Схемы зарядное устройство для автомобильного аккумулятора: Зарядное устройство для автомобильного аккумулятора на Attiny25. Схема и описание

Содержание

СХЕМА АВТОМОБИЛЬНОГО ЗАРЯДНОГО УСТРОЙСТВА

     Предлагаю вашему вниманию схему простейшего втомобильного зарядного устройства. Почти с каждым автовладельцем случалось , что сел аккумулятор. В таком случаи на помощь придёт электроника. Конечно можно купить промышленную зарядку, но если вы настоящий радиолюбитель — попробуйте всё-же собрать её сами. Схема ЗУ приведена на рис.1  

     Зарядное устройство для автомобильных аккумуляторов в собранном виде показано на рис.2 , рис.3.  


     Принцип работы ЗУ: Для начала процесса зарядки нужно подключить АБ к ЗУ соблюдая полярность на приборе и на самом аккумуляторе. Затем можно подключать прибор к сети Х1 220В.Конденсатор С1 служит для защиты трансформатора Т1 от скачков энергии в сети. Через понижающий трансформатор напряжение поступает на диод VD1 , амперметр РА1, и через сглаживающий конденсатор на гнёзда Х2.Цепочка R1, VD2 – защита в случае пробоя основного диода VD1, который установлен на радиаторе.
Сопротивление R1 –ограничитель по току и напряжению для светодиода HL1, который сигнализирует о процессе зарядки.

     Детали: Х1 – сетевая вилка, FU1-предохранитель на 3А, SA1-микротумблер МТ3(сдвоенный). T1-понижающий трансформатор ТС-160-3 с выходом напряжения на вторичной обмотке 14.8 вольт. Также можно использовать любой другой. VD1- КД213А установленный на радиаторе. VD2- серии Д9Г. HL1- Светодиод красного свечения АЛ307Б. РА1 – Амперметр с приделом измерения 5А (Правильно отшунтированый). С2- конденсатор электролитический полярный 470мк*50в., можно заменить на любой другой с ёмкостью в пределах 500 — 2000 микрофарад. X2- «барашки».

     Налаживание: Правильно собранная схема зарядного устройства работает сразу и в налаживании не нуждается. Материал прислал: Александр Кузьмин. e-mail: [email protected] 

     Форум по зарядным устройствам

   Форум по обсуждению материала СХЕМА АВТОМОБИЛЬНОГО ЗАРЯДНОГО УСТРОЙСТВА




ЧИП-АНТЕННЫ SMD

Чип-антенны на печатных платах — особенности конструкции, установка и согласование с волноводом.


РОБОТ ЕЗДЯЩИЙ ПО ЛИНИИ

Простая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.



Обзор схем зарядных устройств автомобильных аккумуляторов. Обзор схем зарядных устройств автомобильных аккумуляторов Для схемы «Простой терморегулятор»

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.




Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.


Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.
    3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.


Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.


Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.

5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

где I — средний зарядный ток, А.

, а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Схема десульфатирующего зарядного устройства предложена Самунджи и Л. Симеоновым. Зарядное устройство выполнено но схеме одпополупериодного выпрямителя на диоде VI с параметрической стабилизацией напряжения (V2) и усилителем тока (V3, V4). Сигнальная лампочка Н1 горит при включенном в сеть трансформаторе. Средний зарядный ток приблизительно 1,8 А регулируется подбором резистора R3. Разрядный ток задается резистором R1. Напряжение на вторичной обмотке трансформатора равно 21 В (амплитудное важность 28 В). Напряжение на аккумуляторе при номинальном зарядном токе равно 14 В. Поэтому зарядный ток аккумулятора возникает лишь тогда, когда амплитуда выходного напряжения усилителя тока превысит напряжение аккумулятора. Описание микросхемы 0401 За пора одного периода переменного напряжения формируется один импульс зарядного то-ка в течение времени Тi. Разряд аккумулятора происходит в течение времени Тз= 2Тi. Поэтому амперметр показывает среднее важность зарядного тока, равное примерно одной трети от амплитудного значения суммарного зарядного и разрядного токов. В зарядном ycтройстве можно использовать трансформатор ТС-200 от телевизора. Вторичные обмотки с обеих катушек трансформатора снимают и проводом ПЭВ-2 1,5 мм наматывают новую обмотку, состоящую из 74 витков (по 37 витков на каждой катушке). Транзистор V4 устанавливают на радиатор с эффективной площадью поверхности приблизительно 200 см кв. Детали: Диоды VI типа Д242А. Д243А, Д245А. Д305, V2 один или два включенных последовательно стабилитрона Д814А, V5 типа Д226: транзисторы V3 типа КТ803А, V4 типа КТ803А или КТ808А.При настройке…

Для схемы «Зарядное устройство для герметичных кислотно-свинцовых аккумуляторов»

Многие из нас для освещения в случае отключения электроэнергии используют импортные фонари и светильники. Источник питания в них — герметичные кислотно-свинцовые аккумуляторные батареи небольшой емкости, для зарядки которых встроенные примитивные зарядные устройства, не обеспечивающие нормального режима. В результате срок службы батареи немаловажно уменьшается. Поэтому надобно применять более совершенные зарядные устройства, исключающие возможную перезарядку батареи.Подавляющее большинство промышленных зарядных устройств ориентировано на эксплуатацию совместно с автомобильными аккумуляторными батареями, поэтому их применение для зарядки батарей малой емкости нецелесообразно. Применение специализированных импортных микросхем экономически невыгодно, поскольку цена(у) такой микросхемы порой в несколько раз превышает цена(у) самого аккумулятора. Автор предлагает свой вариант для подобных аккумуляторных батарей. Схемы конвертера радиолюбителя Мощность, выделяемая на этих резисторах, Р = R.Iзар2 = 7,5. 0,16 = 1,2 Вт.Для уменьшения степени нагрева в ЗУ применены два резистора по 15 Ом мощностью 2 Вт, включенных параллельно.Вычислим сопротивление резистора R9:R9=Uобр VT2 . R10/(Iзар. R — Uобр VT2)=0,6 . 200/(0,4 . 7,5 — 0.6) = 50 Ом.Выбираем резистор с ближайшим к рассчитанному сопротивлением 51 Ом.В устройстве применены импортные оксидные конденсаторы Реле JZC-20F с напряжением срабатывания 12 В. Можно применить и другое реле, имеющееся в наличии, однако в этом случае придется подкорректировать печатную плату. …

Для схемы «ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВ»

Автомобильная электроникаЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ СТАРТЕРНЫХ БАТАРЕЙ АККУМУЛЯТОРОВПростейшее зарядное устройство для автомобильных и мотоциклетных аккумуляторных батарей, как правило, состоит из понижающего трансформатора и подключенного к его вторичной обмотке двухполупериодного выпрямителя . Последовательно с батареей включают мощный реостат для установки необходимого тока. Однако такая конструкция получается очень громоздкой и излишне энергоемкой, а другое способы регулирования тока обычно ее существенно усложняют. В промышленных зарядных устройствах для выпрямления зарядного тока и изменения его значения иногда применяют тринисторы КУ202Г. Здесь следует отметить, что прямое напряжение на включенных тринисторах при большом зарядном токе может добиваться 1,5 В. Симистор тс112 и схемы на нем Из-за этого они сильно нагреваются, а по паспорту температура корпуса тринистора не должна превышать +85°С. В таких устройствах приходится принимать меры по ограничению и температурной стабилизации зарядного тока, что приводит к дальнейшему их усложнению и удорожанию.Описываемое ниже сравнительно простое зарядное устройство имеет широкие пределы регулирования тока — практически от нуля до 10 А — и может быть использовано для зарядки различных стартерных батарей аккумуляторов на напряжение 12 В. В основу (см. схему) положен симисторный регулятор, опубликованный в , с дополнительно введенными маломощным диодны…

Для схемы «Простой терморегулятор»

Для схемы «Устройство удержания телефонной линии»

ТелефонияУстройство удержания телефонной линии Предлагаемое устройствовыполняет функцию удержания телефонной линии («HOLD»), чтопозволяет во час разговора положить трубку на рычаг и перейти кпараллельному телефонному аппарату. Устройство не перегружает телефонную линию (ТЛ) ине создает в ней помех. Во час срабатывания вызывающий абонент слышитмузыкальную заставку. Схема устройства удержания телефонной линиипоказана на рисунке. Выпрямительный мост на диодах VD1-VD4 обеспечиваетнужную полярность питания устройства независимо от полярности подключенияего к ТЛ. Переключатель SF1 связан с рычагом телефонного аппарата (ТА) изамыкается при поднятии трубки (т.е. блокирует кнопку SB1 при положенной трубке). Если во час разговора нужно перейти к параллельному ТА, надократковременно нажать кнопку SB1. При этом срабатывает реле K1 (замыкаются контакты K1.1, а контакты K1.2 размыкаются), к ТЛ подключается эквивалентнагрузки (цепь R1R2K1) и отключается ТА, с которого велся разговор. Как подключить реостат к зарядному устройству Теперьможно положить трубку на рычаг и перейти к параллельному ТА. Падение напряжения на эквиваленте нагрузкисоставляет 17 В. При поднятии трубки на параллельном ТА напряжение в ТЛпадает до 10 В, реле K1 отключается и эквивалент нагрузки отключается отТЛ. Транзистор VT1 должен иметь коэффициент передачине менее 100, при этом амплитуда переменного напряжения звуковой частоты,выдаваемого в ТЛ, достигает 40 мВ. В качестве музыкального синтезатора (DD1)использована микросхема УМС8, в которой «зашиты» две мелодии исигнал будильника. Поэтому вывод 6 («выбор мелодии») соединен свыводом5. В этом случае воспроизводится один раз первая мелодия, а затемвторая бесконечно. В качестве SF1 можно использоватьмикропереключатель МП или геркон, управляемый магнитом (магнит должен быть приклеен к рычагу ТА). Кнопка SB1 — КМ1.1, светодиод HL1 — любой из серииАЛ307. Диоды…

Для схемы «Ремонт зарядного устройства для MPEG4-плеера»

После двух месяцев эксплуатации вышло из строя «безымянное» зарядное устройство к карманному проигрывателю MPEG4/MP3/WMA. Схемы его, конечно, не было, поэтому пришлось составить ее по монтажной плате. Нумерация активных элементов на ней (рис.1) — условная, остальные соответствуют надписям на печатной плате.Узел преобразователя напряжения реализован на маломощном высоковольтном транзисторе VT1 типа MJE13001, узел стабилизации выходного напряжения произведен на транзисторе VT2 и оптроне VU1. Кроме того, транзистор VT2 защищает VT1 от перегрузки. Транзистор VT3 предназначен для индикации окончания зарядки аккумуляторов.При осмотре изделия оказалось, что транзистор VT1 «ушел на обрыв», a VT2 — пробит. Сгорел также резистор R1. На поиск и устранение неисправностей ушло не более 15 минут. Но при грамотном ремонте любою радиоэлектронного изделия обычно недостаточно одного лишь устранения неисправностей, надобно ещё узнать причины их возникновения, чтобы подобное не повторилось. Структурная схема микросхемы 251 1НТ Как оказалось, во час работы более того при отключенной нагрузке и открытом корпусе транзистор VT1, выполненный в корпусе ТО-92, разогревался до температуры приблизительно 90°С. Поскольку, поблизости не было более мощных транзисторов, подходящих на замену MJE13001, я решил приклеить к нему небольшой теплоотвод.Фотография зарядного устройства показана на рис.2. Дюралюминиевый радиатор размерами 37x15x1 мм приклеен к корпусу транзистора теллопроводящим клеем «Радиал». Этим же клеем можно приклеить радиатор и к монтажной плате. С теплоотводом температура корпуса транзистора снизилась до 45…..

Для схемы «Зарядное устройство для малогабаритных элементов»

ЭлектропитаниеЗарядное устройство для малогабаритных элементовВ. БОНДАРЕВ, А. РУКАВИШНИКОВ г. МоскваМалогабаритные элементы СЦ-21, СЦ-31 и другие используются, например, в современных электронных наручных часах. Для их подзарядки и частичного восстановления работоспособности, а значит, продления срока службы, можно применить предлагаемое зарядное устройство (рис. 1). Оно обеспечивает ток зарядки 12 мА, достаточный для «обновления» элемента через 1,5…3 часа после подключения к устройству. рис. 1 На диодной матрице VD1 выполнен выпрямитель, на который подается сетевое напряжение через ограничительный резистор R1 и конденсатор С1. Резистор R2 способствует разрядке конденсатора после отключения устройства от сети. На выходе выпрямителя стоит сглаживающий конденсатор С2 и стабилитрон VD2, ограничивающий выпрямленное напряжение на уровне 6,8 В. Далее следуют источник зарядного тока, выполненный на резисторах R3, R4 и транзисторах VT1-VT3, и сигнализатор окончания зарядки, состоящий из транзистора VT4 и светодиода HL).Как только напряжение на заряжаемом элементе возрастет до 2,2 В, часть коллекторного тока транзистора VT3 потечет через цепь индикации. Схемы таймер для периодического включения нагрузки Зажжется светодиод HL1 и просигнализирует об окончании цикла зарядки.Вместо транзисторов VT1, VT2 можно использовать два последовательно включенных диода с прямым напряжением 0,6 В и обратным напряжением более 20 В каждый, вместо VT4 — один такой диод, а вместо диодной матрицы — любые диоды на обратное напряжение не менее 20 В и выпрямленный ток более 15 мА. Светодиод может быть любой прочий, с постоянным прямым напряжением приблизительно 1,6 В. Конденсатор С1 — бумажный, на номинальное напряжение не ниже 400 В, оксидиый конденсатор С2-К73-17 (можно К50-6 на напряжение не ниже 15 В).Детали смонт…

Для схемы «ТЕРМОРЕГУЛЯТОР НА ТИРИСТОРЕ»

Бытовая электроникаТЕРМОРЕГУЛЯТОР НА ТИРИСТОРЕТерморегулятор, схема которого изображена на рисунке, предназначен для поддержания постоянной температуры воздуха в помещения, воды в аквариуме и т. п. К нему можно подключать нагреватель мощностью до 500 Вт. Терморегулятор состоит из порогового устройства (на транзисторе Т1 и Т1). электронного реле (на транзисторе ТЗ и тиристоре Д10) и блока питания. Датчиком температуры служит терморезистор R5, включенный в поставленная проблема подачи напряжения на базу транзистора Т1 порогового устройства. Если окружающая среда имеет необходимую температуру, транзистор Т1 порогового закрыт, а Т1 открыт. Транзистор ТЗ и тиристор Д10 электронного реле в этом случае закрыты и напряжение сети не поступает на нагреватель. При понижении температуры среды сопротивление терморезистора увеличивается, в результате чего напряжение на базе транзистора Т1 повышается. Очень мошне зарядне устройство схема Когда оно достигает порога срабатывания устройства, транзистор Т1 откроется, а T2 — закроется. Это приведет к открыванию транзистора T3. Напряжение, возникающее на резисторе R9, приложено между катодом и управляющим электродом тиристора Д10 и будет довольно для открывания его. Напряжение сети через тиристор и диоды Д6-Д9 поступит на нагреватель.Когда температура среды достигнет необходимой величины, терморегулятор отключит напряжение от нагревателя. Переменный резистор R11 служит для установки пределов поддерживаемой температуры. В терморегуляторе применен терморезистор ММТ-4. Трансформатор Тр1 выполнен на сердечнике Ш12Х25. Обмотка I его содержит 8000 витков провода ПЭВ-1 0,1, а обмотка II-170 витков провода ПЭВ-1 0,4.А.СТОЯНОВ г. Загорск…

Для схемы «БЛОКИРАТОР МЕЖГОРОДА»

ТелефонияБЛОКИРАТОР МЕЖГОРОДАДанное устройство предназначено для запрещения междугородной связи с телефонного аппарата, который через него подключен к линии. Устройство собрано на ИМС серии К561 и питается от телефонной линии. Потребляемый ток — 100 150 мкА. При его подключении к линии надобно соблюдать полярность. Устройство работает с АТС, имеющими напряжение на линии 48 60В. Некоторая сложность схемы вызвана тем, что алгоритм работы устройства реализован аппаратно, в отличие от похожих устройств , где алгоритм реализуется программно с использованием однокристальных ЭВМ или микропроцессоров, что не вечно доступно радиолюбителю. Функциональная схема устройства приведена на рис.1. В исходном состоянии ключи SW открыты. ТА подключен через них к линии и может принимать вызывной сигнал и осуществлять набор номера. Если после снятия трубки первая набранная цифра окажется индексом выхода на междугородную связь, в схеме менеджмента срабатывает ждущий мультивибратор, который закрывает ключи и разрывает шлейф, производя таким образом отбой АТС. Т160 схема регулятора тока Индекс выхода на межгород может быть любым. В данной схеме задана цифра «8». Время отключения аппарата от линии можно установить от долей секунды до 1,5 мин. Принципиальная схема устройства приведена на рис.2. На элементах DA1, DA2, VD1…VD3, R2, С1 собран источник питания микросхемы напряжением 3,2 В. Диоды VD1 и VD2 защищают устройство от неправильного подключения к линии. На транзисторах VT1…VT5, резисторах R1, R3, R4 и конденсаторе С2 собран преобразователь уровня напряжения телефонной линии в уровень, необходимый для работы МОП-микросхем. Транзисторы в данном случае включены как микромощные стабилитроны с напряжением стабилизации 7…8 В при токе несколько микроампер . На элементах DD1.1, DD1.2, R5, R3 собран триггер Шмитта, обеспечивающий необходимую кр…

Схема простого зарядного для аккумулятора авто

В старых телевизорах, которые работали еще на лампах а не микрочипах, есть силовые трансформаторы ТС-180-2

В статье приводится как сделать из такого трансформатора простое зарядное устройство для аккумулятора своими руками

Читаем

Схема устройства:

У ТС-180-2 есть две вторичные обмотки, рассчитанные на напряжение 6. 4 В и ток 4.7 А, если их соединить последовательно, то получим выходное напряжение 12.8 В. Этого напряжения достаточно, чтобы зарядить аккумулятор. На трансформаторе нужно соединить толстым проводом выводы 9 и 9 штрих, а к выводам 10 и 10 штрих, тоже толстыми проводами припаять диодный мост, состоящий из четырех диодов Д242А или других рассчитанных на ток не менее 10 А.


Диоды нужно установить на большие радиаторы. Конструкцию диодного моста можно собрать на стеклотекстолитовой пластине подходящего размера. Первичные обмотки трансформатора тоже необходимо соединить последовательно, перемычку нужно поставить между выводами 1 и 1 штрих, а к выводам 2 и 2 штрих припаять шнур с вилкой для сети 220 В. Желательно в первичную и вторичную цепи установить предохранители, в первичную – 0.5 А, во вторичную 10 А.


Провода, которые вы используете при изготовлении зарядного устройства, должны быть сечением не менее 2.5 мм2. Площадь радиатора для диода, не менее 32 см2 (для каждого). В нашем случае вторичные обмотки рассчитаны на ток 4.7 А, поэтому нельзя чтобы зарядный ток продолжительное время превышал это значение. Напряжение на клеммах аккумулятора во время заряда не должно превышать 14.5 В, особенно если заряжается необслуживаемая батарея.

В нашем устройстве зарядный ток ограничен за счет небольшого выходного напряжения трансформатора (12.8 В), но величина выходного напряжения зависит от величины входного. Если у вас в сети напряжение больше 220 В, то соответственно и на выходе трансформатора будет больше 12.8 В.

Ограничить зарядный ток можно включив последовательно с аккумулятором в разрыв минусового провода 12 вольтовою лампу мощностью от 21 до 60 Вт. Чем меньше мощность лампы, тем меньше будет зарядный ток. Чтобы контролировать ток и напряжение необходимо подключить к зарядному устройству амперметр с пределом измерения не менее 10 А, и вольтметр с пределом измерения не менее 15 В. Или можно пробрести мультиметр с пределом измерения тока не менее 10 А и периодически контролировать параметры с его помощью.

Внимательно подсоединяйте аккумулятор. Не допускается даже кратковременно перепутать при подключении аккумулятора плюс с минусом. Также нельзя проверять работоспособность устройства кратковременным замыканием выводов («проверка на искру»). Зарядное устройство во время подсоединения, отсоединения аккумулятора должно быть обесточено. При изготовлении и использовании зарядного устройства будьте осторожны, соблюдайте правила пожарной и электро безопасности. Не оставляйте работающее устройство без присмотра.

Смотрите схему еще одного зярядного устройства для

Зарядное устройство для автомобильных аккумуляторов своими руками

 Кислотные аккумуляторы «не любят длительного пребывания без работы». Глубокий саморазряд бывает губителен для них. Процесс происходит в этом случае простой, но не очень приятный. Сульфатация, разрастание на электродах сернокислого свинца, приводит к образованию устойчивых отложений. В итоге, аккумулятор теряет свою емкость и способность к зарядке. Об этом мы более подробно рассказли в статье «Как заряжать аккумулятор автомобиля».
 Если автомобиль ставится на долгосрочную стоянку, то возникает проблема: что делать с аккумулятором. Его либо отдают кому-нибудь в работу, либо продают, что одинаково неудобно. В этом случае очень пригодится зарядное устройство для автомобильного аккумулятора.

Зарядное устройство для автомобильного аккумулятора из блока питания от компьютера своими руками

Переделка блока питания предельно проста и займёт у вас минимум времени.

Ниже приведена пошаговая инструкция изготовления зарядного устройства:

1. Отпаять все провода, идущие с выходов других источников (-5. В, -12 В, +5 В), кроме общего (GND) и +12 В.

2. Остаться у вас должны только жёлтые и чёрные.

3. Параллельно этим проводам подключить конденсатор 1000 мкФ х 25 В.

4. Отверстие в корпусе, через которое выходили наружу провода питания, использовались для установки клавишного выключателя (-220 В) с подсветкой (предварительно напильником придать отверстию нужную форму).

5. Последовательно жёлтому проводу поставить амперметр, ампер на 10-15.

6. Последовательно (желт.-чёр.) — поставить вольтметр на 15-20 В.

Кроме амперметра последовательно желтому проводу ещё следует поставить регулятор тока. Им может быть реостат, тиристорный регулятор, транзисторный или какой-нибудь другой. Схему регулятора приводить не буду, так как в интернете и в литературе их полно. В крайнем случае, поищите на Яндекс.

Вот и всё ! Зарядка для вашего аккумулятора готова. Желтый провод к «ПЛЮСУ», чёрный к «МИНУСУ». Ток зарядки задаете сами, в зависимости от типа и ёмкости вашего аккумулятора. Более подробно о типах аккумуляторов принципах их работы и процедуре зарядки можно посмотреть в разделе Аккумуляторная батарея кислотно, гелиевая (аккумулятор) обслуживание, характеристики, выбор.

Схема зарядного устройства для зарядки автомобильного аккумулятора (1 вариант)

Во-первых, приводим схему, а далее приведем ее описание и описание ее работы.

Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно-тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Мною опробованы регулятор типа 121.3702 и интегральный -Я112А. При использовании «интегралки» выводы «Б» и «В» соединяются вместе и с «+» GB1. Вывод «Ш» соединяется с цепью управляющих электродов тиристоров. Таким образом, на аккумуляторной батарее поддерживается напряжение 14В при зарядном токе, определяемом емкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:

где Iз — зарядный ток (А), U2 — напряжение вторичной обмотки при «нормальном»включении трансформатора (В), U1 — напряжение сети.

Трансформатор — любой, мощностью 150. ..250 ВА, с напряжением на вторичной обмотке 20…36 В. Диоды моста — любые на номинальный ток не менее 10 А. Тиристоры — КУ202 В, Г и т.д.

S1 служит для переключения режимов зарядки и хранения. Ток зарядки выбирается равным 0,1 от численного значения емкости аккумулятора, а ток хранения — 1…1.5А.

Если есть возможность, то периодически, примерно один раз в две недели, желательно производить разряд аккумуляторной батареи током 2Iз с контролем температуры электролита.

Настройки устройство практически не требует. Возможно, придется уточнить емкость конденсатора, контролируя ток амперметром. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).

Схема зарядного устройства для зарядки автомобильного аккумулятора (2 вариант)

 

Для открытия файла в лучшем разрешении скачайте на его к себе на компьютер.
 При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1. 1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора. Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Схемы самодельных ЗУ для автомобильных АКБ на TL494

Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.

Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.

Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.

Для управления ключевым транзистором используется микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Её можно часто встретить в компьютерных БП. Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы.

Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов.

В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера.

При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке, ниже.

В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы.

Настройка схемы зарядного устройства

В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.

Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм.

Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.

Монтаж ЗУ

Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2.

Это зарядное устройство можно использовать также и как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу.

Схема ЗУ на мс TL494 с нормализацией напряжения шунта

Ниже, представлен вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на большую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта.

В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 … 0,1 Ом и мощностью 1 … 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 … 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 … 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 … 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 … 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.

Конструкция и монтаж

Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.

Требования к элементной базе описаны выше. Правильно собранная схема начинает работать сразу и, практически, не требует наладки.

Эта схема также, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.

Автор: Кравцов В. (сайт:Автоматика в быту)



ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:

П О П У Л Я Р Н О Е:
  • Простой светодиодный фонарик
  • Светодиодный фонарик своими руками и зарядное устройство к нему.

    Уже давно известно, что фонарики на светодиодах очень экономичны, малогабаритны и имеют более продолжительный срок службы. Светодиодный фонарик можно легко сделать своими руками или переделать имеющийся ламповый. Для этого нужны яркие светодиоды повышенной мощности.

    Светодиоды потребляют меньший ток, долговечней и надежней по сравнению с лампочкой. К тому же они не боятся ударов и тряски.

    Подробнее…

  • Встроенный компьютер в авто вместо стандартной магнитолы.
  •  В моей toyota corolla выпуска 2003 года заводом производителем устанавливались лишь кассетные автомагнитолы. Разумеется, что я не слушал кассеты вообще, и приходилось обходиться только FM приемником.

    Подробнее…

  • Зарядное устройство для аккумуляторов с таймером отключения на AN6780
  • Зарядное устройство для зарядки АКБ радиотелефонов, цифровых фотоаппаратов и др.

    В зарядных  устройствах для автоматического отключения аккумулятора по окончании зарядки часто используют таймеры, которые прекращают зарядку по истечении заданного времени.

    Такие схемы удобны простотой в эксплуатации,  если к моменту зарядки аккумулятор был полностью разряжен и известна его ёмкость, то установив зарядный ток на уровне 10% от его ёмкости производят зарядку в течении примерно 15 часов.

    Подробнее…

Популярность: 22 792 просм.

простая схема. С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой : то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня — отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?

Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства — полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.

Схема автоматического зарядного устройства


Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен — 14,4 В.
Схему можете скачать здесь —

Печатная плата


Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка

Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.
В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.

Многие автолюбители отлично знают, что для продления срока службы аккумуляторной батареи требуется периодическая ее именно от зарядного устройства, а не от генератора автомобиля.

И чем больше срок службы аккумулятора, тем чаще его нужно заряжать, чтобы восстанавливать заряд.

Без зарядных устройств не обойтись

Для выполнения данной операции, как уже отмечено, используются зарядные устройства, работающие от сети 220 В. Таких устройств на автомобильном рынке очень много, они могут обладать различными полезными дополнительными функциями.

Однако все они выполняют одну работу – преобразуют переменное напряжение 220 В в постоянное – 13,8-14,4 В.

В некоторых моделях сила тока при зарядке регулируется вручную, но есть и модели с полностью автоматической работой.

Из всех недостатков покупных зарядных устройств можно отметить высокую их стоимость, и чем «навороченней» прибор, тем цена на него выше.

А ведь у многих под рукой есть большое количество электроприборов, составные части которых вполне могут подойти для создания самодельного зарядного устройства.

Да, самодельный прибор выглядеть будет не так презентабельно, как покупной, но ведь его задача – заряжать АКБ, а не «красоваться» на полке.

Одними из важнейших условий при создании зарядного устройства – это хоть начальное знание электротехники и радиоэлектроники, а также умение держать в руках паяльник и уметь правильно им пользоваться.

ЗУ из лампового телевизора

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9\’.

А к выводам 10 и 10\’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1\’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2\’. На этом с трансформатором работы завершены.

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10\’, а также провода, которые будут идти к АКБ.

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

ЗУ из микроволновой печи

Некоторые автолюбители используют трансформатор от сломанной микроволновой печи. Но этот трансформатор нужно будет переделывать, поскольку он является повышающим, а не понижающим.

Необязательно, чтобы трансформатор был исправен, поскольку в нем зачастую сгорает вторичная обмотка, которую в процессе создания устройства все равно придется удалять.

Переделка трансформатора сводится к полному удалению вторичной обмотки, и намотки новой.

В качестве новой обмотки используется изолированный провод сечением не менее 2,0 мм. кв.

При намотке нужно определиться с количеством витков. Можно сделать это экспериментально – намотать на сердечник 10 витков нового провода, после чего к его концам подсоединить вольтметр и запитать трансформатор.

По показаниям вольтметра определяется, какое напряжение на выходе обеспечивают эти 10 витков.

К примеру, замеры показали, что на выходе есть 2,0 В. Значит, 12В на выходе обеспечат 60 витков, а 13 В – 65 витков. Как вы поняли, 5 витков добавляет 1 вольт.

Стоит указать, что сборку такого зарядного устройства лучше производить качественно, затем все составные части поместить в корпус, который можно изготовить из подручных материалов. Или смонтировать на основу.

Обязательно следует пометить где «плюсовой» провод, а где — «минусовой», чтобы не «переплюсовать», и не вывести из строя прибор.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500. Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК.

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Итог

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двух полярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется не инвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Не инвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Схема зарядного устройства для автомобильного аккумулятора: мастерим своими руками


Приобрести хороший аппарат не так просто по причине высокой стоимости, а подделок очень много. Для собственников транспортных средств наступление зимнего периода — настоящая пытка по той причине, что аккумуляторы начинают барахлить, выходят из строя. Часто по утрам можно встретить водителей, которые просят «прикурить», вот только не сигарету, а АКБ.

Можно возить с собой портативное зарядное устройство, но не все могут купить такую роскошь. Мобильное ЗУ стоит баснословные суммы, которые не по карману среднестатистическому человеку. О том, как найти выход из положения и что можно смастерить, рассмотрим ниже.

Немного об АКБ
Аккумуляторная батарея необходима автомобилю для того, чтобы дать напряжение с показателем 12,0 Вольт при падении тока от генератора ниже 11,3 Вольт. При отсутствии процесса восстановления (дозарядки) АКБ на свинцовых стенках начинается процесс сульфатации, что приводит к короткому замыканию, потере ёмкости, выходу агрегата из строя.

Чаще всего процесс происходит в зимнее время при частом старте мотора. Вот почему механики настоятельно рекомендуют оставлять технику на ночлег в гараже или крытой стоянке.

Также раз в месяц нужно проводить подзарядку АКБ, а если проживаете в условиях с отрицательными температурами, то лучше два раза. Если вы действительно любите свой автомобиль, то снимите АКБ на ночь и оставьте его до утра в тёплом месте.

Подзарядку следует осуществлять постоянным током, величина которого всегда высчитывается по такой формуле: 0,1 от общей ёмкости батареи. Например, ёмкость АКБ равна 65А, значит, сила тока равна 6,5А.

Но, неоднократные исследования европейского и американского научных центров подтвердили тот факт, что чем меньше сила тока на подзарядке, тем медленнее происходит процесс сульфатации. Иными словами, чем меньше мы даём силу, тем дольше служит аккумулятор.

Автомеханики советуют оставлять батарею на длительный подзаряд на ночь в пределах 2–3 А, не более. Этого вполне будет достаточно для восстановления сил и длительного срока эксплуатации.

Существует и обратная сторона медали, она заключается в процессе десульфатации. То есть, процесс обратный сульфатации. Расписывать принцип его действия можно долго, но вкратце, это когда идёт систематическая перезарядка от стабильного тока.

Например, когда после восстановления заряда 12,8 или 13,3 Вольт, в батарею продолжает поступать ток. В итоге это приводит к закипанию АКБ, пластин, повышению плотности, химический состав электролита меняется, стенки — пластины рушатся.

Современные зарядные и зарядно-пусковые устройства оборудованы специальными датчиками.

Схемы простого зарядного устройства для аккумулятора автомобиля

Сразу отметим, что смастерить можно различной степени сложности зарядку, всё зависит от поставленных целей и мощностных показателей. Зарядное устройство (далее — ЗУ) понадобится каждый день, даже если батарея новая и мощная.

Жизненный пример: поставили машину, забыли выключить магнитолу на ночь, к утру АКБ разряжена. Запустить мотор с утра не получится.

И здесь следует различать: пуск силового агрегата проводится с полуоборота или нужно «маслать» долго и нудно. Это всё к тому, что от этого зависит степень заряда, который следует дать батареи.

Простейший пример: нужен источник постоянного тока с показателем 12 Вольт, а лучше от 12 до 24,5 В. Второй момент: строго ограниченное сопротивление. Подручное средство с такими характеристиками найти несложно.

Во многих семьях имеется портативная техника, цифровые гаджеты. Блок питания в самый раз, вот почему. Напряжение на выходе равно 19,5 вольт, сила тока равна 2,0 А. Внешний штекер — минус, внутренний — плюс.

Ограничителем напряжения может смело выступить автомобильная лампа накаливания. Более мощной перегружать не стоит, так как возможен сбой в работе блока питания.

Далее следует такая схема: входной разъем от блока в качестве минуса — лампа, как ограничитель сопротивления — плюсовая клемма батареи — плюс самого АКБ. В течение одного часа устройство подзарядится так, что силы тока достаточно будет для пуска мотора.

Нет блока питания или жалко использовать его не по назначению, тогда купите один раз выпрямительный диод. Изделие небольшое по размерам и много места не отнимет.

Смастерить ЗУ можно таким способом: снять непосредственно сам аккумулятор с транспортного средства. Создаём цепь, состоящую из точки — розетки (220В) — минусовая сторона диода — сторона со знаком плюс — ограничитель нагрузки — клемма АКБ со знаком минус — плюсовая клемма — вход в 220 В розетки.

Если нет под рукой автолампы, возьмите бытовую лампу на 220В. Достаточно будет 100 Ватт, но не менее. Сила тока будет равна половине ампера. Рассчитать это легко: напряжение умножаем на ток, и будет нам мощность.

За полную ночь такой подзарядки АКБ наберётся сил для прокрутки мотора налегке. Ну, а если вы додумаетесь совместить три лампы подряд, то увеличите силу тока ровно втрое.

Несмотря на такую простоту, неосторожное движение может привести серьёзным последствиям:

  • перегорит блок питания;
  • посыплются пластины от замыкания;
  • прочие нежелательные моменты.

Блок питания для авто


Элементарная схема обычного зарядного устройства для автомобильного аккумулятора из блока питания выглядит так. Находим сам блок, читаем его величину напряжения, которая колеблется от 5 до 12 Вольт.

У каждой модели разный показатель. Вот на данном этапе многие совершают ошибку, когда не смотрят на показатель. Результат — созданное устройство работает нестабильно, показатели не соответствуют действительности.

Величина в 12 Вольт будет несколько маловата, нужно повысить её до уровня 15–16 Вольт. Сделать это можно с помощью подключения стороннего сопротивления в 1,0 кОм. В итоге, изменяем коэффициент передачи и повышаем выходное напряжение.

Самое сложное уже позади, теперь подключаем крокодилы, что это такое объяснять не стоит.

ЗУ трансформаторного типа

Этот вид наиболее распространённый в наше время, так как имеет выше класс безопасности, надёжности, простоты использования. Элементарная схема ЗУ состоит из трансформатора, выпрямительного моста, ограничителя сетевой нагрузки. Через цепь проходит ток большой величины и ограничитель должен быть надёжным и качественным.

Соблюдение безопасности
  • Любой вид ЗУ должен устойчиво располагаться на огнестойкой поверхности;
  • обязательно применять индивидуальные средства защиты в виде перчаток, защитных очков, коврика под ноги;
  • постоянный контроль во время процесса зарядки, хотя бы на начальном этапе тестирования самодельного устройства;
  • проверять силу тока, напряжение, температуру оборудования. При сильном, нетипичном нагревании, отключить от цепи питания и дать остыть. Найти источник неполадки.

Видео: Делаем простое зарядное устройство для АКБ с авто выключением при полном заряде


Зарядное устройство для автомобильных аккумуляторов из компьютерного блока питания

Делаем зарядное устройство для автомобильных акб из блока питания от компа.


У каждого автолюбителя должно быть зарядное устройство. Кто знает, когда сядет аккумулятор, да и лампочки можно проверять. Купить всегда можно, но сделать своими руками всегда здорово. Самым дешевым решением в сборке будет переделка готового решения. Я взял старенький блок питания от компьютера.

Материалы для изготовления

Для самоделки нам понадобится:
  • БП компьютера;
  • листовой пластик;
  • тумблер;
  • зажимы «крокодил»;
  • радиокомпоненты не из БП ПК;
  • инструменты.

Часть компонентов

ок питания я взял как на картинке. Думал, переделаю быстро, но не тут то было.

Провода с зажимами применю валяющиеся без дела. Разве что поменяю «крокодилы» на побольше.

Сборка

рыв блок питания, я слегка разочаровался. Микросхема, на которой он собран, очень специфическая.

кросхема. Это такой себе ШИМ контроллер и контроллер отклонения основных напряжений.

порывшись в интернете, я нашел схему своего БП.

Довольно простая доработка получится. Разве что не будет регулировки тока.

На схеме, красным маркером, отмечены элементы под выпаивание. Используем шину +12 вольт.

Выпаиваем все лишнее.

Оставил мощный диод. Точней, перепаял его с шины +5 вольт. Он по току с запасом.

Установил мощный дроссель, применил тот, что был установлен по шине +3,3 вольта.

Дросель групповой стабилизации размотал, оставил только обмотку с +12 вольтовой шины.

R60-й резистор временно заменил регулировочным. С помощью его, осуществляется регулировка выходного напряжения. Коричневая перемычка нужна для запуска БП, замыкает PC-ON на общий.

Нам нужно обойти контроль выходных напряжений. Для этого нужно собрать три стабилизатора на основные напряжения. Номиналы резисторов рассчитаны в калькуляторе, который можно найти в сети.

Такая вот платка, сделанная на коленке, получилась.

Распаиваем провода по измененной схеме. Зеленым маркером указаны точки, куда будут припаяны стабилизаторы. Два верхних стабилизатора припаиваем к выходу третьего. Выхода верхних стабилизаторов, и выход нижнего распаиваем на указанные точки: +3,3; +5; +12 вольт.

Включаем. Если все выпаяно как на фото, то блок стартует. Если не стартует, то проверяем все внимательно. Выставляем выходное напряжение на 14.4 вольта. Замеряем сопротивление, у меня получилось почти 12 кОм. Устанавливаю постоянный резистор, собрал его из двух.

Для индикации включения установил светодиод. Припаял его на шину дежурного напряжения по пяти вольтам.

На переднюю панель закрепил отрезок пластика. Панель на себе содержит тумблер включения и индикаторный светодиод. Закручиваем крышку и готово.

Видео по сборке

Импульсное зарядное устройство для автомобильных аккумуляторов, герметичных свинцово-кислотных аккумуляторов, аккумуляторов VRLA и гелевых аккумуляторов

Импульсное зарядное устройство для автомобильных аккумуляторов, герметичных свинцово-кислотных аккумуляторов, аккумуляторов VRLA и гелевых аккумуляторов

Введение: Импульсное зарядное устройство — это меньшая и более легкая альтернатива обычным зарядным устройствам с трансформатором. Это также позволяет точно регулировать целевое напряжение зарядки. По своей настройке он может заряжать аккумуляторы разных типов и в разных режимах.Я описываю зарядное устройство для аккумулятора с номинальным напряжением 12 В, но его можно изменить, например, на 6 или 24 В.
Описание схемы: Это зарядное устройство работает по принципу импульсного источника питания. Он построен так же, как и обычный импульсный источник питания с обратным ходом, со встроенным схемы UC3842 и TL431. Единственное отличие состоит в том, что вспомогательное питание для IO1 поступает не от вспомогательной обмотки, а сбрасывается. от сети с помощью силового резистора R1.Преимущество такого метода в том, что источник питания надежен в текущем режиме (не циклически) и нет необходимости использовать вспомогательную обмотку. Напряжение стабилизируется схемой IO2. Обратная связь вводится через оптрон. Целевое напряжение можно отрегулировать подстроечным резистором или потенциометром P1 (можно установить в диапазоне около 12 — 16В). Отрегулируйте с помощью вольтметра, подключенного к выходу без подключенной батареи. В зарядное устройство также можно встроить вольтметр. Ток регулируется косвенно резистором R2 на первичной обмотке.Этой более простой версии достаточно, потому что текущая настройка не так важна, как установка напряжения. При значениях на диаграмме зарядный ток составляет около 3,5 А. Зарядный ток можно изменить, изменив R2 (меньшее сопротивление — более высокий ток и наоборот). Остерегайтесь глупого увеличения тока — вся цепь должна быть рассчитана на желаемый ток. Зарядное устройство на схеме ниже предназначено для аккумуляторов с номинальным напряжением 12 В. Вы можете изменить его на 6 В или 24 В, изменив передаточное число обмоток трансформатора (число вторичных витков) и некоторые компоненты на вторичной стороне, включая делитель напряжения.Для изготовления зарядного устройства я использовал остатки старого импульсного блока питания 15 В / 4,5 А. Вы, конечно, можете собрать его на своей собственной печатной плате. Я использовал оригинальный трансформатор. Коэффициент трансформации составляет около 4: 1 (для полевого МОП-транзистора на 500 В). Зарядное устройство может использовать любой обратноходовой трансформатор от ИИП напряжением около 12-20В. рассчитан на достаточный ток. MOSFET с номинальным напряжением 600 В позволяет использовать трансформатор с соотношением первичная и вторичная обмотки до 10: 1. Следует следить за тем, чтобы напряжение на транзисторе T1 не превышало его номинальное значение (рекомендуется не превышать 80% допустимого абсолютного максимального значения).Напряжение на первичной обмотке Tr1 (отношение x выходное напряжение) добавляется к входному напряжению (около 325 В, это выпрямленное 230 В переменного тока). Пример: с коэффициентом трансформации 4: 1 и выходным напряжением 16 В T1 видит примерно 4 x 16 В + 325 В = 389 В. Трансформатор Tr1 должен иметь правильную ориентацию обмотки, обозначенную точками (несоблюдение этого правила приведет к разрушению). Рабочая частота около 40 кГц. LED1 сигнализирует о переходе в режим источника напряжения. Транзистор T1 — это любой быстрый полевой МОП-транзистор с U DS 500-600 В и сопротивлением в состоянии R DSon не более 800 мР, например IRF840 или STP9NK50Z.Диод D1 — это любой сверхбыстрый диод с обратным напряжением не менее 200 В, током 10 А и временем обратного восстановления менее 50 нс, например C10P20F (200 В, 10 А, 35 нс). T1 и D1 должны быть размещены на радиаторе. Максимальная потребляемая мощность этого зарядного устройства составляет 65 Вт. Время зарядки зависит от емкости аккумулятора, эффективности процесса зарядки и исходного состояния заряда. Пример: разряженная батарея емкостью 35 Ач теоретически будет заряжать 35 Ач: 3,5 А = 10 часов. На практике это может быть 15 часов, потому что процесс зарядки не имеет 100% эффективности, но примерно на 2/3, и поэтому время умножается примерно на 1.5 раз. Зарядное устройство можно использовать для аккумуляторов емкостью от 7 до 120 Ач. Подключите зарядное устройство сначала к аккумулятору, а затем к сети. Сначала отключается от сети, затем от аккумулятора.
Зарядка обычных (автомобильных) аккумуляторов: При зарядке обычных (автомобильных) залитых свинцово-кислотных аккумуляторов относительно небольшими токами по сравнению с их емкостью, нам не нужно беспокоиться о перезарядке. Если вы будете заряжать до фазы газообразования («пузырьков»), потеря дистиллированной воды не будет разрушительной, потому что вы можете долить воду в этот тип аккумулятора.Если мы хотим заряжать без значительного выделения газов и потерь воды, установите напряжение примерно 14,4 В. Зарядное устройство можно установить на более низкое напряжение (около 13,6 В) и использовать для экономии заряда аккумулятора (режим обслуживания). Сильно разряженный аккумулятор можно восстановить, приложив повышенное напряжение до 16 В. (в этом режиме отключите аккумулятор от автомобиля!). Во время нормальной зарядки в большинстве случаев отключать аккумулятор не требуется. Некоторым автомобилям может не понравиться отключение аккумулятора.
Зарядка аккумуляторов VRLA и гелевых аккумуляторов: Если вы заряжаете батареи VRLA (свинцово-кислотные, свинцово-кислотные), аналогичные гелевые батареи (элементы) или батареи AGM (абсорбированный стекломат), уделите больше внимания зарядному напряжению. В этих типах аккумуляторов обычно указываются два напряжения зарядки: 1) напряжение использования в режиме ожидания, что ниже. Это уровень зарядки, например, в ИБП. Это напряжение может быть подключено постоянно. Благодаря этому аккумулятор всегда остается заряженным.Это напряжение находится в диапазоне от 13,5 до 13,8 В для приведенного ниже примера батареи. 2) Для циклического использования, которое выше. Аккумулятор заряжается до этого напряжения при циклическом использовании (заряд-разряд). Аккумулятор не должен быть постоянно подключен к зарядному устройству, настроенному на это напряжение. Для батареи нашего примера это напряжение составляет 14,4 — 15 В. Обязательно ли отключать аккумулятор после зарядки в этом режиме. Также необходимо позаботиться о том, чтобы превысил максимальный ток.Эти значения обычно записываются на батарее или в документации к ней. Эти батареи не следует перезаряжать.

Внимание!!! Конструкция импульсного блока питания не для новичков, так как большинство его цепей подключено к сети. При плохой конструкции на выходе может возникнуть сетевое напряжение! Конденсаторы могут оставаться заряженными до опасного напряжения даже после отключения от сети. Не только вход переменного тока, но и выход должны иметь соответствующий предохранитель, в противном случае существует опасность возгорания.При зарядке, особенно при перезарядке аккумулятора, могут образовываться взрывоопасные газы. Батареи содержат опасную серную кислоту. Все, что вы делаете, вы делаете на свой страх и риск и ответственность.



Схема коммутационного зарядного устройства для автомобильных аккумуляторов, герметичных свинцово-кислотных аккумуляторов, аккумуляторов типа VRLA и гелевых аккумуляторов.


Плата SMPS перед восстановлением до зарядного устройства


Плата SMPS после восстановления до зарядного устройства


Зарядное устройство встроено в коробку от небольшого ATX.


Готовое зарядное устройство


Пример свинцово-кислотного свинцово-кислотного аккумулятора (VRLA) 12В 7,2Ач.


Этикетка свинцово-свинцово-свинцового аккумулятора (VRLA) со значениями зарядного напряжения


Пример традиционного залитого автомобильного (автомобильного) аккумулятора 12В 44Ач.

Добавлен: 21. 11. 2011
дом

Автомобильное зарядное устройство

— схемы, схемы, проекты электроники

Автомобильное зарядное устройство

Это зарядное устройство быстро и легко зарядит большинство свинцово-кислотных аккумуляторов.Зарядное устройство обеспечивает полный ток до тех пор, пока ток, потребляемый аккумулятором, не упадет до 150 мА. В это время применяется более низкое напряжение, чтобы завершить работу и предотвратить перезарядку. Когда аккумулятор полностью заряжен, схема отключается и загорается светодиод, сообщая вам, что цикл завершен.

Принципиальная схема

Детали
R1 Резистор 500 Ом 1/4 Вт
R2 3 кОм 1/4 Вт Резистор
R3 1 кОм 1/4 Вт Резистор
R4 15 Ом 1/4 Вт Резистор
R5 230 Ом Резистор 1/4 Вт
R6 15 кОм Резистор 1/4 Вт
R7 0.2 Ом 10 Вт Резистор
C1 0,1 мкФ Керамический конденсатор 25 В
C2 Электролитический конденсатор 1 мкФ 25 В
C31000pF Керамический конденсатор 25 В
D1 1N457 Диод
Q1 2N2905 Транзистор PNP
U1 LM350 Регулятор
U2 LM301A Переключатель M
U2 LM301A Операционный переключатель
Разомкнутое положение
, Плата, радиатор для U1, корпус, клеммы или зажимы типа «крокодил» для выхода

Примечания
1. Схема предназначена для питания от источника питания, поэтому на ней нет трансформатора, выпрямителя или конденсаторов фильтра. схема.Нет причин, по которым вы не можете их добавить.
2. Для U1 потребуется радиатор.
3. Чтобы использовать схему, подключите ее к источнику питания / вставьте вилку. Затем подключите заряжаемую батарею к выходным клеммам. Все, что вам нужно сделать, это нажать S1 (переключатель «Пуск») и дождаться завершения схемы.
4. Если вы хотите использовать зарядное устройство без внешнего источника питания, используйте следующую схему.

C1 6800 мкФ Электролитический конденсатор 25 В
T1 3A 15V трансформатор
BR1 5A 50V мостовой выпрямитель 10A 50V мостовой выпрямитель
S1 5A SPST Switch
F1 4A 250V предохранитель

5.В первый раз, когда вы используете схему, вы должны проверять ее время от времени, чтобы убедиться, что она работает должным образом и аккумулятор не заряжен.

автор:
электронная почта:
сайт: http://www.aaroncake.net Цепи зарядного устройства для свинцово-кислотных аккумуляторов

Автоматическое зарядное устройство

для Hi-Fi предусилителей с питанием от аккумуляторов — Идеально подходит для тех, кто хочет получить максимально чистый постоянный ток для чувствительных предусилителей. Наконец, больше не проблема не забыть снова включить зарядное устройство! Этот проект предназначен для экспериментатора, но, как показано, он будет работать очень хорошо.Чувствительную схему можно сделать настолько чувствительной, что для ее обнаружения и отключения зарядного устройства будет достаточно нагрузки всего 2,5 мА. __ Разработано Родом Эллиоттом Автоматическое зарядное устройство ESP

— Прокрутите вниз, чтобы найти эту схему. Вот схема автоматического зарядного устройства, которое я использовал для детских автомобилей с аккумуляторными батареями. Зарядное устройство представляет собой небольшой литой блок, который, вероятно, питает не больше, чем усилитель, и у этой схемы были бы проблемы с гораздо большим. Эта схема не предусматривает ограничений по току __ Контактное лицо: Чарльз Венцель из Wenzel Associates, Inc.

Зарядное устройство

— Этот проект не так актуален для тех, кто каждый день катается на машине. В моем случае машину используют не каждый день. В этом случае напряжение аккумулятора падает, и автомобиль иногда не может быть запущен __ Разработано Seiichi Inoue

Двунаправленный инвертор мощности

— 08/02/01 Идеи дизайна EDN Если вы хотите поменять местами заряд в любом направлении между неравномерно нагруженными положительной и отрицательной шинами батареи, вам понадобится инвертирующий трансформатор постоянного тока.Одной из реализаций является симметричный обратноходовой преобразователь, показанный на рисунке 1. Схема разработки Тома Напьера, Северный Уэльс, PA

Автомобильное зарядное устройство

— быстро и легко заряжает большинство свинцово-кислотных аккумуляторов, автоматически отключает зарядку по мере готовности. __ Дизайн Аарона Торт

Зарядное устройство

для автомобильного аккумулятора — при правильной сборке и настройке оно будет безопасно заряжаться до 10 ампер и автоматически снижается до непрерывного заряда. Это зарядное устройство нельзя использовать в качестве источника питания без установленной батареи.Батарея ДОЛЖНА быть подключена для отключения питания. __ Разработан G.L. Chemelec

Индикатор заряда свинцово-кислотных аккумуляторов — 27.05.99 Идеи EDN-Design Хотя перезаряжаемые герметичные свинцово-кислотные элементы редко используются в портативных устройствах, они являются хорошим выбором для резервных приложений, таких как аварийное освещение и охранная сигнализация. Ключевое преимущество PDF имеет несколько схем, прокрутите, чтобы найти эту. Дизайн: Фрэн Хоффарт, Linear Technology Corp, Милпитас, Калифорния

Монитор заряда для 12-вольтной аккумуляторной свинцово-кислотной батареи. Батарея является жизненно важным элементом любой системы с батарейным питанием.Во многих случаях батарея дороже, чем система, которую она поддерживает. Следовательно, нам необходимо принять все практические меры, чтобы продлить срок службы батареи. Согласно паспортам производителя, аккумуляторная свинцово-кислотная аккумуляторная батарея 12 В должна работать в пределах 10 В. IV и 13,8 В. При зарядке аккумулятора выше 13,8 В

Зарядное устройство

продлевает срок службы свинцово-кислотных аккумуляторов — 12/01/11 Идеи дизайна EDN Схема, которая правильно заряжает герметичные свинцово-кислотные аккумуляторы, обеспечивает долгую безотказную работу. Схема, которая должным образом заряжает герметичные свинцово-кислотные аккумуляторы, обеспечивает долгую безотказную работу.Рис. 1 — одна из таких схем; он обеспечивает правильное напряжение заряда с температурной компенсацией для батарей, содержащих от одного до 12 ячеек, независимо от количества заряжаемых ячеек. Дизайн: Фрэн Хоффарт, National Semiconductor Corp, Санта-Клара, Калифорния

Зарядное устройство для аккумуляторов Deep-Cycle 12V, Pt 2 — Вторая статья содержит полную информацию о конструкции и настройке этого нового высокопроизводительного зарядного устройства .__ SiliconChip

Зарядное устройство для аккумуляторов глубокого разряда 12 В, ч.1 — Это не зарядное устройство … это зарядное устройство! Если вы хотите правильно заменить аккумуляторные батареи на 12 В с глубоким циклом, вам подойдет этот блок на 16,6 А .__ SiliconChip

Зарядное устройство

для гелевых свинцово-кислотных аккумуляторов — эта высокоэффективная схема сначала быстро запускает (Тони ван Роон и держит) заряд при 2 амперах, но по мере роста напряжения ток, следовательно, будет уменьшаться. Когда ток падает ниже 150 мА, зарядное устройство автоматически переключается на более низкое «плавающее» напряжение, чтобы предотвратить перезаряд. В момент достижения полной зарядки Q1 смещается, и загорается светодиод.__ Разработан Тони ван Рооном VA3AVR

Зарядное устройство

выбирает между полным и непрерывным зарядом — 18.06.98 Идеи дизайна EDN Схема на рис. 1 заряжает свинцово-кислотную батарею при полном напряжении заряда, одновременно контролируя ток заряда. Когда зарядный ток падает примерно до 0,1 ° C, где C — емкость аккумулятора, зарядное устройство автоматически переключается на более низкое напряжение непрерывной зарядки. В файле есть несколько цепей, пожалуйста, перейдите к этой. Дизайн Ajmal Godil, Linear Technology Corp, Milpitas, CA

Цепь

для зарядки свинцово-кислотных аккумуляторов — 03.02.97 Идеи конструкции EDN Схема на рис. 1 заряжает свинцово-кислотные аккумуляторы обычным способом.Источник питания с ограничением по току поддерживает постоянное напряжение на батарее (2,4 В / элемент или около того, как указано производителем батареи до тех пор, пока не будет разработан Дана Дэвис, Maxim Integrated Products, Саннивейл, Калифорния

).

Схема зарядки свинцово-кислотных аккумуляторов — встроенное приложение Примечание 621 — Обратный преобразователь реализует источник питания с ограничением по току для зарядки свинцово-кислотных аккумуляторов. Контроллер MAX668 PPM ограничивает выходной ток, а обратный трансформатор обеспечивает изоляцию и гибкость для входных напряжений как выше, так и ниже напряжения батареи.Усилитель с датчиком тока MAX4375 контролирует зарядный ток и использует свой внутренний компаратор, который ниже расчетного порогового значения обратный преобразователь может переключаться на более низкое напряжение зарядки для режима непрерывной зарядки. Схема, показанная на рисунке 1, заряжает свинцово-кислотные батареи обычным способом: источник питания с ограничением по току поддерживает постоянное напряжение на батарее (приблизительно 2,4 В / элемент, как указано производителем батареи) до тех пор, пока зарядный ток не упадет ниже текущий порог определяется емкостью аккумулятора.__ APP 621 26 августа 2011 г.

Аварийная лампа и индикатор поворота — белые светодиоды заменяют обычные лампы накаливания и люминесцентные лампы из-за их высокой энергоэффективности и низкого рабочего напряжения. Их можно оптимально использовать для аварийного освещения и поворота автомобилей __ Electronics Projects for You

Контроллер экспериментального генератора переменного тока

— Вот схема автоматического зарядного устройства, которое я использовал для детских автомобилей с аккумуляторными батареями. Зарядное устройство представляет собой небольшой литой блок, который, вероятно, питает не больше, чем усилитель, и у этой схемы были бы проблемы с гораздо большим.Эта схема не предусматривает никаких ограничений по току, для этого используется зарядное устройство. Схема может быть изменена для обеспечения большего тока, прокрутив страницу вниз, чтобы найти эту __ Контактное лицо: Чарльз Венцель из Wenzel Associates, Inc.

Зарядное устройство для гелевых элементов

— Недавно один любитель искал зарядное устройство для гелевых элементов, которое сначала заряжалось с фиксированной скоростью, а затем переключалось на постоянный заряд, когда элемент был полностью заряжен. После просмотра нескольких каталогов и веб-сайтов была обнаружена микросхема MAX712.Эта микросхема отвечает всем требованиям практически для любого типа системы зарядки аккумуляторов. Схема на Рисунке 1 была разработана специально для гелевых ячеек на 12 В __ Разработано Обществом радиолюбителей Норвича,

Зарядное устройство для гелевых элементов I — Эта высокоэффективная схема сначала быстро запускает (Тони ван Роон и держит) заряд при 2 А, но по мере увеличения напряжения ток, следовательно, будет уменьшаться. Когда ток падает ниже 150 мА, зарядное устройство автоматически переключается на более низкое «плавающее» напряжение, чтобы предотвратить перезаряд.В момент достижения полной зарядки Q1 смещается, и загорается светодиод. __ Разработан Тони ван Рооном VA3AVR

Зарядное устройство для гелевых аккумуляторов II — для этой схемы требуется стабилизированный входной каскад постоянного тока 10 В, способный обеспечить ток 2 А. Начинает цикл зарядки при 240 мА и при полной зарядке автоматически переключается в плавающее состояние (постоянный заряд) 12 мА. __ Разработан Тони ван Рооном VA3AVR

Зарядное устройство для свинцово-кислотных аккумуляторов

Gell Cell — эта высокоэффективная схема сначала быстро запускает (Тони ван Роон и удерживает) заряд при 2 амперах, но по мере увеличения напряжения ток, следовательно, будет уменьшаться.Когда ток падает ниже 150 мА, зарядное устройство автоматически переключается на более низкое «плавающее» напряжение, чтобы предотвратить перезаряд. В момент достижения полной зарядки Q1 смещается, и загорается светодиод. __ Разработан Тони ван Рооном VA3AVR


Простые схемы зарядного устройства 12 В с автоматическим отключением

Установка позволяет сделать простое зарядное устройство 12 В с отличным уровнем качества, с помощью которого вы можете заряжать автомобильные аккумуляторы напряжением 12 В и сухие аккумуляторы. применяется в системах сигнализации.

Его функционирование кажется автоматическим, учитывая, что всякий раз, когда он подключается к батарее, он в конечном итоге будет работать только в том случае, если батарея разряжена, и будет автоматически извлекаться, когда батарея полностью заряжена.

Устройство приводится в действие трансформатором, вторичная обмотка которого обычно составляет 14-15 Вольт и имеет ток не менее 3 Ампер.

Подстроечный резистор TR1 настроен таким образом, чтобы на выходе зарядного устройства батареи было напряжение около 14,4 В без нагрузки.

Абсолютный максимальный ток распределения составляет 3 ампера, поэтому НЕ пытайтесь заряжать батареи емкостью более 36 Ач. Лучше всего использовать это устройство для питания зарядного устройства для системы охранной сигнализации с аккумулятором в режиме ожидания.

Во время установки следует обратить внимание на то, чтобы подключать аккумулятор с соблюдением полярности.
При построении компонентов осторожно придерживайтесь конфигурации схемы.

Печатная схема, ВХОД АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА 14-15 Вольт при МАКСИМАЛЬНОМ ТОКЕ зарядки 3 АМПЕРА

Список деталей для цепи автоматического зарядного устройства автомобильного аккумулятора 12 В:

Все резисторы имеют номинал
1/4 Вт, если не указано иное.

Rl-470 Ом
R2 = 10 K
R3 = 270 Ом
TR1 = подстроечный резистор 10 K.
Cl = 1000 мкФ 25 В.
DZ1 = 5,1 вольт lWzener.
T1 = 2N2218
T2 = 2N3055-BDW21C
1C1 = UA741
PT1 = KBL04 / 01
1 Гнездо 8 контактов.
1 Радиатор для Tl.
1 Радиатор для T2.

Простое зарядное устройство 12 В с индикатором заряда батареи

Это простая схема зарядного устройства 12 В со схемой индикатора представляет собой схему интеллектуального зарядного устройства. Вы можете идеально использовать эту схему для таких приложений, как инверторы, портативные зарядные устройства и т. Д.Эта конструкция дополнительно включает в себя двойную систему индикации в виде индикатора заряда аккумулятора и зуммера разряда аккумулятора. Преимущество этого индикатора в том, что зуммер уведомляет вас, когда аккумулятор необходимо зарядить. Эта схема, несомненно, помогает в повседневной зарядке аккумулятора.

Как работает простая схема зарядного устройства
— Схема зарядки создается на основе регулятора напряжения IC 7815 и пары транзисторов BC 547 BJT.
— Основной вход 230 В или 110 В может быть сначала понижен через понижающий трансформатор, после чего он может быть выпрямлен и отфильтрован.
— Это постоянное напряжение затем подается на регулятор напряжения IC 7815 ;. Выход регулируется на уровне 15 В
для зарядки подключенной аккумуляторной батареи 12 В на выходе регулятора напряжения. И он начинает заряжать аккумулятор, как только появляется основное питание.
— Каждый раз, когда напряжение батареи падает ниже определенного значения, светодиод 1 перестает светиться, и начинает звучать зуммер, указывая на то, что батарея разряжена и требует подзарядки.

Ведомость материалов
-трансформатор (230В до 15В или 110В T0 15В)
-контактный выпрямитель (1N4007 x 4)
-конденсатор (470 мкФ, 50В)
— Регулятор напряжения IC 7815
-12 В аккумуляторная батарея

Быстрое зарядное устройство для Автомобильный аккумулятор — блог Mohan’s electronics


Это эффективное зарядное устройство для автомобильного аккумулятора для быстрой зарядки автомобильного аккумулятора. Это зарядное устройство на 5 ампер с цифровым вольт-амперметром для отображения зарядного напряжения и тока.Поскольку зарядное устройство обеспечивает максимальный ток 5 А, аккумулятор может выдерживать большой ток, который требуется для очень быстрой зарядки. По завершении процесса зарядки ток уменьшается до нуля и отображается на счетчике. Таким образом, легко проверить, полностью ли заряжен аккумулятор.


Необходимые детали

Резистор — 1К, 1Вт -1

Диод — Диоды 10 Ампер — 2

Конденсатор — 1000 мкФ, 50 В Конденсатор электролитический

LED — 5 мм, любой цвет

Трансформатор — 14-0-14, 5 А понижающий трансформатор

Цифровой вольт-амперметр — 1

Тумблер — 1

Металлический корпус — 1

2.5 мм электрические провода — 3 метра каждый, красный и черный цвета

Зажимы типа Crocodile -2

Шнур переменного тока — 1

Зарядное устройство в основном представляет собой источник постоянного тока на 5 А, использующий понижающий трансформатор 14-0-14, 5 А . Диоды на 10 ампер выпрямляют низкое напряжение переменного тока в постоянный. Конденсатор с фильтром емкостью 1000 мкФ устраняет пульсации постоянного тока, и для зарядки доступно около 16-17 Вольт. 12-вольтовой свинцово-кислотной батарее требуется около 14 вольт постоянного постоянного тока для плавной зарядки, так как ее напряжение на клеммах возрастает до 13.8 В при полной зарядке.

Подключите диоды и конденсатор, как показано на схеме. Цифровой вольт-амперметр имеет 5 проводов, поэтому подключайте его, как показано на схеме.




Показания счетчика
Когда зарядное устройство включено без батареи, вольтметр покажет выходное напряжение зарядного устройства. Амперметр покажет 000, так как нагрузки нет.


Когда зарядное устройство подключено к аккумулятору без питания, вольтметр покажет напряжение, присутствующее в аккумуляторе.
Когда аккумулятор подключен к зарядному устройству и включен, вольтметр покажет около 14 вольт, а амперметр покажет ток, протекающий к аккумулятору, в амперах.

Когда аккумулятор полностью заряжен, амперметр покажет 000, что означает отсутствие тока в аккумуляторе, поскольку он полностью заряжен.
Отключить зарядное устройство при подключенном аккумуляторе. Вольтметр покажет 13-14 вольт, что указывает на полностью заряженное состояние аккумулятора.

Нравится:

Нравится Загрузка…

Связанные

Схема зарядного устройства автомобильного аккумулятора на 6 В или 12 В и инструкция

Описание

Нам всегда было необходимо зарядное устройство для зарядки автомобильного аккумулятора. Эта схема может автоматически, быстро и правильно заряжать аккумуляторы 6 В и 12 В. Основным фактором успеха в работе схемы является использование трансформатора [T1] хорошего качества с очень хорошей изоляцией и устойчивостью к коротким замыканиям. Q1 через делитель R1-2, TR1 и R4 функционирует как регулируемый источник тока.Ток через R9 питает силовые транзисторы Q5 -6, где он усилен примерно в 2000 раз. В автомобильном зарядном устройстве напряжение составляет от 6 до 8 В. В этих условиях зарядный ток составляет примерно 1,2 А [регулируется TR1]. Когда аккумулятор заряжается медленно, увеличивается ее напряжение в поперечном направлении. В 7V он начинает проводить D1. Пока оно увеличивается, напряжение батареи уменьшается, напряжение на R3 делает Q1 проводимым. Это продолжалось до тех пор, пока ток не достиг примерно 6 А.Затем, из-за падения тенденции в высшей степени R10, становится драйвером Q4. Ток, превышающий базу Q5, заземлен, что соответствует текущей постоянной заряда. Когда зарядное устройство [14,4 В] полностью заряжено, активируется параллельно цепи батареи, которая состоит из R6, D8 и D2 до D6. Одновременно включается D8, что показывает, что аккумулятор полностью заряжен. Одновременно включается Q2 из-за падения напряжения на R6. Q3 становится проводимым и заземляет часть тока в базе Q5.Когда напряжение на батарее достигает примерно 15 В, ток в базе Q5 очень мал, поэтому зарядка батареи прекращается. Диоды D5-6 защищают схему от ошибочной установки батареи или от короткого замыкания большой продолжительности. Диод D4 защищает схему от ошибочного размещения полюсов АКБ. Затем включается светодиод D9, показывая ОШИБКУ подключения. Замыкая переключатель S2 закорачивает диод D2 [6,8 В], теперь мы можем заряжать аккумулятор 6 В.

Регулировка

Начальный ток заряда следует регулировать через TR1 в 1.2А. Настроить можно с аккума 6В. Подключите каскадом к батарее амперметр [самый большой 10А]. Если нет батареи 6V, отсортируем выход зарядного устройства через их амперметр и с помощью TR1 регулируем ток в 1,2A. На регулирующем переключателе S2 они должны быть в положении 12 В, то есть разомкнуты. Следует обратить внимание на точность диодов D2 и D3, поскольку они защищают аккумулятор от перезаряда. Если отклонение напряжения составляет до 100 мВ, мы считаем приемлемым.Если вы столкнулись с трудностями при регулировке тока и TR1 недостаточно, вы можете изменить значение сопротивления R4, пока измеренный ток заряда не станет 1,2А. Два параллельных резистора, составляющих R10, должны быть размещены на расстоянии печатной платой и Q5-6, потому что они нагреваются. Перемычку B1 и Q5-6 следует поместить на радиатор после того, как изолировать электрическую часть от него подходящей силиконовой слюдой. Мост B1 и печатная плата, на которой будет размещена схема, должны быть соединены ближним и толстым кабелями, особенно там, где ток большой.Также линии на плате должны иметь пропорциональную ширину [на чертеже они отображаются с дальней линией]. Изготовление должно быть в хорошем металлическом ящике подходящих размеров, чтобы была хорошая вентиляция. Все производство требует соответствующего опыта. РАБОТА С АККУМУЛЯТОРАМИ ТРЕБУЕТ ОЧЕНЬ БОЛЬШОГО ВНИМАНИЯ ПРИ ОБРАЩЕНИИ, ПОТОМУ ЧТО ВСЕГДА СУЩЕСТВУЕТ ОПАСНОСТЬ ВЗРЫВА.

Принципиальная схема

Список деталей

  • R1-11 = 1 кОм 0,5 Вт 5%
  • R2 = 22 кОм 0.5 Вт 5%
  • R3-5-8 = 10 кОм 0,5 Вт 5%
  • R4 = 2,2 кОм 0,5 Вт 5%
  • R6 = 100 Ом 0,5 Вт 5%
  • R7 = 100 кОм 0,5 Вт 5%
  • R9 = 470 Ом 0,5 Вт 5%
  • R10 = 0,08 Ом 10 Вт [2X0,18 Ом параллельно] 5 Вт
  • B1 = мостовой выпрямитель 25A / 40V
  • D1-2 = 6,8 В 0,4 Вт стабилитрон
  • D3 = 4,7 В 0,4 Вт стабилитрон
  • D4-6-7 = 1N4148
  • D5 = 18 В 0,4 Вт стабилитрон
  • D8 = светодиод 5 мм желтый
  • D9 = светодиод 5 мм красный
  • Q1-2 = BC557
  • Q3-4 = BC547
  • Q5 = BD139 [на радиаторе]
  • Q6 = 2N3055 [на радиаторе]
  • TR1 = 4.Горшок для триммера 7K.
  • C1 = 4700 мкФ 40 В
  • C2 = 1 мкФ 25 В
  • T1 = 230Vac // 15V 10A Transf. [См. Текст]
  • F1 = Плавкий предохранитель 1A Slo Blo [5X20 мм]
  • S1 = 2X2 Переключатель 10 А на контакт
  • S2 = 1X2 шаговый мини-переключатель
  • J1 … 4 = Плоский разъем
  • J5 = 6-контактный разъем 2,54 мм, шаг контактов
  • A = 0-10A Амперметр
  • Batt = аккумулятор 12 В или 6 В
Принципиальная схема

В связи с растущим спросом на принципиальные электронные схемы в Интернете, мы решили предоставить нашим посетителям бесплатные электронные схемы с хорошим дизайном.Раньше было очень сложно найти схему

. Диаграмма

ваших потребностей из книг, но теперь дневной доступ в Интернет — хорошее место для поиска хорошо спроектированной схемы по вашему выбору.

Найти электронную схему в Интернете и провести эксперимент, сделав ее на разработанной печатной плате или плате vero любителями электроники, студентами, техниками или инженерами, доставляет массу удовольствия, знаний и опыта в области электроники.

В Интернете вы найдете тысячи электронных схем, некоторые из которых очень хорошо спроектированы, а некоторые нет, поэтому вам нужно изменить их, чтобы сделать их в соответствии с вашими потребностями, но некоторые схемы готовы к созданию и не требуют изменений.

Существует множество категорий электронных схем, таких как аудиосхемы, радио- и радиочастотные схемы, схемы электропитания, световые схемы, телефонные схемы, схемы таймера, схемы зарядного устройства и т. Д. Существует много типов схематических схем, некоторые из которых очень легко построить и некоторые из них очень сложные, некоторые такие маленькие, а некоторые содержат огромный список деталей.

Circuit Diagram.Org предоставляет бесплатные высококачественные и хорошо разработанные принципиальные схемы, наши схемы можно использовать бесплатно для всех любителей электроники, студентов, техников и инженеров.

Circuit Diagram.Org также предоставляет полную образовательную систему для студентов, плохо знакомых с электроникой. Если вы новичок в электронике, вы студент или любитель электроники и хотите расширить свои знания в области электроники или хотите понять электронику очень простым способом, поэтому это подходящее место для вас, мы предлагаем руководства для начинающих по электронике, чтобы легко понять сложная электронная теория. Наша миссия — помогать студентам и профессионалам своего дела.

Авторское право 2018 CircuitDiagram.Орг. Все права защищены. .

Здравствуйте, читатели! Мы часто добавляем новые принципиальные схемы, поэтому не забывайте почаще возвращаться. Спасибо.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *