Закон ома для участка цепи схема: Полный закон Ома для полной цепи. Формула закона Ома. « ЭлектроХобби

Содержание

Тема закон ома для участка цепи

Тема: Закон Ома для участка цепи.

Цель. Закрепить знания учащихся, полученные на предыдущих уроках, познакомить учащихся с законом Ома для участка цепи, научить вычислять величины, характеризующие электрические цепи, показать практические применение закона Ома.

Тип урока: Комбинированный.

Оборудование: выпрямитель ВС-4-12; демонстрационный амперметр с шунтом на 3А; демонстрационный вольтметр с добавочным сопротивлением на 5В; магазин сопротивлений на 10 Ом; реостат на 30 Ом; соединительные провода.

Структура урока.

1. Организация начала урока

1 мин

2. Проверка знаний учащихся

7 мин

3. Постановка учебной задачи

1 мин

4. Решение учебной задачи

23 мин

5. Обобщение

1 мин

6. Закрепление материала

12 мин

7. Задание на дом

2 мин

1. Организация начала урока.

2. Проверка знаний учащихся: фронтальный опрос.

Учитель: Что характеризует сопротивление проводника?

Ученик: Сопротивление проводника – физическая величина, характеризующая свойства проводника оказывать противодействие прохождению электрического тока.

Учитель: Что принято за единицу сопротивления?

Ученик: За единицу сопротивления принимают 1 Ом — сопротивление такого проводника, в котором при напряжении на концах 1 В сила тока равна 1 А.

Учитель: Как изменится сила тока в проводнике при увеличении напряжения на концах проводника в 2 раза?

Ученик: При увеличении напряжения на концах проводника в 2 раза сила тока также увеличится в 2 раза.

Учитель: Изменится ли при этом сопротивление проводника? Почему?

Ученик: При увеличении напряжения в 2 раза сила тока в проводнике увеличится в 2 раза, а отношение напряжения к силе тока останется прежним, т.е. сопротивление не изменится. Сопротивление-это физическая величина, характеризующая свойства проводника.

3. Постановка учебной задачи.

Любую электрическую цепь можно охарактеризовать силой тока, напряжением и сопротивлением. Между этими величинами существует связь, которую впервые теоретически и экспериментально установил немецкий ученый Георг Ом.

Сегодня на уроке попытаемся повторить эксперименты Ома и вывести закон, который носит его имя.

Тема урока: Закон Ома для участка цепи.

4. Решение учебной задачи.

Учитель: Соберем электрическую цепь, схема которой изображена на доске.

Сначала выясним зависимость между силой тока и сопротивлением участка цепи R1.

Для этого будем изменять сопротивление R1, поддерживая при помощи реостата R напряжение на концах проводника постоянным. Полученные данные занесем в таблицу 1.

Таблица 1.

U=2В

R, Ом

I, А

1

2,0

2

1,0

4

0,5

Изобразим полученную зависимость графически. Как называется такая зависимость между величинами?

Ученик: (строит график). На основании полученных данных можно сказать, что сила тока в цепи обратно пропорциональна сопротивлению участка цепи.

Учитель: Правильно, сила тока обратно пропорциональна сопротивлению участка цепи.

Теперь, оставляя R1 постоянным, будем изменять напряжение на участке цепи и следить за изменением силы тока. Данные занесем в таблицу 2.

Таблица 2.

R1=2 Ом

U, В

I, А

3

1,5

2

1,0

1

0,5

Какова полученная зависимость между силой тока и напряжением на участке цепи?

Ученик: Сила тока прямо пропорциональна напряжению на участке цепи.

У
читель: Правильно. Мы еще раз показали, что I пропорционально U. Изобразите эту зависимость графически.

Ученик: (строит график)

Учитель: Кто попытается обобщить результаты опытов?

Ученик: На основании проведенных опытов мы можем сказать, что сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Учитель: Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома, который установил его в 1827 году.

Закон Ома читается так: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

, где I – сила тока в цепи; U – напряжение на этом участке; R – сопротивление участка.

Этот закон выражает зависимость между тремя величинами, зная две из них всегда можно найти третью неизвестную величину.

Выразите из формулы закона Ома напряжение и сопротивление.

Ученик: .

Учитель: Правильно, запишите эти формулы в тетрадь и запомните их. Мы будем ими пользоваться при решении задач.

А теперь скажите, верно ли утверждение, что сопротивление проводника прямо пропорционально напряжению на этом проводнике и обратно пропорционально силе тока в нем?

Ученик: Сопротивление проводника можно вычислить по формуле , однако, оно постоянно для данного проводника и не зависит ни от напряжения, ни от силы тока в нем.

Учитель: Верно, сопротивление – это физическая величина, характеризующая свойства данного проводника, оно не зависит ни от напряжения, ни от силы тока в проводнике. Изменение напряжения на участке цепи влечет за собой изменение силы тока, но отношение U/I остается для данного проводника постоянным.

5. Обобщение.

Итак, сегодня на уроке мы установили зависимость силы тока в участке цепи от напряжения на нем и его сопротивления. Эту зависимость установил в 1827 году немецкий ученый Георг Ом и в его честь она названа законом Ома.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

6. Закрепление материала.

(Ответы на вопросы, решение задач).

Учитель: О связи каких трех основных электрических величин говорится в законе Ома?

Ученик: В законе Ома говорится о связи силы тока, напряжения и сопротивления участка цепи.

Учитель: Какова зависимость силы тока в проводнике от сопротивления этого проводника?

Ученик: Сила тока обратно пропорциональна сопротивлению проводника.

Учитель: Как формулируется закон Ома?

Ученик: Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

Учитель: Как записывается закон Ома?

Ученик:

Учитель: Как выразить напряжение на участке цепи, зная силу тока в нем, и сопротивление?

Ученик:

Учитель: Как выразить сопротивление участка цепи, зная напряжение на его концах и силу тока?

Ученик: .

Учитель: Что показывает амперметр, включенный в цепь, схема которой дана на рисунке?

У
ченик: Запишем формулу закона Ома для участка цепи . Подставим в эту формулу значения напряжения и сопротивления. Получаем значение силы тока.

.

Учитель: Что показывает вольтметр, включенный в цепь, схема которой изображена на рисунке?

Ученик: Из формулы для закона Ома выразим напряжение . Подставим данные задачи в формулу и получим:

U=2 A x 6 Ом = 12 В

Учитель: Определите по графику (рис. 69 учебника) сопротивление проводника.

Ученик: Мы знаем, что (закон Ома для участка цепи). Выразим из этой формулы сопротивление: .

По графику определяем, что при напряжении 10 В сила тока равна 2,5 А, тогда

7. Задание на дом. § 14, задачи 45- 48.

Литература.

  1. Физика. Учебник для 9 кл. – М., 2000.

  2. Методика преподавания физики в 7-8 классах средней школы. Пособие для учителя. /Под ред. А.В. Усовой. 4-е изд. – М.: Просвещение, 1990.

  3. Хорошавин С.А. Физический эксперимент в средней школе. 6-7 кл. – М.: Просвещение, 1988.

Оформление доски.


Закон Ома для «чайников»: понятие, формула, объяснение

Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

Формула закона: I =. Отсюда запишем формулыU = IR и R = .

Рис.1. Участок цепи Рис.2. Полная цепь

Закон Ома для полной цепи: сила тока I полной электрической цепи равнаЭДС (электродвижущей силе) источника тока Е , деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока.Формула закона I =
. На рис. 1 и 2 приведены схемы электрических цепей.

3. Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.

Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.

Последовательное соединение

Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I

Рис. 1.Последовательное соединение двух проводников.

2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .

Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

U = U 1 + U 2 + U 3

Позакону Ома, напряжения U 1, U 2 на проводниках равныU 1 = IR 1 , U 2 = IR 2 , В соответствии вторым правилом Кирхгофа напряжение на всем участке:

U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2

Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 + U 3 = I · (R 1 + R 2 + R 3 ) = IR

где R ЭКВ эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3

При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…

Этот результат справедлив для любого числа последовательно соединенных проводников.

Из закона Омаследует: при равенстве сил тока при последовательном соединении:

I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :

U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1

При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

Вся прикладная электротехника базируется на одном догмате – это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.


Формула в интегральной форме будет иметь следующий вид:


То есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.


Учитывая «r» ЭДС, формула предстанет в следующем виде:


Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Напряжение будет меньше ЭДС, определить его можно по формуле:


Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Неоднородный участок цепи постоянного тока

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.


Формула для такого участка (обобщенный закон) будет иметь следующий вид:


Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Практическое использование

Видео: Закон Ома для участка цепи – практика расчета цепей.

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.


Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом


Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется – линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

ампер = вольт/ом

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.

Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

Рис 1. Применение закона Ома для участка цепи

Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.

Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны.

Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

Умножив I = 0,005 А на R -10000 Ом, получим напряжение,равное 50 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница. Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление. А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

Историческая справка

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

R провод =ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

Закон Ома для параллельной и последовательной цепи

В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

U эл =I*R элемента

Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

1/R=1/R1+1/R2

Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

Закон Ома для полной цепи

Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

  • напряжение, если это источник ЭДС;
  • силу тока, если это источник тока;

Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

I=ε/(R+r)

Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

Закон Ома в дифференциальной и интегральной форме

Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

В интегральной форме:

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

X L и X C – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

Нравится(0 ) Не нравится(0 )

Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

Итак, давайте начнем с понятия напряжения .

Напряжение.

По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

И в итоге получаем формулу, связывающую напряжение и напряженность:

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉

А на очереди у нас еще одно понятие, а именно ток .

Ток, сила тока в цепи.

Что же такое электрический ток ?

Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :

Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title=»Rendered by QuickLaTeX.com»> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

Где e – это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂

Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .

Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .

Сопротивление проводника/цепи.

Термин “сопротивление ” уже говорит сам за себя 😉

Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :

Сопротивление проводника зависит от нескольких факторов:

Удельное сопротивление – это табличная величина.

Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:

Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .

И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:

Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

Рассмотрим простейшую электрическую цепь:

Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

Как видите, все несложно 🙂

Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂

Закон Ома для полной цепи | ESP32 Arduino

Чтобы понять, что такое закон Ома для полной электрической цепи, соберем простую схему состоящую из трех элементов:

У нас есть батарея ЭДС которой составляет E = 8.75 В

ЭДС батареи, можно измерить вольтметром без подключения нагрузки (в школьных учебниках обычно обозначается буквой ε э́псилон)

ЭДС батареи, можно измерить вольтметром без подключения нагрузки (в школьных учебниках обычно обозначается буквой ε э́псилон)

Сопротивление номиналом R = 100 Ом

Сопротивление номиналом 100 Ом

Сопротивление номиналом 100 Ом

Какой ток покажет амперметр в данной схеме?

Схема для проверки закона ома для полной цепи

Схема для проверки закона ома для полной цепи

Исходя из формулировки закона Ома: Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, можно попробовать посчитать ток в цепи по знакомой всем формуле: I=U/R

расчет по формуле закона Ома для участка цепи

расчет по формуле закона Ома для участка цепи

Но, в реальной жизни и с реальными источниками питания эта простая формула не сработает. После подключения резистора напряжение на клеммах батареи просело до значения 8.07 В, а ток составляет всего лишь 80 мА (0.080A)

Изучение закона Ома для полной цепи

Изучение закона Ома для полной цепи

Вывод здесь достаточно простой. Раз ток в цепи не соответствует нашим ожиданиям, после подключения нагрузки, в цепи где то появилось дополнительное сопротивление (провода откидываем сразу — они медные толстые и короткие). Очевидно, что это сопротивление находится внутри самой батареи (больше негде), а значит осталось нарисовать реальную схему, и вычислить это внутреннее сопротивление.

Алгоритм расчета внутреннего сопротивления батареи

Алгоритм расчета внутреннего сопротивления батареи

Формулировка закона Ома для полной цепи звучит следующим образом — «Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению». Мы уже опытным путем выяснили, что в нашей цепи у нас два сопротивления (одно внутри батареи, а второе, то которое подключили к клеммам батареи). Отсюда, формула закона Ома для полной цепи вырисовывается как бы сама собой.

Закон ома для полного участка цепи формула

Закон ома для полного участка цепи формула

R – внешнее сопротивление [Ом];
r – сопротивление источника ЭДС (внутреннее) [Ом];
I – сила тока [А];
E– ЭДС источника тока [В].

Мы уже путем измерений и вычислений выяснили внутреннее сопротивление нашего источника питания r = 8.5 Ом.

Проверка закон ома для полного участка цепи

Проверка закон ома для полного участка цепи

Для нашего практического случая это и есть ответ на вопрос заданный в начале этой статьи и именно этот ток и показал нам амперметр.

Любой реальный источник тока обладает внутренним сопротивлением, которое обусловлено либо сопротивлением растворов электролитов для гальванических элементов и аккумуляторов, либо сопротивлением проводников для генераторов.

Именно внутреннее сопротивление ограничивает ток в цепи при коротком замыкании!

Для обычных батареек такие понятия как села батарея (разрядилась) в физическом смысле означают, что у батареи увеличилось внутреннее сопротивление. Выяснить это проще всего измерив ток короткого замыкания.

Измерение производить кратковременно! Категорически запрещается измерять ток короткого замыкания у аккумуляторов и сетевых блоков питания — многие из этих источников питания изначально созданы для больших токовых нагрузок. В лучшем случае сгорит амперметр или источник питания выйдет из строя — в худшем будет пожар или взрыв.

К примеру ЭДС этой довольно свежей 9 В батареи E = 8.57 В

Напряжение на батарее без нагрузки

Напряжение на батарее без нагрузки

Ток короткого замыкания в пике 1.33A

Ток короткого замыкания, измеряем кратковременно чтобы не разрядить батарею!

Ток короткого замыкания, измеряем кратковременно чтобы не разрядить батарею!

Внутреннее сопротивление батареи:

Внутреннее сопротивление свежей батареи.

Внутреннее сопротивление свежей батареи.

Эта батарея еще поработает….

ЭДС этой батареи 7.27V

Напряжение на батарее без нагрузки

Напряжение на батарее без нагрузки

Ток короткого замыкания в пике всего 0.5A

Ток короткого замыкания, измеряем кратковременно чтобы не разрядить батарею!

Ток короткого замыкания, измеряем кратковременно чтобы не разрядить батарею!

Внутреннее сопротивление севшей (разряженной) батареи.

Внутреннее сопротивление севшей (разряженной) батареи.

Подключив от такой батареи устройство с электроникой требовательной к уровню напряжению питания, посадка которая возникнет в результате внутреннего сопротивления батареи может привести к тому, что устройство будет работать некорректно.

Разумеется то же самое касается и подбора источников питания для самодельных электронных устройств. Мало подобрать источник питания исходя из его ЭДС — необходимо чтобы он еще обладал таким внутренним сопротивлением, чтобы мог «тянуть» подключенную к нему нагрузку.

Полный список статей канала доступен по этой ссылке

Закон ома для участка цепи гласит. Закон Ома для участка цепи

Закон Ома.

I = U/ R

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

R = U / I

Эти формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Условием движения электрических зарядов в проводнике является наличие в нем электрического поля, которое создается и поддерживается особыми устройствами, получившими название источников тока .

Основной величиной, характеризующей источник тока, является его электродвижущая сила.

Электродвижущей силой источника (сокращенно ЭДС) называется скалярная физическая величина, характеризующая работу сторонних сил, способных создавать на зажимах источника (полюсах) разность потенциалов.

Она равна работе сторонних сил по перемещению заряженной частицы с положительным единичным зарядом от одного полюса источника к другому, т.е.

В СИ ЭДС измеряется в вольтах (В), т.е. в тех же единицах, что и напряжение.

Сторонние силы источника – это силы, которые осуществляют разделение зарядов в источнике и тем самым создают на его полюсах разность потенциалов. Эти силы могут иметь различную природу, но только не электрическую (отсюда и название) — Механические силы, химическая среда в аккумуляторе; световой поток в фотоэлементах.

Направление ЭДС — это направление принудительного движения положительных зарядов внутри генератора от минуса к плюсу под действием иной, чем электрическая, природы.

Внутреннее сопротивление генератора это сопротивление конструктивных элементов внутри него.

Если электрическую цепь разделить на два участка – внешний, с сопротивлением R , и внутренний, с сопротивлением r , то ЭДС источника тока окажется равной сумме напряжений на внешнем и внутреннем участках цепи:

По закону Ома напряжение на любом участке цепи определяется величиной протекающего тока и его сопротивлением:

Так как , следовательно

, (3)

т.е. напряжение на полюсах источника при замкнутой цепи зависит от соотношения сопротивлений внутреннего и внешнего участков цепи. Если приблизительно равно U .

Электрическое сопротивление.

Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Из закона Ома: R = U / I

За единицу электрического сопротивления принят 1Ом .

Сопротивлением 1 Ом обладает проводник, в котором при напряжении 1 В проходит ток 1 А.

Величина, обратная сопротивлению, называется электрической проводимостью :

Единицей проводимости является сименс :

Величина, обратная удельной проводимости, называется удельным сопротивлением р, т. е.

Увеличение температуры сопровождается усилением хаотического теплового движения частиц вещества, что приводит к увеличению числа столкновений электронов с ними и затрудняет упорядоченное движение электронов.

Сопротивление – резистор.

Метод узловых потенциалов.

Пример 2.7.4.

Определить значения и направления токов в ветвях методом узловых потенциалов для цепи рис. 2.7.4, если:

Е1=108 В; Е2=90 В; Ri1=2 Ом; Ri2=1 Ом; R1=28 Ом; R2=39 Ом; R3=60 Ом.

Решение.

Определяем токи в ветвях.


Метод двух узлов.

Одним из распространенных методов расчета электрических цепей является метод двух узлов .Этот метод применяется в случае, когда в цепи всего два узла

Метод контурных токов.

Алгоритм действий таков:

По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. При записи равенства считать, что направление обхода контура, для которого составляется уравнение, совпадает с направлением контурного тока данного контура. Следует учитывать и тот факт, что в смежных ветвях, принадлежащих двум контурам, протекают два контурных тока. Падение напряжения на потребителях в таких ветвях надо брать от каждого тока в отдельности.

Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов можно использовать одиночные арабские цифры (I1, I2, I3 и т. д.).

При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

Пример расчёта сложной цепи методом контурных токов.

Рис. 1. Схема электрической цепи для примера расчета по методу контурных токов

Решение. Для расчета сложной цепи этим методом достаточно составить два уравнения, по числу независимых контуров. Контурные токи направляем по часовой стрелке и обозначаем I11 и I22 (см. рисунок 1).

По второму закону Кирхгофа относительно контурных токов составляем уравнения:

Решаем систему и получаем контурные токи I11 = I22 = 3 А.

Следует отметить, как положительный факт, что в методе контурных токов по сравнению с решением по законам Кирхгофа приходится решать систему уравнений меньшего порядка. Однако этот метод не позволяет сразу определять реальные токи ветвей.

Закон Ома.

Согласно закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

ампер = вольт/ом

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.

Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

Рис 1. Применение закона Ома для участка цепи

Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.

Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны.

Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

Умножив I = 0,005 А на R -10000 Ом, получим напряжение,равное 50 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница. Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление. А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10 -19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах .

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах . Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль .

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах .


Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС , читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.


В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего . А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Закон Ома часто называют основным законом электричества. Открывший его в 1826 г. известный немецкий физик Георг Симон Ом установил зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением и силой тока.

Электрическая цепь

Чтобы лучше понять смысл закона Ома, нужно представлять, как устроена электрическая цепь.

Что же такое электрическая цепь? Это путь, который проходят электрически заряженные частицы (электроны) в электрической схеме.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока , а силы — сторонними силами .

Электрическую цепь, в которой находится источник тока, называют полной электрической цепью . Источник тока в такой цепи выполняет примерно такую же функцию, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Простейшая замкнутая электрическая цепь состоит из одного источника и одного потребителя электрической энергии, соединённых между собой проводниками.

Параметры электрической цепи

Свой знаменитый закон Ом вывел экспериментальным путём.

Проведём несложный опыт.

Соберём электрическую цепь, в которой источником тока будет аккумулятор, а прибором для измерения тока – последовательно включенный в цепь амперметр. Нагрузкой служит спираль из проволоки. Напряжение будем измерять с помощью вольтметра, включенного параллельно спирали. Замкнём с помощью ключа электрическую цепь и запишем показания приборов.

Подключим к первому аккумулятору второй с точно таким же параметрами. Снова замкнём цепь. Приборы покажут, что и сила тока, и напряжение увеличились в 2 раза.

Если к 2 аккумуляторам добавить ещё один такой же, сила тока увеличится втрое, напряжение тоже утроится.

Вывод очевиден: сила тока в проводнике прямо пропорциональна напряжению, приложенному к концам проводника .

В нашем опыте величина сопротивления оставалась постоянной. Мы меняли лишь величину тока и напряжения на участке проводника. Оставим лишь один аккумулятор. Но в качестве нагрузки будем использовать спирали из разных материалов. Их сопротивления отличаются. Поочерёдно подключая их, также запишем показания приборов. Мы увидим, что здесь всё наоборот. Чем больше величина сопротивления, тем меньше сила тока. Сила тока в цепи обратно пропорциональна сопротивлению .

Итак, наш опыт позволил нам установить зависимость силы тока от величины напряжения и сопротивления.

Конечно, опыт Ома был другим. В те времена не существовало амперметров, и, чтобы измерить силу тока, Ом использовал крутильные весы Кулона. Источником тока служил элемент Вольта из цинка и меди, которые находились в растворе соляной кислоты. Медные проволоки помещались в чашки со ртутью. Туда же подводились концы проводов от источника тока. Проволоки были одинакового сечения, но разной длины. За счёт этого менялась величина сопротивления. Поочерёдно включая в цепь различные проволоки, наблюдали за углом поворота магнитной стрелки в крутильных весах. Собственно, измерялась не сама сила тока, а изменение магнитного действия тока за счёт включения в цепь проволок различного сопротивления. Ом называл это «потерей силы».

Но так или иначе эксперименты учёного позволили ему вывести свой знаменитый закон.

Георг Симон Ом

Закон Ома для полной цепи

Между тем, формула, выведенная самим Омом, выглядела так:

Это не что иное, как формула закона Ома для полной электрической цепи: « Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений внешней цепи и внутреннего сопротивления источника ».

В опытах Ома величина Х показывала изменение величины тока. В современной формуле ей соответствует сила тока I , протекающего в цепи. Величина а характеризовала свойства источника напряжения, что соответствует современному обозначению электродвижущей силы (ЭДС) ε . Значение величины l зависело от длины проводников, соединявших элементы электрической цепи. Эта величина являлась аналогией сопротивления внешней электрической цепи R . Параметр b характеризовал свойства всей установки, на которой проводился опыт. В современной обозначении это r – внутреннее сопротивление источника тока.

Как выводится современная формула закона Ома для полной цепи?

ЭДС источника равна сумме падений напряжений на внешней цепи (U ) и на самом источнике (U 1 ).

ε = U + U 1 .

Из закона Ома I = U / R следует, что U = I · R , а U 1 = I · r .

Подставив эти выражения в предыдущее, получим:

ε = I · R + I · r = I · (R + r) , откуда

По закону Ома напряжение во внешней цепи равно произведению силы тока на сопротивление. U = I · R . Оно всегда меньше, чем ЭДС источника. Разница равна величине U 1 = I · r .

Что происходит при работе батарейки или аккумулятора? По мере того, как разряжается батарейка, растёт её внутренне сопротивление. Следовательно, увеличивается U 1 и уменьшается U .

Полный закон Ома превращается в закон Ома для участка цепи, если убрать из него параметры источника.

Короткое замыкание

А что произойдёт, если сопротивление внешней цепи вдруг станет равно нулю? В повседневной жизни мы можем наблюдать это, если, например, повреждается электрическая изоляция проводов, и они замыкаются между собой. Возникает явление, которое называется коротким замыканием . Ток, называемый током короткого замыкания , будет чрезвычайно большим. При этом выделится большое количество теплоты, которое может привести к пожару. Чтобы этого не случилось, в цепи ставят устройства, называемые предохранителями. Они устроены так, что способны разорвать электрическую цепь в момент короткого замыкания.

Закон Ома для переменного тока

В цепи переменного напряжения кроме обычного активного сопротивления встречается реактивное сопротивление (ёмкости, индуктивности).

Для таких цепей U = I · Z , где Z — полное сопротивление, включающее в себя активную и реактивную составляющие.

Но большим реактивным сопротивлением обладают мощные электрические машины и силовые установки. В бытовых приборах, окружающих нас, реактивная составляющая настолько мала, что её можно не учитывать, а для расчётов использовать простую форму записи закона Ома:

I = U / R

Мощность и закон Ома

Ом не только установил зависимость между напряжением, током и сопротивлением электрической цепи, но и вывел уравнение для определения мощности:

P = U · I = I 2 · R

Как видим, чем больше ток или напряжение, тем больше мощность . Так как проводник или резистор не является полезной нагрузкой, то мощность, которая приходится на него, считается мощностью потерь. Она идёт на нагревание проводника. И чем больше сопротивление такого проводника, тем больше теряется на нём мощности. Чтобы уменьшить потери от нагревания, в цепи используют проводники с меньшим сопротивлением. Так делают, например, в мощных звуковых установках.

Вместо эпилога

Небольшая подсказка для тех, кто путается и не может запомнить формулу закона Ома.

Разделим треугольник на 3 части. Причём, каким образом мы это сделаем, совершенно неважно. Впишем в каждую из них величины, входящие в закон Ома — так, как показано на рисунке.

Закроем величину, которую нужно найти. Если оставшиеся величины находятся на одном уровне, то их нужно перемножить. Если же они располагаются на разных уровнях, то величину, расположенную выше, необходимо разделить на нижнюю.

Закон Ома широко применяется на практике при проектировании электрических сетей в производстве и в быту.

Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

где I – сила тока,
U – напряжение,
R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики . Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Раздел 3. Закон Ома

Здравствуйте и добро пожаловать в этот раздел наставника по анализу цепей. В этом разделе мы собираемся осветить одну из самых важных вещей, которую вы узнаете во всех своих исследованиях электрических цепей. Это действительно служит основой для всего, что мы собираемся осветить, помимо этого. Это то, что мы называем законом Ома. По сути, это связь между током, напряжением и сопротивлением. Мы уже говорили об этом в разделе 1, мы говорили о концепции тока, то есть о электричестве, которое на самом деле протекает в цепи.Вот что движется. Мы говорили о том, что напряжение является толкающей силой, которая толкает этот ток в цепи, и мы говорили о сопротивлении, которое есть на пути, пытаясь замедлить поток этого тока, верно?

Закон Ома — это математика, лежащая в основе всего, о чем мы говорили в разделе 1, поэтому вы уже знаете, что должен утверждать закон Ома, но здесь мы поговорим об этом математически.Мы также рассмотрим несколько действительно простых схем, чтобы показать вам, как их использовать. Поверьте, когда я говорю «простые», это будут очень простые схемы, но есть пара вещей, на которые я действительно хочу указать вам, и которые вам очень удобно с самого начала, так что по мере того, как мы будем строить сложность и разветвление и создание этих сложных на вид схем, вы получите действительно хорошую фундаментальную основу. Я собираюсь указать на эти вещи по ходу дела.

Итак, закон Ома… это, наверное, одно из самых простых отношений, которое вы когда-либо видели. Закон Ома. Хорошо, это очень просто. Мы видим, что V равно IR. V невероятно похож на IR. Ладно, вы, наверное, догадались, что все это символизирует. Этот парень — напряжение. V представляет собой напряжение, верно? Мы говорили об этом раньше. Я, мы также говорили, что это представляет собой ток, так что это то, что течет в цепи. Тогда, как вы могли догадаться, R — это сопротивление. Вот и все, дамы и господа. Вероятно, это самое простое алгебраическое уравнение, которое вы можете придумать.V невероятно похож на IR. Напряжение в цепи, справа, в точности равно току, протекающему через какое-то устройство в цепи, умноженному на сопротивление этого объекта.

Когда вы думаете о законе Ома, вам действительно следует думать о нем с точки зрения его применения к любому конкретному элементу в цепи. Представьте себе схему. У вас есть источник — батарея или что-то в этом роде, выталкивающее электричество, а есть еще кое-что.В остальном может быть много-много вещей, может быть вентилятор, может быть лампочка, что угодно. Изучая схемы, мы начнем с резисторов, резистивных цепей. Подумайте о резисторах, вот там. Ток будет проходить через эти сопротивления, поэтому какой бы ни был ток, протекающий через резистор, умноженный на само значение сопротивления в Ом, скажет вам, какое падение напряжения, какое напряжение на этом резисторе.

Хорошо, я думаю, давайте поговорим об этом немного подробнее, и вы также увидите это с некоторыми фотографиями.Теперь, прежде чем мы дойдем до этого момента, в большинстве книг будет представлен закон Ома, согласно которому V равно IR. Теперь это простое алгебраическое уравнение. Вы можете решить для I, если хотите рассчитать ток. Вы можете просто разделить обе стороны на R. Я был бы равен V / R. Много раз в книгах … Честно говоря, я сам люблю это вспоминать. I равно V / R. Это точно такое же отношение. Не то чтобы это уравнение было отдельным от этого, это одно и то же. Это отношение. Когда вы решаете для тока, это означает, что вы делите на сопротивление, вот так.Если вы хотите найти сопротивление, которое вы просто разделите на ток, это будет V / I.

Хорошо, но об этой конкретной форме приятно говорить устно, потому что вы очень легко можете увидеть несколько приятных моментов в законе Ома. Подумай об этом. Мы говорим, что если у вас есть объект в вашей цепи, во-первых, вы должны запомнить Ом-

.

Закон Ома и схемы

Основной закон Ома и схемы

В этой лабораторной работе мы обнаружим взаимосвязь между напряжением, сопротивлением и током, а затем изучим правила. которые управляют различными конфигурациями схем.

Начнем с блока питания. Для сегодняшней лаборатории мы можем рассматривать его как источник напряжения, то есть его задача: выводить определенное напряжение независимо от того, что к нему подключено. Думайте об этом как о необычной батарее, которую вы можете подключить в стену. Следующее, на что нужно обратить внимание, — это резистор. Мы рассмотрели их в некоторых вводных лабораторных работах, и мы вернемся и посмотрим на них еще раз сегодня. Как следует из названия, резистор с высоким номиналом будет очень полезен. хорошая работа по сопротивлению потоку электричества.У этого потока тоже есть название, он называется текущим.

Настройте источник напряжения на четыре вольта. Установите на цифровой мультиметр напряжение и произведите прямое измерение. Когда ты проверили 4 вольта, снимите цифровой мультиметр и настройте его на измерение тока (мА). Возьмите на выбор 6 или 7 резисторов, не менее 100 Ом. Подключите один резистор к источнику питания и цифровому мультиметру. Один провод должен идти от блока питания к резистору, то другой конец резистора должен перейти к цифровому мультиметру, а цифровой мультиметр должен замкнуть петлю и вернуться к источнику питания.Ваш лабораторный инструктор покажет вам одну из этих схем на предлабораторной лекции. Измерьте ток проходит через резистор на четыре вольта. Поочередно подключайте остальные резисторы. Вы видите подтверждение название? Чем выше сопротивление, тем ниже токи?

Постройте кривую токов как функцию сопротивления, как выглядит график? Надеюсь, это подтверждает следующее уравнение:

ΔV = I R

Это известно как закон Ома.Мы можем проверить это, выбрав три резистора, каждый более 1000 Ом, а затем изобразив I, как мы варьировать ΔV. Это должны быть красивые прямые линии. Склоны соответствуют вашим ожиданиям?

Схемы с несколькими резисторами
Следующее, что будет выглядеть, это то, что происходит с ситуацией, когда мы добавляем больше или больше резисторов к тому, что у нас уже есть. Начнем с самой простой проблемы: как второй резистор влияет на схему? Оказывается, это более сложный проблема, чем можно было бы подумать, поскольку есть два способа добавить второй резистор.Давайте рассмотрим каждый из них по очереди.

В нашей исходной схеме с одним резистором у нас есть источник питания, подключенный к резистору. Давайте решим, что мы хотим измерить ток, выходящий из источника питания, поэтому мы вставляем цифровой мультиметр в качестве измерителя тока между источником питания и резистором. Теперь давайте добавим второй резистор и посмотрим, как это повлияет на ток в цепи. Как подключить второй резистор? Подключите второй резистор так, чтобы концы двух резисторов были соединены друг с другом, а концы — к друг с другом.Поскольку при этом резисторы выстраиваются бок о бок, это называется параллельной схемой. Текущий от блока питания подниматься, опускаться или оставаться прежним? Означает ли это, что сопротивление в цепи увеличилось, уменьшилось, или остался прежним?

Это еще один способ подключения второго резистора. Разорвите первую цепь и вместо этого подключите «наконечник» второй резистор и до «хвоста» первого. Это называется последовательным соединением. Ваш текущий будет расти или падать, или останется такой же? Означает ли это, что сопротивление в цепи увеличилось, уменьшилось или осталось прежним?

Теперь мы должны исследовать эти случаи более подробно.Поскольку в настоящее время у нас есть последовательная схема, мы можем начать с нее. Отсоедините цифровой мультиметр от цепи, чтобы использовать его в качестве измерителя напряжения. После повторного подключения схемы измерьте напряжение на блок питания. Затем измерьте напряжение на каждом резисторе. Сделайте ваши результаты напряжений по комбинации резисторы имеет смысл по сравнению с напряжением на блоке питания? Имеют ли смысл напряжения на каждом резисторе? по сравнению с током в цепи? Объяснять.Добавьте последовательно третий резистор и, прежде чем проводить какие-либо измерения, предскажите, что вы найдете. Ваши измерения соответствуют вашим прогнозам? Можете ли вы определить правило поведения напряжений? Как работает ток в цепи? Как сопротивления объединяются, чтобы сформировать общее сопротивление цепи?


Рисунок 1 — Измерение тока в последовательной цепи

Теперь давайте развернемся и применим ту же логику к параллельной схеме.Подключите параллельную цепь с двумя резисторами. Возьми Цифровой мультиметр и проверьте напряжение на источнике питания и на каждом из резисторов. Какой узор? Используйте закон Ома для предсказания ток через каждый резистор. Измерьте ток, подключив цифровой мультиметр в качестве измерителя тока после каждого резистора (соблюдая осторожность для измерения тока только этого резистора, а не комбинации). Имеет ли ответ смысл? Теперь измерьте ток от источника питания, имеет ли это смысл, учитывая токи через каждый резистор? Добавьте третий резистор в параллели? Какое будет напряжение на нем? Какой ток через него будет? Можете ли вы найти правила, описывающие напряжение, ток и общее сопротивление в параллельных цепях?


Рисунок 2 — Измерение тока в параллельной цепи

Запишите свои наблюдения и выводы в лабораторный блокнот.

Использование закона Ома со схемами

Как использовать закон Ома

В качестве уравнения закон Ома можно записать как I = V / R . Это позволяет вам рассчитать три величины для конкретной цепи. Например, если вы знаете ток и сопротивление, вы можете определить напряжение.

Вы можете использовать закон Ома для отдельного компонента внутри цепи: ток через лампочку, напряжение на лампочке и сопротивление лампочки.Или вы можете использовать закон Ома для всей цепи, используя полный ток, напряжение батареи (общее напряжение) и общее сопротивление. Вы даже можете сделать это для отдельной ветви в последовательной цепи. Это все еще работает.

Закон Ома

Однако, чтобы закон Ома работал, компоненты в цепи должны быть ОМИ. Не все электрические компоненты подчиняются закону Ома — не все омические — но большинство из них.

Пример

Допустим, у вас есть параллельная цепь, содержащая 12-вольтовую батарею и две лампочки в отдельных ветвях: одна с сопротивлением 4 Ом, а другая с сопротивлением 3 Ом.Как вы думаете, как мы будем рассчитывать ток, проходящий через резистор сопротивлением 3 Ом?

Чтобы решить проблему, нам нужно использовать закон Ома для резистора 3 Ом. Помните, что ток равен напряжению, разделенному на сопротивление, или I = V / R.

Общее напряжение цепи составляет 12 вольт, и поскольку это параллельная цепь, каждая ветвь также получит полные 12 вольт. Это означает, что на резистор сопротивлением 3 Ом также подается напряжение 12 В. Итак, мы знаем, что V = 12 вольт, а R = 3 Ом.Чтобы вычислить ток, мы разделим 12 на 3 и получим 4 ампера, что и является нашим ответом.

Пример решения

Резюме урока

Закон Ома гласит, что по мере увеличения сопротивления ток уменьшается. И наоборот, при повышении напряжения возрастает и ток. Ток — это поток электричества вокруг электрической цепи, который мы измеряем в амперах. Сопротивление , которое мы измеряем в омах, — это способность компонента сдерживать прохождение тока. Напряжение означает разность потенциалов между двумя частями цепи, которую мы измеряем в вольтах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *