статора (количества полюсов). Разница между синхронной скоростью и скоростью ротора известна как скольжение; это выражается в процентах от синхронной скорости и может быть рассчитано по формуле:

    Скольжение = синхронная скорость — скорость ротора

    Синхронная скорость

    Конструкция ротора

    На рисунке 3 показана конструкция типичного ротора.Штанги ротора обычно содержатся в пазах в стальном сердечнике для усиления магнитного поля ротора. Стержни ротора обычно перекошены так, что они не совпадают с обмотками статора, что снижает электромагнитный шум и обеспечивает более плавную передачу крутящего момента.

    Рисунок 3. Типовая конструкция ротора

    Сердечник изготовлен из стальных пластин, уложенных друг на друга, в то время как стержни ротора и концевые кольца обычно создаются путем заливки расплавленного алюминия в матрицу или форму, которая окружает ламинированный пакет ротора.Этот расплавленный алюминий протекает через прорези в пакете ротора, образуя стержни ротора. Между стержнями ротора и стальным сердечником нет изоляции, так как индуцированное напряжение низкое.

    Рисунок 4. Компоненты асинхронного двигателя переменного тока общего назначения

    Однофазные асинхронные двигатели переменного тока

    Статор, сконфигурированный для однофазного питания, не сможет инициировать вращение неподвижного ротора, потому что его магнитное поле просто переключается между полярностями.В результате требуется дополнительная обмотка для создания прогрессивно вращающегося магнитного поля. Эта вспомогательная обмотка подключена к однофазному источнику питания через конденсатор, так что ее форма напряжения может быть не в фазе с формой волны первичной обмотки.

    Рисунок 5. Непрерывно вращающееся магнитное поле в однофазном асинхронном двигателе переменного тока, создаваемое вспомогательной обмоткой, подключенной к конденсатору

    На рисунке 5 показано, как это создает непрерывно вращающееся магнитное поле, позволяющее индуцировать вращение.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *