Закони кірхгофа: Неприпустима назва — Вікіпедія

Содержание

Законы Кирхгофа простыми словами, теория и примеры

Два приема, которые применяют для упрощения процесса составления уравнений, необходимых при расчетах сложных разветвленных цепей постоянного тока называют законами (вернее было бы сказать правилами) Кирхгофа. Прежде чем перейти к самим правила Кирхгофа введем два необходимых определения.

Разветвлёнными цепями названы цепи, которые имеют несколько замкнутых контуров, несколько источников электродвижущей силы (ЭДС).

Узлом разветвлённой цепи называют точку, в которой сходятся три или более проводников с токами.

Первый закон (правило) Кирхгофа, простыми словами

Первое правило Кирхгофа называют правилом узлов, так как оно касается сил токов в узах цепи. Словесно первый закон Кирхгофа формулируют следующим образом: Алгебраическая сумма сил токов в узле равна нулю. В виде формулы это правило запишем как:

   

С каким знаком сила тока будет входить в сумму (1), зависит от произвольного выбора.

Но при этом следует считать, что все входящие в узел токи имеют одинаковые знаки, а все исходящие из узла токи имеют противоположные входящим, знаки. Пусть все входящие токи мы примем за положительные, тогда все исходящие их этого узла токи будут отрицательными. Если направления токов изначально не заданы, то их задают произвольно. Если при расчетах получено, что сила тока отрицательна, значит, что верное направление тока является противоположным тому, которое предполагали.

Первый закон Кирхгофа является следствием закона сохранения заряда. Если в цепи текут только постоянные токи, то нет в этой цепи точек, которые накапливали бы заряд. Иначе токи не были бы постоянными.

Первый закон Кирхгофа дает возможность составить независимое уравнение, при наличии в цепи k узлов.

Второй закон (правило) Кирхгофа, простыми словами

Второй закон Кирхгофа относят к замкнутым контурам, поэтому его называют правилом контуров. Согласно этому правилу суммы произведений алгебраических величин сил тока на внешние и внутренние сопротивления всех участков замкнутого контура равны алгебраической сумме величин сторонних ЭДС (), входящих в рассматриваемый контур. В виде формулы второй закон Кирхгофа запишем как:

   

где величину часто называют падением напряжения; N – число рассматриваемых участков избранного контура. При использовании второго правила Кирхгофа важно помнить о направлении обхода контура. Как это делается? Произвольно выберем направление обхода рассматриваемого в задаче контура (по часовой стрелке или против нее). В случае совпадения направления обхода контура с направлением силы тока в рассматриваемом элементе, величина входит в (2) со знаком плюс. ЭДС войдет в сумму правой части выражения (2) со знаком плюс, если при движении вдоль контура, в соответствии с избранным направлением обхода первым мы встречаем отрицательный полюс источника ЭДС.

Используя второе правило Кирхгофа можно получить независимые уравнения для тех контуров цепи, которые не получены наложением уже описанных контуров. Количестов независимых контуров (n) равно:

   

где p – количество ветвей в цепи; k – число узлов.

Количество независимых уравнений, которые дадут оба правила Кирхгофа равно (s):

   

Делаем вывод о том, что число независимых уравнений будет равно числу разных токов в исследуемой цепи.

Второе правило Кирхгофа — следствие закона Ома. В принципе любую цепь можно рассчитать, применяя только закон Ома и закон сохранения заряда. Правила Кирхгофа являются всего лишь упрощающими приемами для решения задач, рассматривающих цепи постоянного тока.

Используя правила Кирхгофа для составления уравнений необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Первое и второе правила Кирхгофа дают метод расчета цепи, то есть используя их можно найти все токи в цепи, если известны все ЭДС и сопротивления, в том числе и внутренние сопротивления источников.

Примеры решения задач

Закон Кирхгофа

В сложных схемах типа моста и Т-образных схем токи и напряжения можно определить с помощью законов Кирхгофа.
Закон Кирхгофа для тока гласит: сумма токов, притекающих к узлу, равна сумме токов, вытекающих из узла. Рассмотрим схему на рис. 1.12. Здесь ток I1 – полный ток, притекающий к узлу А, а токи I2 и I3 — токи, вытекающие из узла А.

Следовательно, можно записать
I1 = I2 + I3
Аналогично для узла В
I3 = I4 + I5
Предположив, что I4 = 2 мА и I5 = 3 мА, получим
I5 = 2 + 3 = 5 мА.
Приняв I2 = 1 мА, получим
I1 = 1 + 5 = 6 мА

Далее можно записать для узла С
I6 = I4 + I5 = 2 + 3 = 5 мА
и для узла D
I1 = I2 + I6 = 1 + 5 = 6 мА.


Закон Кирхгофа для напряжений гласит,

что полная ЭДС, действующая в замкнутом контуре, равна сумме падений напряжения на всех резисторах в этом контуре.


Рассмотрим схему на рис. 1.13, состоящую из одного контура. Здесь полная ЭДС Е1 + Е2, действующая внутри контура, равна сумме падений напряжения на резисторах R1 и R2:
Е1 + Е2 = VR1 + VR2
Если изменить полярность Е2 на противоположную (рис. 1.14), то она будет иметь то же направление (против часовой стрелки), что и VR1 и VR2:
Е1 – Е2 = VR1 + VR2 или
Е1 = VR1 + VR2 + Е2

Рассмотрим схему, имеющую несколько контуров (рис. 1.15). Для контура АВЕF можно записать
Е1 = VR1 + VR2,
Для контура АСDF
Е1 – Е2 = VR1 + VR3

Обходя контур ВСВЕ, видим, что ЭДС Е2 имеет то же направление (против часовой стрелки), что и VR3:

Е1 + VR3 = VR1

 

О видеоПервый закон Кирхгофа вытекает из принципа непрерывности электрического тока. Он применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю.

Второй закон Кирхгофа связан с понятием потенциала электрического поля. Он применяется к контурам электрической цепи и формулируется следующим образом: алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю.