Электросхема зарядного устройства для автомобильного аккумулятора: Автомобильное зарядное своими руками собрать. Зарядное устройство для автомобильных аккумуляторов

Содержание

Зарядное устройство авто 4а кедр неисправности электросхема. Обзор зарядных устройств для автомобильного аккумулятора серии «Кедр. Обзор зарядных устройств для автомобильного аккумулятора серии «Кедр»

Каждый, кто имеет автомобиль, прекрасно знает, где находится цветной параллелепипед, обклеенный цветными наклейками, зачем он нужен, но мало кто задумывается, что аккумуляторная батарея не вечная, и за ней нужно как минимум ухаживать. Только тогда она сможет протянуть отведенных ей 5-7 лет. А при необходимости ее нужно заряжать. Причем заряжать правильно, и для этого сейчас есть все условия.

Зарядное устройство Кедр Авто 4а

Среды сотен тысяч моделей зарядных устройств (ЗУ), многие автомобилисты предпочитают отечественные зарядки. То ли генетическая сила привычки, то ли похвальный патриотизм, но определенной популярностью пользуется зарядное устройство Кедр Авто 4а. У многих возникают сложности с ремонтом этого прибора в силу того, что схема утеряна, а найти оригинальную не всегда удается. Мы порылись в наших архивах, и откопали схему прибора, которую предлагаем для изучения.

Имеет несложную архитектуру, и разобраться довольно просто, если можете отличить резистор от канистры. А если не можете, мы постараемся объяснить что это такое, зачем он нужен и как им пользоваться.

Когда необходимо использовать зарядное устройство

Химия — штука тонкая, а аккумулятор насквозь состоит из химических процессов. В тонкости химии мы погружаться не станем, а выясним то, что касается среднестатистического автомобилиста, его аккумулятора, и зарядного устройства Кедр Авто 4а.

АКБ должна быть в порядке. Зимой и летом. Но она имеет допустимую степень разряженности, которая проверяется довольно просто – при помощи ареометра, если конструкция АКБ позволяет, либо при помощи замера минимального напряжения на выводах. В первом случае замеряем плотность, во втором непосредственно напряжение. Допустимое значение разрядки АКБ зимой — 25% от номинала, а летом — 50%. Если банка может держать напряжение 1,6 В на протяжении пяти секунд, значит она полностью заряжена.

Если напряжение составляет 1,4 В, значит батарея села на 50%. вся арифметика.

Проводить подзарядку АКБ нужно, и если вы выбрали Кедр Авто 4а, то оно вполне справится со своей задачей в том случае, если оно исправно. А последствия неправильной зарядки могут быть невеселыми для аккумулятора, поэтому каким бы умным не был прибор, его нужно контролировать.

Описание

Любая аккумуляторная батарея заряжается от источника, превышающего напряжения батареи, и это должен быть источник постоянного тока. Следовательно, ЗУ должно преобразовать переменный ток в постоянный, и на выходе выдать нам необходимое для зарядки напряжение. Прибор делает это превосходно. Вот его технические данные:

  • способно работать от бытовой сети 220 В ± 11 В;
  • номинальное напряжение батареи, которую он заряжает — 12 В;
  • минимальный ток заряда — 4,0 А;
  • потребляет не более 85 Вт.

Предназначено и для зарядки, и для восстановления аккумуляторных батарей, потерявших заряд в силу ряда причин.

Вызвать падение напряжения на АКБ может масса факторов, но самым основным считается сульфатация пластин и их окисление. Кедр предназначен также для учебно-тренировочных зарядно-разрядных циклов, восстанавливающих способность батареи держать заряд.

Зарядка происходит определенное количество времени, которое зависит от емкости АКБ, от степени износа пластин, а также от степени разрядки батареи. Оборудован простейшим микропроцессором, управляющее всеми возможными режимами зарядки и работы устройства.

Функции

При подключении ЗУ с соблюдением полярности аппарат начинает зарядку АКБ в автоматическом режиме, о чем сигнализирует светодиод. В этом режиме производится стандартная зарядка АКБ током не более, чем 4 А с контролем напряжения на выводах. При достижении максимального значения зарядного напряжения, прибор сам отключается от аккумулятора. Об этом говорит мигающий светодиод.

Для снятия сульфатации необходимо использовать режим «цикл». В этом режиме желательно подключить параллельную нагрузку на аккумулятор, которая потребляет около 1 А тока. Для этого подойдет автомобильная лампочка на 6 Вт. Если этого не сделать, то процесс пройдет тоже успешно, но займет немного больше времени. Для полного устранения сульфатации необходимо оставить аккумулятор подключенным к прибору на 3-5 суток.

Устройство имеет также предпусковой режим зарядки АКБ. В этом случае зарядка происходит быстрее за счет того, что применятся ток высокого номинала — до 10 А. Процесс длится около пяти минут. После этого аппарат автоматически переходит в режим «автомат», и уже ограничивает ток до 4 А.

Таким образом работает Кедр Авто 4а. Благодаря несложной схеме любую его неисправность можно выявить и устранить, а служит прибор достаточно долго. Следите за амперметром, и удачи в дороге!

Применение надёжных зарядных устройств является одним из главных условий стабильной и продолжительной работы автоаккумулятора. Зарядное устройство Кедр заслужило доверие у большого количества пользователей. Простое в эксплуатации и многофункциональное, это недорогое автоматизированное ЗУ пользуется стабильным спросом у бывалых водителей и у новичков-автомобилистов.

Характеристики зарядного устройства Кедр-Авто 4А

— Номинальное напряжение питающей сети, В 220

— Частота сети, Гц 50

— Номинальное напряжение заряжаемой батареи, В 12

— Зарядный ток, А (макс.) 4 A

— Номинальная потребляемая мощность, Вт 85

Принципиальная электрическая схема АЗУ



Печатная плата и подключение АЗУ


Если нет возможности купить его, можно без проблем собрать самому. Что я и сделал. Транзисторы применил импортные вс556b (pnp) и bc337-40 (npn) вместо кт315 и кт361. На фото заводская плата зарядного и моя самодельная.



Заводская плата автоматического зарядного


Самодельная сборка платы

Собрал данное устройство, проверил — работает отлично, мне нравится.

Это зарядное устройство имеет:

— режим автомат

— режим десульфат

— режим постоянного заряда (до полной емкости)

— защиту при неправильном подключении и коротком замыкании.

— при цикличном режиме после 45 секунд заряда следует 15 сек разряда.


Будет полезным провести небольшое усовершенствование ЗУ. Полное отключение от сети 220В по окончании заряда, так сказать на «всякий пожарный». Отключение ЗУ Кедр-М от сети при зажигании светодиода «конец зарядки » можно выполнить на симисторе или реле. Команду на включение/отключение можно взять с коллектора транзистора VT1, добавив еще один транзистор, включенный в ключевом режиме, и коммутировать им питание обмотки реле или ток через светодиод оптрона, управляющего симистором. Схему собрал и проверил:

vovcanchin .

Обсудить статью СХЕМА АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА

Срок службы аккумуляторной батареи — источника жизни автомобиля — составляет от 5 до 7 лет. Все зависит от условий эксплуатации. Однако повысить ресурс АКБ можно, если периодически ее подзаряжать и проводить специальные тренировки. Для этих целей было разработано зарядное устройство «Кедр» — одно из лучших на всем автомобильном рынке России.

Работа любой аккумуляторной батареи основана на анодно-катодных реакциях, которые возникают между свинцовыми элементами и раствором серной кислоты. В результате восстановления диоксида свинца на катоде мы получаем электрический ток. Однако со временем течение реакций ослабевает. Именно тогда и необходимо подсоединять «выпрямители», которые восстанавливают исходные элементы.

Серия зарядных устройств «Кедр»

Главное назначение серии отечественных приборов «Кедр» — это зарядка аккумуляторной батареи и восстановление ее работоспособности, утраченной в силу образования сульфатов свинца и окисления электродов. Кроме того, зарядное устройство «Кедр» может использоваться для «тренировки» АКБ с целью повысить ее технические характеристики и продлить срок службы.

Внешне приборы серии представляют собой пластиковый параллелепипед черного цвета довольной большой массы. На лицевой стороне расположен пульт управления. Устройство имеет кабель для подключения к сети переменного тока, два зажима, которые присоединяются непосредственно к клеммам АКБ. Настройка прибора для подзарядки происходит в автоматическом режиме.

В состав серии устройств включены предпусковые приборы, которые используются для запуска двигателя автомобиля с сильно разряженным аккумулятором («Кедр-мини»). Также в ассортименте присутствуют универсальные агрегаты, выполняющие обе функции (зарядное устройство «Кедр-авто-10»).

Панель управления

Перед запуском прибора необходимо ознакомиться с правилами его эксплуатации. Пренебрежение этим простым правилом может вызвать поражение электрически током вплоть до летального исхода.

Самое главное — изучить панель управления прибора перед его подключением к АКБ. В подавляющем большинстве случаев в ее состав входят:

  1. Переключатель управления автоматическими режимами «Заряд/Дозаряд».
  2. Держатель плавкой вставки, иначе говоря — разъем для предохранителя.
  3. Тумблер автоматических режимов «Непрерывный/Циклический».
  4. Амперметр и индикатор полной зарядки батареи в виде светодиода.

В задней стенке прибора расположен небольшой отсек, в котором находятся шнуры, необходимые, чтобы подключить устройство зарядное «Кедр» к питающей сети и аккумуляторной батареи.

Отличия приборов от других зарядных устройств

Семейство приборов «Кедр» полюбилось отечественным автолюбителям за простоту использования.

Аппарат подзаряжает либо восстанавливает работоспособность аккумуляторной батареи благодаря встроенным в его плату управления автоматическим функциям:

  1. Циклическая работа — обеспечивает частичное восстановление окислительно-восстановительных способностей электродов при сульфатации элементов.
  2. Дозаряд АКБ — доводит постоянный заряд до полной емкости.
  3. Режим выключения батареи после полной зарядки.

Также устройство снабжено автоматической защитой от короткого замыкания в результате случайного соприкосновения выходных зажимов или неправильного подключения АКБ. При срабатывании система защиты просто перестает подавать электрический ток, тем самым оберегая как само устройство зарядное «Кедр», так и аккумулятор.

Перед зарядкой

Прежде чем приступать к зарядке, необходимо убедиться, что ваша аккумуляторная батарея нуждается в подзарядке и она исправна. Для этого необходимо измерить напряжение на клеммах. Зимой максимально допустимый уровень разрядки составляет не более 25 % от номинального значения, а летом — не более 50 %. Если вольтметр показывает значения ниже, то батарея нуждается в зарядке.

Стандартные АКБ для автомобиля обладают номинальным напряжением 12 Вольт. Только в таком случае «Кедр» — зарядное устройство (инструкция ниже) — может зарядить батарею. Прочтите также паспорт аккумулятора, чтобы убедиться, что это действительно так. Помните, что для заряда напряжение в заряжающем устройстве должно быть выше вольтажа батареи. В противном случае ничего не получится.

Инструкция по эксплуатации

Инструкция гласит, что для заряда аккумуляторной батареи необходимо выполнить следующее:

  1. Извлечь из полости на задней стенке шнуры, аккуратно растянуть их на полу, следить, чтобы зажимы не соприкасались.
  2. Подключить устройство к переменному источнику тока 220 Вольт.
  3. Переключить тумблеры в положение «Заряд» и «Непрерывный».
  4. Соблюдая полярность, присоединить зажимы к клеммам АКБ.

После этого начнется зарядка аккумуляторной батареи. Как только электрическая емкость полностью восстановится, устройство зарядное «Кедр» оповестит об этом красным индикатором «Окончание заряда». После этого АКБ готова к работе.

Восстановление работоспособности

Снижение емкости аккумулятора происходит в результате частичной сульфатации пластин — образования сульфатов на электродах. Повысить работоспособность и увеличить долговечность АКБ в этом случае можно. Для этого необходимо:

  1. Подсоединить зажимы прибора к клеммам.
  2. Тумблер перевести в положение «Циклически».
  3. Подключить к АКБ лампочку 12В или 6В.

Восстановление работоспособности происходит по следующей схеме: устройство зарядное «Кедр» в течение 45 секунд заряжает батарею, а затем отключается, и в работу вступает лампа, которая в течение 15 секунд разряжает аккумулятор. Такой циклической зарядкой/разрядкой повышается ресурс и работоспособность АКБ.

Любой владелец автомобиля должен иметь в своём арсенале зарядное устройство для автомобильного аккумулятора 12 В. Без него при эксплуатации машины просто не обойтись. Если вы начинающий автолюбитель и ещё не купили ЗУ для аккумулятора, то обязательно к этому придёте. Особенно это важно зимой, когда заряжать АКБ нужно чаще, чем обычно. В противном случае вы можете оказаться в машине с «мёртвым» аккумулятором и придётся «прикуривать». Можно, конечно, заряжать аккумулятор на СТО. Но это лишние расходы и потерянное время. Проще зарядить АКБ в гараже или дома. Нужно только правильно выбрать зарядное устройство. В этой статье мы поговорим о зарядных устройствах для автомобильного аккумулятора «Кедр». Рассмотрим разные модели и прочитаем, что говорят люди в отзывах.

«Кедр-М»

Это зарядное устройство (ЗУ) предназначено для проведения зарядки автомобильных АКБ. А также прибор предназначен для восстановления работоспособности батарей, которую они утратили в результате окисления и сульфатации электродов. Кроме того, ЗУ может использоваться для тренировки заряд-разряд, чтобы увеличить срок эксплуатации.

Основные возможности устройства:

  • Отключение процесса зарядки в автоматическом режиме;
  • Есть циклический режим работы (заряд-разряд) для восстановления утраченной ёмкости в результате сульфатации пластин;
  • Защита от неправильного подключения зажимов к токовыводам и от короткого замыкания;
  • Есть режим дозарядки, предназначенный для набора аккумулятором полной ёмкости.

Сетевой кабель, а также шнуры с зажимами находятся в специальном отсеке с обратной стороны устройства.

Обратите внимание! ЗУ «Кедр-М» напряжение, которое опасно для жизни. Всегда перед ремонтными работами и смене предохранителя выключайте аппарат. Категорически запрещается использовать самодельные предохранители и закрывать отверстия в корпусе, предусмотренные для вентилирования. Кроме того, запрещается проводить зарядку аккумулятора ближе одного метра к отопительным приборам, печам и т. п.

В таблице ниже приведены основные параметры устройства «Кедр-М».

Характеристики Значение
Характеристики Значение
Напряжение в сети питания, В 220
Номинал заряжаемого аккумулятора, В 12
Ток заряда, А до 4
Потребляемая мощность, ватт до 85
Длительность импульсного тока заряда в циклическом режиме, сек от 15 до 75
Длительность импульсного тока разряда в циклическом режиме, сек от 5 до 25
Допустимая температура окружающей среды, С от 10 до 40
Допустимая влажность воздуха, % 98 (при 25 С)
Допустимое атмосферное, 84 кПа


Для того чтобы подготовить «Кедр-М» к работе, откройте задний отсек и достаньте шнуры с клеммами. Первый тумблер устанавливаете в режим заряд, а вторым выбираете непрерывный или циклический режим. Непрерывный рекомендуется, когда вам необходимо зарядить АКБ. Циклический режим используется при десульфатации или формовке электродов. При этом к выводам нужно подключить лампочку на 12 вольт мощностью 6 ватт. Далее с соблюдением полярности подключаете клеммами к токовыводам.

Здесь стоит отметить, что ЗУ «Кедр-М» имеет защиту от КЗ и неправильного подключения. Работать аппарат будет только в том случае, если на клеммы подключена АКБ с напряжением от 10 вольт. То есть, глубоко разряженный аккумулятор он заряжать не будет, уходя в защиту.

В процессе работы зарядного устройства можно переключать режимы, не отключая прибор от сети 220 вольт. Если батарея разряжена, то сначала ток зарядки составит 4 ампера, а затем будет постоянно уменьшаться. После того как аккумулятор полностью зарядится, ЗУ отключится и будет мигать светодиод, указывающий на окончание процесса. После этого можете установить «Кедр-М» в режим дозаряда.

В циклическом режиме аккумулятор заряжается примерно 45 секунд, а затем разряжается посредством подключённой лампочки. В этом режиме нет автоматического отключения и процесс нужно контролировать самостоятельно.

Ниже можете посмотреть два варианта принципиальной схемы зарядного устройства для автомобильных аккумуляторов «Кедр-М».


В таблице ниже можно посмотреть обозначение элементов на принципиальной схеме.

Зарядные устройства «Кедр-Авто 4А» и «Кедр-Авто 12В»

Эта модель ЗУ предназначена для зарядки, восстановления свинцово-кислотных АКБ номиналом 12 вольт и проведения тренировочных циклов заряд-заряд.

Шнуры питания и подключения к аккумуляторной батарее выходят из задней стенки устройства. В отличие от модели «Кедр-М» здесь нет отсека для укладки проводов. Порядок использования ЗУ «Кедр-Авто 4А» будет показан ниже в разделе «Как пользоваться?». В таблице далее приведены основные характеристики этих моделей.

Ниже приводится принципиальная схема «Кедр-Авто 4А» и «Кедр-Авто 12В».

В таблице можно посмотреть список элементов, обозначенных на принципиальной схеме.

На фото ниже представлена печатная плата для изготовления «Кедр-Авто 4А» и «Кедр-Авто 12В».

Это усовершенствованный вариант зарядного устройства «Кедр-Авто 4А», который был выпущен в 2008 году. Производитель сообщает, что ЗУ предназначено для зарядки 12-вольтовых свинцово-кислотных АКБ.


В чём отличия усовершенствованной модели?

  • Улучшена защита от неправильного подключения клемм, КЗ и перегрузки;
  • При сборке используются современные трансформаторы и другие комплектующие;
  • Добавлен предпусковой режим («форсаж»). В этом режиме аккумуляторная батарея заряжается током 10 ампер. После этого, ЗУ автоматически переключается в режим зарядки током 4 ампер;
  • После окончания основного этапа зарядки «Кедр-Авто-10» автоматические переводит устройство на подзарядку током 0,5 ампера. Так обеспечивается наиболее полный заряд АКБ и исключается перезарядка ;
  • Возможность проводить десульфатацию в цикле;
  • В режиме автоматического заряда номинальный ток составляет 4 А;
  • Срок службы от 5 лет при соблюдении инструкции по эксплуатации;
  • Масса ЗУ всего 600 грамм;
  • Гарантия ─ 1 год.

Основные характеристики «Кедр-Авто-10» можно посмотреть ниже:

  • Размеры составляют 185 на 130 на 90 миллиметров;
  • Предпусковой режим с током зарядки до 10 ампер;
  • Номинальный зарядный ток 4 ампер;
  • Потребляемая мощность составляет до 250 ватт;
  • Номинал заряжаемых АКБ – 12 вольт;
  • ЗУ работает от сети 220 вольт.

Время зарядки зависит от степени разрежённости аккумулятора и его ёмкости. ЗУ «Кедр-Авто-10» имеет микропроцессор, который управляет зарядкой. В том числе, предпусковым режимом. Всё это выполняется при переводе устройства в режим автомат. Сначала подаётся увеличенный ток заряда, который затем снижается до номинала. Это ускоряет процесс зарядки.

Устройство зарядное Кедр АВТО 4A предназначено для заряда и восстановления работоспособности кислотных свинцовых 12-вольтовых батарей, частично утраченной в результате сульфатации и окисления электродов, а также их тренировки проведением циклов заряд-разряд с целью увеличения ресурса, срока службы и сохраняемости.

Устройство Кедр АВТО 4A обеспечивает автоматическое отключение при окончании заряда в режиме «АВТОМАТ». В устройстве предусмотрен стрелочный индикатор (амперметр) и световой индикатор, который: при включении режима «АВТОМАТ» — не светится; при окончании заряда в режиме «АВТОМАТ» — мигает; при включении режима «ЦИКЛ» — светится равномерно.

Устройство КЕДР-АВТО обеспечивает ускоренный режим заряда полностью разряженной (до 10 В) батареи при компромиссном значении начального тока равном 3 — 4 А. При этом через 1 — 2 часа (в зависимости от степени разряда батареи и напряжения в сети) значение зарядного тока уменьшается до величины около 2 А и продолжает уменьшаться к концу заряда до 1 А и менее. Такой режим исключает значительный нагрев батареи при заряде и сокращает время заряда полностью разряженной батареи до 3 — 6 часов.

Перед началом эксплуатации устройства необходимо изучить правила по уходу и эксплуатации аккумуляторных батарей.

Общие характеристики устройства
Модель Кедр-Авто 4А
Номинальное напряжение питающей сети, В 220
Частота сети, Гц 50
Номинальное напряжение заряжаемой батареи, В 12
Зарядный ток, А (макс. ) 4 A
Номинальная потребляемая мощность, Вт 85
Относительная влажность воздуха, не более 98% при 25°С
Атмосферное давление, кПа от 84 до 106
Размеры 185x130x90
Комплектация
Изделие 1 шт.
Паспорт 1 шт.
Инструкция 1 шт.
Упаковка 1 шт.
Подходит для аккумуляторов
Тип заряжаемого аккумулятора
Ёмкость заряжаемого аккумулятора 30 — 75 А/ч
.

ТРЕБОВАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

ВНИМАНИЕ! Перед работой с зарядным устройством «Кедр-авто» необходимо внимательно изучить настоящую инструкцию по эксплуатации.

Будьте осторожны! В зарядном устройстве имеется опасное для жизни напряжение.
Перед заменой предохранителя и проведением ремонта, зарядное устройство отключите от сети.
Не применяйте самодельный предохранитель, это может вывести устройство из строя.
Не производите заряд аккумуляторных батарей вблизи печей, батарей отопления (на расстоянии менее 1 метра).
Не допускается закрывать вентиляционные отверстия в корпусе устройства.

Запрещается:
— разбирать корпус устройства и эксплуатировать зарядное устройство со снятой верхней крышкой;
— эксплуатировать зарядное устройство при наличии повреждений сетевого шнура;
— эксплуатировать в условиях повышенной влажности, а также в условиях агрессивных сред;
— эксплуатировать устройство вблизи источников открытого огня или других источников теплового излучения;
— эксплуатировать зарядное устройство с закрытыми вентиляционными отверстиями. Процесс зарядки аккумуляторных батарей должен проводиться в хорошо проветриваемом помещении.

Подготовка к работе и порядок работы

Перед началом эксплуатации устройства необходимо изучить правила по уходу и эксплуатации аккумуляторных батарей.
Открыть крышку в задней стенке зарядного устройства и извлечь шнуры. Установить тумблер включения автоматики в положение «ЗАРЯД».
Тумблер режима заряда «НЕПРЕРЫВНЫЙ-ЦИКЛИЧЕСКИЙ» позволяет выбрать режимы заряда аккумуляторной батареи.
Если необходимо зарадить аккумуляторную батарею, тумблер режима заряда переключить в положение «НЕПРЕРЫВНЫЙ».
При необходимости формовки или десульфатации пластин, при снижении емкости аккумуляторной батареи тумблер выбора режима заряда переключить, в «ЦИКЛИЧЕСКИЙ». К клеммам аккумуляторной батареи подключить нагрузку (лампочку 12V 6 Вт).
Подключить, соблюдая полярность, шнур при помощи зажимов к аккумуляторной батарее.
Электронная защита устройства «Кедр-М» от короткого замыкания и неправильного подключения полярности выполнена таким образом, что на выходе зарядный ток появляется только в том случае, если к выходным клеммам подключен источник напряжения (аккумуляторная батарея) напряжением не менее 10В.
Лампочка, подключенная к клемам зарядного устройства, гореть не будет, так как она не является источником напряжения.

Работа в режиме заряда аккумулятора.

Переключение режимов работы устройства «ЦЕПРЕРЫВНЫЙ-ЦИКЛИЧЕСКИЙ» и «ЗАРЯД-ДОЗАРЯД» можно производить в процессе заряда аккумуляторной батареи не отключая его от сети.
Подключить вилку сетевого шнура питания 220 В, при этом начинается процесс заряда аккумуляторной батареи, о чем свидетельствуют показания амперметра.
Ток заряда полностью разряженной аккумуляторной батареи в начале заряда может сосгавитъ 4 А и более, дальше в процессе заряда ток будет уменьшаться.
При достижении заряда аккумуляторной батареи происходит автоматическое отключение зарядного устройства, о чем свидетельствует свечение светодиода «ОКОНЧАНИЕ ЗАРЯДА»
Переключить тумблер включения автоматики в режиме «ДОЗАРЯД» и продолжить заряд аккумуляторной батареи. Батарея считается полностью заряженной, если в процессе заряда плотность электролита не меняется в течение двух часов.
В циклическом режиме заряда после каждых 45 секунд заряда в течение 15 секунд происходит разряд аккумуляторной батареи через подключенную к аккумуляторной батарее нагрузку (лампочку).
В положении «ЦИКЛИЧЕСКИЙ» или «ДОЗАРЯД» автоматика выключается.

Возможные неисправности и методы их устранения

Не смотря на то, что зарядное устройство просто и надёжно в эксплуатации, в практике имеются случаи, когда потребители из-за неправильного использования не могут получить, необходимый зарядный ток и ошибочно считают это неисправностью зарядного устройства. Эти ошибки сведены в таблице.

Наименование неисправностей, внешнее проявление и дополнительные признаки Вероятная причина Метод устранения Примечание
1. При подключении зарядного устройства к аккумуляторной батарее отсутствует показание зарядного тока 1. Сгорел предохранитель. 2. Плохой контакт между выходными зажимами «+» и «-» и выводами АБ. 3. Перепутана полярность при подключении ЗУ-А к выводам АБ. 4. Выходные зажимы « + » и «-» замыкаются между собой. 5. Короткое замыкание в АБ или она чрезмерно разряжена (напряжение на ней менее 4 В) 1. Заменить предохранитель. 2. Проверить состояние выводов При необходимости зачистить их. 3. Проверить правильность подключения устройства а АБ. 4. Разомкнуть зажимы. 5*. Проверить устройство и аккумуляторную батарею. * При других неисправностях ЗУ подлежит ремонту.
2. При подключении ЗУ к АБ стрелка амперметра показывает больше 5 А. 1. Неисправна батарея (закорочена одна банка). 2. Напряжение сети значительно выше нормы. 1. Устройство отключить, устранить неисправность батареи или сети. * При исправном ЗУ, неисправность надо искать в заряжаемой АБ
3. Зарядное устройство отключилось, но АБ значительно недозаряжена. 1. Неисправность АБ (сульфатация пластин, плотность не соотвстствует норме, загрязнение и т. д.) 1. Провести заряд в режиме «Циклический», «Дозаряд». Проверить ЗУ заведомо исправным аккумулятором.

Ремонт зарядного устройства «Рассвет» своими руками

Устройство зарядное «Рассвет» модель КМ-14 хоть и выпускалось ещё в 80-х годах, но ещё используется у некоторых автовладельцев для зарядки АКБ.

Несколько раз приносили в ремонт данное устройство, поэтому решил написать небольшую статью с фото и таблицей напряжений, возможно кому-то пригодится.

Зарядное устройство (ЗУ) универсальное. Им можно заряжать 12В и 6В аккумуляторные батареи, а также есть стабилизированный выход 12В и 9В для питания различной радиоаппаратуры.

Радиоаппаратуру с напряжением питания 9В при отсутствии питания для ЗУ ~220В можно запитать от АКБ 12В через ЗУ. Для этого ЗУ нужно подключить щупами к АКБ, а с гнезда (9В) взять стабилизированное 9В.

Технические характеристики зарядного устройства «Рассвет»

  1. Питание ЗУ переменным током 220В
  2. Зарядный ток (макс) при зарядке 12В АКБ — 5А
  3. Зарядный ток (макс) при зарядке 6В АКБ — 1,8А
  4. Допускается использовать ЗУ для питание систем зажигания авто током не более 4А
  5. Макс. ток для питания 12 В аппаратуры — 1А
  6. Макс. ток для питания 9 В аппаратуры — 0,25А
  7. Диапазон регулирования напряжения от 12 до 17+3В
  8. Рабочая температура — 30 + 40С
  9. Влажность до 93%
  10. Размер 318 х 245 х 115мм
  11. Вес 4,7кг

Принципиальная электрическая схема ЗУ «Рассвет»

Ремонт зарядного устройства «Рассвет»

Несколько раз приходилось менять в данном устройстве выходной транзистор V1 КТ803А. Можно заменить на КТ808А.

Пару раз приходилось менять транзистор V3 МП26А. Можно МП25А.

Про разбитый амперметр и оторванные зажимы типа «крокодил» я уже и не пишу 🙂

При последнем ремонте оборвалась дорожка у эмиттера транзистора V2 КТ805БМ, т.к. он находится на радиаторе, который ни как не закреплен к плате.

  Таблица напряжений на выводах транзисторов

При ремонте будет полезным напряжения на транзисторах, сделанные на рабочем ЗУ. Напряжение на выходе установлено 14В при подключенной АКБ.

Э Б К
V1 (КТ803А) -27,5 -26,9 -14
V2 (КТ805БМ) -26,9 -26,2 -14
V3 (МП26А) -5 -5,1 -26,2
V4 (П213) -10,2 -9,9 -14

Все напряжения замерены относительно + клеммы (Х7).

Автор: А.Зотов



ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:

П О П У Л Я Р Н О Е:
  • Схема зарядного устройства для аккумуляторов 3,7В
  • Следующее зарядное устройство для малогабаритных аккумуляторов построено с использованием компаратора, который отключает зарядный ток при достижении заданного напряжения.

    Заряд производится стабильным током, не зависящим от степени зарядки аккумулятора и напряжения в сети.  Данная схема простая и имеет свои преимущества и недостатки, которые мы обсуждали в предыдущих статьях.

    Подробнее…

  • Индикаторы напряжения в бортовой сети автомобиля
  • Описываемые далее устройства предназначены для допускового контроля напряжения в бортовой сети автомобиля с номинальным напряжением 12 В, хотя могут использоваться и в других случаях. Они не отображают точного значения напряжения, а лишь указывают, находится ли оно в требуемых пределах. Например, в индикаторе, схема которого показана на рис. а ниже, Подробнее…

  • Зарядное устройство для АКБ 12В, 7а-ч
  • Простое зарядное устройство для АКБ

    Ниже представлена простая схема для автоматического поддержания аккумулятора в заряженном состоянии. Схема не содержит дорогих и дефицитных деталей. Простое и недорогое зарядное устройство предназначено для 12В, 7 а/ч свинцово-кислотных аккумуляторных батарей. Можно также использовать для зарядки автомобильных аккумуляторов и систем аварийного освещения и т.п.

    Подробнее…

Популярность: 12 516 просм.

Зарядное устройство для автомобильного аккумулятора своими руками

Далеко не у каждого автовладельца имеется в наличии зарядное устройство для автомобильного аккумулятора. Многие не считают нужным приобретать такой агрегат, считая, что он им не понадобится. Однако, как показывает практика, хотя бы раз в жизни каждый водитель оказывался в ситуации, когда необходимо ехать, а .

Необязательно приобретать новое заводское зарядное устройство, его можно самостоятельно выполнить из, например, старых электроприборов. Существует множество вариантов создания своими руками автомобильных зарядных устройств, но большая их часть обладает существенными недостатками.

  • Трансформатор используется типа ТН61-22, обмотки соединяются последовательным образом. Коэффициент полезного действия зарядки не меньше 0,8, сила тока — не больше 6 ампер, поэтому прекрасно подойдёт трансформатор с мощностью, равной 150 ваттам. Обмотка трансформатора обязана обеспечивать напряжение до 20 вольт при силе тока до 8 ампер. При отсутствии готовой модели можно взять любой трансформатор необходимой мощности и намотать вторичную обработку. Для расчётов количества витков применяйте специально предназначенный для этого калькулятор, который можно найти на сайтах в интернете.
  • Подходят конденсаторы из ряда МБГЧ, предназначенные для тока напряжением не меньше 350 вольт. Если конденсатор поддерживает работу с переменным током, то он подойдёт для создания зарядного устройства.
  • Диоды подойдут абсолютно любые, но они должны быть рассчитаны на ток до 10 ампер.
  • Операционным усилителем может быть выбран аналог AN6551 — КР1005УД1. Именно такую модель раньше вставляли в магнитофоны ВМ-12. Он очень хорош тем, что не требует при работе двухполярного питания, а также цепей коррекции. КР1005УД1 функционирует при колебаниях напряжения более 7 В. В общем, эту модель можно заменить любой аналогичной. К примеру, это могут быть LM158, LM358 и LM258, но тогда придётся менять рисунок печатной платы.
  • Для измерения напряжения и тока подойдёт любая электромагнитная головка, например М24. Если показатели напряжения вас не интересуют, то просто установите амперметр, который рассчитан на постоянный ток. В обратном случае напряжение контролируется тестером или мультиметром.

На видео — создание автомобильного зарядного устройства:

Проверка и настройка

В том случае, когда все элементы исправны и сборка произошла без ошибок, то схема должна заработать сразу. И автовладельцу необходимо только лишь установить порог напряжения с помощью резистора. Когда зарядка достигнет этого прибора, произойдёт переключение на режим малого тока.

Регулировка осуществляется в момент зарядки. Но лучше, наверно, подстраховать себя: настроить и проверить схемы защиты и регулирования. Из измерительных приборов для этого понадобятся мультиметр или тестер, рассчитанный на работу с постоянным напряжением.

Как заряжать собранным устройством

Существуют определённые правила, которые необходимо соблюдать при использовании самодельного автомобильного зарядного устройства.

Важно ещё до начала зарядки , очистить его от пыли и грязи. Затем протереть раствором соды, для того чтобы удалить кислотные остатки. Если частички кислоты на аккумуляторе есть, то сода начнёт пениться.

Пробки для заливки кислот в аккумуляторе необходимо выкрутить. Это делается для того, чтобы газы, образующиеся в аккумуляторе, имели возможность выходить. Затем следует проверить количество : если уровень меньше оптимального, долейте дистиллированной воды.

После этого переключателем выставьте определённое показание тока заряда, подключите собранное устройство, учитывая при этом полярность. Соответственно, плюсовой вывод зарядки следует подсоединить к плюсовому выводу аккумулятора. Нахождение переключателя в нижнем положении приведёт стрелку устройства на показатель текущего напряжения. Вольтметр начинает в это же время показывать напряжение тока.

Если обладает ёмкостью 50 А·ч, на данный момент он заряжен на 50%, то сначала следует установить ток на отметку 25 ампер, постепенно уменьшая её до нуля. На подобном принципе функционируют автоматические устройства для зарядки. Они помогают зарядить на 100% аккумулятор автомобиля. Правда, такие устройства очень дорого стоят. При своевременной зарядке такой недешёвый аппарат не нужен.

Подводя итоги, можно сказать, что, используя даже б/у детали от старых приборов, можно собрать вполне приличное зарядное устройство для автомобильного аккумулятора. Если нет способностей выполнить это самостоятельно, то всегда можно найти такого умельца в каждом гаражном кооперативе. И уж наверняка обойдётся это существенно дешевле, чем купить новое заводское устройство.

26 ноября 2016

Автолюбители, не меняющие машины каждые 2 года, рано или поздно сталкиваются с разрядкой аккумуляторной батареи. Это случается как по причине ее износа, так и по вине других элементов бортовой электросети. Чтобы и дальше эксплуатировать аккумулятор, нужно постоянно его подзаряжать. Вариантов здесь два: купить для этой цели прибор заводского изготовления либо собрать зарядное устройство (ЗУ) для автомобиля своими руками.

Кратко о заводских моделях зарядников

В торговой сети продается 3 вида приборов, предназначенных для восстановления источников питания авто:

  • импульсные;
  • автоматические;
  • трансформаторные зарядно-пусковые аппараты.

Первый тип ЗУ способен полностью заряжать батареи с помощью импульсов в двух режимах – сначала при постоянном напряжении, а потом – при неизменном токе. Это наиболее простые и доступные по цене изделия, пригодные для подзарядки всех типов автомобильных аккумуляторов. Автоматические модели устроены сложнее, зато не требуют присмотра в процессе работы. Невзирая на более высокую цену, подобные ЗУ – лучший выбор для водителя – новичка, поскольку благодаря системам защиты никогда не перегреют и не испортят батарею.

Недавно в продаже появились мобильные приборы, оснащенные собственным аккумулятором, передающим заряд автомобильному при необходимости. Но их тоже придется периодически заряжать от электросети 220 В.

Мощные трансформаторные аппараты, способные не только подзаряжать источник питания, но и вращать стартер машины, больше относятся к профессиональным установкам. Такой зарядник, хоть и обладает широкими возможностями, стоит немалых денег, поэтому рядовым пользователям малоинтересен.

Но как поступить, когда аккумулятор уже разрядился, зарядки дома еще нет, а завтра нужно ехать на работу? Разовый вариант – обратиться к соседям или знакомым за помощью, но лучше смастерить примитивное ЗУ своими руками.

Из чего должен состоять прибор?

Основными элементами любого заряжающего устройства являются:

  1. Преобразователь сетевого напряжения 220 В – катушка либо трансформатор. Его задача – обеспечить напряжение, приемлемое для подзарядки батареи, составляющее 12-15 В.
  2. Выпрямитель. Он превращает переменный ток бытовой электросети в постоянный, необходимый для восстановления заряда аккумулятора.
  3. Выключатель и предохранитель.
  4. Провода с клеммами.

Заводские аппараты дополнительно оснащаются приборами для измерения напряжения и тока, защитными элементами и таймерами. Самодельное зарядное устройство тоже можно усовершенствовать до уровня заводского при условии, что вы владеете познаниями в электротехнике. Если вам знакомы только азы, то в домашних условиях сможете собрать следующие примитивные конструкции:

  • зарядку из адаптера для ноутбука;
  • зарядник из деталей от старой бытовой техники.

Подзарядка с помощью адаптера для ноутбука

В устройствах для питания ноутбуков уже встроен преобразователь и выпрямитель. Вдобавок там есть элементы стабилизации и сглаживания выходного напряжения. Чтобы использовать их в качестве заряжающего прибора, следует проверить величину этого напряжения. Она должна составлять не менее 12 В, иначе автомобильный аккумулятор на зарядится.

Для проверки необходимо вставить вилку адаптера в розетку и соединить плюсовую клемму вольтметра с контактом, находящимся внутри круглого штекера. Минусовый контакт расположен снаружи. Если вольтметр показал 12 В и более, то подключите адаптер к батарее следующим образом:

  1. Возьмите 2 медных провода, зачистите их концы и прикрепите к контактам штекера.
  2. «Минусовую» клемму аккумулятора присоедините к проводу от наружного контакта адаптера.
  3. Провод от внутреннего контакта подключите к «плюсовой» клемме.
  4. В разрыв «плюсового» провода поставьте маломощную автомобильную лампочку на 12 В, она послужит балластным сопротивлением.
  5. Откройте крышку батареи либо отвинтите пробки и включите адаптер в сеть.

Такая зарядка для аккумулятора автомобиля не способна восстановить полностью «севший» источник питания. Но если заряд был утрачен частично, то за несколько часов батарею удастся подзарядить, чтобы завести двигатель.

В качестве заряжающего устройства допускается применение других типов адаптеров, дающих на выходе напряжение 12-15 В.

Негативный момент: если внутри батареи замкнули «банки», то маломощный адаптер может быстро выйти из строя, а вы останетесь без машины и ноутбука. Поэтому стоит внимательно наблюдать за процессом первые полчаса и при перегреве немедленно отключить зарядку.

Сборка ЗУ из старых радиодеталей

Вариант с адаптерами не годится для постоянного применения, поскольку есть риск испортить приспособление, притом, что скорость зарядки довольно низкая. Более мощный и надежный зарядник получится из деталей старых телевизоров и ламповых радиоприемников, хотя для его изготовления придется потрудиться. Для сборки схемы понадобится:

  • силовой трансформатор, понижающий напряжение до 12-15 В;
  • диоды серий Д214…Д243 – 4 шт.;
  • конденсатор электролитический номиналом 1000 мкФ, рассчитанный на 25 В;
  • старый тумблер (220 В, 6 А) и гнездо для предохранителя на 1 А;
  • провода с разъемами типа «крокодил»;
  • подходящий металлический корпус.

Первым делом необходимо проверить напряжение на выходе трансформатора, подключив первичную (силовую) обмотку к электросети и снимая показания с концов других обмоток (их бывает несколько). Выбрав контакты с подходящим напряжением, остальные откусите либо заизолируйте.

Подойдет вариант с напряжением 24…30 В, если 12 В отсутствует. Его удастся снизить наполовину, изменив схему.

Самодельное зарядное устройство для аккумулятора собирайте в таком порядке:

  1. Установите трансформатор в металлический корпус, туда же поместите 4 диода, прикрученных гайками к листу гетинакса либо текстолита.
  2. К силовой обмотке трансформатора через выключатель и предохранитель подключите сетевой кабель.
  3. Спаяйте диодный мост по схеме и присоедините его проводами ко вторичной обмотке трансформатора.
  4. На выходе диодного моста поставьте конденсатор, соблюдая полярность.
  5. Подключите зарядные провода с «крокодилами».

Для контроля напряжения и тока желательно установить в ЗУ показывающий амперметр и вольтметр . Первый включается в цепь последовательно, второй – параллельно. Впоследствии вы сможете усовершенствовать аппарат, добавив ручной регулятор напряжения, контрольную лампу и реле безопасности.

Если трансформатор выдает до 30 В, то вместо диодного моста поставьте 1 диод, подключенный последовательно. Он «выпрямит» переменный ток и уменьшит его вдвое – до 15 В.

Скорость зарядки аккумулятора самодельным аппаратом зависит от мощности трансформатора, но она будет намного выше, чем при подзарядке адаптером. Недостаток устройства, сделанного своими руками, заключается в отсутствии автоматики, отчего процесс придется контролировать, чтобы не выкипел электролит и батарея не перегрелась.

Для автомобильных аккумуляторов, так как промышленные образцы имеют довольно высокую стоимость. А сделать самому такое устройство можно довольно быстро, причем из подручных материалов, которые имеются практически у каждого. Из статьи вы узнаете, как самостоятельно изготовить зарядные устройства с минимальными затратами. Рассмотрены будут две конструкции — с автоматической регулировкой тока заряда и без нее.

Основа зарядчика — трансформатор

В любом зарядчике вы найдете основной компонент — трансформатор. Стоит заметить, что есть схемы устройств, построенных по бестрансформаторной схеме. Но они являются опасными, так как нет защиты от сетевого напряжения. Следовательно, во время изготовления можно получить удар электрическим током. Намного эффективнее и проще оказываются трансформаторные схемы, в них имеется гальваническая развязка от сетевого напряжения. Для изготовления зарядного устройства вам потребуется мощный трансформатор. Его можно найти, разобрав непригодную микроволновую печку. Впрочем, запчасти от этого электроприбора можно использовать, чтобы сделать зарядное устройство для аккумулятора своими руками.

В старых ламповых телевизорах применялись трансформаторы ТС-270, ТС-160. Эти модели прекрасно подойдут для конструирования зарядчика. Их использовать оказывается даже эффективнее, так как на них уже имеются две обмотки по 6,3 вольт. Причем с них можно собрать ток до 7,5 ампер. А при зарядке автомобильного аккумулятора необходим ток, равный 1/10 от емкости. Следовательно, при емкости батареи 60 а*ч вам необходимо заряжать ее силой тока 6 ампер. Но если нет обмоток, удовлетворяющих условию, потребуется ее сделать. А теперь о том, как изготовить самодельное зарядное устройство для автомобиля как можно быстрее.

Перемотка трансформатора

Итак, если вы решили использовать преобразователь от микроволновой печи, то нужно убрать вторичную обмотку. Причина кроется в том, что на трансформаторы эти повышающие, они преобразуют напряжение до значения около 2000 вольт. Магнетрону необходимо питание в 4000 вольт, поэтому используется схема удвоения. Вам же такие значения не потребуются, поэтому безжалостно избавляйтесь от вторичной обмотки. Вместо нее наматываете провод с сечением 2 кв. мм. Но вы же не знаете, какое количество витков необходимо? Это нужно выяснить, воспользоваться можно несколькими способами. И это нужно обязательно делать, когда изготавливается зарядное устройство для аккумулятора своими руками.

Самый простой и надежный — это экспериментальный. Производите намотку десяти витков провода, который будете использовать. Зачищаете его края и включаете в сеть трансформатор. Производите замер напряжения на вторичной обмотке. Допустим, эти десять витков выдают 2 В. Следовательно, с одного витка собирается 0,2 В (десятая часть). Вам необходимо не менее 12 В, а лучше, если на выходе будет значение, близкое к 13. Один вольт дадут пять витков, теперь нужно 5*12=60. Искомое значение — 60 витков провода. Второй способ более сложный, придется считать сечение магнитопровода трансформатора, нужно знать число витков первичной обмотки.

Выпрямительный блок

Можно сказать, что самые простые самодельные зарядные устройства для автомобильных аккумуляторов состоят из двух узлов — преобразователя напряжения и выпрямителя. Если не желаете тратить много времени на сборку, то можно использовать однополупериодную схему. Но если решили собрать зарядчик, что называется, на совесть, то лучше воспользоваться мостовой. Желательно выбирать диоды, обратный ток которых 10 ампер и выше. Они, как правило, имеют металлический корпус и крепление с гайкой. Стоит также отметить, что каждый полупроводниковый диод следует устанавливать на отдельный радиатор, чтобы улучшить охлаждение его корпуса.

Небольшая модернизация

Впрочем, на этом можете остановиться, простое самодельное зарядное устройство готово к использованию. Но его можно дополнить измерительными приборами. Собрав в едином корпусе все компоненты, надежно закрепив их на своих местах, можно заняться и дизайном лицевой панели. На ней можно расположить два прибора — амперметр и вольтметр. С их помощью вы сможете производить контроль напряжения и тока зарядки. Если есть желание, то установите светодиод или лампу накаливания, которую подключите к выходу выпрямителя. С помощью такой лампы вы будете видеть, включен ли зарядчик в сеть. При необходимости дополните малогабаритным выключателем.

Автоматическая регулировка тока зарядки

Неплохие результаты показывают самодельные зарядные устройства для автомобильных аккумуляторов, имеющие функцию автоматической регулировки тока. Несмотря на кажущуюся сложность, эти устройства очень просты. Правда, потребуются некоторые компоненты. В схеме используются стабилизаторы тока, например LM317, а также его аналоги. Стоит отметить, что этот стабилизатор заслужил доверие у радиолюбителей. Он безотказный и долговечный, характеристики у него превосходят отечественные аналоги.

Кроме него, также потребуется регулируемый стабилитрон, например TL431. Все микросхемы и стабилизаторы, используемые в конструкции, необходимо монтировать на отдельные радиаторы. Принцип работы LM317 заключается в том, что «лишнее» напряжение преобразуется в тепло. Следовательно, если у вас с выхода выпрямителя идет не 12 В, а 15 В, то «лишние» 3 В будут уходить в радиатор. Многие самодельные зарядные устройства для автомобильных аккумуляторов делаются без соблюдения строгих требований к внешней оболочке, но лучше, если они будут заключены в алюминиевый корпус.

Заключение

В завершении статьи хотелось бы отметить, что такое устройство, как автомобильный зарядчик, нуждается в качественном охлаждении. Поэтому следует предусмотреть установку кулеров. Использовать лучше всего те, которые монтируются в компьютерных блоках питания. Только обратите внимание на то, что им необходимо питание 5 вольт, а не 12. Поэтому придется дополнять схему, внедрять в нее стабилизатор напряжения на 5 вольт. Еще много можно говорить про зарядные устройства. Схема автозарядчика проста для повторения, а устройство будет полезно в любом гараже.

Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ. При сборке используют как сложные электросхемы, так и конструируют более простые варианты устройства.

[ Скрыть ]

Требования к самодельным зарядным устройствам

Чтобы зарядка автоматически могла восстановить АКБ автомобиля, к ней предъявляются жесткие требования:

  1. Любое простое современное ЗУ должно быть автономным. Благодаря этому за работой оборудования не придется следить, в частности, если оно функционирует ночью. Устройство будет самостоятельно контролировать рабочие параметры напряжения и тока заряда. Этот режим называется автоматом.
  2. Зарядное оборудование должно самостоятельно обеспечивать стабильный уровень напряжения 14,4 вольта. Этот параметр необходим для восстановления любых батарей, работающих в 12-вольтной сети.
  3. Зарядное оборудование должно обеспечить необратимое выключение батареи от прибора при двух условиях. В частности если ток заряда или напряжение увеличится более, чем на 15,6 вольт. Оборудование должно иметь функцию самоблокировки. Пользователю, чтобы сбросить рабочие параметры, придется отключить и активировать прибор.
  4. Оборудование обязательно должно быть защищено от переплюсовки, иначе АКБ может выйти из строя. Если потребитель спутает полярность и неверно подключит минусовой и плюсовой контакт, произойдет замыкание. Важно, чтобы зарядное оборудование обеспечивало защиту. Схема дополняется предохранительным устройством.
  5. Для подключения ЗУ к аккумуляторной батарее потребуется два провода, каждый из которых должно иметь сечение 1 мм2. На один конец каждого проводника требуется установить зажим типа крокодил. С другой стороны устанавливаются разрезные наконечники. Положительный контакт должен быть выполнен в красной оболочке, а отрицательный — в синей. Для бытовой сети используется универсальный кабель, оснащенный вилкой.

Если аппарат полностью сделать своими руками, несоблюдение требований навредит не только зарядному прибору, но и аккумулятору.

Владимир Кальченко подробно рассказал о переделке ЗУ и об использовании подходящих для этой цели проводов.

Конструкция автоматического зарядного устройства

Простейший образец зарядного приспособления конструктивно включает в себя главную деталь — понижающее трансформаторное устройство. В этом элементе производится снижение параметра напряжения с 220 до 13,8 вольт, которое требуется для восстановления заряда аккумулятора. Но трансформаторное устройство может снижать только эту величину. А преобразование переменного тока на постоянный осуществляется специальным элементом — диодным мостом.

Каждое зарядное устройство должно быть оборудовано диодным мостом, поскольку эта деталь выпрямляет значение тока и позволяет разделить его на плюсовой и минусовой полюса.

В любой схеме за этой деталью обычно устанавливается амперметр. Компонент предназначен для демонстрации силы тока.

Простейшие конструкции зарядных приборов оборудуются стрелочными датчиками. В более усовершенствованных и дорогих версиях используются цифровые амперметры, а кроме них электроника может дополняться и вольтметрами.

Некоторые модели приборов позволяют потребителю изменять уровень напряжения. То есть появляется возможность заряда не только 12-вольтных аккумуляторов, но и батарей, рассчитанных на работу в 6- и 24-вольтных сетях.

От диодного моста отходят провода с положительным и отрицательным клеммным зажимом. С их помощью выполняется подключение оборудования к батарее. Вся конструкция заключается в пластиковый либо металлический корпус, от которого отходит кабель с вилкой для подключения к электросети. Также из устройства выводятся два провода с минусовым и плюсовым клеммным зажимом. Для обеспечения более безопасной работы зарядного оборудования схема дополняется плавким предохранительным устройством.

Пользователь Артем Квантов наглядно разобрал фирменный прибор для подзарядки и рассказал о его конструктивных особенностях.

Схемы автоматических зарядных устройств

При наличии навыка работы с электрооборудованием можно произвести сборку прибора самостоятельно.

Простые схемы

Такие варианты приборов делятся на:

  • устройства с одним диодным элементом;
  • оборудование с диодным мостом;
  • прибора, оснащенные сглаживающими конденсаторами.
Схема с одним диодом

Здесь есть два варианта:

  1. Можно собрать схему с трансформаторным устройством и установить диодный элемент после него. На выходе зарядного оборудования ток будет пульсирующим. Его биения будут серьезными, поскольку фактически срезывается одна полуволна.
  2. Можно собрать схему, используя блок питания от ноутбука. При его используется мощный выпрямительный диодный элемент с обратным напряжением больше 1000 вольт. Его ток должен составить не менее 3 ампер. Внешний вывод штекера питания будет отрицательным, а внутренний — положительным. Такую схему обязательно надо дополнить ограничительным сопротивлением, в качестве которого допускается применение лампочки для освещения салона.

Допускается применение более мощного осветительного устройства от указателя поворота, габаритных огней либо стоповых сигналов. При использовании блока питания от ноутбука, это может привести к его перегрузке. Если используется диод, то в качестве ограничителя надо установить лампу накаливания на 220 вольт и 100 ватт.

При применении диодного элемента выполняется сборка простой схемы:

  1. Сначала идет клемма от бытовой розетки на 220 вольт.
  2. Затем — отрицательный контакт диодного элемента.
  3. Следующим будет положительный вывод диода.
  4. Затем подключается ограничительная нагрузка — источник освещения.
  5. Следующим будет отрицательный контакт аккумулятора.
  6. Затем положительный вывод батареи.
  7. И вторая клемма для подключения к 220-вольтной сети.

При применении источника освещения на 100 ватт параметр тока заряда будет примерно 0,5 ампер. Так за одну ночь устройство сможет отдать аккумуляторной батарее 5 А/ч. Этого хватит, чтобы покрутить стартерный механизм транспортного средства.

Чтобы увеличить показатель, можно соединить параллельно три источника освещения по 100 ватт, за ночь это позволит восполнить половину емкости батареи. Некоторые пользователи вместо ламп используют электроплиты, но этого делать нельзя, поскольку из строя выйдет не только диодный элемент, но и аккумулятор.

Простейшая схема с одним диодом Электросхема подключения АКБ к сети

Схема с диодным мостом

Этот компонент предназначен для «заворачивания» отрицательной волны наверх. Сам ток будет также пульсирующим, но его биения значительно меньше. Данный вариант схемы используется чаще остальных, но не является самым эффективным.

Диодный мост можно сделать самому, используя выпрямляющие элемент, или приобрести готовую деталь.

Электросхема ЗУ с диодным мостом

Схема со сглаживающим конденсатором

Эта деталь должна быть рассчитана на 4000-5000 мкФ и 25 вольт. На выходе полученной электросхемы образуется постоянный ток. Устройство обязательно дополняется предохранительными элементами на 1 ампер, а также измерительным оборудованием. Эти детали позволяют контролировать процесс восстановления аккумулятора. Можно их не использовать, но тогда периодически потребуется подключать мультиметр.

Если производить мониторинг напряжения удобно (путем подключения клемм к щупам), то с током будет сложнее. В данном режиме функционирования измерительное устройство придется подключать в разрыв электроцепи. Пользователю понадобится каждый раз отключать питание от сети, ставить тестер в режим замера тока. Затем активировать питание и разбирать электроцепь. Поэтому рекомендуется добавить в схему как минимум один амперметр на 10 ампер.

Основной минус простых электросхем заключается в отсутствии возможности регулировки параметров заряда.

При подборе элементной базы следует выбирать рабочие параметры так, чтобы на выходе величина силы тока составила 10% от общей емкости АКБ. Возможно незначительное снижение этой величины.

Если полученный параметр тока будет больше, чем требуется, схему можно дополнитель резисторным элементом. Он устанавливается на положительном выходе диодного моста, непосредственно перед амперметром. Уровень сопротивления подбирается в соответствии с использующимся мостом с учетом показателя тока, а мощность резистора должна быть более высокой.

Электросхема со сглаживающим конденсаторным устройством

Схема с возможностью ручной регулировки тока заряда для 12 В

Чтобы обеспечить возможность изменения параметра тока, необходимо поменять сопротивление. Простой способ решить эту проблему — поставить переменный подстроечный резистор. Но этот метод нельзя назвать самым надежным. Чтобы обеспечить более высокую надежность, требуется реализовать ручную регулировку с двумя транзисторными элементами и подстроечным резистором.

С помощью переменного резисторного компонента будет меняться ток зарядки. Эта деталь устанавливается после составного транзистора VT1-VT2. Поэтому ток через данный элемент будет проходить невысокий. Соответственно, небольшой будет и мощность, она составит около 0,5-1 Вт. Рабочий номинал зависит от использующихся транзисторных элементов и выбирается опытным путем, детали рассчитаны на 1-4,7 кОм.

В схеме используется трансформаторное устройство на 250-500 Вт, а также вторичная обмотка на 15-17 вольт. Сборка диодного моста осуществляется на деталях, рабочий ток которых составляет от 5 ампер и больше. Транзисторные элементы подбираются из двух вариантов. Это могут быть германиевые детали П13-П17 либо кремниевые устройства КТ814 и КТ816. Чтобы обеспечить качественный отвод тепла, схема должна быть размещена на радиаторном устройстве (не меньше 300 см3) либо стальной пластине.

На выходе оборудования устанавливается предохранительное устройство ПР2, рассчитанное на 5 ампер, а на входе — ПР1 на 1 А. Схема оснащается сигнальными световыми индикаторами. Один из них используется для определения напряжения в сети 220 вольт, второй — для тока заряда. Допускается использование любых источников освещения, рассчитанных на 24 вольта, в том числе диодов.

Электросхема для зарядного прибора с функцией ручной регулировки

Схема защиты от переплюсовки

Есть два варианта реализации такого ЗУ:

  • с использованием реле Р3;
  • путем сборки ЗУ с интегральной защитой, но не только от переплюсовки, но и от перенапряжения и перезаряда.
С реле Р3

Данный вариант схемы может применяться с любым зарядным оборудованием, как тиристорным, так и транзисторным. Ее необходимо включить в разрыв кабелей, посредством которых производится подключение батареи к ЗУ.

Схема защиты оборудования от переплюсовки на реле Р3

Если аккумуляторная батарея подключена к сети некорректно, диодный элемент VD13 не будет пропускать ток. Реле электросхемы обесточено, а его контакты разомкнуты. Соответственно, ток не сможет поступать на клеммы батареи. Если подключение выполнено правильно, то реле активируется и его контактные элементы замыкаются, поэтому АКБ заряжается.

С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Данный вариант электросхемы можно встроить в уже использующийся самодельный источник питания. В ней применяется медленный отклик аккумулятора на скачок напряжения, а также гистерезис реле. Напряжение с током отпускания будет в 304 раза меньше данного параметра при срабатывании.

Применяется реле переменного тока на напряжение активации 24 вольта, а ток величиной 6 ампер идет через контакты. При активации зарядного прибора включается реле, происходит замыкание контактных элементов и начинается зарядка.

Параметр напряжения на выходе трансформаторного устройства снижается ниже 24 вольт, но на выходе зарядного прибора будет 14,4 В. Реле должно удерживать это значение, но при появлении экстратока первичная величина напряжения еще больше просядет. Это приведет к отключению реле и разрыву электроцепи заряда.

Использование диодов Шоттки в этом случае нецелесообразно, поскольку данный тип схемы будет иметь серьезные недостатки:

  1. Отсутствует защита от скачка напряжения по контакту от переплюсовки, если аккумулятор полностью разряжен.
  2. Нет самоблокировки оборудования. В результате воздействия экстратока реле будет отключаться, пока не выйдут из строя контактные элементы.
  3. Нечеткое срабатывание оборудования.

Из-за этого добавить в данную схему устройство для регулировки тока срабатывания не имеет смысла. Реле и трансформаторное устройство точно подбираются друг к другу, чтобы повторяемость элементов была близка к нулю. Ток заряда проходит через замкнутые контакты реле К1, в результате чего снижается вероятность их выхода из строя из-за обгорания.

Обмотка К1 должна подключаться по логической электросхеме:

  • к модулю защиты от экстратока, это VD1, VT1 и R1;
  • к устройству защиты от перенапряжения, это элементы VD2, VT2, R2-R4;
  • а также к электроцепи самоблокировки К1.2 и VD3.


Схема с интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Основной минус состоит в необходимости налаживания схемы с применением балластной нагрузки, а также мультиметра:

  1. Производится выпаивание элементов К1, VD2 и VD3. Либо при сборке их можно не запаивать.
  2. Выполняется активация мультиметра, который надо заранее настроить на замер напряжения в 20 вольт. Его надо подключить вместо обмотки К1.
  3. Аккумулятор пока не подключается, вместо него устанавливается резисторное устройство. Оно должно обладать сопротивлением в 2,4 Ома для тока заряда 6 А или 1,6 Ом для 9 ампер. Для 12 А резистор должен быть рассчитан на 1,2 Ом и не меньше, чем на 25 Вт. Резисторный элемент можно накрутить из аналогичной проволоки, которая использовалась для R1.
  4. На вход от зарядного оборудования подается напряжение 15,6 вольт.
  5. Должна сработать токовая защита. Мультиметр покажет напряжение, поскольку элемент сопротивления R1 выбран с небольшим избытком.
  6. Производится уменьшение параметра напряжения, пока тестер не покажет 0. Значение выходного напряжения надо записать.
  7. Затем производится выпайка детали VT1, а VD2 и К1 устанавливаются на место. R3 необходимо поставить в крайнее нижнее положение в соответствии с электросхемой.
  8. Величина напряжения зарядного оборудования увеличивается, пока на нагрузке не будет 15,6 вольт.
  9. Элемент R3 плавно вращается, пока не сработает К1.
  10. Выполняется снижение напряжения зарядного прибора до значения, которое было записано ранее.
  11. Обратно устанавливаются и припаиваются элементы VT1 и VD3. После этого электросхему можно проверять на работоспособность.
  12. Через амперметр выполняется подключение рабочего, но севшего или недозаряженного аккумулятора. К батарее надо подсоединить тестер, который заранее настроен на измерение напряжения.
  13. Пробный заряд необходимо провести с непрерывным контролем. В момент, когда тестер покажет 14,4 вольта на аккумуляторе, необходимо засечь ток содержания. Этот параметр должен быть в норме или близким к нижнему пределу.
  14. Если величина тока содержания высокая, то напряжение зарядного прибора следует снизить.

Схема автоматического отключения при полной зарядке аккумулятора

Автоматика должна представлять собой электросхему, оснащенную системой питания операционного усилительного устройства и опорного напряжения. Для этого используется плата стабилизатора DA1 класса 142ЕН8Г для 9 вольт. Данную схему необходимо предназначать, чтобы уровень выходного напряжения при измерении температуры платы на 10 градусов практически не менялся. Изменение составит не больше, чем сотые доли вольта.

В соответствии с описанием схемы, система автоматической деактивации при увеличении напряжения на 15,6 вольт делается на половине платы А1.1. Четвертый ее вывод соединяется с делителем напряжения R7 и R8, с которого подается опорная величина, составляющая 4,5В. Рабочим параметром резисторного устройства задается порог активации зарядного приспособления 12,54 В. В результате использования диодного элемента VD7 и детали R9 можно обеспечить нужный гистерезис между величиной напряжения активации и отключения заряда батареи.

Электросхема ЗУ с автоматической деактивацией при заряженной батарее

Описание действия схемы такой:

  1. Когда происходит подключение батареи, уровень напряжения на клеммах которого меньше 16,5 вольт, на втором выводе схема А1.1 устанавливается параметр. Данное значение достаточно, чтобы транзисторный элемент VT1 открылся.
  2. Происходит открытие этой детали.
  3. Активируется реле Р1. В результате к сети через блок конденсаторных механизмов посредством контактных элементов подключается первичная обмотка трансформаторного устройства.
  4. Начинается процесс восполнения заряда АКБ.
  5. Когда уровень напряжения увеличится до 16,5 вольт, это значение на выходе А1.1 снизится. Уменьшение происходит до величины, которой недостаточно для поддержания транзисторного устройства VT1 в открытом состоянии.
  6. Происходит отключение реле и контактные элементы К1.1 подключать трансформаторный узел через конденсаторное устройство С4. При нем величина тока заряда будет 0,5 А. В этом состоянии схема оборудования будет работать, пока величина напряжения на батарее не снизится до 12,54 вольт.
  7. После того, как это произойдет, выполняется активация реле. Продолжается зарядка АКБ заданным пользователем током. В данной схеме реализована возможность отключения системы автоматической регулировки. Для этого используется переключательное устройство S2.

Данный порядок работы автоматического зарядного устройства для автомобильного аккумулятора позволяет предотвратить его разряд. Пользователь может оставить включенным оборудование хоть на неделю, это не навредит батарее. Если в бытовой сети пропадет напряжение, при его появлении ЗУ продолжит заряжать аккумулятор.

Если говорить о принципе действия схемы, собранной на второй половине платы А1.2, то он идентичен. Но уровень полной деактивации зарядного оборудования от сети питания составит 19 вольт. Если величина напряжения меньше, на восьмом выход платы А1.2 оно будет достаточным, чтобы удержать транзисторное устройство VT2 в открытом положении. При нем ток будет подаваться на реле Р2. Но если величина напряжения составит более 19 вольт, то транзисторное устройство закроется и контактные элементы К2.1 разомкнутся.

Необходимые материалы и инструменты

Описание деталей и элементов, которые потребуются для сборки:

  1. Силовой трансформаторное устройство Т1 класса ТН61-220. Его вторичные обмотки должны быть подключены последовательно. Можно использовать любой трансформатор, мощность которого не больше 150 ватт, поскольку ток заряда обычно составляет не более 6А. Вторичная обмотка устройства при воздействии электротока до 8 ампер должна обеспечить напряжение в диапазоне 18-20 вольт. При отсутствии готового трансформатора допускается применение деталей аналогичной мощности, но потребуется перемотать вторичную обмотку.
  2. Конденсаторные элементы С4-С9 должны соответствовать классу МГБЧ и иметь напряжение не ниже 350 вольт. Допускается применение устройств любого типа. Главное, чтобы они предназначались для функционирования в цепях переменного тока.
  3. Диодные элементы VD2-VD5 можно использовать любые, но они должны быть рассчитаны на ток 10 ампер.
  4. Детали VD7 и VD11 — кремневые импульсные.
  5. Диодные элементы VD6, VD8, VD10, VD5, VD12, VD13 должны выдерживать ток величиной 1 ампер.
  6. Светодиодный элемент VD1 — любой.
  7. В качестве детали VD9 допускается использование устройства класса КИПД29. Основная особенность данного источника освещения заключается в возможности изменения цвета, если меняется полярность соединения. Для переключения лампочки применяются контактные элементы К1.2 реле Р1. Если на аккумулятор идет зарядка основным током, светодиод горит желтым, а если включается режим подзарядки, то зеленым. Допускается применение двух одноцветных устройств, но их надо правильно подключить.
  8. Операционный усилитель КР1005УД1. Можно взять устройство из старого видеоплейера. Основная особенность заключается в том, что этой детали не требуется два полярных питания, она сможет работать при напряжении 5-12 вольт. Можно использовать любые аналогичные запчасти. Но из-за разной нумерации выводов надо будет изменить рисунок печатной схемы.
  9. Реле Р1 и Р2 должны быть рассчитаны на напряжения 9-12 вольт. А их контакты — на работу с током величиной 1 ампер. Если устройства оснащаются несколькими контактными группами, их рекомендуется запаять параллельным образом.
  10. Реле Р3 — на 9-12 вольт, но величина тока коммутации будет 10 ампер.
  11. Переключательное устройство S1, должно быть предназначено для работы с напряжением 250 вольт. Важно, чтобы в этом элементе было достаточно коммутирующих контактных компонентов. Если шаг регулировки в 1 ампер неважен, то можно поставить несколько переключателей и выставить ток заряда 5-8 А.
  12. Выключатель S2, предназначен для деактивации системы контроля уровня заряда.
  13. Также потребуется электромагнитная головка для измерителя тока и напряжения. Допускается применение любого типа устройств, главное, чтобы ток полного отклонения составит 100 мкА. Если будет замеряться не напряжение, а только ток, то в схему можно установить готовый амперметр. Он должен быть рассчитан на работу с максимальным постоянным током 10 ампер.

Пользователь Артем Квантов в теории рассказал о схеме зарядного оборудования, а также о подготовке материалов и деталей для ее сборки.

Порядок подключения аккумулятора к зарядным устройствам

Инструкция по включению ЗУ состоит из нескольких этапов:

  1. Очистка поверхности аккумулятора.
  2. Удаление пробок для заливки жидкости и контроль уровня электролита в банках.
  3. Выставление значения тока на зарядном оборудовании.
  4. Подключение клемм к аккумулятору с соблюдением полярности.

Очистка поверхности

Руководство по выполнению задачи:

  1. В автомобиле отключается зажигание.
  2. Открывается капот машины. Используя гаечные ключи соответствующего размера, от клемм аккумуляторной батареи надо отключить зажимы. Для этого гайки выкручивать не нужно, их можно ослабить.
  3. Выполняется демонтаж фиксирующей пластины, которая крепит батарею. Для этого может потребоваться ключ-головка либо звездочка.
  4. АКБ демонтируется.
  5. Производится очистка его корпуса чистой ветошью. Впоследствии будут откручиваться крышки банок для залива электролита, поэтому нельзя допустить попадания грузи внутрь.
  6. Выполняется визуальная диагностика целостности корпуса батареи. При наличии трещин, через которые вытекает электролит, заряжать АКБ нецелесообразно.

Пользователь Аккумуляторщик рассказал о выполнении очистки и промывки корпуса аккумуляторной батареи перед ее обслуживанием.

Удаление пробок заливки кислоты

Если аккумуляторная батарея обслуживаемая, в ней надо открутить крышки на пробках. Они могут быть скрыты под специальной защитной пластиной, ее нужно демонтировать. Для выкручивания пробок можно использовать отвертку или любую металлическую пластину соответствующего размера. После демонтажа надо оценить уровень электролита, жидкость должна полностью покрывать все банки внутри конструкции. Если ее недостаточно, то требуется долить дистиллированной воды.

Установка величины тока заряда на зарядном устройстве

Выставляется параметр тока для подзарядки АКБ. Если эта величина будет больше номинальной в 2-3 раза, то процедура заряда произойдет в быстрее. Но этот метод приведет к снижению ресурса эксплуатации батареи. Поэтому выставлять такой ток можно, если аккумулятор надо подзарядить быстро.

Подключение аккумулятора с соблюдением полярности

Процедура выполняется так:

  1. К клеммам АКБ подключаются зажимы от ЗУ. Сначала выполняется соединение положительного контакта, это красный провод.
  2. Отрицательный кабель можно не подключать, если АКБ остался в автомобиле и не демонтировался. Подсоединение данного контакта возможно к кузову транспортного средства либо к блоку цилиндров.
  3. Вилка от зарядного оборудования вставляется в розетку. Аккумулятор начинает заряжаться. Время заряда зависит от степени разряда устройства и его состояния. При выполнении задачи не рекомендуется использование удлинителей. Такой провод обязательно должен иметь заземление. Его величина будет достаточной, чтобы выдержать нагрузку силы тока.

Канал «VseInstrumenti» рассказал об особенностях подключения АКБ к зарядному прибору и соблюдении полярности при выполнении этой задачи.

Как определить степень разрядки аккумулятора

Для выполнения задачи потребуется мультиметр:

  1. Производится замер величины напряжения на автомобиле с отключенным двигателем. Электросеть транспортного средства в таком режиме будет потреблять часть энергии. Значение напряжения при замере должно соответствовать 12,5-13 вольтам. Выводы тестера подключаются с соблюдением полярности к контактам АКБ.
  2. Производится запуск силового агрегата, все электрооборудование должно быть выключено. Процедура измерения повторяется. Рабочая величина должна составить в диапазоне 13,5-14 вольт. Если полученное значение больше или меньше, это говорит о разряде аккумулятора и функционировании генераторного устройства не в штатном режиме. Увеличение данного параметра при низкой отрицательной температуре воздуха не может сообщить о разряде аккумулятора. Возможно, сначала полученный показатель будет больше, но если со временем он придет в норму, это говорит о работоспособности.
  3. Выполняется включение основных потребителей энергии — отопителя, магнитолы, оптики, системы обогрева заднего стекла. В таком режиме уровень напряжения составит в диапазоне от 12,8 до 13 вольт.

Величину разряда можно определить в соответствии с данными, приведенными в таблице.

Как рассчитать примерное время зарядки аккумулятора

Для определения приблизительного времени подзарядки потребителю необходимо знать разницу между максимальным значением заряда (12,8 В) и вольтажом в данный момент. Эта величина умножается на 10, в итоге получается время заряда в часах. Если уровень напряжения перед выполнением подзарядки составляет 11,9 вольт, то 12,8-11,9=0,8. Умножив это значение на 10 можно определить, что время подзарядки составит примерно 8 часов. Но это при условии, что будет осуществляться подача тока в размере 10% от емкости аккумулятора.

Сегодня у нас весьма полезная самоделка для автолюбителей, особенно в зимнюю пору! На этот раз мы расскажем как сделать своими руками из старого принтера самодельное зарядное устройство!
Если у Вас есть старый принтер не спешите его выбрасывать, в нем есть блок питания из которого можно сделать простенькое автоматическое зарядное устройство для автомобильного аккумулятора с функцией регулировки напряжения и тока заряда. В свое время я запас прочности которых был больше чем у принтерных печатающих головок. В связи с этим у меня скопилось пара-тройка принтеров с абсолютно рабочими блоками питания, вполне пригодными для создания маломощных автоматических зарядных устройств для аккумуляторов.

В основе схемы лежит 2 стабилизатора:

  1. Стабилизатор тока на микросхеме LM317
  2. Регулируемый стабилизатор напряжения выполненный на микросхеме (регулируемом стабилитроне) TL431

Так же в устройстве задействован еще одна микросхема стабилизатор Lm7812 от нее питается 12 Вольтовой кулер (который и был изначально в этом корпусе).

Собрано зарядное устройство в корпусе , все содержимое блока, кроме кулера, удалено. Микросхемы стабилизаторы Lm317 и Lm 7812 установлены каждая на свой радиатор, которые прикручены к пластиковому корпусу (ВНИМАНИЕ на общий радиатор их ставить нельзя!).

Схема собрана навесным монтажом на микросхемах стабилизаторов. Резисторы R2 и R3 мощностью 2-5 Ватт в керамических корпусах отвечают за ограничение тока заряда. Они устанавливаются так, что бы через них проходил . Их значение рассчитывается по формуле R=1.25(V) /I(A) можете рассчитать необходимый Вам максимальный ток заряда. Раз пошла речь о рассчетах напомню, что у нас есть Если Вам необходимо плавно регулировать ток заряда, можно установить мощный реостат с дополнительным ограничивающим резистором (что бы не превысить максимально допустимый ток для Lm317)
В моем случае был на 24 Вольта с максимальным током нагрузки 1Ампер. Необходимо из этого 1Ампера зарезервировать 0.1 Ампера на запитку кулера (на наклейке указан ток потребления) + я оставил 10% на запас прочности, соответственно под основное назначение- на зарядный ток остается 0.8 Ампера.

Понятно, что током в 800 мА быстро автомобильный Акб не зарядишь. За сутки аккумулятору можно сообщить 24ч*0.8А=19.2 Ампер часа, что составляет 30-45% от емкости аккумулятора легкового автомобиля (как правило 45-65 Ач).
Если у Вас будет «донор» блок питания с током 1.5 Ампера Вы за сутки сможете сообщить 30 Ампер часов, чего возможно хватит с головой для бывшего не один год в употреблении аккумулятора.

Но, с другой стороны, заряд малым током более полезен для Акб «лучше усваивается», достаточно выкрутить пробки из акб (если он обслуживаемый), подключить зарядное устройство к акб и все! Можно заниматься своими делами и не переживать, что аккумулятор перезарядится, максимальное напряжение на батарее не превысит 14.5 Вольт, а малый ток заряда не допустит чрезмерный перегрев и выкипание электролита. В связи с тем, что можно не контролировать процесс окончания заряда, думаю данную можно смело назвать автоматическим зарядным устройством для автомобильных акб, хотя никакой «следящей автоматики» в схеме нет.
Для удобства, зарядное устройство можно снабдить Вольт метром который даст возможность наглядно контролировать процесс заряда аккумулятора. Например таким за пару у.е.

Зарядное устройство необходимо обязательно снабдить защитой от «переполюсовки». Роль такой защиты выполняют два диода с допустимым током 5 Ампер подключенные на выходя зарядного устройства в сочетании с предохранителем на 2 Ампера (при монтаже будьте внимательны и соблюдайте полярность подключения диодов!!!). При неправильном подключении зарядного к АКБ, ток акб пойдет в зарядное через предохранитель и «упрется» в диод, когда значение тока достигнет 2 Ампера предохранитель спасет мир! Также не забудьте снабдить устройство предохранителями по цепи 220 Вольт (в моем случае по цепи 220 Вольт предохранитель уже имеется внутри блока питания).

К автомобильному аккумулятору зарядное подключаемся при помощи специальных зажимов «крокодилов», при покупке их в интернете обращайте внимание на физический размер указанный в характеристиках, так как можно легко купить крокодилы для «лабораторного блока питания» которые будут всем хороши, но не смогут налезть на плюсовую клемму акб, а надежный контакт, как Вы сами понимаете вещь обязательная в таких вопросах. Для удобства на проводах и корпусе есть несколько капроновых стяжек-липучек с помощью которых можно аккуратно и компактно сматывать провода.

Надеюсь эта идея утилизации принтера кому-нибудь пригодится. Если Вы делали самодельные автоматические зарядные устройства для автомобильных аккумуляторов, (или не автоматические) пожалуйста поделитесь с читателями нашего сайта,- пришлите нам на почту фото, схему и небольшое описание Вашего устройства. Если есть вопросы по схеме и принципу работы, задавайте в комментариях,- отвечу.

Отключение аккумулятора при полной зарядке схема. Электронный сигнализатор зарядки аккумуляторной батареи. Проверка системы защиты от перенапряжения

Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ. При сборке используют как сложные электросхемы, так и конструируют более простые варианты устройства.

[ Скрыть ]

Требования к самодельным зарядным устройствам

Чтобы зарядка автоматически могла восстановить АКБ автомобиля, к ней предъявляются жесткие требования:

  1. Любое простое современное ЗУ должно быть автономным. Благодаря этому за работой оборудования не придется следить, в частности, если оно функционирует ночью. Устройство будет самостоятельно контролировать рабочие параметры напряжения и тока заряда. Этот режим называется автоматом.
  2. Зарядное оборудование должно самостоятельно обеспечивать стабильный уровень напряжения 14,4 вольта. Этот параметр необходим для восстановления любых батарей, работающих в 12-вольтной сети.
  3. Зарядное оборудование должно обеспечить необратимое выключение батареи от прибора при двух условиях. В частности если ток заряда или напряжение увеличится более, чем на 15,6 вольт. Оборудование должно иметь функцию самоблокировки. Пользователю, чтобы сбросить рабочие параметры, придется отключить и активировать прибор.
  4. Оборудование обязательно должно быть защищено от переплюсовки, иначе АКБ может выйти из строя. Если потребитель спутает полярность и неверно подключит минусовой и плюсовой контакт, произойдет замыкание. Важно, чтобы зарядное оборудование обеспечивало защиту. Схема дополняется предохранительным устройством.
  5. Для подключения ЗУ к аккумуляторной батарее потребуется два провода, каждый из которых должно иметь сечение 1 мм2. На один конец каждого проводника требуется установить зажим типа крокодил. С другой стороны устанавливаются разрезные наконечники. Положительный контакт должен быть выполнен в красной оболочке, а отрицательный — в синей. Для бытовой сети используется универсальный кабель, оснащенный вилкой.

Если аппарат полностью сделать своими руками, несоблюдение требований навредит не только зарядному прибору, но и аккумулятору.

Владимир Кальченко подробно рассказал о переделке ЗУ и об использовании подходящих для этой цели проводов.

Конструкция автоматического зарядного устройства

Простейший образец зарядного приспособления конструктивно включает в себя главную деталь — понижающее трансформаторное устройство. В этом элементе производится снижение параметра напряжения с 220 до 13,8 вольт, которое требуется для восстановления заряда аккумулятора. Но трансформаторное устройство может снижать только эту величину. А преобразование переменного тока на постоянный осуществляется специальным элементом — диодным мостом.

Каждое зарядное устройство должно быть оборудовано диодным мостом, поскольку эта деталь выпрямляет значение тока и позволяет разделить его на плюсовой и минусовой полюса.

В любой схеме за этой деталью обычно устанавливается амперметр. Компонент предназначен для демонстрации силы тока.

Простейшие конструкции зарядных приборов оборудуются стрелочными датчиками. В более усовершенствованных и дорогих версиях используются цифровые амперметры, а кроме них электроника может дополняться и вольтметрами.

Некоторые модели приборов позволяют потребителю изменять уровень напряжения. То есть появляется возможность заряда не только 12-вольтных аккумуляторов, но и батарей, рассчитанных на работу в 6- и 24-вольтных сетях.

От диодного моста отходят провода с положительным и отрицательным клеммным зажимом. С их помощью выполняется подключение оборудования к батарее. Вся конструкция заключается в пластиковый либо металлический корпус, от которого отходит кабель с вилкой для подключения к электросети. Также из устройства выводятся два провода с минусовым и плюсовым клеммным зажимом. Для обеспечения более безопасной работы зарядного оборудования схема дополняется плавким предохранительным устройством.

Пользователь Артем Квантов наглядно разобрал фирменный прибор для подзарядки и рассказал о его конструктивных особенностях.

Схемы автоматических зарядных устройств

При наличии навыка работы с электрооборудованием можно произвести сборку прибора самостоятельно.

Простые схемы

Такие варианты приборов делятся на:

  • устройства с одним диодным элементом;
  • оборудование с диодным мостом;
  • прибора, оснащенные сглаживающими конденсаторами.
Схема с одним диодом

Здесь есть два варианта:

  1. Можно собрать схему с трансформаторным устройством и установить диодный элемент после него. На выходе зарядного оборудования ток будет пульсирующим. Его биения будут серьезными, поскольку фактически срезывается одна полуволна.
  2. Можно собрать схему, используя блок питания от ноутбука. При его используется мощный выпрямительный диодный элемент с обратным напряжением больше 1000 вольт. Его ток должен составить не менее 3 ампер. Внешний вывод штекера питания будет отрицательным, а внутренний — положительным. Такую схему обязательно надо дополнить ограничительным сопротивлением, в качестве которого допускается применение лампочки для освещения салона.

Допускается применение более мощного осветительного устройства от указателя поворота, габаритных огней либо стоповых сигналов. При использовании блока питания от ноутбука, это может привести к его перегрузке. Если используется диод, то в качестве ограничителя надо установить лампу накаливания на 220 вольт и 100 ватт.

При применении диодного элемента выполняется сборка простой схемы:

  1. Сначала идет клемма от бытовой розетки на 220 вольт.
  2. Затем — отрицательный контакт диодного элемента.
  3. Следующим будет положительный вывод диода.
  4. Затем подключается ограничительная нагрузка — источник освещения.
  5. Следующим будет отрицательный контакт аккумулятора.
  6. Затем положительный вывод батареи.
  7. И вторая клемма для подключения к 220-вольтной сети.

При применении источника освещения на 100 ватт параметр тока заряда будет примерно 0,5 ампер. Так за одну ночь устройство сможет отдать аккумуляторной батарее 5 А/ч. Этого хватит, чтобы покрутить стартерный механизм транспортного средства.

Чтобы увеличить показатель, можно соединить параллельно три источника освещения по 100 ватт, за ночь это позволит восполнить половину емкости батареи. Некоторые пользователи вместо ламп используют электроплиты, но этого делать нельзя, поскольку из строя выйдет не только диодный элемент, но и аккумулятор.

Простейшая схема с одним диодом Электросхема подключения АКБ к сети

Схема с диодным мостом

Этот компонент предназначен для «заворачивания» отрицательной волны наверх. Сам ток будет также пульсирующим, но его биения значительно меньше. Данный вариант схемы используется чаще остальных, но не является самым эффективным.

Диодный мост можно сделать самому, используя выпрямляющие элемент, или приобрести готовую деталь.

Электросхема ЗУ с диодным мостом

Схема со сглаживающим конденсатором

Эта деталь должна быть рассчитана на 4000-5000 мкФ и 25 вольт. На выходе полученной электросхемы образуется постоянный ток. Устройство обязательно дополняется предохранительными элементами на 1 ампер, а также измерительным оборудованием. Эти детали позволяют контролировать процесс восстановления аккумулятора. Можно их не использовать, но тогда периодически потребуется подключать мультиметр.

Если производить мониторинг напряжения удобно (путем подключения клемм к щупам), то с током будет сложнее. В данном режиме функционирования измерительное устройство придется подключать в разрыв электроцепи. Пользователю понадобится каждый раз отключать питание от сети, ставить тестер в режим замера тока. Затем активировать питание и разбирать электроцепь. Поэтому рекомендуется добавить в схему как минимум один амперметр на 10 ампер.

Основной минус простых электросхем заключается в отсутствии возможности регулировки параметров заряда.

При подборе элементной базы следует выбирать рабочие параметры так, чтобы на выходе величина силы тока составила 10% от общей емкости АКБ. Возможно незначительное снижение этой величины.

Если полученный параметр тока будет больше, чем требуется, схему можно дополнитель резисторным элементом. Он устанавливается на положительном выходе диодного моста, непосредственно перед амперметром. Уровень сопротивления подбирается в соответствии с использующимся мостом с учетом показателя тока, а мощность резистора должна быть более высокой.

Электросхема со сглаживающим конденсаторным устройством

Схема с возможностью ручной регулировки тока заряда для 12 В

Чтобы обеспечить возможность изменения параметра тока, необходимо поменять сопротивление. Простой способ решить эту проблему — поставить переменный подстроечный резистор. Но этот метод нельзя назвать самым надежным. Чтобы обеспечить более высокую надежность, требуется реализовать ручную регулировку с двумя транзисторными элементами и подстроечным резистором.

С помощью переменного резисторного компонента будет меняться ток зарядки. Эта деталь устанавливается после составного транзистора VT1-VT2. Поэтому ток через данный элемент будет проходить невысокий. Соответственно, небольшой будет и мощность, она составит около 0,5-1 Вт. Рабочий номинал зависит от использующихся транзисторных элементов и выбирается опытным путем, детали рассчитаны на 1-4,7 кОм.

В схеме используется трансформаторное устройство на 250-500 Вт, а также вторичная обмотка на 15-17 вольт. Сборка диодного моста осуществляется на деталях, рабочий ток которых составляет от 5 ампер и больше. Транзисторные элементы подбираются из двух вариантов. Это могут быть германиевые детали П13-П17 либо кремниевые устройства КТ814 и КТ816. Чтобы обеспечить качественный отвод тепла, схема должна быть размещена на радиаторном устройстве (не меньше 300 см3) либо стальной пластине.

На выходе оборудования устанавливается предохранительное устройство ПР2, рассчитанное на 5 ампер, а на входе — ПР1 на 1 А. Схема оснащается сигнальными световыми индикаторами. Один из них используется для определения напряжения в сети 220 вольт, второй — для тока заряда. Допускается использование любых источников освещения, рассчитанных на 24 вольта, в том числе диодов.

Электросхема для зарядного прибора с функцией ручной регулировки

Схема защиты от переплюсовки

Есть два варианта реализации такого ЗУ:

  • с использованием реле Р3;
  • путем сборки ЗУ с интегральной защитой, но не только от переплюсовки, но и от перенапряжения и перезаряда.
С реле Р3

Данный вариант схемы может применяться с любым зарядным оборудованием, как тиристорным, так и транзисторным. Ее необходимо включить в разрыв кабелей, посредством которых производится подключение батареи к ЗУ.

Схема защиты оборудования от переплюсовки на реле Р3

Если аккумуляторная батарея подключена к сети некорректно, диодный элемент VD13 не будет пропускать ток. Реле электросхемы обесточено, а его контакты разомкнуты. Соответственно, ток не сможет поступать на клеммы батареи. Если подключение выполнено правильно, то реле активируется и его контактные элементы замыкаются, поэтому АКБ заряжается.

С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Данный вариант электросхемы можно встроить в уже использующийся самодельный источник питания. В ней применяется медленный отклик аккумулятора на скачок напряжения, а также гистерезис реле. Напряжение с током отпускания будет в 304 раза меньше данного параметра при срабатывании.

Применяется реле переменного тока на напряжение активации 24 вольта, а ток величиной 6 ампер идет через контакты. При активации зарядного прибора включается реле, происходит замыкание контактных элементов и начинается зарядка.

Параметр напряжения на выходе трансформаторного устройства снижается ниже 24 вольт, но на выходе зарядного прибора будет 14,4 В. Реле должно удерживать это значение, но при появлении экстратока первичная величина напряжения еще больше просядет. Это приведет к отключению реле и разрыву электроцепи заряда.

Использование диодов Шоттки в этом случае нецелесообразно, поскольку данный тип схемы будет иметь серьезные недостатки:

  1. Отсутствует защита от скачка напряжения по контакту от переплюсовки, если аккумулятор полностью разряжен.
  2. Нет самоблокировки оборудования. В результате воздействия экстратока реле будет отключаться, пока не выйдут из строя контактные элементы.
  3. Нечеткое срабатывание оборудования.

Из-за этого добавить в данную схему устройство для регулировки тока срабатывания не имеет смысла. Реле и трансформаторное устройство точно подбираются друг к другу, чтобы повторяемость элементов была близка к нулю. Ток заряда проходит через замкнутые контакты реле К1, в результате чего снижается вероятность их выхода из строя из-за обгорания.

Обмотка К1 должна подключаться по логической электросхеме:

  • к модулю защиты от экстратока, это VD1, VT1 и R1;
  • к устройству защиты от перенапряжения, это элементы VD2, VT2, R2-R4;
  • а также к электроцепи самоблокировки К1.2 и VD3.


Схема с интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Основной минус состоит в необходимости налаживания схемы с применением балластной нагрузки, а также мультиметра:

  1. Производится выпаивание элементов К1, VD2 и VD3. Либо при сборке их можно не запаивать.
  2. Выполняется активация мультиметра, который надо заранее настроить на замер напряжения в 20 вольт. Его надо подключить вместо обмотки К1.
  3. Аккумулятор пока не подключается, вместо него устанавливается резисторное устройство. Оно должно обладать сопротивлением в 2,4 Ома для тока заряда 6 А или 1,6 Ом для 9 ампер. Для 12 А резистор должен быть рассчитан на 1,2 Ом и не меньше, чем на 25 Вт. Резисторный элемент можно накрутить из аналогичной проволоки, которая использовалась для R1.
  4. На вход от зарядного оборудования подается напряжение 15,6 вольт.
  5. Должна сработать токовая защита. Мультиметр покажет напряжение, поскольку элемент сопротивления R1 выбран с небольшим избытком.
  6. Производится уменьшение параметра напряжения, пока тестер не покажет 0. Значение выходного напряжения надо записать.
  7. Затем производится выпайка детали VT1, а VD2 и К1 устанавливаются на место. R3 необходимо поставить в крайнее нижнее положение в соответствии с электросхемой.
  8. Величина напряжения зарядного оборудования увеличивается, пока на нагрузке не будет 15,6 вольт.
  9. Элемент R3 плавно вращается, пока не сработает К1.
  10. Выполняется снижение напряжения зарядного прибора до значения, которое было записано ранее.
  11. Обратно устанавливаются и припаиваются элементы VT1 и VD3. После этого электросхему можно проверять на работоспособность.
  12. Через амперметр выполняется подключение рабочего, но севшего или недозаряженного аккумулятора. К батарее надо подсоединить тестер, который заранее настроен на измерение напряжения.
  13. Пробный заряд необходимо провести с непрерывным контролем. В момент, когда тестер покажет 14,4 вольта на аккумуляторе, необходимо засечь ток содержания. Этот параметр должен быть в норме или близким к нижнему пределу.
  14. Если величина тока содержания высокая, то напряжение зарядного прибора следует снизить.

Схема автоматического отключения при полной зарядке аккумулятора

Автоматика должна представлять собой электросхему, оснащенную системой питания операционного усилительного устройства и опорного напряжения. Для этого используется плата стабилизатора DA1 класса 142ЕН8Г для 9 вольт. Данную схему необходимо предназначать, чтобы уровень выходного напряжения при измерении температуры платы на 10 градусов практически не менялся. Изменение составит не больше, чем сотые доли вольта.

В соответствии с описанием схемы, система автоматической деактивации при увеличении напряжения на 15,6 вольт делается на половине платы А1.1. Четвертый ее вывод соединяется с делителем напряжения R7 и R8, с которого подается опорная величина, составляющая 4,5В. Рабочим параметром резисторного устройства задается порог активации зарядного приспособления 12,54 В. В результате использования диодного элемента VD7 и детали R9 можно обеспечить нужный гистерезис между величиной напряжения активации и отключения заряда батареи.

Электросхема ЗУ с автоматической деактивацией при заряженной батарее

Описание действия схемы такой:

  1. Когда происходит подключение батареи, уровень напряжения на клеммах которого меньше 16,5 вольт, на втором выводе схема А1.1 устанавливается параметр. Данное значение достаточно, чтобы транзисторный элемент VT1 открылся.
  2. Происходит открытие этой детали.
  3. Активируется реле Р1. В результате к сети через блок конденсаторных механизмов посредством контактных элементов подключается первичная обмотка трансформаторного устройства.
  4. Начинается процесс восполнения заряда АКБ.
  5. Когда уровень напряжения увеличится до 16,5 вольт, это значение на выходе А1.1 снизится. Уменьшение происходит до величины, которой недостаточно для поддержания транзисторного устройства VT1 в открытом состоянии.
  6. Происходит отключение реле и контактные элементы К1.1 подключать трансформаторный узел через конденсаторное устройство С4. При нем величина тока заряда будет 0,5 А. В этом состоянии схема оборудования будет работать, пока величина напряжения на батарее не снизится до 12,54 вольт.
  7. После того, как это произойдет, выполняется активация реле. Продолжается зарядка АКБ заданным пользователем током. В данной схеме реализована возможность отключения системы автоматической регулировки. Для этого используется переключательное устройство S2.

Данный порядок работы автоматического зарядного устройства для автомобильного аккумулятора позволяет предотвратить его разряд. Пользователь может оставить включенным оборудование хоть на неделю, это не навредит батарее. Если в бытовой сети пропадет напряжение, при его появлении ЗУ продолжит заряжать аккумулятор.

Если говорить о принципе действия схемы, собранной на второй половине платы А1.2, то он идентичен. Но уровень полной деактивации зарядного оборудования от сети питания составит 19 вольт. Если величина напряжения меньше, на восьмом выход платы А1.2 оно будет достаточным, чтобы удержать транзисторное устройство VT2 в открытом положении. При нем ток будет подаваться на реле Р2. Но если величина напряжения составит более 19 вольт, то транзисторное устройство закроется и контактные элементы К2.1 разомкнутся.

Необходимые материалы и инструменты

Описание деталей и элементов, которые потребуются для сборки:

  1. Силовой трансформаторное устройство Т1 класса ТН61-220. Его вторичные обмотки должны быть подключены последовательно. Можно использовать любой трансформатор, мощность которого не больше 150 ватт, поскольку ток заряда обычно составляет не более 6А. Вторичная обмотка устройства при воздействии электротока до 8 ампер должна обеспечить напряжение в диапазоне 18-20 вольт. При отсутствии готового трансформатора допускается применение деталей аналогичной мощности, но потребуется перемотать вторичную обмотку.
  2. Конденсаторные элементы С4-С9 должны соответствовать классу МГБЧ и иметь напряжение не ниже 350 вольт. Допускается применение устройств любого типа. Главное, чтобы они предназначались для функционирования в цепях переменного тока.
  3. Диодные элементы VD2-VD5 можно использовать любые, но они должны быть рассчитаны на ток 10 ампер.
  4. Детали VD7 и VD11 — кремневые импульсные.
  5. Диодные элементы VD6, VD8, VD10, VD5, VD12, VD13 должны выдерживать ток величиной 1 ампер.
  6. Светодиодный элемент VD1 — любой.
  7. В качестве детали VD9 допускается использование устройства класса КИПД29. Основная особенность данного источника освещения заключается в возможности изменения цвета, если меняется полярность соединения. Для переключения лампочки применяются контактные элементы К1.2 реле Р1. Если на аккумулятор идет зарядка основным током, светодиод горит желтым, а если включается режим подзарядки, то зеленым. Допускается применение двух одноцветных устройств, но их надо правильно подключить.
  8. Операционный усилитель КР1005УД1. Можно взять устройство из старого видеоплейера. Основная особенность заключается в том, что этой детали не требуется два полярных питания, она сможет работать при напряжении 5-12 вольт. Можно использовать любые аналогичные запчасти. Но из-за разной нумерации выводов надо будет изменить рисунок печатной схемы.
  9. Реле Р1 и Р2 должны быть рассчитаны на напряжения 9-12 вольт. А их контакты — на работу с током величиной 1 ампер. Если устройства оснащаются несколькими контактными группами, их рекомендуется запаять параллельным образом.
  10. Реле Р3 — на 9-12 вольт, но величина тока коммутации будет 10 ампер.
  11. Переключательное устройство S1, должно быть предназначено для работы с напряжением 250 вольт. Важно, чтобы в этом элементе было достаточно коммутирующих контактных компонентов. Если шаг регулировки в 1 ампер неважен, то можно поставить несколько переключателей и выставить ток заряда 5-8 А.
  12. Выключатель S2, предназначен для деактивации системы контроля уровня заряда.
  13. Также потребуется электромагнитная головка для измерителя тока и напряжения. Допускается применение любого типа устройств, главное, чтобы ток полного отклонения составит 100 мкА. Если будет замеряться не напряжение, а только ток, то в схему можно установить готовый амперметр. Он должен быть рассчитан на работу с максимальным постоянным током 10 ампер.

Пользователь Артем Квантов в теории рассказал о схеме зарядного оборудования, а также о подготовке материалов и деталей для ее сборки.

Порядок подключения аккумулятора к зарядным устройствам

Инструкция по включению ЗУ состоит из нескольких этапов:

  1. Очистка поверхности аккумулятора.
  2. Удаление пробок для заливки жидкости и контроль уровня электролита в банках.
  3. Выставление значения тока на зарядном оборудовании.
  4. Подключение клемм к аккумулятору с соблюдением полярности.

Очистка поверхности

Руководство по выполнению задачи:

  1. В автомобиле отключается зажигание.
  2. Открывается капот машины. Используя гаечные ключи соответствующего размера, от клемм аккумуляторной батареи надо отключить зажимы. Для этого гайки выкручивать не нужно, их можно ослабить.
  3. Выполняется демонтаж фиксирующей пластины, которая крепит батарею. Для этого может потребоваться ключ-головка либо звездочка.
  4. АКБ демонтируется.
  5. Производится очистка его корпуса чистой ветошью. Впоследствии будут откручиваться крышки банок для залива электролита, поэтому нельзя допустить попадания грузи внутрь.
  6. Выполняется визуальная диагностика целостности корпуса батареи. При наличии трещин, через которые вытекает электролит, заряжать АКБ нецелесообразно.

Пользователь Аккумуляторщик рассказал о выполнении очистки и промывки корпуса аккумуляторной батареи перед ее обслуживанием.

Удаление пробок заливки кислоты

Если аккумуляторная батарея обслуживаемая, в ней надо открутить крышки на пробках. Они могут быть скрыты под специальной защитной пластиной, ее нужно демонтировать. Для выкручивания пробок можно использовать отвертку или любую металлическую пластину соответствующего размера. После демонтажа надо оценить уровень электролита, жидкость должна полностью покрывать все банки внутри конструкции. Если ее недостаточно, то требуется долить дистиллированной воды.

Установка величины тока заряда на зарядном устройстве

Выставляется параметр тока для подзарядки АКБ. Если эта величина будет больше номинальной в 2-3 раза, то процедура заряда произойдет в быстрее. Но этот метод приведет к снижению ресурса эксплуатации батареи. Поэтому выставлять такой ток можно, если аккумулятор надо подзарядить быстро.

Подключение аккумулятора с соблюдением полярности

Процедура выполняется так:

  1. К клеммам АКБ подключаются зажимы от ЗУ. Сначала выполняется соединение положительного контакта, это красный провод.
  2. Отрицательный кабель можно не подключать, если АКБ остался в автомобиле и не демонтировался. Подсоединение данного контакта возможно к кузову транспортного средства либо к блоку цилиндров.
  3. Вилка от зарядного оборудования вставляется в розетку. Аккумулятор начинает заряжаться. Время заряда зависит от степени разряда устройства и его состояния. При выполнении задачи не рекомендуется использование удлинителей. Такой провод обязательно должен иметь заземление. Его величина будет достаточной, чтобы выдержать нагрузку силы тока.

Канал «VseInstrumenti» рассказал об особенностях подключения АКБ к зарядному прибору и соблюдении полярности при выполнении этой задачи.

Как определить степень разрядки аккумулятора

Для выполнения задачи потребуется мультиметр:

  1. Производится замер величины напряжения на автомобиле с отключенным двигателем. Электросеть транспортного средства в таком режиме будет потреблять часть энергии. Значение напряжения при замере должно соответствовать 12,5-13 вольтам. Выводы тестера подключаются с соблюдением полярности к контактам АКБ.
  2. Производится запуск силового агрегата, все электрооборудование должно быть выключено. Процедура измерения повторяется. Рабочая величина должна составить в диапазоне 13,5-14 вольт. Если полученное значение больше или меньше, это говорит о разряде аккумулятора и функционировании генераторного устройства не в штатном режиме. Увеличение данного параметра при низкой отрицательной температуре воздуха не может сообщить о разряде аккумулятора. Возможно, сначала полученный показатель будет больше, но если со временем он придет в норму, это говорит о работоспособности.
  3. Выполняется включение основных потребителей энергии — отопителя, магнитолы, оптики, системы обогрева заднего стекла. В таком режиме уровень напряжения составит в диапазоне от 12,8 до 13 вольт.

Величину разряда можно определить в соответствии с данными, приведенными в таблице.

Как рассчитать примерное время зарядки аккумулятора

Для определения приблизительного времени подзарядки потребителю необходимо знать разницу между максимальным значением заряда (12,8 В) и вольтажом в данный момент. Эта величина умножается на 10, в итоге получается время заряда в часах. Если уровень напряжения перед выполнением подзарядки составляет 11,9 вольт, то 12,8-11,9=0,8. Умножив это значение на 10 можно определить, что время подзарядки составит примерно 8 часов. Но это при условии, что будет осуществляться подача тока в размере 10% от емкости аккумулятора.

В статье описано зарядное устройство для автомобильных аккумуляторов , позволяющее устанавливать зарядный ток до 10 А и автоматически отключать зарядку аккумулятора при достижении установленного напряжения на нем. В статье приведены принципиальные схемы, рисунки монтажа деталей, печатной платы, конструкции устройства и дана ме тодика его наладки.

Большинство зарядных устройств позволяет устанавливать только требуемый ток заряда. В простых устройствах этот ток поддерживается в ручном режиме, а в части устройств он поддерживается автоматически стабилизаторами тока. При использовании таких устройств необходимо следить за процессом зарядки аккумулятора до предельно допустимого напряжения, что требует соответствующего времени и внимания. Дело в том, что перезаряд аккумулятора приводит к кипению электролита, что сокращает срок его эксплуатации. Предлагаемое зарядное устройство позволяет устанавливать ток заряда и автоматически отключать его при достижении установленной величины напряжения

Зарядное устройство построено на базе промышленного выпрямителя типа ВСА-6К (можно использовать любой выпрямитель подходящей мощности), преобразующего переменное напряжение 220 В в фиксированные постоянные напряжения 12 В и 24 В, которые переключаются пакетным переключателем. Выпрямитель рассчитан на ток в нагрузке до 24 А и не содержит сглаживающего фильтра. Для заряда аккумуляторных батарей выпрямитель дополнен электронной схемой управления, позволяющей устанавливать необходимый ток заряда и величину номинального напряжения отключения зарядного устройства от аккумуляторной батареи при достижении полной зарядки.

Зарядное устройство, в основном, предназначено для зарядки автомобильных аккумуляторов напряжением 12 В и зарядным током до 10 А, а также может использоваться для других целей. Для зарядки указанных аккумуляторов используется выпрямленное напряжение 24 В, а для аккумуляторов напряжением 6 В — напряжение 12 В. Сглаживающий фильтр к выходу выпрямителя подключать нельзя, т. к, тиристор может закрываться только при достижении напряжения ноля, а открываться в нужный момент схемой управления.

Рис.1 Схема силовой части зарядного устройства

Принципиальная схема подключения выпрямителя ВСА-6К к плате электронной схемы управления и к внешним элементам приведена на рис.1. Выводы зарядного устройства для подключения аккумуляторной батареи соединены со штатными клеммами лицевой панели выпрямителя ХЗ и Х4. Для использования фиксированных постоянных напряжений 12 В или 24 В при использовании устройства в других целях штатные выводы выпрямителя подключены к винтовым клеммам XI и Х2, расположенным на изоляционной планке рядом с предохранителем FU2, которые закрыты съемной крышкой правой боковой стенки аппарата .

Вольтметр выпрямителя соединен с клеммами подключения аккумуляторной батареи. Амперметр остается включенным в общую цепь «+» и измеряет как ток заряда аккумулятора, так и ток нагрузки, подключаемой к клеммам X1 и Х2. Напряжение на схему управления подается только при подключенной аккумуляторной батарее.

Поступающие в продажу аккумуляторные батареи, обычно, заряженные и залитые электролитом или сухозаряженные без электролита. Они требуют только до-зарядки до номинальной емкости. Эксплуатируемые автомобильные аккумуляторы также требуют дозарядки после техобслуживания или длительного простоя. Если случится необходимость формовать и заряжать аккумулятор с «нуля», то первоначально его необходимо подзарядить от источника с фиксированным напряжением 12 В через реостат, которым выставляется требуемый зарядный ток. После достижения напряжения на аккумуляторе порядка 10 В дальнейшие операции можно производить, подключив его к клеммам ХЗ, Х4.

Для последующего описания работы зарядного устройства следует кратко напомнить, что кислотные аккумуляторные батареи, которые используются в легковых автомобилях, содержат шесть банок. При достижении напряжения на банке 2,4 В начинается газовыделение взрывоопасной кислородно-водородной смеси, что свидетельствует о полной зарядке батареи. Газовыделение разрушает активную массу, содержащуюся в свинцовых аккумуляторных пластинах, поэтому для обеспечения максимального срока службы аккумулятора напряжение на каждом его элементе в среднем не должно превышать 2,3 В, учитывая также то, что внутренние сопротивления элементов и напряжения на них могут несколько отличаться друг от друга. В итоге это соответствует максимальному напряжению батареи 13,8 В, при котором зарядное устройство должно автоматически отключиться.

Работа устройства

Принципиальная схема управления приведена на рис.2, монтаж деталей показан на рис.З, а печатная плата — на рис.4. Схема управления состоит из усилителя постоянного напряжения на транзисторах VT1, VT2 , VT3 и схемы с аналогом однопереходного транзистора на VT4 и VT5, которая управляет тиристором VS1 для установки необходимого зарядного тока. Применение аналога вместо обычного однопереходного транзистора (например, КТ117А-Г) выгодно тем, что выбором транзисторов и резисторов R9 — R1 1 можно подбирать необходимые его характеристики.

При напряжении на аккумуляторе меньше 13,8 В транзистор VT3 закрыт, а VT2 и VT1 открыты. На вывод 6 платы управления поступают положительные полуволны напряжения с диодного моста выпрямителя, которые накладываются на постоянное напряжение аккумулятора и через открытый VT1, VD1, R8 подаются на тиристорный регулятор тока.

Рис.2 Схема управления

Он работает следующим образом: напряжение с R8 поступает на базу VT4 и через регулятор установки зарядного тока R12 на конденсатор С1.

В начальный момент VT4 и VT5 закрыты. При заряде С1 до напряжения срабатывания аналога однопереходного транзистора с эмиттера VT5 подается импульс на управляющий электрод тиристора, который открывается и замыкает цепь заряда аккумулятора. При этом С1 быстро разряжается через низкое сопротивление открытого аналога однопереходного транзистора. При поступлении следующего импульса процесс повторяется. Чем меньше величина сопротивления R12 (рис.1), тем быстрее заряжается С1 и открывается VS1, в результате чего он дольше находится в открытом состоянии, и тем больше зарядный ток. Свечение VD1 сигнализирует о зарядке аккумулятора.

При достижении напряжения на аккумуляторе 13,8 В, что соответствует его полной зарядке, транзистор VT3 открывается, а VT2 и VT1 закрываются, напряжение на схеме управления тиристором исчезает, заряд аккумулятора прекращается и гаснет светодиод VD1.

Наладка устройства

Наладка зарядного устройства выполняется при открытой его лицевой панели и заключается в установке напряжения отключения зарядного тока. Для этого необходимо вольтметр класса точности не хуже 1,5 подключить к аккумулятору, убедиться в наличии на нем напряжения не менее 10,8 В (разряд кислотного аккумулятора напряжением 12 В до напряжения ниже 10,8 В не допускается), установить зарядный ток (величиной 0,1 емкости аккумулятора), а движок подстроечного резистора R5 установить в среднее положение и начать зарядку. Если зарядное устройство отключилось при напряжении на аккумуляторе меньше 13,8 В, то движок резистора R5 необходимо повернуть на некоторый угол против часовой стрелки до зажигания светодиода и продолжить зарядку до 13,8 В, а если устройство не отключилось при этом напряжении — повернуть движок по часовой стрелке до отключения устройства. При этом светодиод должен погаснуть. На этом наладка схемы заканчивается и лицевая панель устанавливается на свое место. Для дальнейшей эксплуатации зарядного устройства необходимо заметить, какое положение стрелки штатного вольтметра соответствует напряжению 13,8 В, чтобы не пользоваться дополнительным вольтметром.

Рис.З

Рис.4

Рис.5

Конструктивно плата управления, тиристор с охладителем, светодиод VD1 и переменный резистор R12 установки зарядного тока закреплены на внутренней стороне лицевой панели (рис.5) Радиатор тиристора закреплен на панели с применением двух текстолитовых полосок. К одной он прикреплен двумя винтами М3 с потайной головкой, а другая служит изоляционной прокладкой. Плата управления закреплена дополнительной гайкой на выводе амперметра, который не должен касаться ее печатных дорожек.

В заключение следует отметить, что данное устройство может обеспечить зарядный ток до 24 А при установке более мощного тиристора и предохранителя FU2 на ток 25 А.

Анатолий Журенков

Литература

1. С. Елкин Применение тринисторных регуляторов с фазоимпульсным управлением // Радиоамматор. — 1998.-№9.-С.37-38.

2. В. Воевода Простое тринисторное зарядное устройство // Радио. — 2001. — № 11. — С.35.

Очень простая схема зарядного устройства, в котором используется только один транзистор для определения напряжения автоматического отключения аккумулятора от сети, когда он будет полностью заряжен.

Описание схемы зарядного устройства автомобильного аккумулятора

На рисунке мы видим простую схему, где один транзистор включен в его стандартном режиме работы.

Принцип работы схемы можно понять из следующих пунктов:

  1. Заряд аккумулятора считается законченным, когда напряжение на его клеммах достигнет 13,5 – 14 вольт.
  2. Порог отключения (13,5 – 14 вольт) устанавливается подстроечным резистором R2 при подключенном, полностью заряженном аккумуляторе. Когда напряжение на клеммах аккумулятора будет около 14 вольт, транзистор Т1 включит реле и цепь заряда будет разорвана.

Это автоматическое автомобильное зарядное устройство не только просто в изготовлении, но и достаточно умное для того что бы заботиться о состоянии аккумулятора и заряжать его очень эффективно.

Список деталей:
  • R1 = 4,7 кОм;
  • R2 = 10K подстроечный;
  • T1 = ;
  • Реле = 12В, 400 Ом, SPDT;
  • TR1 = напряжение вторичной обмотки 14 В, ток 1/10 от емкости АКБ;
  • Диодный мост = на ток равный номинальному току трансформатора;
  • Диоды D2 и D3 = 1N4007;
  • C1 = 100uF/25V.
От администратора сайта

Статья носит теоретический характер, на практике я эту схему не собирал . Рекомендую обратить внимание на такие важные моменты:

  1. Отключение аккумулятора от зарядного устройства происходит при достижении зарядного напряжения 13,5 – 14 вольт. Устанавливать этот порог напряжения (подстроечный резистор R2) нужно при подключенном, полностью заряженном аккумуляторе. Если заряженного аккумулятора нет, тогда нужно R2 выставить в нижнее (по схеме) положение, то есть «посадить» базу транзистора на землю. Затем подключить аккумулятор и включить зарядное устройство в сеть. Далее нужно постоянно контролировать зарядное напряжение, когда оно достигнет 13,5 – 14 вольт нужно выставить R2 в такое положение, что бы реле разомкнуло свои контакты.
  2. При достижении на клеммах аккумулятора напряжения 13,5 – 14 вольт, устройство отключается от аккумулятора. Далее при снижении напряжения до 11,4 вольт, зарядка снова возобновляется. В оригинале статьи написано, что такой гистерезис обеспечивают диоды в эмиттере транзистора.
  3. В схеме отсутствует ограничение зарядного тока , поэтому рекомендую при изготовлении этого зарядного устройства использовать трансформатор мощностью не менее 150 ватт, вторичная обмотка которого рассчитана на ток не менее 10 ампер. Диодный мост так же должен соответствовать указанному току.

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут так же установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на не закрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двух полярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется не инвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Не инвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Зарядно-пусковое устройство. Схема и подробное описание

Зарядно-пусковое устройство представленное в этой статье позволяет запустить автомобиль в зимнее время. Как известно пуск в зимнее время двигателя внутреннего сгорания автомобиля с подсевшим аккумулятором требует много сил и времени.

Плотность электролита, вследствие  продолжительного хранения, существенно понижается, а протекающий внутри аккумулятора процесс сульфатации увеличивает внутреннее сопротивление его, тем самым, уменьшая стартовый ток аккумулятора. Плюс ко всему, в зимнее время повышается вязкость моторного масла, что требует от автомобильного аккумулятора  большей стартовой мощности.

Как известно, облегчить пуск автомобиля зимой можно несколькими способами:

  • разогреть масло в картере авто;
  • завести машину от другой машины с надежным  аккумулятором;
  • завести «с толкача»;
  • применить зарядно-пусковое устройство (ЗПУ).

Вариант с применением пускового устройства  более удобен при хранении автомобиля в гараже либо на платной стоянке, где есть возможность подключить пусковое устройство к электросети. Помимо этого данное зарядно-пусковое устройство поможет не только завести авто с севшим аккумулятором, но и быстро восстановить и зарядить его.

В основном в  промышленных образцах зарядно-пускового устройства, аккумулятор подзаряжается от источника питания средней мощности имеющий номинальный ток в пределах до 5А, которого, как правило, не хватает для непосредственного отбора тока стартером автомобиля.  Несмотря на то что внутренняя емкость автомобильных аккумуляторных ПЗУ весьма велика (у некоторых моделях до 240 А/ч), но все же после нескольких заводов они, так или иначе «садятся», а быстро восстановить их заряд не получится.

Данное зарядно-пусковое устройство, отличается от промышленного прототипа незначительной массой и возможностью в автоматическом режиме поддерживать рабочее состояние аккумулятора ПЗУ, вне зависимости от срока хранения или эксплуатации. Даже если в  ПЗУ нет внутреннего аккумулятора, он все равно может кратковременно выдать пусковой ток до 100А. Также существует неплохая схема зарядного устройства для аккумулятора с регулировкой тока заряда.

Для восстановления пластин аккумулятора и снижения температуры электролита во время зарядки, в зарядно-пусковом устройстве предусмотрен режим регенерации. В данном режиме происходит чередования импульсов зарядного тока и пауз.

Принципиальная схема

Схема пускового зарядного устройства содержит   симисторный регулятор напряжения (VS1), силовой трансформатор  (T1), выпрямитель на мощных диодах (VD3, VD4) и стартерный аккумулятор  (GB1). Ток подзарядки выбирается регулятором тока на симисторе VS1, его ток регулируется переменным резистором R2 и зависит от емкости аккумулятора.

Входная и выходная цепи зарядки имеют конденсаторы фильтра, который уменьшает степень радиопомех при работе симисторного регулятора. Симистор VS1 обеспечивает регулировку тока зарядки при разбросе напряжения сети в пределах от 180 до 220 В.

Инфракрасный обогреватель с термостатом + светильник

Быстрый прогрев помещения, индивидуальная температура в каждой ком…

Обвязка  симистора состоит из R1-R2-C3 (RC цепь), динистора VD2 и диодного моста VD1.  Константа времени RC — цепи влияет на момент открытия динистора (отсчитывая от начало сетевого полупериода), который включен в диагональ выпрямительного моста через ограничительный резистор R4. Выпрямительный мост осуществляет синхронизацию включение симистора в обоих полупериодах сетевого напряжения. В режиме «Регенерация» применяется только один полупериод сетевого напряжения, что способствует отчистке пластин аккумулятора от имеющейся кристаллизации. Конденсаторы С1 и С2 уменьшают степень помех от симистора в сети до приемлемых уровней.

 Детали

В зарядно-пусковом устройстве применен силовой трансформатор от телевизора «Рубин».  Возможно также использование трансформатора типа ТСА-270. Перед тем как перемотать вторичные обмотки (первичные остаются без изменений), каркасы отделяются от железа, все бывшие вторичные обмотки (до фольги экранов) удаляют, а на освободившееся место  наматывают медным проводом сечением 1,8…2,0 мм2 в один слой (до заполнения) вторичные обмотки. В результате перемотки напряжение одной обмотки должно получиться примерно 15… 17 В.

Для визуального контроля зарядного и пускового тока в схему зарядно-пускового устройства введен амперметр с шунтирующим резистором. Сетевой выключатель SA1 должен быть рассчитан на максимальный ток 10 А. Сетевой переключатель SA2 (типа ТЗ или П1Т) позволяет выбрать максимальное напряжение на трансформаторе в соответствии с напряжением сети. Внутреннего аккумулятора марки 6СТ45 или 6СТ50 должно хватить на 3-5 одновременных пусков. Резисторы в ЗПУ можно применить типа МЛТ или СП, конденсаторы С1,С2 — КБГ-МП, C3 – МБГО, С4 — К50-12, К50-6. Диоды Д160 (без радиаторов) можно поменять на другие с допустимым током более 50 А, симистор — типа ТС. Подсоединение ЗПУ к аккумулятору автомобиля необходимо производить мощными зажимами «Крокодил» (на рабочий ток до 200 А). В устройстве важно применить заземление.

Настройка

При настройке к устройству подсоединяется (соблюдай полярность!) внутренний аккумулятор GB1, и испытывается регулировка зарядного тока резистором R2. Затем проверяется  зарядный ток в режиме заряда, пуска и регенерации. Если ток не более 10…12А, то ЗПУ находится в рабочем состоянии. При подсоединении зарядно-пускового устройства к аккумулятору автомобиля, ток заряда вначале должен возрасти примерно 2-3 раза, а через 10 — 30 мин понизиться до первоначального значения. После этого переключатель SA3 щелкается  в режим «Пуск», и происходит завод двигателя автомобиля. В случае неудачной попытки завести двигатель, производится  дополнительная подзарядка в течение 10 — 30 мин, и попытка повторяется.

Установка зарядного устройства постоянного тока в фургоне

Инструкции

Шаг 1. Выберите зарядное устройство постоянного/постоянного тока

На рынке представлено множество различных зарядных устройств постоянного/постоянного тока. Мы выбрали зарядное устройство Victron Orion-Tr Smart DC-DC Charger Non-Isolated

.

Нам показалось, что это лучшее соотношение цены и качества. Одна из основных причин, по которой мы выбрали его, заключалась в том, что нам понравилось, как он (наряду со многими другими продуктами Victron) имел возможности Bluetooth. Это означает, что вы можете легко проверить статус зарядки через приложение на своем телефоне.Это избавляет от необходимости в неприглядных мониторах, разбросанных по всему фургону.

Параллельное подключение аккумуляторов для досуга означает удвоение напряжения – 2 аккумулятора по 150 Ач, соединенные параллельно, дают емкость 300 Ач.

Аккумуляторная батарея нашего фургона, как и почти любой другой автомобиль, имеет напряжение 12 В постоянного тока. Мы подключили наши 2 батареи для досуга по 12 В параллельно, что дало общее напряжение в цепи 12 В (было бы 24 В при последовательном подключении)./ Это означает, что неизолированное зарядное устройство 12/12 30 А идеально подходит для нашей электрической установки.Зарядное устройство подключает автомобильный аккумулятор 12 В к цепи 12 В аккумуляторов для досуга с выходной мощностью 30 А. Если вы используете неизолированное зарядное устройство, очень важно, чтобы в вашем фургоне была хорошая точка заземления для подключения обоих аккумуляторов. В качестве точки заземления мы использовали большой болт, проходящий через металлический кузов.

 

Шаг 2. Доступ к аккумулятору фургонов

Время: 5 минут

Если вы переделываете Citroen Relay, Fiat Ducato или Peugeot Boxer; Вы можете получить доступ к аккумулятору через люк в полу со стороны пассажира кабины.Просто отстегните крепления и снимите люк. Ваша батарея должна выглядеть примерно так:

Для других моделей фургонов в руководстве должно быть указано, как получить доступ к аккумулятору.

 

Шаг 3 – СОЗДАЙТЕ ПРОХОД ЧЕРЕЗ ПЕРЕГОРОДКУ ДЛЯ ПРОХОДА ПРОВОДОВ

Время: 15 минут

Если в вашем фургоне нет перегородки, пропустите этот шаг. Этот шаг очень прост. Просто просверлите 2 отверстия в переборке внизу, достаточно больших, чтобы пропустить провода (мы использовали одножильный провод диаметром 10 мм).При выборе места для сверления обязательно учитывайте разницу в высоте между полом в задней части фургона и кабиной — мы обнаружили, что разница составляет 4″-6″. При сверлении не удивляйтесь, если дрель ведет себя немного странно, проходя через сторону с ковровым покрытием. Вы можете убрать ковер с пути, когда будете протягивать провода.

 

Этап 4 – Проведение проводов через кабину/переборку

Время: 15 минут

 

Во-первых, прежде чем прокладывать провода через перегородку, добавьте кабельные наконечники на один конец положительного и отрицательного проводов.Этот конец провода останется в кабине и в конечном итоге будет подключен к аккумулятору фургона. Прикрепление кабельных наконечников упрощает и делает более безопасным подключение проводов к аккумулятору. Просто зачистите конец провода, поместите его в наконечник и обожмите. Мы использовали подпружиненный обжимной инструмент, который вы забиваете.

Проведите концы проводов без наконечников под пластиковым настилом в кабине, это сделает провода максимально незаметными. После того, как вы подсоединили провода к задней части кабины, начните протягивать их через просверленные отверстия.На изображениях ниже показано, куда вы можете протянуть провода, чтобы они были скрыты.

Оставьте достаточно кабеля для подключения к аккумулятору фургона, однако чем меньше излишков, тем лучше.

 

Шаг 5. Подсоедините провода к зарядному устройству постоянного/постоянного тока

Время: 15 минут

Обязательно отсоедините отрицательные провода от аккумулятора фургона и аккумуляторов для отдыха и закрепите их в надежной точке заземления. Если вы не уверены, есть ли у вас хорошая точка заземления, мы рекомендуем прочитать эту статью.Мы нашли это очень полезным!

Монтажная часть установки зарядного устройства постоянного/постоянного тока очень проста. Просто зачистите конец каждого провода и вставьте его в соответствующий порт зарядного устройства. После того, как провода будут полностью вставлены, затяните винты на зарядном устройстве, чтобы надежно закрепить их на месте.

На приведенной ниже схеме показано, где именно должен проходить каждый провод при подключении зарядного устройства постоянного/постоянного тока. Мы использовали 10-миллиметровый одножильный провод по всей цепи.

Добавьте в цепь несколько автоматических выключателей.Мы использовали два автоматических выключателя на 60 А для защиты аккумуляторов от скачков тока. Автоматический выключатель представляет собой автоматический выключатель, защищающий цепь от перегрузки по току. Как только ток превышает предел, выключатель размыкает цепь, прерывая протекание тока. В отличие от предохранителя, преимущество использования автоматического выключателя заключается в том, что его можно легко сбросить.

 

Шаг 6. Подсоедините провода к аккумулятору фургона

Время: 5 минут

Ниже приведена общая схема подключения проводов к аккумулятору фургона.Будьте очень осторожны, когда делаете что-либо с аккумулятором фургона, так как вы не хотите связываться с тем, как он работает. Не забудьте плотно закрутить ушки. Мы обнаружили, что когда соединение было недостаточно плотным, оно мешало нашим дворникам.

Убедитесь, что положительный и отрицательный провода подключены к правильной стороне аккумулятора. Использование красного и черного проводов упрощает эту задачу. Следует также отметить, что генератор переменного тока фургона играет важную роль в работе зарядного устройства постоянного/постоянного тока. Это то, что заряжает аккумулятор фургона — и все остальное в этом отношении.Мы не включили генератор в электрическую схему, так как аккумулятор вашего фургона уже подключен к нему.

 

Заключение

Установка зарядного устройства постоянного/постоянного тока станет прекрасным дополнением к любому автофургону. Чем больше способов получения энергии в фургоне, тем лучше, особенно если вы собираетесь проводить время вне сети. Установка очень проста и не доставит вам особых хлопот

Не стесняйтесь задавать нам вопросы об установке зарядного устройства постоянного/постоянного тока, будь то материалы, цена, время или что-то еще.Вы всегда можете найти нас в комментариях.

Следующие шаги: Установка подключения берегового электропитания

Аккумулятор DC-DC для зарядных устройств для кемперов, автодомов и жилых домов на колесах

Поддержание заряда аккумуляторных батарей электрической системы кемпера может решить вашу жизнь в фургоне или разрушить ее.

Если вы хотите, чтобы свет оставался включенным, пили охлажденное пиво на закате и держали ваши электрические гаджеты заряженными, система хорошего размера обязательна.

И средство для эффективной зарядки аккумуляторов так же важно, как расчет и подбор правильного размера.

Из всего перечисленного система для зарядки аккумуляторов от генератора является наиболее простой и легкой в ​​установке.

Вот почему это был первый метод зарядки домашних аккумуляторов, который мы установили, когда строили наш фургон.

Существует 2 подхода к зарядке аккумуляторов глубокого цикла от генератора переменного тока:

Для получения дополнительной информации о том, следует ли вам выбрать сплит-систему зарядки или аккумулятор для зарядного устройства, прочитайте наш пост о зарядке аккумулятора для отдыха.

В этой статье рассказывается все, что вам нужно знать о зарядном устройстве для аккумуляторов, в том числе о том, что оно делает, как оно работает, о лучших брендах и о том, на что следует обратить внимание при покупке.

К концу этого поста у вас будет достаточно информации, чтобы выбрать лучшее зарядное устройство для вашего фургона, а также советы по установке и электрические схемы, чтобы вы могли быстро приступить к работе.

Когда вы нажимаете на ссылки различных продавцов на этом сайте и совершаете покупку, это может привести к тому, что этот сайт получит комиссию. Как партнер Amazon, мы зарабатываем на соответствующих покупках. Для получения дополнительной информации посетите нашу  страницу раскрытия информации .

Что такое аккумулятор для зарядного устройства

Как и многие другие электрические компоненты кемпервэна, аккумулятор для зарядного устройства часто называют другими именами.

Всякий раз, когда вы слышите термины «зарядные устройства постоянного тока в постоянный», «зарядные устройства B2B» и «зарядные устройства для аккумуляторов 12 В», знайте, что все они относятся к одному и тому же — зарядка аккумулятора к аккумулятору.

Все автомобили с двигателем имеют генератор переменного тока. Он заряжает стартерную батарею и обеспечивает питанием нормально работающую электрическую часть автомобиля, такую ​​как фары, стеклоочистители и так далее.

Генератор, работающий от двигателя, заряжает стартерную батарею во время движения.

Когда стартерная батарея заряжена, работа генератора в основном завершена.

В старых автомобилях любое избыточное электричество, вырабатываемое и не используемое ходовой электроникой автомобиля, фактически тратится впустую.

В современных автомобилях с интеллектуальными генераторами переменного тока генератор резко снижает свою мощность после зарядки стартерной батареи.

Для автодомов, жилых автофургонов и кемперов подключение к этому встроенному генератору является идеальной возможностью для подзарядки домашних аккумуляторов.

Зарядное устройство для аккумуляторов позволяет одновременно заряжать как стартерный, так и вспомогательный аккумуляторы при работающем двигателе автомобиля.

Однако, в отличие от раздельного реле заряда, зарядное устройство B2B является интеллектуальным, обеспечивая более контролируемый заряд.

Таким образом, если двигатель работает достаточно долго, зарядное устройство B2B может полностью зарядить аккумуляторы для отдыха.

Как работает зарядное устройство B2B?

Поскольку интеллектуальные генераторы переменного тока снижают выходное напряжение, когда стартерная батарея полностью заряжена, B2B должен «обмануть» ее.

При работающем двигателе зарядное устройство B2B определяет повышенное напряжение и включается.

Поскольку он получает питание непосредственно от стартерной батареи, интеллектуальный генератор «думает», что он никогда не будет полным, поэтому продолжает подавать на него напряжение.

Зарядные устройства

B2B защищают стартерную батарею от разряда вспомогательными батареями быстрее, чем генератор заряжает ее.

Тогда зарядное устройство B2B делает то, что у него получается лучше всего. Он регулирует напряжение в соответствии с профилем зарядки аккумуляторов для досуга в их заданном состоянии.

Таким образом, аккумулятор к зарядному устройству может полностью зарядить домашние батареи, если двигатель работает достаточно долго.

Выключите двигатель, довольно быстро падает напряжение стартерной батареи.

Зарядное устройство определяет это и автоматически отключается.

Нужен ли аккумулятор для зарядного устройства?

Большая часть того, что мы читали, настаивает на том, что для тех, кто долго живет в своем фургоне, необходимо зарядное устройство от батареи к батарее.

Ненавижу противоречить, но с 2018 года мы постоянно живем в фургоне, и у нас нет зарядного устройства B2B.Без сожалений, у нас тоже нет желания его устанавливать.

Вот что мы думаем:

  • Если вы в значительной степени полагаетесь на подзарядку аккумуляторов во время вождения, зарядное устройство B2B, вероятно, необходимо, потому что это единственный способ полностью зарядить аккумуляторы. Без этого срок службы батареи снижается.
  • Если вы часто пользуетесь кемпингами или другими источниками электропитания, зарядное устройство B2B — это ненужные расходы. Недорогой ручной переключатель или раздельное реле заряда обеспечат общий заряд аккумуляторов при работающем двигателе, и это может быть все, что вам нужно.
  • С солнечными панелями, в зависимости от того, сколько часов пик вы получаете, опять же, зарядное устройство B2B может быть излишним. Если ваш источник солнечной энергии чаще всего полностью перезаряжает батареи, мы рекомендуем вместо этого выбрать недорогую раздельную зарядку, предпочтительно ручную.
  • Если вы можете рассчитывать на полную зарядку аккумуляторов без вождения, мы рекомендуем избегать как зарядных устройств B2B, так и всех методов раздельной зарядки. Они воздействуют на генератор автомобиля намного сильнее, чем он был рассчитан, и это, по сути, сокращает срок его службы.А замена генератора автомобиля стоит недешево!

Какой размер батареи для зарядного устройства мне нужен?

Зарядные устройства

B2B измеряются в амперах.

В спецификации компонента этот размер может обозначаться как входной ток, выходной ток или номинальный зарядный ток. В любом случае, это, вероятно, будет указано в названии модели.

Номинальный ток заряда указывает максимальный ток, который зарядное устройство B2B может подавать на блок аккумуляторов для досуга.

Чтобы понять, какой оптимальный размер необходим, рассмотрите скорость поглощения батареи.

В технических характеристиках батареи для досуга это указано как максимальная скорость поглощения или максимальный ток заряда.

Допустим, у вас есть 1 аккумулятор AGM емкостью 100 А·ч с максимальным током заряда 30 А.

Зарядное устройство B2B на 60 А — это пустая трата денег, потому что, несмотря на то, что батарея способна подавать 60 ампер, она может поглощать только до половины этого, независимо от состояния зарядки.

Если вы добавите вторую батарею, общий максимальный ток заряда станет 60 ампер. Теперь идеально подходит зарядное устройство B2B на 60 А.

Вы можете использовать зарядное устройство меньшего размера, но имейте в виду, что батарея не будет заряжаться так быстро.

Стоит подумать о том, насколько могут разрядиться ваши батареи.

Литиевые аккумуляторы

могут выдерживать 100% разряд и могут выдерживать гораздо более высокие скорости заряда, чем свинцово-кислотные аккумуляторы.

Таким образом, хотя зарядное устройство B2B на 120 ампер может полностью зарядить литиевую батарею емкостью 200 Ач примерно за час, оно значительно дороже, чем модель на 60 А.

Для полной зарядки той же батареи более дешевой модели потребуется несколько часов. А у вас скорее всего разряжены аккумуляторы? Вероятно, нет, если у вас есть другие источники зарядки.

Мы рекомендуем избегать чрезмерного использования аккумуляторов для зарядных устройств, чтобы сэкономить деньги, и чрезмерного использования генератора переменного тока.

Если вы планируете увеличить размер батареи в будущем, более экономно купить зарядное устройство B2B, чтобы справиться с увеличением размера заранее.

Также всегда проверяйте рекомендации производителя транспортного средства по максимальному размеру.

Нужна помощь и совет по настройке электрооборудования?

Присоединяйтесь к нашей группе поддержки Facebook

На что обратить внимание при покупке аккумулятора для зарядного устройства

Спецификации аккумуляторов и зарядных устройств могут сбивать с толку, поэтому правильный выбор иногда является проблемой.

Чтобы помочь в этом, вот самые важные вещи, на которые нужно обратить внимание, и как определить, что вам нужно в вашем фургоне для переоборудования.

Входное напряжение

Это номинальное напряжение стартерной батареи.Большинство автомобилей имеют стартерный аккумулятор на 12 В.

Выберите компонент с входным напряжением, соответствующим стартерной батарее.

Выходное напряжение

Иногда называемое номинальным напряжением, оно относится к напряжению домашней батареи.

Большинство кемперов и домов на колесах имеют систему на 12 В, но есть и такие, которые работают на 24 В.

Выберите компонент с выходным напряжением, соответствующим блоку батарей для отдыха.

Входной ток

Это номинальный ток (ампер) компонента.

Выберите рейтинг на основе общей скорости поглощения собственного банка, как указано в предыдущем разделе.

Некоторые зарядные устройства B2B указывают входное и/или выходное напряжение и номинальный ток в названии своей модели.

Например, зарядное устройство постоянного тока 12 В, 60 А от Renogy.

Рекомендуемая емкость аккумулятора для отдыха

Показывает общий объем батареи для досуга в ампер-часах (Ач).

Однако не все зарядные устройства постоянного тока упоминают об этом.

Если какая-либо модель, которую вы рассматриваете, не упоминается в спецификации, используйте общую скорость поглощения для определения максимального необходимого размера.

Совместимость с батареями

Большинство зарядных устройств для аккумуляторов совместимы со всеми свинцово-кислотными аккумуляторами (AGM и Gels), а также с литий-ионными аккумуляторами.

Однако стоит перепроверить.

Датчик температуры батареи

Некоторые зарядные устройства B2B оснащены датчиком для контроля температуры аккумулятора.

Реагирует на более высокие температуры, уменьшая или отключая зарядку для защиты аккумуляторной батареи.

Комбинированное солнечное зарядное устройство MPPT

Некоторые модели сочетают в себе зарядное устройство постоянного тока с контроллером заряда MPPT для вашей солнечной системы.

Заманчиво выбрать один компонент вместо двух, но чаще всего трудно найти тот, который соответствует вашим потребностям в размерах MPPT и B2B.

Если вы решитесь пойти по этому пути, сначала проверьте, какой размер контроллера MPPT вам нужен, а затем оцените, соответствует ли комбинированное устройство этим требованиям.

Соединение зажигания

Некоторые зарядные устройства B2B необходимо подключать к зажиганию, что немного усложняет установку.

При включении зажигания зарядное устройство начинает подзаряжать аккумуляторную батарею.

Обратите внимание, однако, они начинают разряжать стартерную батарею до того, как двигатель обязательно заработает. Это немного похоже на то, что вы оставили включенными фары, и может привести к разрядке стартерной батареи без осторожности.

Советуем обходить их стороной — достаточно известных брендов и моделей без этой «функции».

Водонепроницаемость

Большинство зарядных устройств имеют определенный уровень водонепроницаемости.Однако некоторые водонепроницаемые модели (идеально подходящие для лодок) не обладают хорошим охлаждением.

Sterling BBW12120 — это пример водонепроницаемой модели, которую производитель не рекомендует для кемперов.

Лучший аккумулятор для зарядных устройств

Есть много брендов, производящих аккумуляторы для зарядных устройств для кемперов и автодомов.

Рекомендуем выбирать известный бренд, предлагающий выбор моделей с хорошими отзывами.

Хорошо известные бренды, обычно устанавливаемые в автофургонах, автодомах и жилых автофургонах, включают:

Схема подключения аккумулятора к зарядному устройству

Советы по установке зарядного устройства B2B

Во-первых, ВСЕГДА следуйте инструкциям производителя.

Каждое устройство B2B отличается друг от друга, поэтому следование их инструкциям поможет вам обезопасить себя, защитить электрооборудование вашего автомобиля и кемпера, а также обеспечить правильную работу устройства.

Если какие-либо из наших советов противоречат инструкциям производителя, следуйте их инструкциям, а НЕ нашим. Они знают свою продукцию лучше, чем мы могли надеяться.

  • Установите зарядное устройство в хорошо проветриваемом месте.
  • Предохранители линии питания аккумуляторной батареи должны быть рассчитаны на номинальный ток зарядного устройства B2B.
  • Убедитесь, что кабели с обеих сторон компонента рассчитаны как минимум на самый большой аккумуляторный блок. Проверьте нашу таблицу размеров проводки , чтобы убедиться в этом. Чем больше кабель, тем эффективнее будет заряжаться аккумулятор, поэтому увеличение размера — это хорошо!
  • Избегайте моделей, которые должны быть подключены к зажиганию.
  • Прокладывайте кабели между батареями по кратчайшему маршруту, размещая зарядное устройство B2B как можно ближе к этому кабелю. Это поможет свести к минимуму падение напряжения.
  • Всегда прокладывайте кабели и зарядное устройство в местах, защищенных от непогоды и поверхностного мусора, избегайте таких мест, как колесные арки.

После установки зарядного устройства ознакомьтесь с руководством по эксплуатации, чтобы узнать, как его настроить.

Скорее всего, вам потребуется настроить устройство на профиль зарядки вашего аккумулятора.

Автоматическое создание схемы электропроводки индивидуального автофургона

Включает в себя 110 В и 240 В, солнечные батареи, B2B, аккумуляторы, инверторы, системы 12 В и 24 В, калибры проводов в AWG и мм² и многое другое!

Схемы подключения и литература для зарядных устройств Pro Charge Ultra Marine, зарядных устройств с питанием от постоянного тока и других преобразователей от Sterling Power


Полный Каталог Sterling Power 2017

                                     
Информация о продукте и инструкции по установке: 

Pro Change Ultra Aquaнаутическое зарядное устройство Генератор для зарядного устройства для батареи

Информация о продукте Информация о продукте Информация о продукте Информация о продукте

Инструкция по установке Устройства Инструкции по установке Инструкции по установке:
AB12210 (Изображение на фото)

                                         
                                                   
          Водонепроницаемый аккумулятор к зарядным устройством

Информация о продукте Информация о продукте Информация о продукте Информация о продукте

Инструкции по установке Инструкции по установке Устройства
PRO REG B (PDAR)
PROREG-BW (AR12W)
PROREG-DW (PDARW)
Схема подключения

зажигание Fed реле напряжения чувствительные реле реле Текущее ограничение напряжения чувствительные реле

Информация о продукте Информация о продукте
90 345 Инструкции по установке Инструкции по установке Инструкции по установке



Pro Split D (диодное расщепление) Pro Split R (реле расщепления) PRO защелки R (защелка реле)

Информация о продукте Информация о продукте Информация о продукте Информация о продукте

Инструкции по установке Инструкции по установке






Pro Combi Combi Combate Accoulenter

Информация о продукте Информация о продукте Информация о продукте

Инструкция по установке Инструкции по установке

Информация об инвертере / зарядное устройство                                      

Библиотека высококачественных фотографий:  

https://www.flickr.com/photos/[email protected]/с/15359183535/

Схемы подключения:

 

Схема подключения морского изолятора батарей Sterling Power ProSplit-R Zero Drop с 1 входом и 2 выходами

 

Схема подключения морского изолятора батарей Sterling Power ProSplit-R Zero Drop с 1 входом и 3 выходами

 

Схема подключения морского изолятора батарей Sterling Power ProSplit-R Zero Drop с 2 входами и 3 выходами

 

Схема подключения морского изолятора батарей Sterling Power ProSplit-R Zero Drop с 2 входами и 4 выходами

 

Схема подключения аккумулятора к зарядному устройству

http://www.sterling-power-usa.com/library/Battery to Battery Wiring Diagram.jpg

Калибр проводов от аккумулятора к зарядному устройству Chart.jpg

 

Цепь зарядного устройства для аккумуляторов 12 В и 6 В

В этом уроке мы собираем схему зарядного устройства 12 В и 6 В с автоматическим отключением. Эта схема может заряжать батареи как на 12, так и на 6 В и автоматически отключает батарею от цепи зарядного устройства, когда она полностью заряжена. Это простая, удобная и недорогая схема, в которой используются два транзистора и несколько других внешних компонентов.

Аппаратные компоненты

9.05041V 9
S.NO Компонент Значение Количество 1 Transformer 230V / 12V 1A 1
2 Диоды для мостового выпрямителя 4007 4
3 Диод 1N4148 2
4 Стабилитрон 1 9 1
5 Конденсатор / 50V 1 1 резистор , 10 кОм, 470Ω 1, 1, 1
7 транзистор 2N4401, 2N4403 1, 1 1, 1
8
8 9 1
9 RELAL 12V 1
10 LED Green 1

Принципиальная схема

Рабочее объяснение

Работа этой схемы проста.Трансформатор, мостовой выпрямитель и конденсатор используются для понижения напряжения до требуемых 12 В, а затем для преобразования и сглаживания сигнала переменного тока в постоянный. Это напряжение теперь отправляется на аккумулятор для зарядки. Транзисторы используются для определения напряжения батареи. Зеленый светодиод используется для визуальной индикации полностью заряженной батареи.

Схема, указанная на схеме, предназначена для зарядки аккумуляторов напряжением 12 В, но ее можно настроить и для зарядки других аккумуляторов. Стабилитрон должен быть около половины напряжения батареи.

Регулировка цепи

  • Для настройки схемы на батареи 12 В замените батарею в цепи на регулируемый источник питания. Батарея 12 В показывает на цифровом мультиметре 14,4 В при полной зарядке, поэтому установите 14,4 В на блоке питания.
  • Регулируйте переменный резистор 10 кОм, пока не загорится зеленый светодиод.
  • Чтобы настроить схему для батарей 6 В, замените стабилитрон на стабилитрон 3 В. Установите 7,2 В на регулируемом источнике питания, потому что полностью заряженная батарея 6 В показывает 7.2В на цифровой мультиметр. Теперь повторите тот же процесс.

Применение и использование

Может использоваться для зарядки или герметизации свинцово-кислотных аккумуляторов на 6 и 12 вольт.

Как подключить солнечную панель и батареи параллельно

Параллельное соединение солнечных панелей и аккумуляторов с автоматической системой ИБП – установка 12 В

12V является наиболее распространенным соединением проводки солнечной панели с батареями. Как правило, для достижения системы от 12 В постоянного тока до 120/230 В переменного тока как фотоэлектрические панели, так и батареи подключаются параллельно.Для этого давайте посмотрим, как соединить две или более солнечных панелей и аккумуляторов параллельно с контроллером заряда солнечной батареи и автоматическим инвертором/ИБП для нагрузки 120–230 В переменного тока, зарядки аккумулятора и прямой нагрузки, т. е. устройства, работающего от постоянного тока.

Большинство солнечных панелей и аккумуляторов имеют напряжение 2/24/36 В и т. д. Если вы хотите увеличить мощность системы, вам придется подключить систему в параллельной конфигурации. Предположим, что одна батарея питает потолочный вентилятор в течение 6 часов. Один и тот же вентилятор может питаться в течение 12 (почти вдвое) часов от двух батарей (одинаковой емкости), соединенных параллельно.Кроме того, две параллельно соединенные солнечные панели будут быстро заряжать аккумуляторы и включать дополнительную нагрузку.

Эта параллельная конфигурация проводки необходима в случае 12-вольтовой системы, т. е. 12-вольтового контроллера заряда и инверторной системы. По этой причине две или более солнечных панелей, а также батареи (каждая по 12 В постоянного тока) подключаются параллельно.

Обратите внимание, что мы также можем подключить несколько солнечных панелей и батарей последовательно, параллельно или последовательно-параллельно для систем постоянного тока 12 В, 24 В, 36 В или 48 В в зависимости от наших требований.

Мы знаем, что напряжение при параллельном соединении одинаковое, а ток разный. т. е. при параллельном соединении токи складываются. Другими словами, уровень напряжения как солнечных панелей, так и батарей остается одинаковым, в то время как емкость тока (Ач = ампер-час в случае батареи) будет складываться (увеличиваться). Проще говоря, две параллельно соединенные солнечные панели или батареи, каждая из которых по 12 В постоянного тока, 120 Вт, 10 А, будут иметь:

10А + 10А = 20А.

То же самое и с батареями, т.е.е. мы можем увеличить емкость аккумуляторов в ампер-часах (Ач) при параллельном соединении.

100 Ач + 100 Ач = 200 Ач

Пока уровень напряжения батареи и солнечной панели остается одинаковым (параллельное соединение)

В 1 = В 2 = В 3 ……В n

т. е. 12 В для солнечных панелей и аккумуляторов на 12 В.

Примечание: Емкость аккумуляторов в ампер-часах (Ач) (а также уровень напряжения солнечных панелей) должны быть одинаковыми для всех аккумуляторов при их последовательном или параллельном соединении.

В этой параллельной конфигурации уровень напряжения как от батарей, так и от фотоэлектрических панелей остается на уровне 12 В при более высокой силе тока. Мы можем подключить выработку электроэнергии (фотоэлектрическая панель) и хранение энергии в качестве резервного источника питания (в батареях) с ИБП/инвертором 12 В и контроллером заряда солнечной батареи.

Преобразователь постоянного тока в переменный питается от прямых солнечных батарей (при обычном солнечном свете / днем) и батарей (в случае затенения или ночи). Инвертор преобразует 12 В постоянного тока в 120 В переменного тока (США) или 230 В переменного тока (Великобритания и ЕС) в зависимости от наших местных уровней напряжения переменного тока и включает нагрузки переменного тока, т.е.е. лампочки, вентилятор и т. д. Кроме того, устройства, работающие от постоянного тока, могут быть напрямую подключены к контроллеру заряда (только клеммы нагрузки постоянного тока).

Для параллельного подключения двух или более солнечных панелей и аккумуляторов просто подключите положительную клемму солнечной панели или батареи к положительной клемме солнечной панели или батареи и наоборот (соответственно), как показано на рисунке ниже.

На следующей схеме подключения показано, что две солнечные панели 12 В, 10 А, 120 Вт, подключенные параллельно, будут заряжать две параллельно подключенные батареи 12 В, 100 Ач, а также питать нагрузку переменного тока через батареи и инвертор в течение дня при обычном солнечном свете.Во время затенения/ночи (когда солнечные панели не вырабатывают энергию) накопленная энергия батареи будет использоваться в качестве резервного источника питания и будет питать нагрузку переменного тока через инвертор. Весь этот процесс выполняется автоматически через ИБП, т. е. он не вызывает затруднений и не требует ручных действий или переключателей/переключателей АВР для включения и выключения электроприборов и автоматических выключателей.

Последовательное соединение солнечных панелей и аккумуляторов с автоматической системой ИБП — установка 12 В

Related Posts:

Почему и как обойти бортовой компьютер Club Car

Почему вы хотите обойти бортовой компьютер Club Car? Корпорация Ingersoll Rand, создатель Club Car, начала использовать бортовой компьютер (OBC) на своих 48-вольтовых тележках для гольфа и электромобилях еще в 1995 году.Когда вы подключаете зарядное устройство к своей тележке для гольфа, OBC сообщит зарядному устройству, когда начинать и прекращать зарядку, в зависимости от уровня напряжения в ваших батареях. Звучит как хорошая идея, верно? Теоретически или в идеальном мире такое использование технологии имеет смысл. Тем не менее, мир не идеален, и эта конкретная договоренность оставляет многих в мире гольфа неудовлетворенными.

Вот жалоба №1. Независимо от выбранной марки зарядного устройства, если вы не обойдете OBC, возникнет одна из двух проблем с зарядкой Club Car.Для моделей Club Car 2006 года и новее подключенное зарядное устройство не OEM не сможет распознать напряжение на аккумуляторной батарее и, в свою очередь, не начнет зарядку. Для более старых моделей подключенное зарядное устройство станет подчиненным OBC и откажется от собственного профиля зарядки в пользу того, что определяет бортовой компьютер.

Жалоба №2 связана с неисправностью системы. Если OBC выходит из строя, вы вообще не можете заряжать свои батареи или больше не имеете доступа к «мозгу» и его алгоритмам, чтобы, например, сообщать подключенному зарядному устройству, когда включать или выключать.Таким образом, вы либо вообще не можете заряжать аккумуляторы, либо постоянно заряжаете и поджариваете аккумуляторы! Угу.

Третья жалоба, в некотором смысле, является комбинацией двух вышеперечисленных, но она просто ставит под вопрос, является ли Club Car OBC лучшим выбором, когда речь идет о продлении срока службы аккумуляторов ваших гольф-мобилей. Многие в отрасли, похоже, согласны с тем, что существуют лучшие варианты зарядки. И некоторые из этих лучших вариантов зарядных устройств для гольф-каров дешевле и служат дольше!

Есть два имени, которым мы доверяем зарядку вашего Club Car: Pro Charging Systems с их зарядными устройствами, оборудованными Delta Volt, и зарядные устройства Schauer.Системы зарядки Pro, также известные как Dual Pro, производятся здесь, в США, а корни Schauers восходят к началу 1900-х годов. Но хватит об этом, давайте перейдем к тому, как обойти OBC на вашей тележке.

Инструкции «Как»

Несмотря на то, что это довольно простая задача, позвольте мне начать с заявления об ответственности за самозащиту. Если вы не уверены или не уверены в своей способности интерпретировать, а затем правильно следовать этим инструкциям, пожалуйста, остановитесь.Идите и найдите кого-нибудь, кто поможет, прежде чем пытаться изменить проводку. Я лично и Impact Battery не несу никакой ответственности за то, что вы собираетесь сделать. Так что не делай глупостей. Есть несколько различных вариантов достижения одного и того же результата, поэтому, пожалуйста, не усложняйте, по сути, очень простую задачу.

На изображении ниже показана электрическая схема гольф-кара Club Car на 48 вольт. Позвольте мне сориентировать вас в том, что вы видите. Хорошо видны три комплекта батарей, каждая из которых на 8 вольт.Батареи пронумерованы от 1 до 6 и соединены последовательно (плюс к минусу), чтобы создать необходимое выходное напряжение 48 В. В правом нижнем углу вы увидите всю проводку, проходящую через бортовой компьютер. В левом верхнем углу изображена задняя сторона зарядного устройства.

Теперь посмотрите на батарею номер 6 в левом нижнем углу. Чтобы обойти OBC, вам нужно будет подключить черный провод 12 калибра от отрицательной клеммы этой батареи к тому месту, где черный провод присоединяется к задней части розетки. Вот и все, ребята; все готово!

Ваше новое интеллектуальное зарядное устройство с автоматической платформой, управляемой микропроцессором, теперь способно измерять напряжение и правильно заряжать и обслуживать ваш электромобиль. Извините, если вы ожидали большего, но это действительно так просто. Наука непрофессионала о том, что вы только что сделали, проста: вы создали цепь или петлю. Обратите внимание, как красный положительный провод отходил от батареи № 1 и шел прямо к задней части розетки? Но до того, как вы добавили этот байпас, не было отрицательного черного провода, идущего непосредственно от аккумуляторной батареи к задней части розетки.Он должен был сначала пройти через бортовой компьютер, прежде чем добраться до этого места.

Вы обошли Club Car OBC, что теперь?

Если вы еще не приобрели новое смарт-зарядное устройство и хотели лучше понять, о чем идет речь, прежде чем сделать решающий шаг, рассмотрите следующее теперь, когда вы знаете, насколько это просто.

Системы Pro Charging делают эту задачу действительно простой . Если вы приобретете i4818-DVCC, он будет поставляться с необходимым байпасным проводом и инструкциями.Эта серия зарядных устройств Eagle Performance, вероятно, является лучшим профилем заряда, который можно купить за деньги, и они сделаны прямо здесь, в Америке. Я не говорю это легкомысленно или как пустой коммерческий факт. Технология зарядки Delta Volt, используемая в Eagle, находится в своей собственной лиге. Когда они впервые представили эту технологию примерно в 2011 году, если мне не изменяет память, мы прекратили продажу большинства других брендов зарядных устройств для гольф-каров. Мы не могли добросовестно предлагать для продажи другие зарядные устройства, которые так далеко уступают только что установленному уровню качества.

Единственная другая торговая марка, которая в настоящее время близка к нашей шкале качества, — это JAC1548 производства Schuaer. Он сделан на Тайване и представляет собой более доступный вариант с высоким уровнем стоимости. (Обновление: по состоянию на март 2018 года это зарядное устройство также поставляется с байпасным проводом.) У них несколько иной способ выполнения одной и той же задачи. Основная цель состоит в том, чтобы вы сравнили диаграмму корзины со сценарием из реальной жизни.Несмотря на то, что он говорит о перерезании черного провода (что вам не нужно), концепция остается той же.

Продукты, обсуждаемые сегодня:

Схема автоматического зарядного устройства 12 В и плата

Свинцово-кислотный аккумулятор 12 В Лучшее автоматическое зарядное устройство. В этой статье я объясню схему недорогого зарядного устройства и бесплатную разводку печатной платы.

Схема рабочая на базе одного транзистора с1815 и общего реле 12в 10а. Цепь отключения содержит небольшие электронные компоненты. После построения этой схемы отрегулируйте потенциометр 10k (от 13В до 15В).

Затем подключите зарядное устройство к цепи, когда аккумулятор полностью заряжен. Цепь будет включена и прервет соединение. при зарядке загорается светодиод. когда заряд достигает примерно 14 В, реле отключается, и при полном заряде батареи загорается светодиод.

Цепь автоматического зарядного устройства 12 В

Плата автоматического зарядного устройства 12 В

Требуемые компоненты

  • Транзистор c1815——————————————1
  • Реле 12 В 10 А————————————————-1
  • 10k pot——— ————————————————1
  • 1N4007 диод ————————————————-3
  • Резистор 10 кОм—————— ————————————1
  • Резистор 100 Ом———————————————— 1
  • Резистор 1 кОм———————————— ——————1
  • Светодиод ————————————————————-2

Рабочий

Схема автоматического отключения, работающая по повышенному напряжению при зарядке аккумулятора.

когда батарея полностью заряжена, зарядное устройство поднимает напряжение с 13-14В, и это напряжение должно быть обнаружено транзистором с1815 и отключить процесс зарядки.

Добавить комментарий

Ваш адрес email не будет опубликован.