Солнечные батарейки с аккумулятором: Аккумуляторы для солнечных электростанций в продаже в Санкт-Петербурге

Содержание

Солнечные батареи для яхты | ЭлектроФорс

Стоимость электрической энергии на катере или яхте очень высока. Особенно, если во время стоянки владелец заряжает аккумуляторы двигателем, на котором не установлен ни внешний регулятор напряжения ни DC-DС зарядное устройство. В этом случае любое оборудование, вырабатывающее электричество дешевле, чем ДВС становится экономически выгодным и быстро окупается.

Содержание статьи

Типы солнечных панелей

Солнечные батареи преобразуют в электричество бесплатный свет солнца, а с учетом того, что цена полупроводников, из которых они сделаны, с каждым годом снижается на яхте или катере панели окупаются в течении нескольких месяцев — года. Их экономически выгодно устанавливать на лодку как можно больше. Однако результат разочарует, если не правильно подобрать мощность батарей или смонтировать их не в тех местах.На катерах и яхтах используется три типа солнечных панелей:

В монокристаллических панелях каждая ячейка вырезана из одного кристалла кремния.

Хотя некоторые полугибкие модели также используют монокристаллические ячейки, как правило панели этого типа жесткие и не переносят изгибов. Коэффициент преобразования света в электрическую энергию у них достигает 22%, но чаще всего составляет 16 — 18%.

У большинства монокристаллических панелей сплошная жесткая задняя стенка. Недавно появились двухсторонние модели, позволяющие собирать свет обоими сторонами. Это удобно, когда под панелью расположена отражающая поверхность, например, белая верхняя часть кабины.

 
Эффективность ячеек, % 22,2-22,4
Мощность в рабочей точке (Pmpp), Wp 310
Напряжение холостого хода (Uoc), B 23,1
Напряжение в рабочей точке (Umpp), B 18,8
Ток в рабочей точке (Impp), А 16,46
Ток короткого замыкания, (Isc), A 17.54
Тип Монокристаллические.
Гибкие. Материал поверхности ETFE или PET

 

В поликристаллических солнечных батареях каждая ячейка состоит из нескольких небольших кристаллов. Такие панели менее эффективны, чем монокристаллические, особенно при низких уровнях освещенности, но зато легче и дешевле.

Во время производства аморфных пластин, испаренный кремний осаждается на подложке. Аморфные панели самые дешевые и очень гибкие, однако их эффективность наименьшая.

Каждая кремниевая ячейка, независимо от размера, при попадании на нее прямого солнечного света создает напряжение около 0,6 вольт. Напряжение всей батареи можно приблизительно определить умножив 0,6 на количество ячеек. Например, напряжение солнечной панели, состоящей из 30 ячеек —  18,0 вольт.

Выходной ток ячейки зависит от ее типа, качества и площади занимаемой поверхности. Поэтому чтобы получить одинаковую выходную мощность с помощью аморфных и монокристаллических панелей, аморфными придется занять в два раза большую площадь.

Кроме того, мощность аморфных батарей примерно на 10% меньше номинальной в течение одного – двух лет после производства. В дальнейшем она стабилизируется.

Характеристики солнечных батарей

В спецификации на солнечную батарею производитель указывает следующие характеристики:

  • Voc — напряжение разомкнутой цепи. Это напряжение отсоединенной от аккумулятора солнечной батареи
  • Isc — ток короткого замыкания. Максимальный ток, который выдает панель, если замкнуть между собой ее клеммы. Выходное напряжение батареи в этом случае равно нулю
  • Imp — максимальный ток нагрузки
  • Vmp — напряжение при максимальной мощности
  • Pmax — максимальная мощность солнечной батареи. Это произведение двух предыдущих параметров. Иногда приводят только максимальную мощность и соответствующее напряжение на нагрузке. В этом случае ток нагрузки можно найти, разделив мощность на напряжение.

Ни одна из приведенных характеристик не описывает реальную производительность солнечной батареи – выходной ток при напряжении зарядки аккумулятора

Напряжение панели при максимальной мощности зависит от количества ячеек и их температуры.
Оно всегда выше, чем рекомендуемое напряжение зарядки, но при подключении к аккумулятору снижается. Из-за этого даже при стандартных условиях тестирования выходная мощность при напряжении зарядки аккумулятора всегда меньше номинальной на 20-25%.

Солнечные батареи испытывают в стандартных условиях. С точки зрения владельца катера или яхты наиболее важные из них — это предположение о том, что лучи солнца падают на батарею под углом 90 градусов, а ее температура составляет 25 ° C. Результаты испытаний изображают в виде вольтамперной характеристики. Иногда производители приводят данные для нескольких разных температур. Максимальная мощность солнечной батареи соответствует изгибу вольтамперной характеристики при 25 ° C.

Два способа подключения солнечных панелей к электрической системе катера или яхты. Слева — распределительная коробка обеспечивает безопасное и надежное электрическое соединение и гарантированно выдерживает атмосферные воздействия. Устанавливается с тыльной стороны панели. Если предполагается поверхностный монтаж, распределительную коробку можно установлена на передней стороне панели. Справа — два кабеля с силиконовой изоляцией и пластиковый кабельный ввод, расположены сзади панели. Электрическая полярность четко указана цветом изоляции. Альтернатива распределительной коробке.

Напряжение панели при максимальной мощности зависит от количества ячеек и их температуры. Оно всегда выше, чем рекомендуемое напряжение зарядки, но при подключении к аккумулятору снижается. Из-за этого даже при стандартных условиях тестирования выходная мощность при напряжении зарядки аккумулятора всегда меньше номинальной на 20-25%.

Точно узнать насколько падает мощность, можно если измерить ток, отдаваемый солнечной батареей во время зарядки аккумулятора. Например, 50-ваттная панель с номинальным напряжением 17 вольт обеспечивает ток 2,94 ампера (Вт / вольт = ампер). По вольтамперной характеристике при температуре 25-градусов находим, что при напряжении 13,0 вольт выходной ток солнечной батареи составляет 3,0 А (Напряжение 13 вольт подходит для зарядки разряженного аккумулятора и аккумулятора с подключенной нагрузкой).

Хотя выходной ток изменился незначительно по сравнению со значением при номинальном напряжении, выходная мощность снизилась до 13,0 вольт × 3,0 ампер = 39 Вт. Это на 22% меньше номинальной мощности.

Существуют и другие потери, которые необходимо учесть перед установкой солнечных батарей на яхту или катер. На суше панели монтируют на опорах, расположенных под углом к горизонту. В этом случае на поверхность попадает максимальное количество лучей солнца. Но если таким образом установить панели на катере или яхте, после каждого поворота они будут терять солнце. Чтобы избежать этого панели на лодках почти всегда устанавливают в фиксированном месте горизонтально. Однако даже в тропиках солнечный полдень (время, когда солнце находится прямо над головой) продолжается всего несколько часов в день. В остальное время лучи солнца падают на панель при меньших углах и количество передаваемой ими энергии заметно уменьшается.

Мощность солнечных панелей

Связь между температурой и мощностью для трех солнечных панелей.
Кривые представляют максимальную выходную мощность при ярком солнечном свете, а не реалистичный выход в нормальных условиях эксплуатации. При температуре поверхности 50 ° C выход панели с 36 ячейками уменьшается на 15 вольт, а на 30-элементной панели на 11 вольт. Это слишком мало для эффективной зарядки аккумулятора в жарком климате.

Реальная мощность панели снижается еще больше, если облако заслоняет солнце или на поверхность батареи падает тень от такелажа, парусов или мачты. Даже частичное затенение одной ячейки в цепи соединенных последовательно значительно уменьшает выходной ток.

Резкие тени влияют на выходную мощность сильнее, чем тени с нечеткими краями. Если на ячейках не установлены шунтирующие диоды, то резкая тень на одной ячейке уменьшит выходной ток всей панели пропорционально затененной площади (например, 50% затенения только одной ячейки снизят выход всей панели на 50%). Ячейка, оказавшаяся в тени, потребляет ток от соседних и перегревается.

Шунтирующие диоды уменьшают проблемы от затенения. Они изолируют попавшую в тень ячейку и останавливают развитие «горячих точек». Однако каждая изъятая из общей цепи ячейка уменьшает напряжение всей панели. Поскольку из-за нагрева выходное напряжение панели снижается, то может возникнуть ситуация, когда оно окажется ниже уровня пригодного для зарядки аккумулятора. В этом случае выгода от шунтирующих диодов исчезает.

Резких теней, падающих на поверхность солнечной батареи на яхте или катере необходимо избегать

Даже в солнечном климате, энергия, реально генерируемая панелью в течении дня, редко превышает уровень 4-5 часов работы при максимальной мощности. Часто это значение еще меньше. Расчеты лучше основывать на предположение, что дневная выработка электричества соответствует 3-4 часам работы батареи на номинальной мощности.

Такой способ сопоставления реальной энергии, вырабатываемой солнечной батареей с максимальной называется пиковыми солнечными часами —  Peak Solar Hours (PSH). Существуют веб-сайты, которые рассчитывают PSH для разных частей света и для разных периодов года. Однако почти все они предполагают, что солнечные панели установлены под углом к горизонту и на них не падает тень. В этом случае PSH получается значительно завышенным. Поскольку реалистичная оценка PSH – 3, то число, получаемое от онлайн-калькулятора, необходимо уменьшить минимум на 30%.

6-ваттная солнечная панель, работающая 3 часа в день, в 12-вольтовой электрической системе произведет 18 Втч = 1,5 ампер-часа электрической энергии в день. 30-ваттная — 90 ватт-час или 7,5 ампер-часов в день (количество ампер-часов в день при напряжении 12,0 вольт = номинальная мощность / 4). Если ежедневное потребление электрической энергии известно, например, 60 ампер-часов при напряжении 12 вольт, то мощность солнечной панели определяют умножив ампер-часы на 4 (60 Ач × 4 = 240 Вт)

Напряжение солнечной батареи

Выходное напряжение и сила тока солнечной батареи относительно «солнечного полдня». Напряжение падает при повышении температуры в солнечный полдень и в начале дня. Солнечная батарея работает на номинальной мощности в течении небольшого промежутка времени. Выходную мощность панели можно увеличить, если регулировать ее положение в течении дня

Чтобы заряжать аккумулятор, напряжение солнечной батареи, как и любого другого зарядного устройства, должно быть выше напряжения аккумулятора. Причем разность должна существовать даже в том случае, когда напряжение аккумулятора вырастает до 14,0 вольт.

12-вольтовая солнечная панель, состоящая из 30 —  44 ячеек, при разомкнутой цепи обеспечивает номинальное напряжение от 18,0 до 26,0 вольт. На первый взгляд этого достаточно для зарядки аккумулятора. На самом деле это не всегда так.

В «солнечный полдень» черный кремний в солнечной батарее нагревается. Если температура панели превысит 25 ° C, то ее выходное напряжение уменьшится по сравнению с номинальным — 1,0 вольт на каждые 12 ° — 15 ° C роста температуры. При температуре поверхности 50 ° C выходное напряжение панели с 30 ячейками упадет до 13,3 вольт. У панели с 33 ячейками до 14,8 вольт, а у панели с 36 ячейками — до 16,3 вольт.

Гибкие солнечные панели установлены на крыше катера. Модули изготовлены под заказ, поэтому точно вписались в место, выбранное заказчиком

Скорость заряда аккумуляторов, подключенных к солнечной батарее с 30 ячейками будет постоянно снижаться, поскольку напряжение на аккумуляторах будет расти, и такая панель не зарядит полностью аккумулятор.

Солнечные батареи, уложенные горизонтально, нагреваются сильнее — между их задней стороной и основанием на котором они установлены нет воздушного зазора. Чтобы компенсировать повышенное падение напряжения, в них увеличивают количество ячеек. В некоторых моделях до 42 штук.

Во время установки в цепь панели иногда добавляют блокирующий диод в дополнение к шунтирующим диодам, описанным ранее. На блокирующем диоде дополнительно падает около 0,6 вольт. Из-за этого 30-элементная панель с блокирующим диодом, особенно в жарком климате, плохо заряжает аккумуляторы. Эффективность панели с 33 ячейками также снижается по мере роста напряжения аккумуляторной батареи.

В южном климате для зарядки аккумуляторов в панели должно быть, как минимум 30 ячеек. 33-элементная солнечная батарея будет давать достаточное напряжение для зарядки, но запас на потери (падение напряжения на диодах, в кабелях, соединениях и плохой солнечный свет) у нее будет небольшой. Панель с 36 ячейками справится с зарядкой аккумуляторов практически в любой ситуации. В умеренном климате панель с 33 ячейками выдает подходящее для зарядки аккумуляторов напряжение всегда, кроме самых жарких дней.

Для эффективной зарядки аккумулятора в жарком климате минимальное напряжение панели  (при стандартных условиях испытания), после вычитания падения напряжения на диодах должно составлять 16,0 — 17,0 В. В умеренном климате — 15,0 до 16,0 вольт.

Регуляторы напряжения солнечных батарей

По мере заряда аккумулятора саморегулируемая солнечная панель, состоящая из 30 ячеек уменьшает выходной ток. Если учесть нагрев панели в жарком климате, падение напряжения в блокирующем диоде и на других участках цепи, саморегулирующаяся солнечная панель будет плохо заряжать аккумуляторы независимо от ее номинальной мощности. Для эффективной зарядки требуется больше ячеек.

Pricing table with an Table ID of «classic-blue_11» is not defined.

Но панель, которая поддерживает напряжение, подходящее для зарядки аккумуляторов, медленно перезарядит их, в то время, пока катер или яхта не используются. Критическая точка возникает, если номинальная мощность панели при напряжении 14,0 вольт превышает 0,5% от емкости аккумуляторной батареи (например, панель с выходным током 1 А, подключена к аккумулятору емкостью 200 Ач).

Если мощность панели выше, необходимо установить регулятор напряжения или отключать панель, когда лодка остается на стоянке. Из-за чрезвычайной чувствительности литий-ионных аккумуляторов к перезарядке любая солнечная панель, используемая с любой литий-ионной батареей, всегда должна иметь регулятор напряжения.

Дешевый регулятор состоит из простой цепи, измеряющей напряжение, и реле. Когда напряжение достигает заданного значения, реле срабатывает и отключает солнечную батарею от аккумуляторов. Другие регуляторы переключают выход солнечных панелей на резистор (шунтирующий регулятор) или на нагрузку, например, водонагреватель (регулятор переадресации).

Более сложные регуляторы напряжения солнечных батарей имеют многоступенчатые программы зарядки аккумуляторов и отслеживают максимальную мощность(MPPT). Некоторые модели отключают аккумулятор, как только в цепи появляется отрицательный ток и заменяют таким образом блокирующий диод. Для выравнивания жидко-кислотных или AGM аккумуляторов предусматривается режим кондиционирования. Один из способов его активации — отключение регулятора и зарядка аккумуляторной батареи при полном напряжении солнечной панели.

Солнечные контроллеры MPPT

Регулятор с отслеживанием точки максимальной мощности – это расширенная версия шунтирующего регулятора с широтно-импульсной модуляцией. MPPT контроллер – это DC-DС конвертер. Он состоит из инвертора, преобразующего постоянное напряжение солнечной панели в высокочастотное переменное. Трансформатора, изменяющего это напряжение и выпрямителя, преобразующего переменное напряжение трансформатора обратно в постоянное.

Зачем нужно такое сложное устройство? Выходное напряжение солнечной панели определяется типом заряжаемого аккумулятора. Однако солнечная батарея работает с максимальной мощностью, когда ее напряжение существенно выше, чем допустимое напряжение зарядки аккумуляторов. Снижение оптимального выходного напряжения до безопасного для аккумулятора уровня уменьшает реальную мощность солнечной батареи на 25% по сравнению с номинальной. Контроллер MPPT делает выходное напряжение солнечной панели независимым от напряжения аккумулятора.

В сложных MPPT регуляторах микроконтроллер контролирует напряжение аккумулятора, уровень его заряда и выходной ток солнечной панели. На основании этих данных регулятор устанавливает выходное напряжение панели, так, чтобы ее мощность была максимальной при этом конкретном наборе условий. Для достижения желаемого результата используется цепь управления в преобразователе постоянного тока.

Установка солнечных батарей

Существует четыре типа морских солнечных батарей, изготавливаемых специально для катеров и яхт:

Полугибкие солнечные панели проще установить, они не требуют сложных приспособлений для монтажа и гораздо легче жестких. Если панели изготавливаются под заказ, то их можно сделать практически любого размера и разместить там, где это удобнее всего

У жестких монокристаллических и поликристаллических панелей самая низкая стоимость 1 ватта вырабатываемой мощности, и максимальная мощность для данной площади. Однако установка этих панелей обходится дороже всего, так как приходится использовать жесткое крепление, защищающее панели от повреждения. Жесткие панели работают с максимальной мощностью когда они установлены на кронштейнах за кормой. Однако в этом случае солнечные батареи становятся уязвимыми для волн и могут быть повреждены при швартовке. Еще одно хорошее место -верхняя часть рулевой рубки.

Полугибкие поликристаллические панели устанавливают на верхнюю часть кабины и другие изогнутые поверхностях. Аморфные силиконовые панели располагают на любой поверхности, а при необходимости сворачивают и убирают для хранения. Во всех случаях потери на нагрев будут меньше, если под солнечной панелью организован воздушный зазор.

Подключение солнечных батарей к аккумулятору

Учитывая, что солнечные батареи сильно чувствительны даже к небольшим падениям напряжения, при монтаже необходимо использовать кабель и терминалы морского качества. Контакты на панели уязвимы для коррозии и их необходимо полностью герметизировать. Над палубой не должно быть никаких дополнительных соединений – один кусок кабеля прокладывают до уплотнения в палубе. Если без соединений не обойтись их выполняют внутри лодки.

Схема подключения нескольких аккумуляторов для зарядки от солнечных батарей. Используется бистабильное реле Sterling Power. Обычное реле потребляет в замкнутом состоянии ток до 0,5 А и может свести на нет работу солнечных панелей. Бистабильное реле потребляет ток только во время включения — 0,5 мА.

Токонесущую способность кабеля получают умножив ток короткого замыкания панелей на 1,25. Затем по таблице подбирают сечение кабеля с учетом 3% падения напряжения.

Если панель подключают непосредственно к аккумулятору для поддерживающей зарядки, то как можно ближе к аккумулятору устанавливают предохранитель. Без него любая неисправность в проводке приведет к короткому замыканию аккумулятора и, возможно, пожару.

Если часть панели может попасть в тень, то вместо одной большой лучше использовать комплект из нескольких солнечных батарей меньшего размера, рассчитанных на тоже напряжение, но соединенных параллельно. В этом случае попавшая в тень панель уменьшит выход, но не повлияет на остальные в цепи. Затенение части большой панели снизит выходную мощность всей батареи.

Если на катере или яхте организована 24-вольтовая электрическая система, то соединять две 12-вольтовые солнечные батареи последовательно неправильно. Затенение любой области на любой панели повлияет на обе. Лучше соединить их параллельно, получить на выходе 12 вольт и использовать DC-DC конвертер для повышения напряжения до 24 вольт.  В этом случае одна панель может полностью оказаться в тени, но это не окажет влияния на вторую.

Несколько аккумуляторов

Некоторые системы раздельной зарядки используют диодные изоляторы которые уменьшают напряжение на 0,6 вольт. Если солнечная батарея используется для зарядки нескольких аккумуляторов в системе с раздельной зарядкой, ее необходимо установить до разделительных диодов. Падение напряжения на диодах в этом случае необходимо учитывать при расчете выходной мощности панели.

Для обслуживания нескольких аккумуляторных групп на яхтах устанавливают зарядные устройства с двумя или тремя выходами. Некоторые модели солнечных регуляторов напряжения также имеют несколько выходов, позволяя заряжать две аккумуляторных батареи без дополнительных диодов или реле. Но такие устройства мало распространены и стоят дороже. Устройство развязки установленное между аккумуляторами, позволяет заряжать несколько аккумуляторных батарей одновременно без падения напряжения. Лучше использовать бистабильное реле, которое в замкнутом состоянии не потребляет ток и не снижает зарядную способность солнечных батарей.

 

АКБ для солнечной электростанции — Pulsar



В последнее время возросло количество солнечных электростанций, параллельно вырос и спрос на батареи, потому что многие хотят получить автономию, независимость от сети, и нужно иметь буфер, а это аккумуляторные батареи

Акуммуляторы – вещь недешёвая, и какого бы типа они ни были, могут стоить до половины всей системы электропитания в проектах придомовых солнечных электростанций. Вместе с тем, такое утверждение относится прежде всего к автономным системам; для других вариантов аккумуляторов требуется меньше, а иногда они и вовсе не нужны. Всё зависит от того, каких целей потребитель стремится достичь при построении домашней солнечной станции: полной автономии, создания системы резервного питанияили заработка на поставке электроэнергии.

Отметим сразу, что в плане экономии средств на энергопотреблении солнечная электростанция (имеем в виду, прежде всего, автономную) не самый рациональный путь. Если у вас есть сеть, то даже при нынешних тарифах выгоднее все же использовать сеть. Однако, мотивами создания собственной СЭС может быть необходимость в энергетической независимости, сознание причастности к новейшим технологиям и коммерческие перспективы в будущем (возможно, недалеком – с учетом постоянного роста тарифов).

Какие солнечные электростанции бывают

Среди солнечных электростанций для домашнего хозяйства мы можем выделить три типа систем. Прежде всего, это сетевые станции (on-grid), где выработка идёт напрямую на внутридомовые нагрузки, а излишки (либо же вообще вся выработанная энергия) отправляются в сеть, для чего заключается договор «зеленого» тарифа. В такой электростанции аккумуляторы отсутствуют. А зависимость от сети сохраняется, ведь ею придется воспользоваться при ненастной погоде, да и отдавать электричество можно, только когда внешняя сеть под напряжением. 

Второй вариант – это гибридная электростанция, система, когда есть и сеть, и аккумуляторы. Такие станции делают потребителя независимым: у нас есть автономия, определенный запас энергии в аккумуляторах, также мы используем энергию солнечных батарей (СБ), но при этом мы пользуемся и сетью, берем из нее, сколько нужно, и можем продавать энергию в ту же сеть. Как правило, аккумуляторы ставятся на гибридные объекты мощностью до 30 кВт.

И третий вариант – это автономная система, когда у нас вообще нет сети: удаленное или, как говорится, «островное» расположение, а также проблемы с подключением сети или нехватка мощности из-за квотирования поставщиком электроэнергии. Под автономными станциями также можно подразумевать и такие, которые снабжены нормальным подключением к сети, но отдача выработанной СБ электроэнергии в неё не производится (off-grid). В автономной солнечной станции аккумуляторы играют самую ответственную роль, и здесь нужно особенно тщательно думать и считать, какие аккумуляторные батареи (АКБ) выбирать.

Схема сетевой солнечной электростанции

Нам нужно, чтобы они полностью обеспечили потребности домохозяйства в электроэнергии. Поэтому должен быть достаточный запас по ёмкости, а что самое важное – аккумуляторы должны обладать хорошим циклическим ресурсом (особенно это важно для «островных» СЭС). В экономическом плане это большие инвестиции, и, учитывая лишь износ аккумуляторов, можно понять, что эти деньги мы едва ли «отобьем». Зато приобретаем комфорт и независимость, а при отсутствии альтернатив «торг и подавно не уместен». Заметим также, что для автономной СЭС может потребоваться и даже необходим (на случай длительной непогоды, особенно зимой) еще и резервный источник электропитания – бензо-, дизель- или газовый генератор, который сможет подзарядить аккумуляторы.

Выбор батареи для собственной СЭС

Существует несколько типов аккумуляторных батарей, применяемых с солнечными электростанциями. Это, как правило, свинцово-кислотные, либо литиевые. Реже используются никель-кадмиевые аккумуляторы, которые могут быть востребованы по климатическим причинам (большие перепады температур) или в тяжелых условиях эксплуатации. Никель-кадмиевые батареи неприхотливы, выдерживают высокие и низкие температуры и незаменимы, например, на станциях газо- и нефтеперекачки в пустыне или на морских платформах. Однако в средней полосе более традиционны первые две разновидности – свинцово-кислотные и литиевые. (С наиболее распространенными типами аккумуляторных батарей, их конструкцией и параметрами можно познакомиться в журнале «Украина Электро», 2018, № 4-5).

Схема гибридной солнечной электростанции

Схема автономной солнечной элетростанции

Гелевая батарея для солнечных электростанций 
производства EverExceed

Выбирая АКБ для солнечной электростанции, нужно исходить из бюджета, а уже в рамках этого бюджета выбирать наиболее выносливую батарею. Причем опять же нужно учитывать режим эксплуатации. Важный параметр – ёмкость, однако едва ли не важнее показатель цикличности, если речь идет о работе в циклическом режиме в условиях автономии, то есть частых циклов заряда-разряда. Если батарея планируется для работы в буферном режиме (используется для поддержки, включается лишь при пропадании сети или непогоде, а при достижении установленного минимального напряжения, при наличии сети, отключается), то требования по цикличности более умеренны. Впрочем, бывают разные схемы энергоснабжения, и при выборе АКБ их следует учесть.

Свинцово-кислотные (СК)

В этой группе предлагается несколько типов батарей. Начиная от стартерных, которые порой (правда, таких случаев уже немного) также предлагают в качестве «солнечных». Это яркий пример того, как делать не нужно. Продержаться в рабочем режиме такие батареи смогут лишь короткий промежуток времени, поскольку им нельзя давать глубокий разряд (при глубоком разряде они быстро деградируют, осыпаются пластины). Если наращивать ёмкость и количество этих батарей, то это уже вопрос объема, места, да и в итоге оказывается значительно дороже. Кроме того, такие батареи при работе выделяют газы и требуют вентиляции. Одним словом, если мы хотим комфортно жить и не бросать деньги на ветер, такой выбор самый неподходящий. Все-таки у каждого типа батарей свое назначение.

Самый лучший выбор для «солнца» из герметизированных необслуживаемых (VRLA) СК-аккумуляторов – AGM либо GEL (гелевые). Лучше, конечно, гелевые: у них при прочих равных условиях более высокий технический ресурс, и они менее прихотливы к глубоким разрядам. Кроме того, поскольку наше солнечное приложение не предполагает сверхмощных токов разряда и чаще всего разряд происходит малыми и средними токами, гелевые батареи отлично подходят для этих случаев. Даже с учетом того, что они чуть дороже, чем AGM, они того стоят.

Гелевые батареи также более выносливы в температурном плане, при высоких температурах чувствуют себя лучше, чем AGM. К примеру, у компании CSPower (АКБ поставляются на рынок Украины под брендами Pulsar и NetPRO Battery) есть серия гелевых высокотемпературных аккумуляторов HTL, имеющих утолщенные мощные пластины со специальными карбоновыми добавками. Эти добавленные компоненты увеличивают выносливость при работе в циклическом режиме и при высоких температурах. С ними аккумуляторы серии HTL могут работать при температуре +35-40°С так же, как обычные АКБ при температуре +20-25°С. А при 80-процентном разряде такие батареи с добавками способны вынести порядка 800 циклов (детальнее о влиянии добавок в свинец читайте во врезке «Чудодейственные компоненты»).

Чудодейственные компоненты

Технологии производства аккумуляторных батарей не стоят на месте. Новшеством последнего времени стало включение в состав пластины свинцово-кислотных АКБ в определенных пропорциях различных добавок для улучшения некоторых характеристик элементов питания. Среди улучшенных параметров можно назвать возможности по отдаче, механическую прочность, температурный диапазон, устойчивость к износу, осыпанию, коррозии, увеличение срока службы, наконец.

В состав активных материалов пластин может добавляться, например, кальций, олово, иногда селен, а также карбон. Олово в качестве добавки, а также карбон, напыляемый на пластины, заметно сильно влияют на циклический ресурс. На рынке уже сейчас есть «свинцово-карбоновые» батареи с декларируемым повышенным циклическим ресурсом (до 1500…2000 циклов разряда глубиной 80…100%). Однако, подтверждение указанных возможностей требует практической проверки и определенного  времени.

Благодаря добавкам расширяется и температурный режим эксплуатации батарей. Это может быть интересно и для солнечных приложений, и для телекоммуникаций, где есть выносные объекты (базовые станции). Например, уже во многих странах, и у нас, и за рубежом используются фонари с солнечным питанием. Как правило, аккумулятор находится здесь же, рядом с опорой: в боксе у земли, под землей или, наоборот, наверху, возле солнечной панели. Понятно, что здесь температурная стойкость очень важна, так как перегрев сильно влияет на химические процессы в АКБ, ускоряя её износ.

Однако вместе с добавками повышается и цена продукции. Известно, что олово примерно в 10 раз дороже свинца, и если добавить необходимые по технологии 1,6% массы, то и цена батареи вырастет примерно на 16%.

Также под «солнечное» назначение очень подходят свинцово-кислотные батареи с трубчатыми пластинами, особенно батареи жидкостного типа серии OPzS. Они более устойчивы к глубоким разрядам за счет обслуживаемости, т.е. пополнения уровня электролита (в отличие от герметизированных аккумуляторов серия OPzS допускает долив воды). Повышенную цикличность обеспечивает трубчатая (панцирная) конструкция положительных пластин. Аналогичные пластины имеют аккумуляторы серии OPzV с гелевым электролитом, которые также имеют высокие показатели цикличности и активно используются в солнечных электростанциях. Обе серии рассчитаны на длительный срок эксплуатации.

Герметизированная аккумуляторная батарея серии OPzV
с трубчатыми пластинами от EverExceed

Довольно часто в «солнечных» целях используют сегодня тяговые батареи для погрузчиков, для электрокаров и штабелеров – PzS/PzB. Это тоже батареи с трубчатыми пластинами, и они рассчитаны на погрузчики, которые тоже работают в циклическом режиме. Потому иногда их используют в качестве автономных солнечных: они имеют хороший ресурс при тяжелой нагрузке – 1500 циклов глубокого разряда. Однако у таких АКБ есть недостаток – это обслуживаемые батареи упрощенной конструкции в сравнении с OPzS (отсутствуют фильтр-пробки), они выделяют газы и аэрозоли электролита, и здесь без технического помещения с вентиляцией, а также долива воды, точно не обойтись. Вдобавок ко всему, за счет особенностей состава активных материалов и повышенной плотности электролита срок службы таких аккумуляторов почти вдвое меньше, чем у OPzS. По этой причине, а также с точки зрения эксплуатационных удобств аккумуляторы PzS подойдут не всем.

Свинцово-кислотные аккумуляторы для типичного дома.

 

Расчет 1

Какие бы ни были батареи по типу, электролиту, исполнению пластин и пр., важный параметр для них – ёмкость. Практика показывает, что для стандартных домов вполне достаточна емкость от 200 до 1000 Ампер-часов (Ач). Так, если для дома площадью до 150 кв. метров с оглядкой на потребление и другие факторы применить четыре 12-вольтовых аккумулятора (для типичного входного напряжения инверторов 48 В) ёмкостью C10 = 200 Ач, то запасаемой в них энергии 9,6 кВт*ч хватит на 8-12 часов автономной работы при переменной в течение дня нагрузке со средней мощностью 0,5…1 кВт. Это с учетом небольшой поправки на преобразование (КПД инвертора) и неполной разрядки аккумулятора (отдачи около 80% емкости).

Естественно, можно поставить аккумуляторы и большей ёмкости, скажем, 300-400 Ач, наращивая ёмкость за счет параллельного включения равноценных групп. Для достижения большей емкости (600…1000 Ач) желательнее применять 2-вольтовые элементы OPzS / OPzV с трубчатыми пластинами (понадобится 24 элемента, соединенных последовательно).

Литиевые АКБ

Так уж получилось, что свинцово-кислотные из-за своей цены и инерционности рынка остаются пока самыми популярными на рынке солнечных электростанций. А между тем в спину им «дышат» литий-ионные батареи, превосходящие СК практически по всем параметрам.

Пока литиевые батареи, конечно, все ещё дороже свинцовых примерно в 2,5-3 раза, однако с ними пользователь очень многое выигрывает. Прежде всего по циклическому ресурсу, который до 10 крат выше; с литиевыми АКБ мы можем сохранить массу пространства в доме, они компактнее и легче. Эти батареи имеют больше возможностей по заряду и разряду. Если СК заряжаются до 12-14 час, то литиевые можно зарядить за час-два. Это очень удобно для автономных станций, потому что в случаях дефицита солнца летом или тем более зимой, для заряда батарей запускается дизельный генератор. И согласитесь, куда приятней и для души, и для кармана, когда работать ему придется всего пару часов. 

Еще один плюс литиевых батарей – возможность дистанционного мониторинга: мы видим все параметры, можем отслеживать все процессы в аккумуляторах. Здесь налицо состояние и всей АКБ в целом, и каждой ячейки в отдельности, отображаются характеристики по ёмкости, по току, по циклам заряда-разряда. А в случае необходимости коррекцию можно сделать через компьютер, без внешнего воздействия.

Для непрофессионального пользователя система управления АКБ – Вattery management system (BMS) – это вообще находка. Попробуй узнай, какое сейчас напряжение в свинцово-кислотной батарее и хватит ли заряда, к примеру, для стирки! А с литиевыми просто – все данные на экране. Срок службы литиевых батарей также больше. А такого понятия, как «высох», вообще нет. Для СК повышенное напряжение заряда ведет к ускоренному высыханию; если же продержали ее случайно разряженной неделю (например, уехали или недосмотрели хозяева) – считай, пропала батарея (засульфатировалась). Литиевую же внутренний компьютер сам отключит на определенном уровне, да и побыть частично разряженной для нее не так критично.

Если говорить о температурном режиме, то у литиевых батарей диапазон значительно шире. В плюсовых температурах мы можем их эксплуатировать до +60°С, а при отрицательных температурах потери емкости у них значительно меньше, чем у СК. Мы знаем, как иногда сложно на морозе заводится автомобиль, если аккумулятор потерял емкость. Так вот, литиевая батарея при -20°С в зависимости от типа элементов может отдать от 50 до 80% своей ёмкости. А СК в таких условиях – от 0 до 70%, в зависимости от тока разряда (чем выше ток разряда, тем меньше ёмкость), и это при условии, если в АКБ не замерзнет электролит.

Мнение эксперта

Преимущества «лития» бесспорны, но важно правильно оценить свои задачи

Сегодня наблюдается такая тенденция на рынке альтернативной энергетики: все интересуются литий-ионными батареями, но это пока не перешло в этап массовых покупок, есть определенный рубеж. Точно такое же было на рынке погрузочной техники (а мы уже несколько лет поставляем литий-ионные батареи в этот сектор): несколько лет покупатели спрашивали цену, им было дорого, со временем решались на покупку. Сначала международные компании, а потом уже и наши. И сегодня это уже очень серьезное направление на рынке погрузочной техники.

Преимущества литий-ионных аккумуляторов относительно свинцово-кислотных (СК) бесспорны, и по всем параметрам. Например, цена: кислотные первоначально дешевле, но по циклам заряда-разряда много дороже. Если сравнить первоначальную стоимость, то кислотные батареи будут дешевле в 2-4 раза, однако у герметичных кислотных 500 циклов, а у литий-ионных – 4000 циклов. Таким образом, по цене за цикл литий-ионная получается в 2 раза дешевле СК. Хотя срок окупаемости растягивается на годы, на 5, 10 лет, в зависимости от аккумулятора.

Большое преимущество «лития» в том, что можно прерывать заряд, потом заряжать снова, на него это не влияет, в сравнении с СК, для которого такие рваные циклы просто губительны. Или, например, недоразряд. Люди, бывает, берут свинцово-кислотные аккумуляторы с запасом и разряжают их наполовину, но если таким батареям не делать профилактически полные циклы раз в месяц-два, то они приобретают память и становятся через пару лет 50-процентной емкости. У литий-ионной АКБ эффекта памяти нет.

У литий-ионных, в отличие от СКС, имеется система мониторинга. Можно также вставить SIM-карту, и удаленно, через компьютер, наблюдать за состоянием аккумулятора; к тому же по любому сбою приходит сообщение.

При выборе батарей для солнечных электростанций все зависит от будущего режима работы – как часто планируется разряжать батареи. Если речь идёт о резервном питании (допустим, свет иногда пропадает), то свинцово-кислотных будет достаточно. Но если это автономное энергоснабжение, то нужен аккумулятор с большой цикличностью. Тогда, если есть первоначальный капитал, лучше купить литиевые батареи – и дольше послужат, и в 2 раза выиграешь по цене.

Хотя есть одна закавыка: в солнечной энергетике не полностью используются преимущества литий ионных батарей по зарядке: он заряжается большим током и быстро. А «солнце» дает небольшие токи зарядки, и там это длительный процесс. 

Александр ПРЯДКО, директор компании «Энерджи ГМБХ»

Литиевые аккумуляторы для «солнца».

 

Расчет 2

Очевидно, что литиевые батареи значительно привлекательней для домашней солнечной электростанции, и инвестиция в них куда более выгодна, чем в СК. Единоразово в литиевые мы вкладываем денег больше в 2,53 раза, однако по итогу значительно продлеваем срок службы наших АКБ и надолго избавляем себя от «головной боли», связанной с различными моментами их эксплуатации.

Попробуем сделать сравнительный анализ эффективности СК и литиевых батарей. Хорошая 12-вольтовая AGM-батарея ёмкостью 100 Ач за два года сможет обеспечить где-то 700 циклов разряда глубиной 80%. Средняя стоимость такой батареи примерно 250 долларов. Литиевая батарея с подобными исходными параметрами (ёмкость, напряжение), как уже говорили, будет стоить в 2,5-3 раза дороже, но легко прослужит 10 лет. При этом два года мы назначаем с некоторой форой для свинцовых, так как за этот срок их ожидает много рисков – «усушка», деградация пластин, недозарядка, глубокий разряд (сульфатация) и т.д. – так что два года работы возможны при самых благоприятных обстоятельствах. А литиевые мы в это время не жалеем, используем по полной, под 100% их возможностей. И вот, со всеми этими погрешностями в течение срока эксплуатации мы получаем чистую двукратную выгоду.

Завершая обзор, хочется вернуться к его началу и еще раз связать идею выбора аккумуляторных батарей для солнечных электростанций, с той отдачей, которую мы ждем от нашей СЭС. А рынок АКБ представляет массу возможностей для решения любых задач. Сегодня это свинцово-кислотные, литиевые батареи, а на горизонте уже новые технологии, графено-полимерные аккумуляторы, но это, как говорится, уже другая история…

Редакция благодарит заместителя директора компании «Пульсар Лимитед» Илью Питателева за консультации при подготовке статьи.

Подготовил Евгений ПОЛИЩУК,

«Украина Электро» — журнал электротехнического рынка Украины

6 (14), 2018

http://ua-electro.com/


Солнечная батарея на балконе: использование аккумуляторов / Хабр

Привет Geektimes! Данная статья является продолжением

предыдущей части

, про опыт установки 100-ваттной солнечной батареи на балконе. В первоначальном варианте к батарее был подключен DC-DC преобразователь, от которого можно заряжать различные домашние устройства. Следующим шагом было решено добавить возможность накопления энергии для использования в вечернее и ночное время.

Что получилось, подробности под катом.



Теория

Как говорилось в

предыдущей части

, несмотря на не оптимальные углы установки и малое количество панелей (2х50Вт), солнечная панель в принципе работает. Но дальше возникает вопрос

что делать

как эту энергию использовать.

Вариантов несколько:

1) Использовать энергию только по мере надобности, например для зарядки планшета. В плане КПД это самый плохой вариант — днем когда светло, все на работе, да и использовать 100-ваттную панель для зарядки телефона слишком избыточно — 95% светлого времени солнечная панель стоит неподключенной.

Опционально, можно просто подключить готовый USB power bank, например на 10000мАч. Работать будет, но решение во-первых, неинтересное в плане творчества, во-вторых, максимальная мощность для зарядки по USB около 10Вт, т.е. уже для 50-ваттной панели большая часть энергии будет пропадать впустую (хотя для пасмурной погоды сойдет). Ну и в-третьих, выбор подключаемых по USB устройств не так уж велик.

2) Отдавать энергию в электросеть (технология grid tie), чтобы она использовалась другими электроприборами. В принципе, это современный и наиболее используемый в частных домах вариант. Очень удобно, ничего не пропадает, все что сгенерировалось, отдается в сеть, количество требуемых компонентов минимально. Для моего балкона оно увы, не заработало — рекомендуемая мощность панелей для нормальной работы инвертора от 200Вт, а увеличивать число панелей еще в 2 раза уже не входило в бюджет. Да и экономического смысла большого не было — окна выходят на восток, и прямые солнечные лучи попадают на них только утром до 11-12 часов дня.

3) Накапливать энергию в аккумуляторе. Раз первые два способа не подошли, это единственное что остается делать.

Плюсы очевидны:

— Возможность использования запасенной энергии в любое время.
— Возможность подключения к батарее более мощной нагрузки (например электродрель не заработает от солнечной панели, а от аккумулятора легко).
— Возможность использования разнообразных устройств, рассчитанных на 12В — светодиодные лампы, зарядки для ноутбука и пр.
— Опциональная возможность подключения инвертора на 220В, и как бонус, появление в доме резервного источника питания на случай отключения электричества.
Минус тоже очевиден: батареи в таких системах это самый недолговечный, весьма дорогой, да и экологически вредный компонент. Но последний минус мы наоборот обратим в плюс — батареи могут использоваться повторно (примерно то же, что по слухам, делает Маск в своих Tesla Powerwall).

Полезных для нас видов аккумуляторов мы выделим два:

Свинцовые и их разновидности: гелевые, щелочные, автомобильные, от UPS и пр. Дешевы, пожаробезопасны, но на этом плюсы заканчиваются. Количество циклов невелико, масса и габариты неудобны. В то же время, это самый дешевый и простой вариант — и дешево, и просто, и «накосячить» тут невозможно. Цена контроллера заряда на eBay менее 1000р, аккумулятор можно купить в любом ближайшем магазине.

Литиевые. Их много разных видов, и запутаться куда легче.
«Традиционные» литий-ионные: напряжение 3.7В, максимальное напряжение зарядки 4.2В, минимальное напряжение 3.0В. Не любят перезаряда (число циклов снижается кардинально), и гипотетически (при отсутствии защиты и нарушении режима эксплуатации) пожароопасны.
Литий-железо-фосфатные (LiFePO4): напряжение 3.2В, максимальное напряжение зарядки 3.65В, минимальное напряжение 2В. Пожаробезопасны, судя по тестам, даже при КЗ лишь воняют, но не горят.

Литий-титанатные (Li4Ti5O12): напряжение 2.4В, максимальное напряжение зарядки 2.85В, минимальное напряжение 1.8В. Пожаробезопасны, плюс имеют большое количество циклов (по разным источникам, от 7000 до 15000), что делает их практически «вечными». Минус в том, что напряжение минимально, да и купить их непросто.

Более подробно описание разных видом, с их плюсами и минусами, можно почитать здесь. Очевидно, что каждому типу аккумуляторов нужен свой режим заряда, и в общем случае зарядные устройства несовместимы с разными типами ячеек, если в настройках нет возможности выбора. Попытка зарядить LiFePO4 обычным зарядником «для лития» до напряжения 4.2В просто испортит батарею.

В итоге, из всего разнообразия, было решено остановиться на самом простом и проверенном варианте: литий-ионных батареях форм-фактора 18650.

— Это самый популярный форм-фактор, такие батареи используются в ноутбуках, шуруповертах, powerbank-ах и пр.
— Такие батареи легко достать, например из б/у ноутбучных батарей, в которых обычно выходит из строя только несколько ячеек, а остальные вполне работоспособны.
— Как следствие предыдущего пункта, повторно используя батареи, мы не только не вредим экологии, а наоборот, даем элементам вторую жизнь.

Здесь можно подробно посмотреть на тестирование таких батарей:

Извлечение и тестирование ячеек из батареи ноутбука

Элементы 18650 несложно купить и новые, а при покупке большими партиями цена батарейки может составлять меньше доллара за штуку. Это позволяет энтузиастам создавать системы типа таких:

Или даже таких (фото с youtube):

Кстати, если кому интересно посмотреть на более-менее профессиональный подход к сборке батарей, делается это так:

Для балкона, столько разумеется не надо. Батареи напряжением 12В и емкостью 8-10Ач для первой итерации вполне достаточно. При желании число элементов можно будет потом увеличить.

В качестве нагрузки планируется во-первых, зарядка всевозможных девайсов, во-вторых, использование 12-вольтовой LED-лампы в качестве вечернего освещения. Дальше будет видно, в зависимости от того сколько энергии удастся собирать.

Практика

Для сборки системы нам потребуется ряд компонентов. Все довольно-таки дешевое, космических цен здесь нет.

1. Контроллер заряда

Контроллер является логическим центром всей системы, он берет энергию от солнечных батарей и заряжает ею аккумуляторы, также включает и отключает нагрузку, если батареи слишком разрядились. Цена вопроса от 15$ за дешевый контроллер как на фото, этого вполне достаточно. Главное чтобы в контроллере была возможность настраивать напряжение батареи, т.к. напряжение литиевой батареи отличается от свинцовой.

2. Аккумуляторы 18650

У меня не стоял вопрос как максимально сэкономить, поэтому я просто заказал 6 штук на eBay.

По идее, если поспрашивать в сервис-центрах, то старые ноутбучные батареи можно найти практически даром, единственное что для их тестирования понадобится измеритель емкости, цена вопроса около 4$:

Уже заказав аккумуляторы, я понял что проще было-таки купить батарею от ноутбука: ячейки там уже с припаянными выводами, присоединить их было бы проще, да и цена была бы чуть ниже. Видео как аккуратно разобрать батарею, можно посмотреть здесь:

Разборка батареи ноутбука

А так, пришлось купить еще держатели для аккумуляторов, впрочем стоят они недорого. Как вариант, можно купить аккумуляторы с уже припаянными пластинами, стоят они чуть дороже.

Кстати, если кто-то решит брать аккумуляторы 18650 на eBay, стоит иметь в виду, что их реальная емкость 2000-3500мАч. Батарей емкостью 9900мАч и выше, не бывает, то что продается на ебее с такой надписью — китайский фейк.

Реальная емкость таких батарей видна на скриншоте с видео от одного из покупателей:

Такую батарею стоило бы взять, только если расчитывать открыть диспут и получить возврат денег от продавца (жуликов надо наказывать). Только месяц ожидания того не стоит, да и батарея с емкостью 500мАч годится только для мусорного ведра.

3. BMS

Чтобы ячейки в батарее заряжались корректно, нужна плата BMS — battery management system. Плата обеспечивает равномерный заряд ячеек, а также отключает заряд/разряд при выходе напряжения за границы допустимых.

Искать проще на eBay по словам

18650 Protection Balance Board

.

Примечание: как показало тестирование, данная плата не совместима с контроллером заряда, т.к. в контроллере заряда уже есть задаваемые пороги отключения. Нужна простая плата с балансиром «LiPo Balance Board», все остальное контроллер заряда берет на себя. Подробнее описано в статье про тестирование контроллера.

На схеме условно показаны 3 аккумулятора, в реальности их можно параллелить, и вид батареи может быть примерно такой (фото с сайта продавца):

Кстати, о количестве аккумуляторов в батарее. Их в принципе, много не бывает. Во-первых, даже небольшой недозаряд значительно увеличивает продолжительность жизни батареи — если снизить максимальное напряжение заряда с 4.2 до 4.1В, количество циклов

возрастет вдвое

, а емкость уменьшится лишь на 10%. Во-вторых, если параллелить ячейки, то зарядные токи также уменьшаются, что уменьшает нагрев и увеличивает продолжительность жизни батареи. Так что по возможности, 12 аккумуляторов лучше чем 9, а 9 лучше чем 6, и так далее, верхний предел ограничен лишь ценой и здравым смыслом.

Не является обязательным, но вполне удобным является прибор для контроля напряжения ячеек, цена вопроса так же около 5$. Он же может работать как балансир ячеек.

Теперь соберем это в кучу, и как говорится, со всем этим попытаемся взлететь. Статья и так получилась большой, так что продолжение в

следующей части

.

Аналогичный эксперимент от других пользователей можно посмотреть например здесь:

Видео в 3х частях:

PS: Вместо заключения: про безопасность литиевых батарей

В интернете ходит много страшилок о пожароопасности литиевых батарей, да и случаи возгорания действительно иногда случаются, последний epic fail c телефонами Samsung тому пример. Насколько безопасна описанная выше батарея? Еще раз напомним, что ячейки 18650 массово используются в ноутбуках, так что эксплуатация такой системы ничуть не более опасна, чем использование ноутбука, включенного в розетку. Даже более того, элементы здесь имеют лучший температурный режим, чем в закрытом корпусе ноутбука, а защита от перенапряжения является двойной (настройка напряжения в контроллере заряда + наличие платы защиты). И еще более того, токи заряда в «солнечной» системе меньше чем в ноутбуке — здесь нет нужды зарядить аккумуляторы максимально быстро, достаточно если они зарядятся за световой день. Так что шанс возгорания минимален. Но все-таки, надо написать, хотя это должно быть и так очевидно: все эксперименты делаются на свой страх и риск, за возможные негативные последствия автор ответственности не несет.

И разумеется, при создании самодельных девайсов важно помнить, что литиевые батареи запасают в себе достаточно много энергии, так что их важно защитить от короткого замыкания, детей, домашних животных и пр. Также при использовании б/у батарей их следует отобрать и протестировать на емкость и токи заряда/разряда.

Как выбрать аккумулятор для солнечных батарей — VINUR

Современные производители выпускают солнечные батареи для отопления, внутреннего и уличного освещения, а также для других бытовых и производственных потребностей (нужд). Каждое устройство оснащено определенным аккумулятором, предназначенным для накопления энергии, которую вырабатывают солнечные батареи. Благодаря этому пользоваться их энергией можно даже ночью. При больших нагрузках и в пасмурную погоду аккумулятор подпитывает систему, тем самым обеспечивая электроснабжение дома и прилегающего к нему участка.

Разновидности

Современные производители выпускают различные конфигурации АКБ. Между собой они отличаются принципом действия и условиями работы. Перейдя по адресу, покупатели могут приобрести качественные накопители от известных фирм-изготовителей.

1. GEL и AGM

Гелевые (GEL) накопители для солнечной электростанции наделены положительными характеристиками. Их резервуары наполнены гелевым электролитом, находящимся в желеобразном состоянии. При повреждении корпуса электролитное вещество не вытекает. Во время зарядки накопители не выделяют ядовитых паров.

Аккумулятор для солнечных батарей AGM оснащен абсорбирующими стеклопакетами, в которых находится в связанном состоянии электролитное вещество. Его можно устанавливать в любом положении. Глубина разряда устройства составляет около 80%.

Они способны выдержать до 500 циклов. Отличаются высоким уровнем заряда. Температурный диапазон использования варьируется от 15 до 25°С. На зарядку аппаратов не требуется много времени.

Срок их эксплуатации не превышает 5 лет. При транспортировке они не утрачивают накопленного заряда. Хорошо работают при недостаточной вентиляции помещений. Перезаряд приводит к выходу из строя источников AGM. Недозаряд не оказывает на них негативного воздействия.

2. Щелочные

Данные накопители без негативных последствий переносят глубокие разряды различных величин. Источники обладают большими размерами и эффектом памяти. При неполном разряде АКБ в последующей подзарядке утрачивает определенную часть своей емкости.

3. Литиевые

Накопители, относящиеся к этой категории, имеют небольшие размеры. Их отличительной особенностью является способность без потери емкости выдерживать глубокие разряды. Заряд устройства происходит относительно быстро.

4. OPzS

Принцип работы аппаратов аналогичен свинцово-кислотным конструкциям. Благодаря трубчатому аноду, они обладают увеличенным количеством циклов «заряд-разряд», что повышает надежность работы системы.

5. Автомобильные

Солнечная электростанция, оснащенная автомобильным АКБ, будет функционировать нестабильно. Автомобильные аккумуляторы не могут обеспечить ее длительную работу. Поэтому, их используют редко.

Процесс подключения

В солнечных системах применяется по несколько аккумуляторов. Подключают их последовательно, параллельно и комбинировано. Во всех вариантах необходимы накопители, изготовленные одним производителем, относящиеся к одной серии и имеющие одинаковые характеристики. Чтобы контролировать процесс распределения напряжения, понадобится установка контроллера.

Рекомендации по выбору

Отдавайте предпочтение ударопрочным конструкциям.

Желательно, чтобы изделие обладало следующими техническими параметрами:

  • возможность к самозаряду;
  • широкий температурный диапазон;
  • большой ток;
  • хорошая емкость;
  • длительный срок эксплуатации.

Номинальную емкость производитель указывает в характеристиках к устройству. Необходимую емкость для каждой системы можно рассчитать исходя из показателей запланированного энергопотребления.

Чтобы аккумулятор для солнечных батарей не разряжался полностью, оставляйте 50% запаса. Обращайте внимание на габариты, массу, а также время заряда и разряда накопителя.

Желательно, чтобы непроизвольная потеря энергии в АКБ была минимальной. Для уменьшения показателей саморазряда наименьшая температура использования должна быть более 20°С.

Подсчитав количество циклов заряда и разряда, можно узнать срок службы накопителя. Если емкость установки составит 60-70% от номинальных показателей, она может стать непригодной для дальнейшего использования.

Обратите внимание на КПД инвертора. Качественные преобразователи постоянного тока обладают высокой производительностью.

Правила использования аккумуляторов

При больших нагрузках солнечную электростанцию оснащайте несколькими АКБ, объединив их в одну группу. Несколько накопителей обеспечат большую емкость (только при последовательном соединении).

Заряжайте их, следуя инструкции, прилагаемой производителем. Защищайте накопители от воздействия прямых солнечных лучей. Периодически проверяйте плотность электролита.

Аккумуляторы для солнечных батарей

Аккумуляторы для солнечных батарей — это буфер, обеспечивающий накопление энергии посредством обратимых химических реакций, благодаря чему гарантируется работа в циклическом режиме.

В солнечных системах используются аккумуляторные батареи герметичные и малообслуживаемые, а также Никель-солевые накопители энергии которые обладают большим ресурсом и предназначены специально для циклической работы. В настоящий момент самые востребованные свинцово-кислотные аккумуляторы для солнечных батарей , т.к это самый доступный класс накопителей энергии обладающий КПД на уровне 80% и широким температурным диапазоном.

Использование различных типов АКБ в солнечной энергетике

 

Аккумуляторные батареи в автономных системах электроснабжения выполняют две основные функции, сохранение вырабатываемой энергии и обеспечение стабильного выходного напряжения на нагрузках.

Электроэнергия, вырабатываемая солнечными панелями, может запасаться в АБ на длительное время (десятки дней и даже месяцы), и в любой момент может быть передана в нагрузку, при этом разрядный ток может многократно превышать ток заряда и обеспечивать питание нагрузки, мощность которой многократно превышает установленную мощность солнечной батареи.

В системах резервного электроснабжения

В системах резервного электроснабжения солнечные панели заряжают аккумуляторы при наличии сети, и аккумуляторы выдают энергию, когда сеть пропадает. Это очень важно, когда для функционирования систем жизнеобеспечения дома необходима электроэнергия —  питание циркуляционных насосов и электроники котлов, другой электроники и электрооборудованию, работающих по циклическим процессам, и резкое пропажа электросети негативно сказывается на их работоспособности в дальнейшем. Наличие системы бесперебойного электроснабжения позволить не замерзнуть при авариях в электросетях, а также исключить выход из строя дорогостоящего электрооборудования.

В системах с возможностью добавления мощности

Такие системы позволяют обеспечить кратковременно нагрузку мощностью в несколько раз превышающей подключенную мощность сети. Аккумуляторы накапливают энергии в периоды низкого электропотребления, и отдают ее в нагрузку в периоды пикового потребления. Пуск некоторого электрооборудования увеличивает нагрузку в 10 раз.

Рассмотрим  типы и технологии аккумуляторов

AGM – кислотные герметизированные аккумуляторы, в которых электролит адсорбирован стекломатами. Выдерживают примерно 250 – 400 циклов разрядов на 80%. Чувствительны к перезарядам.

Гелевые(GEL) – кислотные герметизированные аккумуляторы, в которых электролит загущён с помощью селикогеля. Выдерживают примерно 350 – 450 циклов разрядов на 80%. Более чувствительны к перезарядам (может выпариться вода). Необходимо обеспечить точное соответствие зарядных токов и напряжений c паспортными характеристиками.

Класс высококачественных кислотных аккумуляторов, построенных на решетчатой структуре пластин с трубчатыми электродами, называются панцирными. Подразделяются на герметизированные гелевые (выдерживают порядка 900 — 1000 циклов разрядов на 80%) и кислотные малообслуживаемые (выдерживают около 1500 циклов). На базе панцирной технологии выпускаются тяговые, стационарные и солнечные АКБ.

Тяговые – предназначены для использования в электроподъемниках и другой электротехнике. Стандартная маркировка – малообслуживаемые PzS (H), герметизированные гелевые – PzV.

Стационарные – применяют на промышленных объектах (там необходима повышенная долговечность и надёжность). Стандартная маркировка — малообслуживаемые в прозрачном корпусе — OPzS, герметизированные гелевые — OPzV. У них самая большая надёжность и самый большой срок службы из всех типов свинцово-кислотных аккумуляторов.

Солнечные – модификация тяговых или стационарных аккумуляторов.

NiNaCl, Никель Натрий Хлоридные — Аккумуляторные батареи, изготовленные по Ni-Солевой технологии из никеля, стали, керамики и обыкновенной поваренной соли. Применимы в таких областях как общая и альтернативная энергетика, телекоммуникации, в регионах с частыми отключениями электричества, в экстремально жарких и холодным климатических условиях (от -40°С до +60°С), при повышенной влажности (исполнение до IP65).

 

О проблемах эксплуатации свинцово-кислотных аккумуляторов.

1. Степень разрядки источника тока.

Свинцовые аккумуляторы не терпят хранения в разряженном состоянии, при падении заряда ниже 20% активизируется процесс образования нерастворимых соединений серы, которые, в первую очередь сказываются на емкости АКБ. Нахождение АКБ в разряженном состоянии (более чем на 80%) в течении более чем 12 часов недопустимо.

Для восстановления сильно разряженной батареи применяется длительный ее заряд очень маленькими токами (0,01 — 0,05С), с последующим восстановительным разрядом очень большим током (0,3 — 0,5 С). И так, 5 — 10 раз. Но если сульфатация превысила некоторый предел, восстановление ёмкости АКБ станет невозможным.

2. Температурный режим

Другим определяющим фактором для времени жизни АКБ, можно назвать температуру электролита. Эксплуатация при повышенной на 10 градусов температуре ведет к сокращению срока службы вдвое (как отмечалось ранее, лучшие АКБ не столь чувствительны к этому параметру).

3. Для долголетия аккумуляторов, необходим и полный, 100% заряд, что затруднительно обеспечить, если сетевого 220В нет вообще и если для заряда использовать только мини электростанцию. Необходимо, хотя бы раз в месяц проводить 13 часовую, 100% зарядку, а в остальное время ограничиваться 80% зарядом. Аккумуляторам вреден и постоянный длительный перезаряд (заряд повышенными токами, и высокое напряжение конца заряда, и высокое напряжение буферного поддержания).

Преимущественные  особенности Ni-Солевых аккумуляторных батарей

·         Неизменные эксплуатационные характеристики в диапазоне температур от -40°С до +60°С. Длительный, практически неограниченный, срок складского хранения без потери емкости и качественных характеристик

Температура окружающей среды не оказывает существенного влияния на срок службы Ni-Солевые АКБ. Что особенно актуально для развития Альтернативной энергетики в России. Изменение емкости Ni-Солевые АКБ происходит в пределах 5%, в зависимости от температуры окружающей среды, в то время как у свинцовых изменение емкости происходит в разы, что наглядно видно из вышеприведенного графика.

·         Более 3000 циклов при глубине разряда 80%

На графике хорошо видны преимущества Ni-солевых АКБ перед другими видами АКБ. В буферном режиме  Ni-солевые АКБ, при разрядах 10-20%, могут прослужить до 100 лет.

 

 

 

 

·         Батарея способна сохранять накопленную энергию в отключенном состоянии неограниченное время

У Ni-солевых АКБ отсутствует такой эффект как саморазряд. Так, например, саморазряд в герметизированных свинцово-кислотных аккумуляторах значительно уменьшен и составляет 40% в год при 20 °С и 15% при 5 °С. При более высоких температурах хранения саморазряд увеличивается: при 40 °С батареи лишаются 40 % емкости за 4-5 месяцев.

У других свинцово-кислотных АКБ саморазряд составляет 5 — 15% в месяц, в зависимости от условий и температур хранения АКБ.

·         Не требует кондиционирования и вентиляции воздуха, отсутствие выделения в окружающую среду вредных и взрывоопасных веществ

Из-за отсутствия жидкого электролита, отсутствуют любые газовыделения, что присуще ряду кислотных батарей. Свинцово-кислотные АКБ требуют определенных правил утилизации, из-за содержания вредных веществ.

·         Не требует обслуживания в течение всего срока службы батареи. Возможен удаленный мониторинг батареи

С Ni-солевыми АКБ действует принцип «поставил и забыл», вы про нее и не вспомните. Встроенная система мониторинга (BMS), проводит автоматическую диагностику состояния батареи, выявление проблем и отключение батареи из цепи в случае серьезной неисправности. Встроенная защита отключения батареи по низкому напряжению (LVD), а так же, дополнительная защита, обеспечиваемая независимой логической схемой, подключаемой в случае отказа модуля управления (BMS).

Еще одной отличительной особенностью Ni-солевых АКБ является отсутствие обязательной установки батарей АКБ одной партии, что является обязательным условием свинцово-кислотных АКБ. Для Ni-солевых АКБ можно устанавливать батареи разных партий и годов выпуска, что существенно ведет к снижению эксплуатационных расходов, ведь при выходе из строя одной свинцово-кислотной батареи, приходится производить замену всей системы батарей, с Ni-солевыми ситуация иная, в случае выхода одной батареи, она просто заменяется на новую.

·         При одинаковой плотности энергии никель-солевая батарея на 70% легче и на 30% меньше традиционных свинцово-кислотных аккумуляторных батарей

Ni-солевых АКБ собирается из 2,58В элементов, обладающих плотностью энергии 140 Вт/час/кг и 280 Вт/час/лит.

Для сравнения:

AGM — 35 Вт/час/кг и 92 Вт/час/лит

OPzS – 85,7 Вт/час/кг и 135 Вт/час/лит

  • Очень низкая совокупная стоимость владения в сравнении с другими технологиями аккумуляторов


 

 

Герметичные свинцово-кислотные аккумуляторы с технологией AGM. Они имеют большой срок службы в буферном режиме и могут легко отдавать большие токи в течение короткого промежутка времени. Рекомендуется использовать в резервных системах электроснабжения, когда в основном батареи находятся в заряженном состоянии и периодически отдают энергию.

 

В автономных энергосистемах рекомендуется применять герметичные свинцово-кислотные аккумуляторы с технологией GEL (гелевые), они лучше переносят циклические режимы работы, когда аккумуляторы периодически заряжаются и разряжаются.

 

Наиболее экономически выгодным будут аккумуляторы типа OPzV , которые имеют примерно в 3 раза больший срок службы по сравнению с обычными гелевыми аккумуляторами. Они обеспечат надежное электроснабжение в тяжелых цикличных режимах работы.

 

Аккумуляторы с намазанными пластинами и жидким электролитом типа OPzS намного лучше выдерживают циклические режимы и глубокий разряд. Хотя они значительно дороже, но обеспечивают большую надежность электроснабжения и больший срок службы.

 

Ni-Солевые аккумуляторы являются, на данный момент, лидером среди других АКБ по всех параметрам – работа в тяжелых цикличных и температурных режимах, огромный срок службы и другие положительные характеристики. Но из-за сложной технологии их изготовления Ni-Солевые аккумуляторы являются и лидером по стоимости.

Свинцово кислотные аккумуляторы для солнечных батарей — устройство и принцип работы

Аккумуляторы для солнечных систем состоят из трубчатых положительных пластин, в целом они обладают герметизированной конструкцией и относятся к классу необслуживаемых батарей. В этих пластинах велико содержание олова и низкое процентное соотношение кальция, они производятся под давлением методом литья. Пластины помещаются в высокопористые конверты, способные удерживать активную массу. В конструкции батареи присутствуют отрицательные пластины, они относятся к решётчатому намазному типу.

Есть также сепараторы, для изготовления которых применяется высокопористый материал с внутренним низким сопротивлением. Крышка и корпус АКБ изготавливаются из ABS пластика, отличающегося отличными техническими характеристиками. Стенки корпуса достаточно толстые, они способны выдержать деформацию при внешнем механическом воздействии, перепадах давления и вибрациях в ходе эксплуатации. Крышка батареи приварена к контейнеру автоматически при помощи термической сварки.

В устройстве используются клеммы, отвечающие за контакт и проводимость тока, для выводов предусмотрена особая уплотнительная система, препятствующая утечке электролита, а также разрушению клемм, под воздействием коррозии. АКБ для солнечных батарей, могут комплектоваться встроенными пламегасителями и предохранительными клапанами, обеспечивающими сброс газа при перегрузках.

Все элементы промеж собой соединяются полностью изолированными гибкими перемычками, прикрепляемыми к выводам при помощи изолированных болтов, оснащённых технологическими отверстиями, обеспечивающими проведение электрических измерений. Эта конструкция обеспечивает оптимальную работоспособность в любых условиях.

Солнечные батареи для лодок ПВХ

Цена:

Бренд:

Sunways ТСМ

Производитель:

Телеком-СТВ

Страна происхождения:

Россия

Мощность выходная, кВА/Вт (kVA/W):

22

Пиковая мощность (Pmax), Вт:

30 64 72 90 107 115 140 215

Напряжение холостого хода (Voc), В:

22 17 21 46 20,5 24

Напряжение при пиковой мощности (Vmp), В:

17 17,5 37 19 20 16,5

Ток при пиковой мощности (Imp), А:

3,65 7,8 5,7 5,5 1,3 1,8 3,45

Напряжение выходное, В (V):

21

Диапазон рабочих температур, °C:

-40 +60 -40 +85 °С

Потребительские особенности:

Лёгкость подключения

ГАРАНТИЯ:

1 год 25 лет

Тип фотоэлементов:

монокристалл монокристаллические

Класс защиты:

IP 65

Коннекторы:

MC4

Напряжение нагрузки номинальное, В:

12

Размеры, ДхШхВ, мм:

450х460х4 1100x420x1,5 1200x420x1,5 1100x575x1,5 1210x575x1,5 1500x700x1,5 830x1620x2 420х590х1,6

Особенности эксплуатации щелочных аккумуляторов для солнечных батарей

При использовании солнечных батарей могут применяться разнообразные аккумуляторы. Щелочные аккумуляторы находятся в их числе. Даже из названия понятно, что в роль электролита в устройстве выступает щёлочной раствор.

Более того, они делятся на три подвида:

  • никель-железные;
  • никель-кадмиевые;
  • никель-металгидридные.

В чём, собственно, заключается основная особенность данных АКБ? Считается, что они способны хорошо, так сказать, отдавать маленькие токи, а большие отдают плохо. Если сравнивать с кислотными АКБ, то данные приборы могут разрядиться полностью и также полностью зарядится при любых температурных условиях и одинаково высоким КПД. Бытует мнение, что если устройство разрядится не в полной мере, его при этом снова начнут заряжать, то оно полноценно зарядиться не сможет, в особенности у АКБ на Ni-Cd. Это верно, но только в случае долговременного и постоянного недоразряда в течении нескольких месяцев. Проблемма устраняется простым долговременным зарядом на несколько часов больше положенного. 

Еще одна особенность АКБ Ni-Cd это полноценно воспринимать и отдавать заряд при очень низких температурах до -50. Это не относится к никель-железным и никель-металгидридным АКБ. Кислотные устройства могут только хорошо отдать, а воспринять заряд только при температурах выше нуля. Это связано с тем, что плотность электролита в никель-кадмиевых аккумуляторах не меняется от уровня заряда, в отличие от остальных АКБ. 

Такие устройства требуют некоторого обслуживания. В связи с этим, нужно время от времени проверять какой уровень электролита остался. Также проверяется, какой уровень зарядки имеет аккумулятор. Если они используются верно, то ресурс их будет большим — не менее двадцати лет.

Особенность никель-железных аккумуляторов невосприимчивым к малым токам. То есть ток через приборы идёт, но они не могут накопить заряд.

Преимущества АКБ никель-кадмиевых очевидны, поскольку они обладают большим ресурсом для работы, могут поддерживать напряжение при заряде. Помимо того, они обладают возможностью запасать значительное количество энергии, если говорить о расчёте единицы веса. К отрицательным характеристикам можно отнести и необходимость обслуживания.

Если сравнивать никель-металгидридные и никель-кадмиевые изделия с кислотными вариантами, то они будут стоить несколько дороже. Зато их ресурс больше. У них есть особенность, которая заключается в том, что такие устройства требуют установки в вентилируемых помещениях. Работая данные АКБ выделяют газы, как собственно и кислотные аккумуляторы. Но в переод предельной нагрузки щелочные АКБ выделяют водорода в большей степени, чем кислотные.

О щёлочных Ni-Cd батареях и о солнечных системах.

Несмотря на свои достоинства, Ni-Cd довольно нечасто применяются в автономных установках, которые работают на возобновляемых источниках. Это объясняется тем, что кислотные аккумуляторы дешевле, меньше по размерам,весу и устанавливаются в помещениях с положительной температурой. Нередко солнечные системы и кислотные батареи применяются в качестве передвижных источников энергии — опять вес, размер.

В тех системах, которые работают от солнечных панелей, АКБ Ni-Cd применяются тогда, когда к  системе предьявляются довольно жесткие требования эксплуатации. Пониженная температура, повышенная влажность и отсутствие дополнительных источников энергии. Тут надо добавить, что Ni-Cd лекго выводятся из состояния полной разряженности, как только появляется хоть какие то токи заряда.

Если сравнивать с кислотными устройствами, то заряд отдается у Ni-Cd намного больше при той же емкости. Разница с кислотными составляет примерно 40-60 процентов. Если же говорить о внутреннем сопротивлении, то оно, соответственно, имеет довольно-таки большое значение. По этой причине напряжение будет падать ускоренно при больших разрядных токах. Не каждый контроллер может справиться с отслеживанием такого падения.

Как уже говорилось, место, где устанавливается АКБ, должно вентилироваться. Помимо этого, площади для установки должно быть достаточно. Для щёлочных аккумуляторов характерна габаритность, потому они нуждаются в достаточном месте, в том числе и для проведения обслуживания. Поэтому благодаря особенностям низкотемпературной работы АКБ Ni-Cd, их устанавливают в пристройках, контейнирах или просто под навесом от осадков. Тем самым экономится место полезной площади строения. 

Неудивительно, что щелочные АКБ Ni-Cd очень часто применяются в автономных системах, которые получают энергию от солнечных панелей. Обыкновенно, они используются там, где здание полностью снабжается получаемой от батарей энергией. Именно в этом случае особенности таких устройств можно рассматривать как достоинство. Тем более вокруг таких зданий обычно достаточно места для размещения и солнечных батарей и аккумуляторных систем, т.к. это в основном всегда сильно удаленные от коммуникаций отдельно стоящие здания.

Важность аккумуляторных батарей и солнечных батарей

Почему вы должны использовать аккумуляторные батареи в сочетании с солнечными батареями в проектах IoT?

Введение

Начнем с представления аккумуляторной батареи [1]. Это тип электрической батареи (аккумуляторная батарея, вторичный элемент или аккумулятор), которую можно заряжать, разряжать в нагрузку и перезаряжать много раз, в отличие от одноразовой или первичной батареи (которая поставляется полностью заряженной и выбрасывается после использования).Он состоит из одной или нескольких электрохимических ячеек. Термин «аккумулятор» используется, поскольку он накапливает и накапливает энергию посредством обратимой электрохимической реакции. Перезаряжаемые батареи производятся во многих различных формах и размерах, от кнопочных элементов до мегаваттных систем, подключенных для стабилизации электрической распределительной сети. Используются несколько различных комбинаций электродных материалов и электролитов, в том числе:

  • свинцово-кислотный,
  • никель-кадмиевый (NiCd),
  • никель-металлогидрид (NiMH),
  • литий-ионный (литий-ионный) и
  • литий-ионный полимер (Li-ion полимер).

Перезаряжаемые батареи обычно изначально стоят больше, чем одноразовые, но имеют гораздо более низкую общую стоимость владения и воздействия на окружающую среду, поскольку их можно недорого перезаряжать много раз, прежде чем потребуется их замена. Некоторые типы аккумуляторных батарей доступны в тех же размерах и напряжении, что и одноразовые, и могут использоваться взаимозаменяемо с ними.

Преимущества аккумуляторных батарей

В настоящее время существует множество стабильных аккумуляторных батарей (например,г. 18650), который вы можете купить для своего собственного IoT-проекта, особенно если вы думаете о размещении устройства где-нибудь удаленно. У этих устройств есть важные параметры, которые должны быть выполнены:

  1. Низкое энергопотребление — многие устройства IoT сегодня рассчитаны на срок службы батареи более 3, даже 5 лет автономной работы;
  2. Низкие эксплуатационные расходы — если вы планируете разместить десяток, не говоря уже о сотнях устройств, замена батареи будет слишком дорогостоящей и сложной задачей;
  3. Низкая стоимость — даже если это не «необходимый» элемент, устройства IoT должны стоить около сотен евро / долларов, даже меньше.

Следуя этим параметрам, аккумуляторные батареи являются довольно важным элементом в конструкции устройства IoT, поскольку являются «пищей» для работы устройства. Благодаря Дженнифер Джаретт из Top Ten Reviews [2], я назову несколько преимуществ, которые могут привлечь ваше внимание к аккумуляторным батареям:

  • Удобство — эти аккумуляторы можно легко перезарядить с помощью простого зарядного устройства, которое также недорогое,
  • Лучшая производительность — аккумуляторные батареи используют свое номинальное напряжение в течение всего рабочего состояния, тогда как одноразовые батареи начинаются с 1.5 вольт и убывают при разряде,
  • Экологичность — никель-металл-гидридные (NiMH) аккумуляторные батареи лучше для окружающей среды, чем никель-кадмиевые (NiCd), но оба они лучше, чем одноразовые батареи,
  • Чувствительный ко времени — так как аккумулятор можно заряжать, покупать новые не нужно; просто наличие регулятора зарядного устройства в сочетании с солнечной панелью сделает работу,
  • Экономьте деньги — в дополнение к предыдущему пункту зарядка аккумулятора напрямую связана с меньшими затратами денег на новые.

Перечислив различные преимущества и важные параметры аккумуляторных батарей, теперь мы можем перейти к краткой информации о солнечных батареях, дистанционном зарядном устройстве для устройств IoT.

Солнечная энергия — неограниченный источник энергии

Многие ученые, такие как Н. Тесла, А. Эйнштейн, утверждали, что во Вселенной существует непрерывное количество энергии для всех наших приложений. Я обращу внимание на солнечные панели, которые представляют собой недорогое зарядное устройство, позволяющее годами обеспечивать питание ваших IoT-устройств от одной батареи.Как я уже упоминал о важных параметрах аккумуляторных батарей в предыдущей главе, давайте назовем их для солнечных панелей:

  1. Возобновляемая энергия — солнечные панели вырабатывают электричество, преобразуя солнечное излучение (в форме света) в электричество,
  2. Нет выбросов СО2 — вредных выбросов в атмосферу нет,
  3. Низкие эксплуатационные расходы — они рассчитаны на работу в течение многих лет, иногда требуется простая очистка и очень низкие затраты на техническое обслуживание.

Сегодня мы можем видеть множество устройств, оснащенных фотоэлектрическими панелями в той или иной форме, то есть солнечными панелями. Даже если производитель заявляет, что его устройство может прослужить около 3 лет в предполагаемом режиме работы, это может быть меньше из-за частоты измерений, которая напрямую влияет на срок службы батареи. Кто будет использовать «только» режим, который производитель установил для проектируемых приложений? Особенно в мире Интернета вещей люди любят играть с разными интервалами измерения, форматами данных, стабильностью устройства и т. Д.Таким образом, если внутри устройства нет места для дополнительных батареек, замена батареи потребует слишком больших затрат и времени. Поэтому добавление солнечной панели поверх существующего решения — отличный способ!

Мой пример

Поскольку я построил проект с использованием MKRFox 1200 и датчика температуры / влажности, все они питались от двух батареек AA, он не выдержал более 10 дней, хотя спящий режим MCU также был запрограммирован. Для меня, даже с использованием аккумуляторных батарей, текущее решение означало, что я должен снять коробку со столба / стены, открыть ее, вынуть батареи, зарядить их, поставить обратно, а все остальное вы знаете.Это не самое удобное мероприятие, правда? Поэтому я взял простое зарядное устройство с разъемом JST, которое будет регулировать входное и выходное напряжение для зарядки аккумулятора.

В моем случае я использовал:

После подключения компонентов в схему я был готов протестировать это новое решение. И это дало многообещающие результаты! Поместив солнечную панель под прямые солнечные лучи (полуоблачный день), я получил от 5 до 6 В входного напряжения, которое будет поступать на регулятор зарядного устройства.Кроме того, на том же солнечном свете у меня получился ток около 120 мА, который заряжает аккумулятор. Позвольте мне упростить это: , если я получаю около 100 мА тока в течение дня, а моя батарея (которая составляет 5200 мАч) теперь разряжена до 4000 мАч, мне понадобится около 12 часов, чтобы полностью зарядить аккумулятор. Конечно, это невозможно в течение одного дня, но если солнечная панель имеет хороший солнечный свет в течение всей недели, мне не нужно беспокоиться, что моя батарея разрядится.

Очевидно, что когда солнечная панель подвергается воздействию прямых солнечных лучей, зарядное устройство готово к зарядке литий-ионного аккумулятора (зеленый светодиод горит), но когда нет достаточного количества солнечного света, зарядное устройство находится в режиме ожидания (красный светодиод включен).Наконец, когда солнечного света мало или совсем нет, зарядное устройство переходит в режим отключения (светодиод не горит).

Заключение

Я считаю, что в этой статье содержится достаточно информации о том, почему вам следует с самого начала подумать о внедрении солнечной панели и аккумуляторной батареи в свое устройство IoT. Во-первых, это сэкономит ваше время и деньги благодаря сложному встраиванию в существующее решение (которое всегда имеет некоторые скрытые проблемы) и значительно продлит жизненный цикл вашего устройства, а во-вторых, у вас будет устройство, которое является хорошей демонстрацией вашей идеи. !

Подумайте также об окружающей среде.Использование решений по сбору энергии, подобных этому, является жизненно важным признаком того, что вы твердо уверены в изменениях климата и, возможно, пытаетесь оказать какое-то влияние? Я полностью согласен с этим и буду более чем счастлив, если вы создадите прототипы своих устройств, думая о других и их благополучии. В конце дня он будет «возмещен» вам в другой форме.

Какой тип батареи используется для солнечных панелей? Узнать больше

Солнечные энергетические системы обычно состоят из солнечных батарей и панелей, монтажных инструментов и системы мониторинга общей производительности.Энергия солнца собирается панелями, которые отправляют преобразованную энергию в инвертор, из которого вы можете использовать электричество в своем доме, офисе или промышленной зоне. Эти системы чаще используются домовладельцами для резервного копирования, поскольку большинство домов привязано к электросети. Однако многие люди ищут замену своим источникам питания. Одна из распространенных причин, по которой люди переходят на солнечную энергию, — это избегать высоких затрат на энергию.

Есть много типов солнечных батарей, которые используются в качестве резервных для критических нагрузок в периоды, когда сеть выходит из строя.Если вы заинтересованы в установке мгновенного резервного питания, такого как ИБП, или в установке мощного источника питания, вы можете выбрать для своей системы различные типы солнечных батарей. Солнечные батареи, заряжаемые этими панелями, предназначены для вспомогательного обслуживания сети.

Что такое солнечная батарея?

Солнечная батарея просто накапливает энергию, вырабатываемую солнечными панелями в вашей энергосистеме. У них может быть свой инвертор со встроенным преобразователем энергии и монитором производительности.

Также емкость различных солнечных батарей соответствует их емкости. Вместо того, чтобы возвращать солнечное электричество непосредственно в вашу сеть, солнечная батарея собирает его для дальнейшего использования. Когда ваша батарея полностью заряжена, система отправит электричество обратно в сеть. Когда батарея используется и ее заряд заканчивается, батарея возобновляет зарядку и снова потребляет электричество от панелей.

Хотя батареи обычно подключаются к домашним солнечным энергетическим системам для работы, они не нуждаются в солнечных батареях, чтобы быть полезными для домовладельцев.Электроэнергия из сети может также заряжать батареи в случае небольших аккумуляторов солнечной энергии. Солнечная батарея — это часть вашей системы солнечных панелей для хранения энергии, поставляемой панелью в дом. Когда солнечная панель не вырабатывает электричество, эта батарея высвобождает накопленную энергию для вашего использования.

Если вы полностью отключены от сети, эти батареи могут обеспечить 100-процентную автономность, необходимую домовладельцам, при условии, что батареи должным образом заряжаются от солнечных батарей.

Для предприятий или домов, где отключение электроэнергии может привести к катастрофе, батарея солнечных батарей может адекватно компенсировать это. Это особенно актуально для областей, где электроснабжение не так надежно, или в экстремальных погодных условиях, когда вам абсолютно необходимо резервное питание. Все больше и больше людей выбирают солнечные батареи в качестве источника питания в периоды, когда цены на коммунальные услуги достигают своего пика. В зависимости от вашей цели и желаемого результата вы можете использовать эту перспективную, но надежную технологию у себя дома или на работе.

Могут ли солнечные батареи заряжать литиевые батареи?

Да. Однако литиевые батареи могут быть повреждены при регулярной зарядке, среди прочего, из-за их реакции на зарядку. Большинство видов солнечных батарей заряжается в три этапа: объемный, приемный и плавающий. Литиевые батареи заряжаются в два этапа.

Первый аналогичен наливному каскаду для других батарей, где он заряжается постоянным напряжением до почти полного заряда.Тем не менее, зарядный ток будет снижаться, пока он проходит вторую и последнюю стадию зарядки. Литиевые батареи также могут быть разрушены при зарядке в магазине, так как это может увеличить разрядку и поставить под угрозу срок службы батареи.

Различные типы солнечных батарей

Узнайте, какой тип батареи используется для солнечных панелей.

Свинцово-кислотный

Уже несколько лет свинцово-кислотные батареи используются в качестве надежного источника энергии для внесетевых территорий.Они, как правило, имеют цикл глубокого цикла и недороги. Свинцово-кислотные батареи отличаются высокой мощностью и разрядным током, но низкой энергией. Заряжаются они долго — до 14 часов.

Эти батареи необходимо утилизировать правильно, иначе они могут нанести вред окружающей среде из-за их высокой токсичности.

Два типа свинцово-кислотных аккумуляторов, которые обычно используются для солнечных панелей: заливные и свинцово-кислотные батареи с регулируемым клапаном (VRLA).

Залитая свинцовая батарея — надежный вариант, но для ее работы требуется полив и надлежащая вентиляция.VRLA, оснащенный клапанами для регулирования отвода газов, бывает двух типов: гелевый и абсорбирующий стекломат (AGM). Они подходят для низких и высоких температур соответственно. Хотя батареи VRLA обеспечивают достаточную гибкость при установке, их чувствительность к температуре может представлять проблему для людей, ищущих постоянную альтернативу электроснабжению.

Литий-ионный

Литий-ионные батареи

стали более популярным выбором для солнечных систем во всем мире.Разработка этого типа аккумулятора во многом связана с его применением в индустрии электромобилей. Его призматическая форма позволяет использовать вентиляцию и преимущества в солнечных системах.

Литий-ионные батареи

имеют уникальный диапазон напряжений и реакцию на зарядку (две стадии в отличие от обычных трех). Их можно заряжать с помощью регулятора заряда регулятора напряжения. Хотя литий-ионные аккумуляторы имеют низкий саморазряд, длительная зарядка для них невозможна.

Этот вид солнечных батарей, как правило, не требует особого обслуживания, имеет высокую удельную энергию и длительный срок службы.По сравнению со свинцово-кислотными, литиевые батареи обычно стоят дороже. Кроме того, им может потребоваться схема защиты для регулирования тока и напряжения.

Как правило, литий-ионные аккумуляторы могут обеспечивать большее количество циклов, чем свинцово-кислотные, что делает их отличными для предоставления вспомогательных услуг в энергосистему. Одна из энергосберегающих черт литий-ионных аккумуляторов, которая делает их хорошим вариантом для солнечной системы, — это их высокая эффективность заряда и разряда. Эти батареи также теряют меньше емкости при простое, что полезно в солнечных установках, где энергия используется лишь изредка.

Другие альтернативы

Никель Кадмий

Никель-кадмиевые батареи

, как правило, отличаются неприхотливостью в обслуживании и устойчивостью к широкому диапазону температур. Они бывают разных размеров и уровней производительности с длительным сроком хранения. Однако этот вид солнечных батарей имеет высокую скорость разряда и низкую плотность энергии, что делает их относительно плохим выбором для постоянного автономного питания. Кроме того, он требует специальной утилизации, как свинцово-кислотные батареи, из-за опасности его токсичности может нанести вред окружающей среде.

Натрия хлорид никеля

Хлоридно-натриевая батарея, также известная как элемент ZEBRA, пригодна для вторичной переработки без каких-либо выбросов. Не требует вентиляции или обслуживания. Его высокая плотность энергии делает его отличным вариантом для резервного питания от сети.

Сравнение солнечных батарей

Когда дело доходит до выбора, какую солнечную батарею использовать, вам необходимо рассмотреть некоторые конкретные характеристики для более детального выбора.Некоторые вещи, которые следует учитывать:

Вместимость

Емкость просто описывает способность солнечной батареи накапливать электроэнергию. Литиевые батареи характеризуются большей емкостью, чем все виды свинцово-кислотных аккумуляторов, из-за их большего веса. Вам понадобится около 8 свинцово-кислотных аккумуляторов для питания 5,1 кВт, в то время как всего две литий-ионные солнечные батареи справятся с той же задачей. Более высокая удельная энергия литиевой батареи означает, что ее можно устанавливать в труднодоступных местах, поскольку они позволяют разместить большую емкость на меньшем пространстве.Вы можете столкнуться с рядом проблем из-за большого веса лития, если будете устанавливать эти солнечные батареи самостоятельно. Никель-кадмиевый и хлорид-никель-натрий также имеют широкий диапазон производительности.

Глубина разряда (DoD)

DoD солнечной батареи — это полезная часть ее емкости, и рекомендуемая DoD не менее 40% обеспечит оптимальное использование батареи. Свинцовые батареи обычно имеют степень разряда 50%, а никель-кадмиевые батареи — 15%.Превышение этой отметки перед подзарядкой сократит срок службы батареи. С другой стороны, литий-ионные и никель-хлоридно-натриевые солнечные батареи имеют степень разряда 80%, что означает более высокую полезную емкость.

Срок службы солнечной батареи и гарантия

Когда вы решаете, какую солнечную батарею использовать в вашей системе, время ее работы является лучшим показателем ее способности сохранять свою емкость. Один цикл зарядки — это просто резервный заряд после разряда, и он является основным показателем срока службы батареи.Кроме того, количество циклов, которые пройдет ваша солнечная батарея, будет зависеть от интенсивности ее использования. Этот атрибут будет отличаться даже для одного и того же типа солнечной батареи и зависит от глубины разряда батареи. Гарантия всегда является хорошим признаком надежности любого бренда или продукта, в том числе солнечных батарей.

КПД в оба конца

Эффективность солнечной батареи в оба конца — это разница между доступной энергией и количеством энергии, используемой для ее зарядки.Как и в случае с DoD, чем выше эффективность работы аккумулятора в оба конца, тем лучше. Литий-ионные солнечные батареи выигрывают, когда дело доходит до эффективности (95%), поскольку они имеют самый высокий коэффициент преобразования солнечной энергии в электрическую. Это означает, что вам может потребоваться установить меньше солнечных панелей и батарей в зависимости от конфигурации вашей системы.

Скорость заряда — это еще одна вещь, на которую следует обратить внимание при выборе солнечной батареи, поскольку она показывает скорость, с которой она будет заряжаться при подключении к зарядному устройству.Это функция вместимости и выражается в долях, например C / 4. Свинцово-кислотный со скоростью заряда C / 5 может потребовать в два раза больше времени для зарядки, чем литий-ионные солнечные батареи, особенно во время основной фазы.

Имея в виду эти параметры, вы можете точно спланировать и установить свою солнечную систему. В зависимости от того, для чего вы планируете использовать систему (резервное или основное питание), вы можете выбрать, какая солнечная батарея лучше всего подойдет вам.

Залитые свинцово-кислотные и литий-ионные аккумуляторы идеально подходят для постоянного автономного питания с различными уровнями использования.Если вы ищете аккумулятор для использования в загородном доме или в другом месте, где вы не будете проводить много времени круглый год, то герметичный свинцово-кислотный аккумулятор — ваш лучший выбор. Он не требует обслуживания и имеет низкую скорость саморазряда.

Выбирая батарею только для резервного копирования, вы должны учитывать частоту отключения электроэнергии в электросети, чтобы определить, сколько раз она будет использоваться в течение года. Если он не будет использоваться более пары раз, тогда вы получите больше пользы от батареи, не требующей особого обслуживания, такой как герметичная свинцово-кислотная солнечная батарея.Литий-ионный тип лучше всего рекомендуется для питания промышленных объектов, где часто бывает интенсивное использование.

Решения по окончании срока службы

Солнечные установки для предприятий и коммунальных предприятий будут иметь проблемы с соблюдением экологических норм не только в отношении типов используемых солнечных батарей, но и в отношении вывода из эксплуатации панелей, утилизации стеллажей и утилизации инверторов. Подход к переработке солнечных батарей напрямую на завод обеспечивает ответственное обращение с утилизацией.

План захоронения отходов без захоронения должен соответствовать таким стандартам, как:

  • R2: 2013
  • ISO 9001: 2015
  • ISO 14001: 2015
  • ISO 45001: 2018

Если ваша компания нуждается в крупномасштабной утилизации солнечных панелей или аккумуляторной батареи в количестве более 100 единиц, обратитесь к специалисту по переработке солнечной энергии в We Recycle Solar для получения дополнительной информации.

Свяжитесь с нами

Разработка зарядного устройства для солнечных батарей

Введение

Рынок портативных электронных устройств, работающих на солнечной энергии, продолжает расти, поскольку потребители ищут способы снизить потребление энергии и проводить больше времени на открытом воздухе.Поскольку солнечная энергия непостоянна и ненадежна, почти все устройства на солнечной энергии имеют перезаряжаемые батареи. Цель состоит в том, чтобы извлечь как можно больше солнечной энергии для быстрой зарядки аккумуляторов и поддержания заряда.

Солнечные элементы по своей сути являются неэффективными устройствами, но у них есть точка максимальной выходной мощности, поэтому работа в этой точке кажется очевидной целью проектирования. Проблема в том, что ВАХ максимальной выходной мощности изменяется с освещением. Выходной ток монокристаллического солнечного элемента пропорционален интенсивности света, в то время как его напряжение при максимальной выходной мощности относительно постоянно (см. Рисунок 1).Максимальная выходная мощность для заданной интенсивности света происходит на изгибе каждой кривой, где ячейка переходит от устройства постоянного напряжения к устройству постоянного тока. Конструкция зарядного устройства, которая эффективно извлекает энергию из солнечной панели, должна иметь возможность регулировать выходное напряжение панели до точки максимальной мощности, когда уровни освещения не могут удовлетворить требования к полной мощности зарядного устройства.

Рис. 1. Солнечный элемент вырабатывает ток пропорционально количеству падающего на него солнечного света, в то время как напряжение холостого хода элемента остается относительно постоянным.Максимальная выходная мощность достигается в точке изгиба каждой кривой, где элемент переходит от устройства постоянного напряжения к устройству постоянного тока, как показано кривыми мощности.

LT3652 — это многофункциональное зарядное устройство на 2 А, разработанное для применения в солнечной энергии. LT3652 использует контур регулирования входного напряжения, который снижает ток заряда, если входное напряжение падает ниже запрограммированного уровня, установленного простой схемой делителя напряжения. При питании от солнечной панели контур регулирования входного напряжения используется для поддержания максимальной выходной мощности панели.

Контур регулирования входного напряжения LT3652 действует в определенном диапазоне входного напряжения. Когда V IN , измеренное через резистивный делитель на выводе V IN_REG , падает ниже определенной уставки, ток заряда уменьшается. Зарядный ток регулируется с помощью управляющего напряжения на резисторе, чувствительном к току, включенном последовательно с катушкой индуктивности схемы зарядки понижающего стабилизатора. Снижение освещенности (и / или увеличение потребности в токе заряда) может привести к падению входного напряжения (напряжения панели), отталкивая панель от точки максимальной выходной мощности.В LT3652, когда входное напряжение падает ниже определенной уставки, определяемой резистивным делителем, подключенным между выводами V IN и V IN_REG , текущее управляющее напряжение снижается, тем самым уменьшая ток зарядки. Это действие заставляет напряжение от солнечной панели увеличиваться по ее характеристической кривой VI до тех пор, пока не будет найдена новая рабочая точка пиковой мощности.

Если солнечная панель освещена достаточно для обеспечения большей мощности, чем требуется для схемы зарядки LT3652, напряжение от солнечной панели возрастает за пределы диапазона регулирования контура регулирования напряжения, зарядный ток устанавливается на максимальное значение и новое значение рабочая точка полностью определяется максимальным зарядным током для данной точки в цикле зарядки.

Если электронное устройство работает напрямую от солнечной энергии и входное напряжение выше минимального уровня диапазона регулирования контура регулирования входного напряжения, избыточная доступная мощность используется для зарядки аккумулятора с более низкой скоростью зарядки. Мощность солнечной панели регулируется на максимальную рабочую точку мощности для уровня интенсивности.

Рис. 2. Зависимость управляющего напряжения тока зарядного устройства (V SENSE — V BAT ) от пропорционального входного напряжения, измеренного с помощью делителя напряжения на выводе V IN_REG .V IN (напряжение солнечной панели) влияет только на зарядный ток, когда V IN_REG находится между 2,67 В и 2,74 В. В этом диапазоне зарядное устройство будет уменьшать зарядный ток, если это необходимо для работы панели с максимальной выходной мощностью.

На рис. 2 показана типовая характеристика регулирования V IN_REG . Когда напряжение на выводе V IN_REG превышает 2,67 В, напряжение V SENSE — V BAT на токоизмерительном резисторе увеличивается, пока не достигнет максимального значения 100 мВ, когда V IN_REG больше 2 .74V. По мере дальнейшего увеличения V IN_REG , V SENSE — V BAT остается на уровне 100 мВ. Выражение для диапазона регулирования входного напряжения:

Если мы линеаризуем часть кривой на рисунке 2 для V IN_REG между 2,67 В и 2,74 В, следующее выражение описывает напряжение измерения тока V SENSE — V BAT :

Тогда зарядный ток для аккумулятора будет:

Поскольку зарядная цепь LT3652 представляет собой понижающий стабилизатор с управлением по току, входной ток соотносится с зарядным током следующим выражением:

где η — КПД зарядного устройства

Входная мощность теперь может быть определена путем объединения уравнений 4 и 5 с входным напряжением, что дает следующее:

После того, как R SENSE выбран для максимального зарядного тока, а R IN1 и R IN2 определены для выбора диапазона управления током входного напряжения, уравнение 6 может быть построено против кривых мощности солнечных панелей для определения работы зарядного устройства. точка для различных напряжений батареи.Вот пример.

На рис. 3 показано 2-элементное зарядное устройство для литий-ионных аккумуляторов с питанием от солнечной батареи и LT3652.

Рис. 3. Зарядное устройство 2A на солнечной батарее.

Первый шаг — определить минимальные требования к солнечной панели. К важным параметрам относятся напряжение холостого хода, V OC , напряжение пиковой мощности, V P (MAX) , и пиковый ток мощности, I P (MAX) . Ток короткого замыкания, I SC , солнечной панели выпадает из расчетов, основанных на трех других параметрах.

Напряжение холостого хода должно составлять 3,3 В плюс прямое падение напряжения D1 выше напряжения холостого хода двухэлементной литий-ионной батареи плюс дополнительные 15% для запуска и работы с низкой интенсивностью.

Пиковое напряжение мощности должно быть 0,75 В плюс прямое падение D1 выше напряжения холостого хода плюс дополнительные 15% для работы с низкой интенсивностью.

Пиковый ток потребляемой мощности является произведением напряжения холостого хода и максимального зарядного тока, деленных на пиковое входное напряжение питания и эффективность схемы зарядки.

Решая эти три уравнения, мы можем определить минимальные требования к солнечной панели:

Характеристики солнечной панели можно увидеть на Рисунке 4.

Рисунок 4. Действие схемы зарядного устройства солнечной батареи на рисунке 3. Кривые мощности для различных уровней освещенности показаны для 100 Вт / м 2 от до 1000 Вт / м 2 при 100 Вт / м 2 шагов. Также показан диапазон регулирования V IN (V REG ). Контур управления V IN извлекает максимально возможную мощность от солнечной панели, направляя V IN к вершине кривой энергоемкости панели, когда V IN находится в диапазоне V REG .

Токочувствительный резистор R SENSE определяется из максимального значения 100 мВ V SENSE — V BAT , деленного на максимальный зарядный ток 2 А

Далее определяется схема делителя выходного напряжения обратной связи R FB1 и R FB2 . Сеть делителя напряжения должна иметь эквивалентное сопротивление Тевенина 250 кОм, чтобы компенсировать ошибку входного тока смещения. Опорное напряжение на контакте V FB составляет 3,3 В.

Следующим шагом является установка напряжения отслеживания пиковой мощности с использованием сети делителей напряжения R IN1 и R IN2 , подключенных между выводами V IN и V IN_REG .

Проверьте минимальное и максимальное отслеживающее напряжение на входе пиковой мощности.

Последний шаг в выборе номиналов резисторов — это определение сети делителя напряжения V SHDN , состоящей из R SHDN1 и R SHDN2 . Повышающий порог V SHDN составляет 1,2 В ± 50 мВ с гистерезисом 120 мВ. Сеть делителя напряжения должна быть настроена так, что, когда напряжение на выводе V IN равно V REG (MIN) , V SHDN имеет максимально возможное значение.

Пределы V SHDN теперь определены как:

LT3652 автоматически переходит в режим предварительной подготовки батареи, если обнаруженное напряжение батареи очень низкое. В этом режиме ток заряда снижается до 15% от запрограммированного максимума, установленного резистором измерения тока R SENSE . Как только напряжение аккумулятора достигает 70% от полностью заряженного постоянного напряжения (V FB = 2,3 В), LT3652 автоматически увеличивает максимальный ток заряда до полного запрограммированного значения.Пороговый уровень напряжения аккумулятора между режимом предварительного кондиционирования и максимальным током заряда определяется следующим образом:

Используя коэффициент 0,85 и КПД, постройте диаграмму P IN в диапазоне V IN , который регулируется по току. Это регулируемая линия питания V IN или V REG . Пересечение линии электропередачи V REG с кривой мощности солнечной панели является рабочей точкой. По мере зарядки аккумулятора наклон линии питания VREG увеличивается, указывая на увеличение входной мощности, необходимой для поддержки возрастающей выходной мощности.Пересечение линии электропередачи V REG продолжает следовать кривым мощности солнечной панели, пока зарядное устройство не выйдет из режима постоянного тока.

Полученные графики показаны на Рисунке 4.

На рисунке 4 показана выходная мощность солнечной панели при уровнях интенсивности света от 100 Вт / м 2 до 1000 Вт / м 2 при 100 Вт / м 2 шагов. При максимальной интенсивности света (верхняя кривая на рисунке 4) и напряжении аккумулятора чуть выше уровня предварительной подготовки (V BAT (MIN) при 2A) солнечная панель вырабатывает больше энергии, чем требуется зарядному устройству.Напряжение солнечной панели поднимается выше управляющего напряжения V REG и проходит через линию постоянной мощности до тех пор, пока не пересечет кривую интенсивности света для этого уровня интенсивности (точка A на рисунке 4). По мере зарядки аккумулятора входная мощность увеличивается, и рабочая точка солнечной панели перемещается вверх по кривой силы света, пока аккумулятор не приблизится к полной зарядке (точка B). LT3652 переходит из режима постоянного тока в режим постоянного напряжения, и зарядный ток уменьшается.Рабочая точка солнечной панели возвращается вниз по кривой силы света к напряжению холостого хода (точка C), когда батарея достигает своего конечного напряжения холостого хода.

Во время зарядки аккумулятора, если интенсивность света уменьшается, рабочая точка перемещается по линии постоянного напряжения для напряжения аккумулятора, пока не достигнет новой кривой мощности. Если уровень интенсивности света продолжает уменьшаться, рабочая точка перемещается по этой линии постоянного электропитания, пока не достигнет линии электропередачи V REG .В этот момент зарядный ток снижается до тех пор, пока рабочая точка не окажется на пересечении кривой силы света и линии электропередачи V REG (точка D для зарядки постоянным током при V BAT (FLOAT) с мощностью 800 Вт / м 2 освещение). По мере того как батарея продолжает заряжаться при этом уровне интенсивности света, рабочая точка перемещается по новой кривой интенсивности света, пока батарея не приблизится к полной зарядке.

По мере приближения темноты рабочая точка перемещается вниз по линии электропередачи V REG до тех пор, пока зарядный ток не прекратится (точка E) и выходное напряжение солнечной панели не упадет ниже порога падения SHDN, после чего LT3652 выключится.

Остальные элементы конструкции, выбор выходной катушки индуктивности, выпрямителя-ловителя и конденсатора таймера, изложены в методике проектирования в таблице данных LT3652 вместе с рекомендациями по компоновке печатной платы.

Максимальное напряжение питания для монокристаллического солнечного элемента имеет температурный коэффициент –0,37% / K, а максимальный уровень мощности составляет –0,47% / K. Это можно компенсировать, если R IN1 будет представлять собой комбинацию последовательного резистора и последовательного термистора NTC.Соотношение двух элементов, составляющих R IN1 и значение R IN2 , необходимо отрегулировать для достижения правильной отрицательной температуры V IN при сохранении диапазона регулирования V IN .

Контур регулирования входного напряжения LT3652 имеет возможность определять максимальную рабочую точку мощности характеристики мощности солнечной панели, таким образом используя полную мощность солнечной панели. Контур регулировки плавающего напряжения и его регулируемый ток зарядки позволяют использовать LT3652 с аккумуляторами различного химического состава, что делает его универсальным зарядным устройством.Дополнительные функции: широкий диапазон входного напряжения, цикл автоматической подзарядки для поддержания полностью заряженной батареи, режим предварительной подготовки батареи, измерение температуры NTC, выбор C / 10 или прекращение зарядки по времени, контакты НЕИСПРАВНОСТИ и состояния зарядки заполняют все поля. полный набор функций LT3652. LT3652 выпускается в 12-выводном пластиковом корпусе DFN размером 3 мм × 3 мм с открытой контактной площадкой.

Солнечный элемент, накапливающий собственную энергию — ScienceDaily

Это солнечный элемент? Или аккумулятор? Собственно, запатентованное устройство, изобретенное в Университете штата Огайо, — это первая в мире солнечная батарея.

В выпуске журнала Nature Communications от 3 октября 2014 г. исследователи сообщают, что им удалось объединить аккумулятор и солнечный элемент в одно гибридное устройство.

Ключом к инновациям является сетчатая солнечная панель, которая позволяет воздуху попадать в батарею, и особый процесс передачи электронов между солнечной панелью и электродом батареи. Внутри устройства свет и кислород запускают различные части химических реакций, которые заряжают аккумулятор.

Университет выдаст лицензию на использование солнечной батареи для промышленности, и Иин Ву, профессор химии и биохимии в штате Огайо, говорит, что это поможет снизить затраты на возобновляемые источники энергии.

«Современное состояние заключается в использовании солнечной панели для улавливания света, а затем в использовании дешевой батареи для хранения энергии», — сказал Ву. «Мы интегрировали обе функции в одно устройство. Каждый раз, когда вы это делаете, вы сокращаете расходы».

Он и его ученики считают, что их устройство снижает затраты на 25 процентов.

Изобретение также решает давнюю проблему эффективности использования солнечной энергии, устраняя потери электричества, которые обычно происходят, когда электроны должны перемещаться между солнечным элементом и внешней батареей. Обычно только 80 процентов электронов, выходящих из солнечного элемента, попадают в батарею.

Благодаря этой новой конструкции свет преобразуется в электроны внутри батареи, поэтому сохраняется почти 100 процентов электронов.

В конструкции использованы элементы батареи, ранее разработанной Ву и докторантом Сяоди Рен.Они изобрели высокоэффективную аккумуляторную батарею с пневматическим приводом, которая разряжается за счет химической реакции калия с кислородом. В 2014 году проект получил приз за экологически чистую энергию в размере 100000 долларов США от Министерства энергетики США, и для его разработки исследователи создали технологическое подразделение под названием KAir Energy Systems, LLC.

«По сути, это« дышащая »батарея», — сказал Ву. «Он вдыхает воздух, когда разряжается, и выдыхает, когда заряжается».

Для этого нового исследования исследователи хотели объединить солнечную панель с батареей, подобной KAir.Проблема заключалась в том, что солнечные элементы обычно делаются из твердых полупроводниковых панелей, которые блокируют попадание воздуха в батарею.

Докторант Минчжэ Ю сконструировал проницаемую сетчатую солнечную панель из титановой сетки, гибкой ткани, на которой он вырос вертикальные стержни из диоксида титана, похожие на травинки. Воздух свободно проходит через марлю, а стержни улавливают солнечный свет.

Исследователи объяснили, что для подключения солнечного элемента к батарее обычно требуется четыре электрода.В их гибридной конструкции используется всего три.

Сетчатая солнечная панель образует первый электрод. Под ними исследователи поместили тонкий лист пористого углерода (второй электрод) и литиевую пластину (третий электрод). Между электродами они зажали слои электролита, чтобы переносить электроны вперед и назад.

Вот как работает солнечная батарея: во время зарядки свет попадает на сетчатую солнечную панель и создает электроны. Внутри батареи электроны участвуют в химическом разложении пероксида лития на ионы лития и кислород.Кислород выделяется в воздух, а ионы лития хранятся в батарее в виде металлического лития после захвата электронов.

Когда аккумулятор разряжается, он химически потребляет кислород из воздуха для повторного образования пероксида лития.

Добавка йодида в электролит действует как «челнок», который переносит электроны между электродом батареи и сетчатой ​​солнечной панелью. По словам команды, использование добавки представляет собой особый подход к повышению производительности и эффективности батареи.

Сетка относится к классу устройств, называемых сенсибилизированными красителями солнечными элементами, потому что исследователи использовали красный краситель для настройки длины волны света, который он улавливает.

В ходе испытаний они неоднократно заряжали и разряжали батарею, в то время как докторант Лу Ма использовал рентгеновскую фотоэлектронную спектроскопию, чтобы проанализировать, насколько хорошо электродные материалы выжили — это показатель срока службы батареи.

Сначала они использовали соединение рутения в качестве красного красителя, но, поскольку краситель был израсходован при улавливании света, в батарее закончился краситель после восьми часов зарядки и разрядки — слишком короткий срок службы.Поэтому они обратились к темно-красному полупроводнику, который не потреблялся бы: гематиту или оксиду железа, обычно называемому ржавчиной.

Покрытие сетки ржавчиной позволило батарее заряжаться от солнечного света, сохранив при этом свой красный цвет. Основываясь на первых тестах, Ву и его команда считают, что срок службы солнечной батареи будет сопоставим с аккумуляторными батареями, уже имеющимися на рынке.

Министерство энергетики США финансирует этот проект, который будет продолжаться по мере того, как исследователи исследуют способы улучшения характеристик солнечной батареи с помощью новых материалов.

Солнечные батареи для зарядки аккумуляторов

Я сделал метеостанцию ​​для постоянного наблюдения за дневным светом и температурой. Поскольку проект ставят подальше от дома, для питания удобнее использовать аккумулятор, а не длинный удлинитель.

Днем метеостанция должна максимально работать от солнечной батареи, чтобы не разряжать аккумулятор. И вместо того, чтобы периодически проверять уровень заряда батареи и заменять батареи, схема должна заряжать аккумуляторную батарею от избыточной солнечной энергии от солнечной панели.

В этой статье описывается схема резервного питания от солнечных батарей и батарей, а также результаты перезарядки на данный момент.

Простой солнечный контур

Схема простой схемы на солнечных батареях.

Солнечная панель находится в левой части схемы. Диод (D1) защищает целевое устройство от отрицательного напряжения в случае установки солнечной панели наоборот. Диод типа Шоттки (например, 1N5817), поэтому при прохождении через него теряется очень мало напряжения.

Само устройство содержит обычные схемы блока питания, такие как конденсаторы для стабилизации источника питания и регулятор напряжения, чтобы установить уровень напряжения, пригодный для использования всеми микросхемами и другими компонентами.

Проблема с запуском устройства от солнечной панели в том, что оно не получает питание ночью. И, собственно говоря, если в устройстве нет достаточно большого конденсатора, оно может отключаться днем, когда облако проходит над солнечной панелью.

Простой солнечный контур с резервным аккумулятором

Чтобы устройство продолжало работать, можно параллельно подключить аккумулятор в качестве резервного источника питания.

Схема простой солнечной панели с резервной батареей.

Диод D2 служит той же основной цели, что и D1, в том, что устройство не пострадает, если установить батарею задом наперед. Однако диод не позволяет батарее получать питание от солнечной панели, потому что диод является односторонним клапаном.

Солнечная цепь, которая не может заряжать аккумулятор, полезна, если вы хотите установить стандартные неперезаряжаемые батареи в качестве резервного источника питания устройства. Например, вы можете использовать эту схему с щелочными элементами AA. Щелочные батареи дешевле, чем аккумуляторные батареи, и служат дольше при одноразовом использовании.

Когда солнечная панель получает достаточно света, устройство полностью работает от солнечной панели. Допустим, солнечная панель выдает 5 В без 0.1 В для падения на диоде — это означает, что TP3 покажет 4,9 В. Если блок щелочных батарей состоит из трех свежих батареек AA, он может достигать 1,6 В × 3 = 4,8 В. Поскольку 4,8 В аккумуляторной батареи меньше 4,9 В солнечной панели, питание от аккумуляторной батареи не поступает. Ток течет только от более высокого напряжения к более низкому напряжению. Следовательно, питание от щелочных батарей не используется.

Когда солнечная панель и аккумуляторная батарея имеют одинаковое напряжение, они оба будут способствовать работе устройства.Это изящный трюк для продления срока службы устройства с солнечной панелью с недостаточной мощностью. Каждая мелочь помогает снять нагрузку с аккумуляторов.

Наконец, когда солнечная панель не получает достаточно света, ее напряжение падает ниже напряжения аккумуляторной батареи. В этом случае батарея подает все напряжение через D2.

Во всех случаях переключения между источниками питания не происходит, воспринимаемых устройством.Устройство постоянно получает питание.

Простой солнечный контур с резервной аккумуляторной батареей

Предполагая, что солнечная панель имеет избыточную мощность в разное время (либо потому, что целевое устройство не потребляет свою пиковую мощность, либо потому, что солнечная панель получает дополнительный свет), было бы неплохо сохранить дополнительную мощность. Для этого мы просто добавляем еще один диод (D3) и путь от солнечного источника к перезаряжаемому источнику.

Схема простой схемы зарядного устройства для солнечных батарей.

Как и раньше, солнечная панель подает питание на устройство через D1, или аккумулятор обеспечивает питание через D2, в зависимости от того, какой источник питания имеет более высокое напряжение. Когда солнечная панель имеет более высокое напряжение, солнечная энергия течет через D1 для питания устройства и через D3 для подзарядки аккумуляторной батареи.

Зачем добавлять диод D3 вместо того, чтобы просто удалять D2, чтобы аккумулятор мог подзарядиться? Хорошо, что бы убрать защиту от перевернутой батареи.

Почему бы не добавить D3, а затем полностью удалить путь D1? Что ж, тогда мощность солнечной панели должна пройти через два диодных спада, чтобы достичь устройства, для чего потребуется солнечная панель с немного более высоким напряжением, чем раньше.

Дополнительный диод стоит менее 25 центов в количестве 100 штук. Учитывая универсальность диода 1N5817 (мы все время используем их в драйверах двигателей), групповая покупка в количестве 1000 снизит цену до 10 центов каждый.

Стоимость диода намного ниже, чем замена устройства из-за ошибки с обратной батареей или покупка более мощной солнечной панели из-за падения напряжения на двойном диоде.

Существенное ограничение простой схемы подзарядки солнечной батареи

Большинство потребительских зарядных устройств для аккумуляторов представляют собой «интеллектуальные зарядные устройства», которые обеспечивают постоянное напряжение или постоянный ток способом, который предпочитает конкретный химический состав аккумуляторов. Эти зарядные устройства также отключают перезарядку при определенном напряжении, температуре, времени или при обнаружении изменения потребления элемента.

Простая схема солнечного зарядного устройства не защищает от перезарядки и не заботится об оптимальном сроке службы батареи. Чтобы обойтись без такой простой схемы, вы должны выбрать солнечную панель, рабочее напряжение которой примерно равно желаемому напряжению батареи. и чья общая выходная мощность не превышает максимальную скорость непрерывной зарядки.

Для никель-металлгидридных элементов максимальное напряжение зарядки составляет 1,6 В, а максимальный ток равен 0.05 C до 20 часов. Для трех батарей это будет 4,8 В (3 × 1,6 В) и 125 мА (2500 мАч × 0,05 C = 125 мА). Меня не беспокоит максимальное количество часов зарядки, потому что в Чикаго солнечный свет не превышает 20 часов.

Солнечная панель, используемая для моего устройства метеостанции, — это Panasonic Sunceram II BP-378234 с максимальным (разомкнутым) напряжением 5,5 В и максимальным током (короткого замыкания) 43 мА. Сначала это может показаться превышением максимального зарядного напряжения.Однако реальное измеренное напряжение во время зарядки никогда не превышает 4,25 В, потому что напряжение солнечной панели значительно падает при подключении к нагрузке. Фактически официальное рабочее напряжение составляет всего 3,4 В, что немного меньше желаемого рабочего напряжения 3,6 В.

Таким образом, простая схема прямой солнечной зарядки работает безопасно только в том случае, если солнечная панель значительно менее мощная, чем батарея. Это гарантирует, что солнечной энергии никогда не будет слишком много, чтобы перезарядить аккумулятор, и, следовательно, не потребуется электронный контроль для отключения, когда аккумулятор полностью заряжен.

Честно говоря, я бы не стал использовать эту схему с литием, какой-либо непостоянной химией или какой-либо дорогой батареей. NiMH, вероятно, наименее дорогой и наиболее совместимый, хотя свинцово-кислотный также может работать. Вы всегда можете добавить токоограничивающий регулятор, если не уверены, слишком ли мощная ваша солнечная панель.

Хорошо, давайте посмотрим на графики того, как солнечное зарядное устройство работает в реальной жизни …


Новое устройство сочетает солнечные элементы с проточными батареями

Практически не изменился и способ проведения проверок.

Исторически, проверка состояния электрической инфраструктуры была обязанностью мужчин, идущих по очереди. Когда везет и есть подъездная дорога, линейные рабочие используют автовышки. Но когда электрические конструкции находятся на заднем дворе, на склоне горы или иным образом вне досягаемости механического подъемника, рабочие все равно должны пристегнуть свои инструменты и начать подъем. В отдаленных районах вертолеты несут инспекторов с камерами с оптическим зумом, которые позволяют инспектировать линии электропередач на расстоянии.Эти инспекции на большом расстоянии могут охватывать больше территории, но не могут заменить более пристальный взгляд.

В последнее время электроэнергетические компании начали использовать дроны для более частого сбора дополнительной информации о своих линиях электропередач и инфраструктуре. Помимо зум-объективов, некоторые добавляют к дронам термодатчики и лидары.

Термодатчики улавливают избыточное тепло от электрических компонентов, таких как изоляторы, проводники и трансформаторы. Если игнорировать эти электрические компоненты, они могут искры или, что еще хуже, взорваться.Лидар может помочь в управлении растительностью, сканировании области вокруг линии и сборе данных, которые программное обеспечение позже использует для создания трехмерной модели области. Модель позволяет менеджерам энергосистемы определять точное расстояние от растительности до линий электропередач. Это важно, потому что, когда ветви деревьев подходят слишком близко к линиям электропередач, они могут вызвать короткое замыкание или воспламенить искру от других неисправных электрических компонентов.

Алгоритмы на основе ИИ могут обнаруживать участки, в которых растительность посягает на линии электропередач, обрабатывая десятки тысяч аэрофотоснимков за несколько дней. Buzz Solutions

Хорошая новость — использование любой технологии, которая позволяет проводить более частые и качественные проверки. А это означает, что, используя современные, а также традиционные инструменты мониторинга, основные коммунальные предприятия ежегодно собирают более миллиона изображений своей сетевой инфраструктуры и окружающей среды.

AI хорош не только для анализа изображений. Он может предсказывать будущее, глядя на закономерности в данных с течением времени.

А теперь плохие новости.Когда все эти визуальные данные возвращаются в центры обработки данных коммунальных предприятий, выездные техники, инженеры и монтажники тратят месяцы на их анализ — от шести до восьми месяцев на цикл проверки. Это отвлекает их от работы по техническому обслуживанию в полевых условиях. И это слишком долго: к моменту анализа данные уже устарели.

Пришло время вмешаться ИИ. И он начал это делать. ИИ и машинное обучение начали использоваться для обнаружения неисправностей и разрывов в линиях электропередач.

Несколько электроэнергетических компаний, в том числе Xcel Energy и Florida Power and Light тестируют ИИ для обнаружения проблем с электрическими компонентами на линиях электропередач как высокого, так и низкого напряжения. Эти энергетические компании наращивают свои программы инспектирования дронов, чтобы увеличить объем собираемых данных (оптических, тепловых и лидарных), ожидая, что ИИ сможет сделать эти данные более полезными.

Моя организация, Buzz Solutions — одна из компаний, которые сегодня предоставляют подобные инструменты искусственного интеллекта для электроэнергетики.Но мы хотим сделать больше, чем обнаруживать проблемы, которые уже произошли, — мы хотим предсказать их до того, как они произойдут. Представьте себе, что могла бы сделать энергетическая компания, если бы она знала, где находится оборудование, которое приближается к отказу, позволяя экипажам войти внутрь и принять меры по профилактическому обслуживанию, прежде чем искра вызовет следующий крупный лесной пожар.

Пора спросить, может ли ИИ быть современной версией старого талисмана Дымчатого медведя Лесной службы США: предотвращение лесных пожаров. до они случаются.

Повреждение оборудования линии электропередач из-за перегрева, коррозии или других проблем может вызвать возгорание. Buzz Solutions

Мы начали создавать наши системы, используя данные, собранные государственными учреждениями, некоммерческими организациями, такими как Исследовательский институт электроэнергетики (EPRI), электроэнергетические компании и поставщики услуг по воздушной инспекции, которые предлагают в аренду вертолеты и дроны. В совокупности этот набор данных включает тысячи изображений электрических компонентов на линиях электропередач, включая изоляторы, проводники, соединители, оборудование, столбы и опоры.Он также включает коллекции изображений поврежденных компонентов, таких как сломанные изоляторы, корродированные разъемы, поврежденные проводники, ржавые конструкции оборудования и треснувшие опоры.

Мы работали с EPRI и энергосистемами, чтобы создать рекомендации и таксономию для маркировки данных изображений. Например, как именно выглядит сломанный изолятор или корродированный разъем? Как выглядит хороший изолятор?

Затем нам пришлось объединить разрозненные данные, изображения, снятые с воздуха и с земли с использованием различных датчиков камеры, работающих под разными углами и разрешениями и снятых в различных условиях освещения.Мы увеличили контраст и яркость некоторых изображений, чтобы попытаться привести их в единый диапазон, мы стандартизировали разрешения изображений и создали наборы изображений одного и того же объекта, снятого под разными углами. Нам также пришлось настроить наши алгоритмы, чтобы сосредоточиться на интересующем объекте на каждом изображении, например на изоляторе, а не рассматривать все изображение целиком. Для большинства этих корректировок мы использовали алгоритмы машинного обучения, работающие в искусственной нейронной сети.

Сегодня наши алгоритмы искусственного интеллекта могут распознавать повреждения или неисправности, связанные с изоляторами, соединителями, амортизаторами, полюсами, траверсами и другими конструкциями, а также выделять проблемные области для личного обслуживания.Например, он может обнаруживать то, что мы называем перекрывающимися изоляторами — повреждение из-за перегрева, вызванного чрезмерным электрическим разрядом. Он также может обнаружить износ проводов (что также вызвано перегревом линий), корродированные разъемы, повреждение деревянных опор и траверс и многие другие проблемы.

Разработка алгоритмов для анализа оборудования энергосистемы требовала определения того, как именно выглядят поврежденные компоненты под разными углами в разных условиях освещения.Здесь программное обеспечение отмечает проблемы с оборудованием, используемым для уменьшения вибрации, вызванной ветром. Buzz Solutions

Но одна из самых важных проблем, особенно в Калифорнии, заключается в том, чтобы наш ИИ распознал, где и когда растительность растет слишком близко к высоковольтным линиям электропередачи, особенно в сочетании с неисправными компонентами, что является опасным сочетанием в стране пожаров.

Сегодня наша система может обрабатывать десятки тысяч изображений и выявлять проблемы за часы и дни, по сравнению с месяцами для ручного анализа.Это огромная помощь коммунальным предприятиям, пытающимся поддерживать инфраструктуру электроснабжения.

Но ИИ хорош не только для анализа изображений. Он может предсказывать будущее, глядя на закономерности в данных с течением времени. ИИ уже делает это, чтобы предсказывать погодные условия, рост компаний и вероятность возникновения болезней — это лишь несколько примеров.

Мы считаем, что ИИ сможет предоставить аналогичные инструменты прогнозирования для электроэнергетических предприятий, упреждая сбои и отмечая области, где эти сбои потенциально могут вызвать лесные пожары.Мы разрабатываем систему для этого в сотрудничестве с отраслевыми и энергетическими партнерами.

Мы используем исторические данные проверок линий электропередач в сочетании с историческими погодными условиями для соответствующего региона и передаем их в наши системы машинного обучения. Мы просим наши системы машинного обучения найти закономерности, относящиеся к сломанным или поврежденным компонентам, здоровым компонентам и заросшей растительности вокруг линий, наряду с погодными условиями, связанными со всем этим, и использовать эти закономерности для прогнозирования будущего состояния источника питания. линии или электрические компоненты и растительность вокруг них.

Программное обеспечение PowerAI от компании

Buzz Solutions анализирует изображения энергетической инфраструктуры для выявления текущих проблем и прогнозирования будущих

Прямо сейчас наши алгоритмы могут предсказать на шесть месяцев вперед, что, например, существует вероятность повреждения пяти изоляторов в определенной области, наряду с высокой вероятностью зарастания растительности возле линии в то время, что в совокупности создает риск возникновения пожара.

Сейчас мы используем эту систему прогнозирующего обнаружения неисправностей в пилотных программах с несколькими крупными коммунальными предприятиями — одним в Нью-Йорке, одним в регионе Новой Англии и одним в Канаде.С тех пор, как мы начали наши пилотные проекты в декабре 2019 года, мы проанализировали около 3500 электрических опор. Мы обнаружили среди примерно 19 000 исправных электрических компонентов 5 500 неисправных, которые могли привести к отключению электроэнергии или искрообразованию. (У нас нет данных о произведенных ремонтах или заменах.)

Куда мы отправимся отсюда? Чтобы выйти за рамки этих пилотных проектов и более широко развернуть прогнозирующий ИИ, нам потребуется огромный объем данных, собранных с течением времени и в разных географических регионах. Это требует работы с несколькими энергетическими компаниями, сотрудничества с их группами по инспекции, техническому обслуживанию и управлению растительностью.У крупных энергетических компаний США есть бюджеты и ресурсы для сбора данных в таком большом масштабе с помощью программ инспекций с помощью дронов и авиации. Но небольшие коммунальные предприятия также получают возможность собирать больше данных, поскольку стоимость дронов падает. Чтобы сделать инструменты, подобные нашему, широко полезными, потребуется сотрудничество между крупными и мелкими коммунальными предприятиями, а также поставщиками дронов и сенсорных технологий.

Перенесемся в октябрь 2025 года. Нетрудно представить западный U.S ждет еще один жаркий, сухой и чрезвычайно опасный пожарный сезон, во время которого небольшая искра может привести к гигантской катастрофе. Люди, живущие в стране пожаров, стараются избегать любых действий, которые могут привести к пожару. Но в наши дни они гораздо меньше обеспокоены рисками, связанными с их электросетью, потому что несколько месяцев назад пришли коммунальные работники, ремонтируя и заменяя неисправные изоляторы, трансформаторы и другие электрические компоненты и подрезая деревья, даже те, которые еще не были дойти до линий электропередач.Некоторые спрашивали рабочих, почему такая активность. «О, — сказали им, — наши системы искусственного интеллекта предполагают, что этот трансформатор, расположенный рядом с этим деревом, может искрить при падении, а мы не хотим, чтобы это произошло».

В самом деле, конечно же, нет.

Разработка системы фотоэлементов

Обзор
Солнечная энергия — один из наиболее многообещающих возобновляемых источников энергии с точки зрения отсутствия загрязнения и неограниченного источника энергии.К сожалению, производство солнечной энергии ограничено суточным циклом и сильно зависит от погодных условий. Для повышения надежности и управляемости производства электроэнергии за счет солнечной энергии необходимо интегрировать солнечные фотоэлектрические панели с устройствами хранения энергии, такими как батареи. Стандартный подход к системам «солнечные батареи +» — это внешнее соединение двух компонентов как части энергосистемы, которая включает в себя систему кондиционирования и управления энергией. Этой системной архитектуре присущи такие проблемы, как высокие потери при двусторонней энергоэффективности (
<86% на уровне системы) и сложность конструкции всей системы.
Этот проект направлен на продвижение разработки фото-аккумуляторной системы (например, солнечной батареи) в качестве чистой, возобновляемой и рентабельной системы производства и хранения энергии. Архитектура объединила два разных устройства (солнечную батарею и литий-ионный аккумулятор) в одно устройство. В рамках этого проекта мы разработали аккумуляторную систему хранения энергии с функцией зарядки солнечных фотоэлектрических панелей в рамках единой архитектуры устройства. Комбинирование этих систем способствует минимизации потерь энергии благодаря инновационной архитектуре устройства.Результатом стала разработка фото-перезаряжаемой литий-ионной батареи большой емкости. Солнечная батарея может заменить стандартные солнечные панели в системах выработки электроэнергии за счет достижения высокой эффективности преобразования и емкости хранения энергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *