Реактивная энергия: Теория реактивной мощности

Содержание

Реактивная энергия — РАДИОСХЕМЫ

Наверняка многие из вас слышали о реактивной электроэнергии. Зная, насколько сложен для понимания этот термин, давайте разберём детально отличия реактивной и активной энергии. Важно осознать тот факт, что реактивную электроэнергию мы можем наблюдать только в переменном токе. Там, где течёт постоянный ток, реактивная энергия не присутствует. Обусловлено это природой появления реактивной энергии.


Через несколько понижающих трансформаторов к потребителю поступает переменный ток, конструкция которых разделяет обмотки низкого и высокого напряжения. То есть получается так, что в трансформаторе отсутствует физический контакт между двумя обмотками, при этом ток всё равно течёт. Объяснить это довольно просто. Электроэнергия всегда передаётся через воздух, который является прекрасным диэлектриком, при помощи электромагнитного поля, составляющая которого – переменное магнитное поле. Оно регулярно пересекает обмотку, появляясь в другой, и не имеет с первой электрического контакта, наводя электродвижущую силу. Коэффициент полезного действия у современных трансформаторов достаточно велик, отсюда потеря электроэнергии сводиться к минимуму, и потому вся мощь переменного тока, который протекает в первичной обмотке, оказывается в цепи вторичной обмотки. Тоже самое происходит в конденсаторе, правда, уже за счёт электрического поля. Ёмкость и индуктивность вместе порождают реактивную энергию. Активная энергия (которой мешает возврат реактивной энергии) преобразовывается в тепловую, механическую и другую.


Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

Пример: если на электродрели указана величина мощности в 800 Вт и cosφ = 0,8, то отсюда следует, что потребляемая инструментом полная мощность составляет 800/0,8=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

Реактивный тип нагрузки характеризуется тем, что сначала, неторое время, в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю — реактивная составляющая мощности обычно считается вредной характеристикой цепи.


Для того, чтобы компенсировать противодействие реактивной энергии, применяются специальные устанавливаемые конденсаторы. Это заставляет свести к минимуму появляющееся негативное влияние реактивной энергии. Мы уже отмечали, что реактивная мощность существенно влияет на потерю электрической энергии в сети. Потому получается, что величину той самой негативной энергии приходиться постоянно держать под контролем, и лучший для этого способ – организовать её учёт.

Там, где озабочены этой проблемой (различные промышленные предприятия) довольно часто ставят отдельные специальные приборы, которые ведут учёт не только самой реактивной энергии, но и активной её части. Учёт ведётся в трёхфазных сетях по индуктивной и ёмкостной составляющей. Обычно такие счётчики, это не что иное, как аналого-цифровое устройство, которое преобразует мощность в аналоговый сигнал, который превращается в частоту следования электро-импульсов. Сложив их, мы можем судить о количестве потребляемой энергии. Обычно счётчик сделан из пластмассового корпуса, где установлены 3 трансформатора и блок учёта на печатной плате. На внешней стороне располагается ЖК экран или светодиоды.


Предприятия в настоящее время всё чаще ставят универсальные счётчики учёта электроэнергии, которые измеряют количество как активной, так и реактивной энергии. Более того, такие приборы могут совмещать функции от двух, а иногда и более устройств, что позволяет снижать затраты на обслуживание и позволяет сэкономить во время покупки. Такие устройство способны вычислять реактивную и активную мощность, а также измерять мгновенные значения напряжений. Счётчик фиксирует, каков уровень потребления энергии и показывает всю информацию на дисплее 3-мя сменяющимися кадрами (индуктивная составляющая, ёмкостная составляющая, а также объём активной энергии). Современные модели позволяют передавать данные по ИК цифровому каналу, защищены от магнитных полей, хищения энергии. Более того, мы получаем более точные измерения и малое энергопотребление, что выгодно отличает новые модели от предшественников.

Что такое активная и реактивная электроэнергия. Реактивная энергия

Мощность бывает активная, а бывает полная. Спрашивается, полная чем? А вот, мол, тем, что нам служит на пользу, что делает нам полезную работу, но и… оказывается, это еще не все. Еще есть вторая составляющая, которая получается этаким довеском, и она просто сжигает энергию. Греет то что не надо, а нам от этого ни жарко, ни холодно.

Такая мощность называется реактивной. Но виноваты, как это ни странно, мы сами. Вернее, наша система выработки, передачи и потребления электроэнергии.

Мощность активная, реактивная и полная

Мы пользуемся электричеством с помощью сетей переменного тока. Напряжение у нас в сетях каждую секунду колеблется 50 раз от минимального значения до максимального. Это так получилось. Когда изобретали электрический генератор, который механическое движение преобразует в электричество, то оказалось, что perpetuum mobile, или, переведя с латинского, вечное движение, легче всего устроить по кругу. Изобрели когда-то колесо, и с тех пор знаем, что если его подвесить на оси, то можно вращать долго-долго, а оно будет оставаться все на том же месте — на оси.

Почему у нас в сети напряжение переменное

И электрический генератор имеет ось и нечто, на ней вращающееся. А в результате и получается электрическое напряжение. Только генератор состоит из двух частей: вращающейся, ротора, и неподвижной, статора. И обе они участвуют в выработке электроэнергии. А когда одна часть крутится около другой, то неизбежно точки поверхности вращающейся части то приближаются к точкам поверхности неподвижной, то от них отдаляются. И это совместное их положение с неизбежностью описывается только одной математической функцией — синусоидой. Синусоида есть проекция вращения по кругу на одну из геометрических осей.

Но осей таких можно построить много. Обычно наши координаты друг другу перпендикулярны. И тогда при вращении по кругу некоторой точки на одной оси проекцией вращения будет синусоида, а по другой — косинусоида, или та же синусоида, только смещенная относительно первой на четверть поворота, или на 90°.

Вот нечто такое и представляет собой напряжение, которое доводит до нашей квартиры электрическая сеть.

угол поворота здесь разбит не на 360 градусов,
а на 24 деления. То есть одно деление соответствует 15°
6 делений = 90°

Итак, напряжение в нашей сети синусоидальное с частотой 50 герц и амплитудой 220 вольт, потому что удобнее было делать генераторы, которые вырабатывают напряжение именно переменное.

Выгода от переменного напряжения — выгода системы

А чтобы сделать напряжение постоянным, надо специально его выпрямить. И это можно делать либо прямо в генераторе (специально сконструированном — тогда он станет генератором постоянного тока), либо когда-нибудь потом. Вот это «когда-нибудь» и получилось снова очень кстати, потому что переменное напряжение можно преобразовывать трансформатором — повышать или понижать. Это оказалось вторым удобством переменного напряжения. А повысив его трансформаторами до напряжений буквально ЗАПРЕДЕЛЬНЫХ (полмиллиона вольт и больше), можно передавать на гигантские расстояния по проводам без гигантских при этом потерь. И это тоже пришлось вполне кстати в нашей большой стране.

Вот, доведя, все-таки, напряжение до нашей квартиры, понизив его до хоть сколько-то мыслимой (хотя все еще и опасной) величины в 220 вольт, преобразовать его в постоянное опять забыли. Да и зачем? Лампочки горят, холодильник работает, телевизор показывает. Хотя в телевизоре этих постоянных/переменных напряжений… но, не будем тут еще и об этом.

Убытки от переменного напряжения

И вот мы пользуемся сетью переменного напряжения.

А в ней присутствует «плата за забывчивость» — реактивное сопротивление наших потребляющих сетей и их реактивная мощность. Реактивное сопротивление — это сопротивление переменному току. И мощность, которая просто-напросто уходит мимо наших потребляющих электроприборов.

Ток, идя по проводам, создает вокруг них электрическое поле. Электростатическое поле притягивает к себе заряды со всего, что источник поля, то есть ток, окружает. А изменение тока создает еще и поле электромагнитное, которое начинает бесконтактно наводить во всех проводниках вокруг электрические токи. Так, наша токовая синусоида, как только мы что-то у себя включаем, есть не просто ток, а непрерывное его изменение. Проводников вокруг хватает, начиная от металлических корпусов тех же электроприборов, металлических труб водоснабжения, отопления, канализации и кончая прутами арматуры в железобетонных стенах и перекрытиях. Вот во всем этом и наводится электричество. Даже вода в бачке унитаза, и та участвует во всеобщем веселье — в ней тоже индуцируются токи наводки. Такое электричество нам совсем не нужно, мы его «не заказывали». Но оно эти проводники пытается разогреть, а значит, уносит из нашей квартирной сети электроэнергию.

Чтобы охарактеризовать соотношение мощностей в сети нашего переменного тока, рисуют треугольник.

S – полная мощность, расходуемая нашей сетью,
P – активная мощность, она же полезная активная нагрузка,
Q – мощность реактивная.

Мощность полную можно замерить ваттметром, а активная мощность получается расчетом нашей сети, в которой мы учитываем только полезные для нас нагрузки. Естественно, сопротивлением проводов мы пренебрегаем, считая их малыми относительно полезных сопротивлений электроприборов.

Полная мощность

S = U x I = U a x I f

То есть, чем «тупее» этот острый угол, тем хуже у нас работает внутренняя квартирная потребляющая сеть — много энергии уходит в потери.

Что такое активная, реактивная и полная мощности

Угол j можно еще назвать углом фазового сдвига между током и напряжением в нашей сети. Ток является результатом приложения к нашей сети исходного напряжения в 220 вольт частотой в 50 герц. Когда нагрузка активна, то фаза тока совпадает с фазой напряжения в ней. А реактивные нагрузки эту фазу сдвигают на этот угол.

Собственно говоря, угол и характеризует степень эффективности нашего потребления энергии. И надо стараться его уменьшить. Тогда S будет приближаться к P.

Только удобнее оперировать не с углом, а с косинусом угла. Это как раз и есть соотношение двух мощностей:

Косинус угла приближается к единице, когда угол приближается к нулю. То есть, чем острее угол j, тем лучше, эффективнее работает электрическая потребляющая сеть. На практике, если добиться величины косинуса фи (а его можно выразить в процентах) порядка 70–90%, то это уже считается неплохо.

Часто используется другое отношение, связывающее активную мощность и реактивную:

Из диаграммы тока и напряжения можно найти выражения для мощностей: активной, реактивной и полной.

Если более привычная нам активная мощность измеряется в ваттах, то полная мощность измеряется в вольт-амперах (вар). Ватт из вара можно посчитать умножением на косинус фи.

Что такое реактивная мощность

Реактивная мощность бывает индуктивная и емкостная. Они ведут себя в электрической цепи по-разному. На постоянном токе индуктивность — это просто кусок провода, имеющий какое-то очень малое сопротивление. А конденсатор на постоянном напряжении — просто разрыв в цепи.

И когда мы их включаем в цепь, подводим к ним напряжение, во время переходного процесса они ведут себя тоже прямо противоположно. Конденсатор заряжается, при этом возникающий ток сначала большой, потом, по мере зарядки, маленький, уменьшающийся до нуля.

В индуктивности, катушке с проводом, возникающее магнитное поле после включения в самом начале сильно препятствует прохождению тока, и он сначала маленький, потом увеличивается до своего стационарного значения, определяемого активными элементами схемы.

Конденсаторы, таким образом, способствуют изменению тока в цепи, а индуктивности препятствуют изменению тока.

Индуктивная и емкостная составляющие сопротивления сети

Таким образом, реактивные элементы имеют свои разновидности сопротивления — емкостное и индуктивное. С полным сопротивлением, включающим активную и реактивную составляющие, это связывается следующей формулой:

Z – полное сопротивление,

R – активное сопротивление,

X – реактивное сопротивление.

В свою очередь, реактивное сопротивление состоит из двух частей:

X L – индуктивной и X C – емкостной.

Отсюда мы видим, что вклад в реактивную составляющую у них разный.

Все, что в сети индуктивно, увеличивает реактивное сопротивление сети, все, что в сети имеет емкостной характер, уменьшает реактивное сопротивление.

Электроприборы, влияющие на качество потребления

Если бы все приборы у нас в сети были, как лампочки, то есть являлись чисто активной нагрузкой, проблем бы не было. Была бы активная потребляющая сеть, одна сплошная активная нагрузка, и, как говорится, в чистом поле — вокруг ничего, то все легко бы подсчитывалось по законам Ома и Кирхгофа, и было справедливо — сколько потребил, за столько и заплатил. Но вот имея и вокруг себя загадочную токопроводящую «инфраструктуру», и в самой сети множество неучтенных емкостей и индуктивностей, мы и получаем, кроме полезной нам, еще и реактивную, ненужную нам нагрузку.

Как от нее избавиться? Когда электрическая потребляющая сеть уже создана, то можно проводить мероприятия по уменьшению реактивной составляющей. Компенсация и строится на «антагонизме» индуктивностей и емкостей.

То есть, в сложившейся сети следует измерить ее составляющие, а потом придумать компенсацию.

Особенно хороший эффект от таких мероприятий достигается в больших потребляющих сетях. Например, на уровне заводского цеха, имеющего большое количество постоянно работающего оборудования.

Для компенсации реактивной составляющей используются специальные компенсаторы реактивной мощности (КРМ), содержащие в своей конструкции конденсаторы, меняющие суммарный сдвиг фаз в сети в лучшую сторону.

Еще приветствуется использование в сетях синхронных двигателей переменного тока, так как они способны компенсировать реактивную мощность. Принцип простой: в сети они способны работать в режиме двигателя, а когда при сдвиге фаз наблюдается «завал» электроэнергии (других слов язык уже не находит), они способны компенсировать это, «подрабатывая» в сети в режиме генератора.

Для энергетиков предприятий и крупных торговых центров сомнений в существовании реактивной энергии нет. Ежемесячные счета и вполне реальные деньги, которые уходят на оплату реактивной электроэнергии , убеждают в реальности ее существования. Но некоторые электротехники всерьез, с математическими выкладками, доказывают, что данный тип электроэнергии фикция, что разделение электрической энергии на активную и реактивную составляющие искусственно.

Давайте попробуем и мы разобраться в этом вопросе, тем более, что на незнании отличий разных видов электроэнергии спекулируют создатели . Обещая огромные проценты , они сознательно или по незнанию подменяют один вид электрической энергии другим.

Начнем с понятий активной и реактивной электроэнергии. Не вдаваясь в дебри формул электротехники, можно определить активную энергию как ту, которая совершает работу: нагревает пищу на электроплитах, освещает ваше помещение, охлаждает воздух с помощью кондиционера. А реактивная электроэнергия создает необходимые условия для совершения подобной работы. Не будет реактивной энергии, и двигатели не смогут вращаться, холодильник не будет работать. В ваше помещение не поступит напряжение величиной 220 Вольт, так как ни один силовой трансформатор не работает без потребления реактивной электроэнергии.

Если на осциллографе одновременно наблюдать сигналы тока и напряжения, то две эти синусоиды всегда имеют сдвиг относительно друг друга на величину, называемую фазовым углом . Вот этот сдвиг и характеризует вклад реактивной энергии в полную энергию, потребляемую нагрузкой. Измеряя только ток в нагрузке, выделить реактивную часть энергии невозможно.

Учитывая, что реактивная энергия не совершает работы, ее можно вырабатывать на месте потребления. Для этого служат конденсаторы. Дело в том, что катушки и конденсаторы потребляют различные виды реактивной энергии: индуктивную и емкостную соответственно. Они сдвигают кривую тока по отношению к напряжению в противоположные стороны.

В силу этих обстоятельств конденсатор можно считать потребителем емкостной энергии или генератором индуктивной. Для двигателя, потребляющего индуктивную энергию, конденсатор, расположенный рядом, может стать ее источником. Такая обратимость возможна только для реактивных элементов схемы, не совершающих работу. Для активной энергии подобная обратимость не существует: ее генерация связана с затратами топлива. Ведь прежде чем совершить работу, нужно затратить энергию.

В бытовых условиях за реактивную энергию электропередающие организации плату не изымают, и бытовой счетчик считает только активную составляющую электрической энергии. Совершенно другая ситуация на крупных предприятиях: большое количество электродвигателей, сварочных аппаратов и трансформаторов, для работы которых требуется реактивная энергия, создают дополнительную нагрузку на линии электропередач. При этом растет ток и тепловые потери уже активной энергии.

В этих случаях потребление реактивной энергии учитывается счетчиком и отдельно оплачивается. Стоимость реактивной электроэнергии меньше стоимости активной, но при больших объемах ее потребления платежи могут быть очень значительными. Кроме этого, за потребление реактивной энергии сверх оговоренных значений, накладываются штрафы. Поэтому экономически выгодно для подобных предприятий становится выработка подобной энергии на месте ее потребления.

Для этого применяются или отдельные конденсаторы, или автоматические установки компенсации, которые отслеживают объемы потребления и подключают или отключают конденсаторные батареи. Современные системы компенсации позволяют значительно уменьшить потребление реактивной энергии из внешней сети.

Возвращаясь к вопросу в заголовке статьи, можно ответить на него утвердительно. Реактивная энергия существует. Без нее невозможна работа электроустановок, в которых создается магнитное поле. Не совершая видимой работы, она, тем не менее, является необходимым условием для выполнения работ, совершаемой активной электрической энергией.

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.


Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.


Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Q L = U L I = I 2 x L

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: x L = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL – QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит :

  • Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  • У сигнальных и радиоустройств уменьшаются помехи;
  • На порядок уменьшаются гармоники в электрической сети.
  • В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

    Реактивная мощность

    Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

    Если элемент цепи — резистор c электрическим сопротивлением R , то

    Мощность переменного тока

    Активная мощность

    Среднее за период Т значение мгновенной мощности называется активной мощностью: . В цепях однофазного синусоидального тока , где U и I — действующие значения напряжения и тока , φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением . Единица активной мощности — ватт (W , Вт ). Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом активной мощности является мощность, поглощаемая нагрузкой.

    Реактивная мощность

    Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока, равна произведению действующих значений напряжения U и тока I , умноженному на синус угла сдвига фаз φ между ними: Q = UI sin φ . Единица реактивной мощности — вольт-ампер реактивный (var , вар ). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: . Реактивная мощность в электрических сетях вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения). В некоторых электрических установках реактивная мощность может быть значительно больше активной. Это приводит к появлению больших реактивных токов и вызывает перегрузку источников тока. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности. Для СВЧ электромагнитного сигнала, в линиях передачи, аналогом реактивной мощности является мощность, отраженная от нагрузки.

    Необходимо отметить, что величина sinφ для значений φ от 0 до плюс 90 ° является положительной величиной. Величина sinφ для значений φ от 0 до минус 90 ° является отрицательной величиной. В соответствии с формулой Q = UI sinφ реактивная мощность может быть отрицательной величиной. Но отрицательное значение мощности нагрузки характеризует нагрузку как генератор энергии. Активное, индуктивное, емкостное сопротивление не могут быть источниками постоянной энергии. Модуль величины Q = UI sinφ приблизительно описывает реальные процессы преобразования энергии в магнитных полях индуктивностей и в электрических полях емкостей. Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения. Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sinφ , более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.

    Полная мощность

    Полная мощность — величина, равная произведению действующих значений периодического электрического тока в цепи I и напряжения U на её зажимах: S = U×I ; связана с активной и реактивной мощностями соотношением: , где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0 , а при ёмкостной Q ). Единица полной электрической мощности — вольт-ампер (VA , ВА ).

    Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

    Измерения

    • Для измерения электрической мощности применяются ваттметры и варметры , можно также использовать косвенный метод, с помощью вольтметра и амперметра .
    • Для измерения коэффициента реактивной мощности применяют фазометры

    Литература

    • Бессонов Л. А. — Теоретические основы электротехники: Электрические цепи — М.: Высш. школа,

    Ссылки

    См. также

    • Список параметров напряжения и силы электрического тока

    Wikimedia Foundation . 2010 .

    Смотреть что такое «Реактивная мощность» в других словарях:

      реактивная мощность — Величина, равная при синусоидальных электрическом токе и электрическом напряжении произведению действующего значения напряжения на действующее значение тока и на синус сдвига фаз между напряжением и током двухполюсника. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

      Электр. мощность в цепи переменного тока, расходуемая на поддержание вызываемых переменным током периодических изменений: 1) магнитного поля при наличии в цепи индуктивности; 2) заряда конденсаторов при наличии конденсаторов и проводов (напр.… … Технический железнодорожный словарь

      Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними: Q =… … Большой Энциклопедический словарь

      РЕАКТИВНАЯ МОЩНОСТЬ — величина, характеризующая скорость обмена энергией между генератором переменного тока и магнитным (млн. электрическим) полем цепи, создаваемым электротехническими устройствами (индуктивностью и ёмкостью). Р. м. возникает в цепи при наличии сдвига … Большая политехническая энциклопедия

      реактивная мощность — 3.1.5 реактивная мощность (вар): Реактивная мощность сигналов синусоидальной формы какой либо отдельной частоты в однофазной цепи, определяемая как произведение среднеквадратических значений тока и напряжения и синуса фазового угла между ними.… … Словарь-справочник терминов нормативно-технической документации

      реактивная мощность — reaktyvioji galia statusas T sritis Standartizacija ir metrologija apibrėžtis Menamoji kompleksinės galios dalis, skaičiuojama pagal formulę Q² = S² – P²; čia Q – reaktyvioji galia, S – pilnutinė galia, P – aktyvioji galia. Matavimo vienetas –… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

      реактивная мощность — reaktyvioji galia statusas T sritis fizika atitikmenys: angl. reactive power; wattless power vok. Blindleistung, f; wattlose Leistung, f rus. безваттная мощность, f; реактивная мощность, f pranc. puissance déwatée, f; puissance réactive, f … Fizikos terminų žodynas

      Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока I и напряжения U на синус угла сдвига фаз между ними:… … Энциклопедический словарь

      реактивная мощность — reaktyvioji galia statusas T sritis automatika atitikmenys: angl. reactive power vok. Blindleistung, f; wattlose Leistung, f rus. реактивная мощность, f pranc. puissance réactive, f … Automatikos terminų žodynas

      Величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи переменного тока (См. Переменный ток). Р. м. Q равна произведению действующих значений напряжения U и тока… … Большая советская энциклопедия

    Книги

    • Электротехника и электроника на судах рыбопромыслового флота , Белов О.А., Парфенкин А.И.. Рассмотрены общие вопросы электротехники и электроники, физические явления, лежащие в основе производства и использования электричества, работы электронных устройств. Приведены примеры…

    Увидела в интернете энергосберегающие устройства, которые, как я поняла прсто включаются в ближайшую к счетчику розетку. Может кто пользовался? Действительно экономят энергию? И еще пишут, что они повышают качество электроэнергии и таким образом предотвращают порчу электроприборов. Хотелось бы услышать отзывы.

    При расчете электрической мощности, потребляемой любым электротехническим или бытовым устройством, обычно учитывается так называемая полная мощность электрического тока, выполняющего определённую работу в цепи данной нагрузки. Под понятием «полная мощность» подразумевается вся та мощность, которая потребляется электроприбором и включает в себя как активную составляющую, так и составляющую реактивную, которая в свою очередь определяется типом используемой в цепи нагрузки. Активная мощность всегда измеряется и указывается в ваттах (Вт), а полная мощность приводится обычно в вольт-амперах (ВА). Различные приборы — потребители электрической энергии могут работать в цепях, имеющих как активную, так и реактивную составляющую электрического тока.

    Активная составляющая потребляемой любой нагрузкой мощности электрического тока совершает полезную работу и трансформируется в нужные нам виды энергии (тепловую, световую, звуковую и т.п.). Отдельные электроприборы работают в основном на этой составляющей мощности. Это — лампы накаливания, электроплиты, обогреватели, электропечи, утюги и т.п.
    При указанном в паспорте прибора значении активной потребляемой мощности в 1 кВт он будет потреблять от сети полную мощность в 1кВА.

    Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

    Пример: если на электродрели указана величина мощности в 600 Вт и cosφ = 0,6, то отсюда следует, что потребляемая инструментом полная мощность составляет 600/0,6=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

    При рассмотрении вопроса об активной и реактивной составляющих электроэнергии (точнее — её мощности), обычно имеются в виду те явления, которые происходят в цепях переменного тока. Оказалось, что различные нагрузки в цепях переменного тока ведут себя совершенно по-разному. Одни нагрузки используют передаваемую им энергию по прямому назначению (т.е. — для совершения полезной работы), а другой тип нагрузок сначала эту энергию запасает, а потом снова отдаёт её источнику электропитания.

    По виду своего поведения в цепях переменного тока, различные потребительские нагрузки делятся на следующие два типа:

    1. Активный тип нагрузки поглощает всю получаемую от источника энергию и превращает её в полезную работу (свет от лампы, например), причём форма тока в нагрузке в точности повторяет форму напряжения на ней (сдвиг фаз отсутствует).

    2. Реактивный тип нагрузки характеризуется тем, что сначала (в течение некоторого промежутка времени), в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия (в течение определённого промежутка времени) отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю (а не перекачивание её туда и обратно) — реактивная составляющая мощности обычно считается вредной характеристикой цепи.

    Потери на реактивную составляющую в сети напрямую связаны с величиной рассмотренного выше коэффициента мощности, т.е. чем выше cosφ потребителя, тем меньше будут потери мощности в линии и дешевле обойдётся передача электроэнергии потребителю.
    Таким образом, именно коэффициент мощности указывает нам на то, насколько эффективно используется рабочая мощность источника электроэнергии. В целях повышения величины коэффициента мощности (cosφ) во всех видах электрических установок применяются специальные приёмы компенсации реактивной мощности.
    Обычно для увеличения коэффициента мощности (за счёт уменьшения сдвига фаз между током и напряжением — угла φ) в действующую сеть включают специальные компенсирующие устройства, представляющие собой вспомогательные генераторы опережающего (емкостного) тока.
    Кроме того, очень часто для компенсации потерь, возникающих из-за индуктивной составляющей цепи, в ней используются батареи конденсаторов, подключаемые параллельно рабочей нагрузке и используемые в качестве синхронных компенсаторов.

    Активная и реактивная электроэнергия. Активная и реактивная мощность. За что платим и работа

    и является суммой двух величин, одна из которых постоянна во времени, а другая пульсирует с двойной частотой.

    Среднее значение p(t) за период Т называется активной мощностью и полностью определяется первым слагаемым уравнения (5.1):

    Активная мощность ха-рактеризует энергию, расходуемую необратимо источником в единицу времени на производство полезной работы потребителем. Активная энергия, потребляемая электроприёмниками, преобразуется в другие виды энергии : механическую, тепловую, энергию сжатого воздуха и газа и т. п.

    Среднее значение от второго слагаемого мгновенной мощности (1.1) (пульсирует с двойной частотой) за время Т равно нулю, т. е. на ее создание не требуется каких-либо материальных затрат и поэтому она не может совершать полезной ра-боты. Однако ее присутствие указывает, что между источником и приемником происходит обратимый процесс обмена энергией. Это возможно, если имеются элементы, способные накапливать и отдавать электромагнитную энергию — емкость и индуктивность . Эта составляющая характеризует реактивную мощность.

    Полную мощность на зажимах приемника в комп-лексной форме можно представить следующим образом:

    Единица измерения полной мощности S = UI — ВА.

    Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями (обменом) энергии между источником и приемником. Для синусоидального тока она равна произведению действующих значений тока I и напряжения U на синус угла сдвига фаз между ними: Q = UI sinφ. Единица измерения — ВАр.

    Реактивная мощность не связана с полезной работой ЭП и расходуется только на создание переменных электромагнитных полей в электродвигателях, трансформаторах, аппаратах, линиях и т. д.

    Для реактивной мощности приняты такие понятия, как генерация, потребление, передача, потери, баланс. Считается, что если ток отстает по фазе от напряжения (индуктивный характер нагрузки), то реактивная мощ-ность потребляется и имеет положительный знак, а если ток опережает напряжение (емкостный характер нагрузки), то реактивная мощность ге-нерируется и имеет отрицательное значение.

    Основными потребителями реактивной мощности на промышленных предприятиях являются асинхронные двигатели (60-65 % общего потреб-ления), трансформаторы (20-25 %), вентильные преобразователи, реакторы, воздушные электрические сети и прочие приемники (10 %).

    Передача реактивной мощности загружает электрические сети и установленное в ней оборудование, уменьшая их пропускную способность. Реактивная мощность генерируется синхронными генераторами электростанций, синхронными компенса-торами, синхронными двигателями (регулирование током возбуждения), батареями конденсаторов (БК) и линиями электропередачи.

    Реактивная мощность, вырабатываемая емкостью сетей, имеет следующий порядок величин: воздушная линия 20 кВ генерирует 1 кВАр на 1 км трехфазной линии; подземный кабель 20 кВ — 20 кВАр/км; воздушная линия 220 кВ — 150 кВАр/км; подземный кабель 220 кВ — 3 МВАр/км.

    Коэффициент мощности и коэффициент реактивной мощности.

    Векторное представление величин, характеризующих состояние сети, приводит к представлению реактивной мощности Q вектором, перпендикулярным вектору активной мощности Р (рис. 5.2). Их векторная сумма дает полную мощность S .

    Рис. 5.1. Треугольник мощностей

    Согласно рис. 5.1 и (5.2) следует, что S 2 = Р 2 + Q 2 ; tgφ = Q/P; cosφ = P/S.

    Основным нормативным показателем, характе-ризующим реактивную мощность, ранее был коэффициент мощности cosφ. На вводах, питающих промышленное предприятие, средневзвешенное значение этого коэффициента должно было находиться в пределах 0,92-0,95. Однако выбор соотношения P/S в качестве нормативного не дает четкого представления о динамике изменения реального значения реактивной мощности. Например, при изменении коэффициента мощности от 0,95 до 0,94 реактивная мощность изменяется на 10 %, а при изменении этого же коэффициента от 0,99 до 0,98 приращение реактивной мощности составляет уже 42 %. При расчетах удобнее оперировать соотношением tgφ = Q/P , которое называют коэффициентом реактивной мощности.

    Предприятиям, у которых присоединенная мощность более 150 кВт (за исключением «бытовых» потребителей), определены предельные значения коэффициента реактивной мощности , потребляемой в часы больших суточных нагрузок электрической сети — с 7 до 23 часов (Приказ Министерства промышленности и энергетики РФ от 22.02.2007 г. № 49 «О порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии »).

    Предельные значения коэффициентов реактивной мощности (tgφ) нормируются в зависимости от положения точки (напряжения) присоединения потребителя к сети. Для напряжения сети 100 кВ tgφ = 0,5; для сетей 35, 20, 6 кВ — tgφ = 0,4 и для сети 0,4 кВ — tgφ = 0,35.

    Введение новых директивных документов по компен-сации реактивной мощности было направлено на повышение эффективности работы всей системы электроснабжения от генераторов энергосистемы до приемников электроэнергии.

    С введением коэффициента реактивной мощности стало возможным представлять потери активной мощности через активную или реактивную мощности: Р = (P 2 /U 2) R (l + tg 2 φ).

    Угол между векторами мощностей Р и S соответствует углу φ между векторами активной составляющей тока I а и полного тока I , который, в свою очередь, представляет собой векторную сумму активного тока I а, находящегося в фазе с напряжением, и реактивного тока I р, находящегося под углом 90° к нему. Это расположение токов является расчетным приемом, связанным с разложением на активную и реактивную мощности, которое можно считать естественным.

    Большинство потребителей нуждаются в реактивной мощности, поскольку они функционируют благодаря изменению магнитного поля . Для наиболее употребительных двигателей в нормальном режиме работы можно привести следующие примерные значения tgφ.

    В момент пуска двигателей требуется значительное количество реактивной мощности, при этом tgφ = 4-5 (cosφ = 0,2-0,24).

    Синхронные машины обладают способностью потреблять или выдавать реактивную мощность в зависимости от степени возбуждения.

    В синхронных генераторах и двигателях размеры цепей возбуждения ограничивают возможность поставки реактивной мощности до максимальных значений tgφ = 0,75 (cosφ = 0,8) или до tgφ = 0,5 (cosφ = 0,9) (табл. 5.1).

    Синхронные двигатели, выпускаемые отечественной промышленностью, рассчитаны на опережающий коэффициент мощности (cosφ = 0,9) и при номинальной активной нагрузке P ном и напряжении U ном могут вырабатывать номинальную реактивную мощность Q ном ≈ 0,5P ном.

    При недогрузке СД по активной мощности β = P/P ном Q /Q ном > 1.

    Преимуществом СД, используемым для компенсации реактивной мощности, по сравнению с КБ является возможность плавного регулирования генерируемой реактивной мощности. Недостатком является то, что активные потери на генерирование реактивной мощности для СД больше, чем для КБ.

    Дополнительные активные потери в обмотке СД, вызываемые генерируемой реактивной мощностью в пределах изменения cosφ от 1 до 0,9 при номинальной активной мощности СД, равной P ном, кВт:

    Р ном = Q 2 ном R /U 2 ном,

    где Q ном — номинальная реактивная мощность СД, кВ Ар; R — сопротивление одной фазы обмотки СД в нагретом состоянии, Ом; U ном — номинальное напряжение сети, кВ.

    В системах электроснабжения промышленных предприятий КБ компенсируют реактивную мощность базисной (основной) части графиков нагрузок, а СД снижают пики нагрузок графика.

    Таблица 5.1

    Зависимости коэффициента перегрузки по реактивной мощности синхронных двигателе й

    Синхронные компенсаторы.

    Разновидностью СД являются синхронные компенсаторы (СК), которые представляют собой СД без нагрузки на валу. В настоящее время выпускается СК мощностью выше 5000 кВ?Ар. Они имеют ограниченное применение в сетях промышленных предприятий. Для улучшения показателей качества напряжения у мощных ЭП с резкопеременной, ударной нагрузкой (дуговые печи, прокатные станы и т. п.) используются СК.

    Статические тиристорные компенсирующие устройства.

    В сетях с резкопеременной ударной нагрузкой на напряжении 6-10 кВ рекомендуется применение не конденсаторных батарей, а специальных быстродействующих источников реактивной мощности (ИРМ), которые должны устанавливаться вблизи таких ЭП. Схема ИРМ приведена на рис. 5.2. В ней в качестве регулируемой индуктивности используются индуктивности LR и нерегулируемые ёмкости С 1-С 3.

    Рис. 5.2. Быстродействующие источники реактивной мощности

    Регулирование индуктивности осуществляется тиристорными группами VS , управляющие электроды которых подсоединены к схеме управления. Достоинствами статических ИРМ являются отсутствие вращающихся частей, относительная плавность регулирования реактивной мощности, выдаваемой в сеть, возможность трёх- и четырёхкратной перегрузки по реактивной мощности. К недостаткам относится появление высших гармоник, которые могут возникнуть при глубоком регулировании реактивной мощности.

    За счет дополнительных потерь мощности в сети, вызванных потреблением реактивной мощности, увеличивается общее потребление электроэнергии. Поэтому снижение перетоков реактивной мощности является одной из основных задач эксплуатации электрических сетей.

    Содержание:

    В электротехнике среди множества определений довольно часто используются такие понятия, как активная, реактивная и полная мощность. Эти параметры напрямую связаны с током и напряжением , когда включены какие-либо потребители. Для проведения вычислений применяются различные формулы, среди которых основной является произведение напряжения и силы тока. Прежде всего это касается постоянного напряжения. Однако в цепях переменного разделяется на несколько составляющих, отмеченных выше. Вычисление каждой из них также осуществляется с помощью формул, благодаря которым можно получить точные результаты.

    Формулы активной, реактивной и полной мощности

    Основной составляющей считается активная мощность. Она представляет собой величину, характеризующую процесс преобразования электрической энергии в другие виды энергии. То есть по-другому является скоростью, с какой . Именно это значение отображается на электросчетчике и оплачивается потребителями. Вычисление активной мощности выполняется по формуле : P = U x I x cosф.

    В отличие от активной, которая относится к той энергии, которая непосредственно потребляется электроприборами и преобразуется в другие виды энергии — тепловую, световую, механическую и т.д., реактивная мощность является своеобразным невидимым помощником. С ее участием создаются электромагнитные поля, потребляемые электродвигателями. Прежде всего она определяет характер нагрузки, и может не только генерироваться, но и потребляться. Расчеты реактивной мощности производятся по формуле : Q = U x I x sinф.

    Полной мощностью является величина, состоящая из активной и реактивной составляющих. Именно она обеспечивает потребителям необходимое количество электроэнергии и поддерживает их в рабочем состоянии. Для ее расчетов применяется формула: S = .

    Как найти активную, реактивную и полную мощность

    Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.

    В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.

    При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.

    Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в , реактивная мощность измеряется в вар — вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.

    Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).

    Единственное с чем согласен с автором, так это то что так это что вокруг понятия «реактивная энергия» немало легенд… В отместку видимо автор выдвинул ещё и свою…Путано…противоречиво…изобилие всяких: «»энергия приходит, энергия уходит…» Итог вообще получился шокирующий, истина перевёрнута с ног на ноги: «Вывод — реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы» Господин, дорогой! нагрев это уже работа!!! Мнение моё, тут людям с техническим образованием без векторной диаграммы синхронного генератора под нагрузкой не склеить описание процесса грамотно, а людям интересующимся могу предложить простой вариант, без затей.

    Итак о реактивной энергии. 99% электричества напряжением 220 вольт и более вырабатывается синхронными генераторами. Электроприборами в быту и работе мы используем разные, большинство из них «греют воздух», выделяют теплоту в той или иной степени…Пощупайте телевизор, монитор компьютера, о кухонной электропечи я уже не говорю, везде чувствуется тепло. Это всё потребители активной мощности в электросети синхронного генератора. Активная мощность генератора это безвозвратные потери вырабатываемой энергии на тепло в проводах и приборах. Для синхронного генератора передача активной энергии сопровождается механическим сопротивлением на приводном валу. Если бы Вы, уважаемый читатель вращали генератор вручную, Вы бы сразу же почувствовали повышенное сопротивление Вашим усилиям и означало бы это одно, кто-то в вашу сеть включил дополнительное число нагревателей, т.е повысилась активная нагрузка. Если в качестве привода генератора у вас дизель, будьте уверены, расход топлива возрастает молниеносно, т.к именно активная нагрузка потребляет ваше топливо. С реактивной энергией иначе…Скажу я вам, невероятно, но некоторые потребители электроэнергии сами являются источниками электроэнергии, пусть на очень короткое мгновение, но являются. А если учесть что переменный ток промышленной частоты изменяет своё направление 50 раз в секунду, то такие (реактивные) потребители 50 раз в секунду передают свою энергию сети. Знаете как в жизни, если кто-то что-то добавляет к оригиналу своё без последствий это не остаётся. Так и здесь, при условии, что реактивных потребителей много, или они достаточно мощные, то синхронный генератор развозбуждается. Возвращаясь к нашей прежней аналогии где в качестве привода Вы использовали свою мышечную силу, можно будет заметить, что несмотря на то что Вы не изменили ни ритма вращая генератор, ни не почувствовали прилива сопротивления на валу, лампочки в вашей сети вдруг погасли. Парадокс, тратим топливо, вращаем генератор с номинальной частотой, а напряжения в сети нет… Уважаемый читатель, выключи в такой сети реактивные потребители и всё восстановится. Не вдаваясь в теорию развозбуждение происходит когда магнитные поля внутри генератора, поле системы возбуждения вращающейся вместе с валом и поле неподвижной обмотки соединённой с сетью поворачиваются встречно друг другу, тем самым ослабляю друг друга. Генерация электроэнергии при понижении магнитного поля внутри генератора уменьшается. Техника ушла далеко в перёд, и современные генераторы оснащены автоматическими регуляторами возбуждения, и когда реактивные потребители «провалят» напряжение в сети, регулятор сразу же повысит ток возбуждения генератора, магнитный поток восстановится до нормы и напряжение в сети восстановится Понятно, что ток возбуждения имеет и активную составляющую, так что извольте добавить и топливо в дизеле.. В любом случае, реактивная нагрузка негативно влияет на работу электросети, особенно в момент подключения реактивного потребителя к сети, например, асинхронного электродвигателя…При значительной мощности последнего всё может закончится плачевно, аварией. В заключение, могу добавить для пытливого и продвинутого оппонента, что, есть и реактивные потребители с полезными свойствами. Это всё те что обладают электроёмкостью…Включи такие устройства в сеть и уже электрокомпания должна вам)). В чистом виде это конденсаторы. Они тоже отдают электроэнергию 50 раз в секунду, но при этом магнитный поток генератора наоборот увеличивается, так что регулятор может даже понизить ток возбуждения, экономя затраты. Почему мы раньше об этом не оговорились…а зачем…Дорогой читатель обойди свой дом и поищи емкостной реактивный потребитель…не найдешь…Разве только раскурочишь телевизор или стиральную машину…но пользы от этого понятно не будет….

    В настоящее время взаимоотношения энергоснабжающих организаций и потребителей электроэнергии рассматриваются широким кругом лиц неэнергетического образования (коммерческие менеджеры, юристы и другие специалисты). Использование понятия реактивная мощность (реактивная энергия) в практике денежных расчетов между поставщиками и потребителями электроэнергии и наличие отдельных счетчиков активной и реактивной энергии вызывает у многих представление о поставке потребителям двух видов продукции. Это не так. По электрической сети не передаются электроны разного цвета — красные активной энергии и голубые реактивной. Так что же такое реактивная мощность и реактивная энергия?

    Рассмотрим в самом простом виде свойства переменного тока. Переменный ток называют так не в том смысле, что его значение изменяется в процессе потребления энергии. Оно может оставаться и постоянным. Под переменным током в узком смысле понимают периодический ток, мгновенные значения которого в течение каждого небольшого периода (для переменного тока частоты 50 Гц это 1/50 доля секунды) проходят цикл изменения от минимального до максимального значения, и наоборот. Графически этот цикл отображается синусоидой. Переменным в этом смысле является и напряжение. В целом же для цепей, в которых и напряжение, и ток циклически изменяются, используется термин «цепи переменного тока».

    В цепях переменного тока существует много элементов, которые разделены воздушными промежутками — обмотки высокого и низкого напряжения трансформаторов или статор и ротор вращающейся машины (двигателя и генератора) не имеют электрической связи между собой. Тем не менее электрическая энергия передается через это воздушное пространство, являющееся фактически непроводящим ток диэлектриком. Это происходит в связи с возникновением под действием переменного тока переменного магнитного поля в индуктивности, а под действием переменного напряжения — переменного электрического поля в емкости (в комбинации — электромагнитного поля). Полям, как известно, воздух не преграда. Переменное магнитное поле, образуемое одной из разделенных обмоток, постоянно пересекает своими магнитными линиями витки другой обмотки, наводя в ней электродвижущую силу. Ее величина такова, что вся мощность первичной обмотки переходит на вторичную обмотку. В конденсаторе те же самые функции осуществляет электрическое поле.

    Магнитное и электрическое поля существуют вокруг любого проводника, который находится под напряжением и по которому идет ток. Теоретически можно передать мощность по воздуху с одной из параллельно проложенных линий на другую. Правда, чтобы передать существенную мощность, линии должны быть длиной в сотни тысяч километров. Для переброски через воздушные промежутки большой мощности в устройстве приемлемого размера нужно сильное магнитное поле, сконцентрированное в небольшом пространстве. Это достигается обматыванием вокруг металлического сердечника (ярма) многочисленных витков, расположенных близко друг к другу, и применением для изготовления сердечников специальной стали, обеспечивающей большую взаимоиндукцию.

    Электромагнитная энергия непосредственно преобразуется в тепловую, механическую, химическую и другие виды полезной работы в элементах, обладающих активным сопротивлением, обозначаемым R. В элементах, представляющих собой индуктивность L и емкость С, электромагнитная энергия на половине периода запасается, а на второй половине периода возвращается в источник. При этом синусоида тока, создающего магнитное поле, всегда на четверть периода (90 эл. градусов) отстает от синусоиды напряжения, а синусоида тока, создающего электрическое поле, опережает.

    Сопротивления таких элементов связаны с индуктивностью и емкостью и частотой f соотношениями: X L = 2πfL и X С = 1/2πfС. Из этих соотношений видно, что эти сопротивления существуют только в цепях переменного тока, а в цепях постоянного тока (f = 0) X L превращается в 0 (короткое замыкание), а X С — в бесконечность (разрыв цепи). В связи с возвратным характером их действия эти сопротивления называют реактивными, а ток, обусловленный обменной электромагнитной энергией, — реактивным током. Так как реактивный ток сдвинут относительно активного на 90°, то естественно, что полный ток определяется как корень квадратный из суммы квадратов активного и реактивного тока.

    Прохождение через сеть «сдвинутого» тока можно сравнить с продвижением людей через проход, пропускная способность которого составляет, например, 10 человек одновременно. При этом в восьми рядах люди все время идут в одном направлении, а в двух рядах одни и те же люди то идут, то возвращаются. В результате число людей, перешедших на другую сторону, следует считать исходя из пропускной способности восемь человек, а проход все время загружен десятью рядами. Аналогична ситуация и с пропускной способностью электрической сети. Разница лишь в том, что активная и реактивная составляющие тока складываются не арифметически, а в квадрате, поэтому реактивная составляющая в меньшей степени занимает сечение. Для полноты сравнения можно считать, что два ряда людей ходят боком и потому занимают меньше места.

    Полупериоды запасания и возврата электромагнитной энергии индуктивностью и емкостью сдвинуты на 180° (у первой ток сдвинут на -90°, а у второй на +90°), то есть они находятся в противофазе. Поэтому при наличии рядом сопротивлений X L = X С обменная часть электромагнитной энергии не возвращается в источник, а эти элементы постоянно обмениваются ею между собой. Уже должна возникнуть мысль, а не поставить ли у потребителя электроэнергии, в сетях которого полно индуктивностей, емкость? И пусть они обмениваются между собой этой частью электромагнитной энергии, разгрузив от нее сеть и предоставив ей возможность передавать только ту часть электромагнитной энергии, которая преобразуется в полезную работу? Эта операция и называется компенсацией реактивной мощности (КРМ).

    Реактивная энергия не выполняет никакой работы в том смысле, что она не может, как активная энергия, превращаться в тепловую или механическую энергию. Так как в физике понятия энергии и работы тождественны, то, строго говоря, словосочетание «реактивная энергия» физически бессмысленно. Тем не менее, применение на практике этого условного понятия удобно. Раз уж возникает дополнительный ток, названный реактивным, то его произведение на напряжение вроде бы по-другому как мощностью не назовешь, а интегрирование мощности по времени формально называется энергией. Более того, сдвинув на 90° обмотку электрического счетчика, можно заставить его считать произведение на напряжение только тока, сдвинутого на 90°, — появляется наглядное подтверждение существования реактивной энергии (счетчик ведь показывает!).

    Реактивный ток не только отнимает у активного тока часть пропускной способности сети, но и на его прохождение по проводам затрачивается определенная часть активной энергии , так как потери мощности ΔР = 3I²R, где I — полный ток. Счетчик активной энергии (по большому счету только ее и можно назвать энергией, поэтому он называется просто счетчик электроэнергии) покажет одно и то же значение и при наличии, и при отсутствии реактивной составляющей тока. Поэтому только по его показаниям нельзя правильно оценить режимы линий передачи электроэнергии (в приведенном выше примере счетчик будет показывать движение восьми рядов, полностью игнорируя два двигающихся туда и обратно). Для оценки же режима сети необходимо знать обе составляющие. Активная и реактивная составляющие полного тока по-разному влияют на напряжение в точках потребления энергии. Потери напряжения от передачи активной составляющей тока в подавляющей степени определяются сопротивлением R, а реактивной — сопротивлением X L . В элементах линий электропередачи обычно X L >> R, поэтому прохождение по сети реактивного тока приводит к гораздо большему снижению напряжения, чем активного тока той же величины.

    Итак, в сети переменного тока нет ничего, кроме циклически изменяющихся мгновенных значений тока и напряжения, циклы которых сдвинуты относительно друг друга на некоторую часть периода. При графическом изображении их в виде векторов говорят, что они сдвинуты на некоторый угол φ. Поэтому анекдотический ответ студента на экзамене, что три провода нужны потому, что по первому передается напряжение, по второму ток, а по третьему cos φ, можно считать более близким к истине, чем представление о поставке потребителям двух видов продукции.

    При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей. О том, что такое активная и реактивная электроэнергия и как проверить сумму начисленных оплат, попытаемся рассказать в этой статье.

    Полная мощность

    По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения — полная мощность измеряется в вольт-амперах (ВА), а полезная — в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

    Активная электроэнергия

    Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств — электроплиты, лампы накаливания, электропечи, обогреватели, утюги и и прочее.

    Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

    Понятие реактивной электроэнергии

    Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия — это часть полной поступаемой мощности, которая не расходуется на полезную работу.

    В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ».

    При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной — ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации.

    Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

    Расчет реактивной электроэнергии

    Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент.

    Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7.

    Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом. Баланс активной и реактивной мощности в цепи может быть наглядно представлен в виде этого забавного рисунка:

    Значение коэффициента при учете потерь

    Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии — а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

    Расчет стоимости электроэнергии для частных клиентов

    Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется — в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются.

    Учет реактивной электроэнергии для предприятий

    Другое дело — предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты.
    Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

    Коэффициент реактивной энергии

    Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

    Реактивная энергия в многоквартирных домах

    Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

    Частные случаи учета реактивной мощности

    Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию.

    В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

    Понимание сущности активной и реактивной энергии дает возможность грамотно рассчитать экономический эффект от установки различных компенсационных устройств, снижающих потери от реактивной нагрузки. Согласно статистике, такие устройства позволяют поднимать значение cos φ от 0.6 до 0.97. Тем самым автоматические компенсаторные устройства помогают сэкономить до трети предоставляемой потребителю электроэнергии. Значительное уменьшение тепловых потерь увеличивает срок эксплуатации приборов и механизмов на производственных участках и снижает себестоимость готовой продукции.

    Реактивная энергия — это эфир для закачки или наркоз для обывателя? | ЭлектроЭконоМИМ

    По большому счёту, большинство не знает, что это такое и с чем это едят — реактивка и тем более эфир. А тем не менее мы давно этим пользуемся и весьма довольны. Мне не раз приходилось спорить с инженерами по этому поводу и всегда я от них слышал только одно — это запаздывание фазы от напряжения, выражаемое геометрически. Друзья мои, энергия векторами и линиями на бумаге не передаётся. Смело заявлю, практически НИКТО не знает ФИЗИЧЕСКИЙ СМЫСЛ этих явлений. Я конечно не обладаю такими глубокими познаниями, как они, но я люблю логику и читать старинные, именно в смысле — СТАРЫЕ, сталинские, хрущёвские научно-популярные книги по этой тематике. Так вот, мои эксперементы по добыче халявной энергии и информация практически из первоисточников — людей написавших эти книги и стоявшие у истоков открытия этих источников, позволили мне прийти к некоторым реальным и простым истинам физического смысла реактивной энергии и эфира. Делюсь.

    Яндекс.Картинки

    Яндекс.Картинки

    Когда электроэнергия проходит через обмотки электродвигателя или трансформатора, вокруг обмотки возникает электромагнитное поле, которое в свою очередь вызывает в этих же обмотках дополнительную энергию. Так вот разница между поступающей в эти обмотки из сети энергией и индуцированной в обмотках и определяется пресловутым косинусом фи. В сущности любой электродвигатель, особенно асинхронный, является генератором электроэнергии, таким же, как в машине или на электростанции. Даже в учебнике пишут, в некоторых, что если вал работающего электродвигателя крутить быстрее, чем он на это рассчитан, то он будет отдавать электроэнергию в сеть все 100% и его косинус фи будет равен нулю.

    В современных учебниках не пишут, а вот в старых сразу об этом, что в проводах всегда есть свободные электроны, которые и передают электроэнергию, НО, не все электроны задействованы в передаче и вот когда обмотка начинает индуцироваться собственным магнитным полем, к передаче энергии присоединяются эти «стоячие, ленивые» электроны и по большому счёту ток в проводах — это количество задействованных в передаче электроэнергии электронов и когда их больше, чем «потребляется», для поставщика электроэнергии это плохо, если трансформатор подстанции стоит «без запаса», а вот потребителю электроэнергии это хорошо ибо он генерирует свою доп. энергию после счётчика и ей питается. И все эти уловки, что низкий косинус фи вредит оборудованию, проводам и прочее, всего-лишь уловка, дабы люди не экономили и питались своей энергией, а покупали только ту, что им навязывают. Тем более практически все современные счётчики, за некоторым исключением, измеряют полную энергию и входящую и исходящую и не законно к тому же, за реактивку никто не должен платить. Что касается эфира, то ещё Тесла заявлял, что эфир — это просто все виды полей — электрические, магнитные, электростатические и прочие… Мы, как потребители, просто обязаны использовать реактивную энергию и плюньте тому в глаза, кто заявляет противное. Вы какого мнения об этом? Полайкайте и подписаться не забудьте, плиз… Фото из Яндекс.Картинки

    Яндекс.Картинки

    Яндекс.Картинки

    Что такое реактивная мощность? — Определение из Техопедии

    Что означает реактивная мощность?

    В системах электросетей реактивная мощность — это мощность, которая течет обратно от пункта назначения к сети в сценарии переменного тока.

    В системе постоянного тока напряжение и нагрузка статичны, и, проще говоря, направление энергии «одностороннее», но в переменном токе есть разные фазы, связанные с элементами системы, такими как конденсаторы. и индукторы.

    Реактивная мощность возвращает энергию обратно в сеть во время пассивных фаз.

    Реактивная мощность также известна как фантомное питание.

    Techopedia объясняет реактивную мощность

    Другой способ объяснить это состоит в том, что реактивная мощность — это результирующая мощность в ваттах цепи переменного тока, когда форма волны тока не совпадает по фазе с формой волны напряжения, обычно на 90 градусов, если нагрузка является чисто реактивной, и является результатом емкостных или индуктивных нагрузок.

    Фактическая работа выполняется только тогда, когда ток находится в фазе с напряжением, например, в резистивных нагрузках. Пример — включение лампы накаливания; в реактивной нагрузке энергия течет к нагрузке половину времени, тогда как в другой половине мощность течет от нее, что создает иллюзию, что нагрузка не рассеивает и не потребляет мощность.

    Три вида мощности

    Реактивная мощность — это один из трех типов мощности, присутствующих в нагруженных цепях.

    Истинная мощность

    Фактическая мощность в ваттах, рассеиваемая схемой

    Реактивная мощность

    Рассеиваемая мощность от индуктивных и емкостных нагрузок, измеренная в вольт-амперах, реактивная (VAR)

    Полная мощность

    Комбинация измерения реактивной и истинной мощности в вольт-амперах (ВА)

    Реактивная мощность также называется «фантомной мощностью», потому что неясно, куда она уходит.Общеизвестно, что реактивные нагрузки, такие как конденсаторы и катушки индуктивности, на самом деле не рассеивают мощность в том смысле, что она не используется для их питания, но измерение напряжения и тока вокруг них указывает на то, что они падают напряжение и потребляют ток.

    Мощность, рассеиваемая при этом падении напряжения и потребляемом токе, находится в форме тепла или ненужной энергии и не выполняется как фактическая работа; поэтому инженеры искали способы уменьшить это. Из-за этого фантомного питания проводники и генераторы должны иметь соответствующий номинал и размер, чтобы выдерживать общий ток, включая отходы, а не только ток, который выполняет фактическую работу.

    Маятник часов

    Некоторые эксперты в области энергетики говорят о реактивной мощности как части движения конденсатора, которое напоминает движение маятника часов от зенита до надира. По этой аналогии, когда маятник качается вверх, переменный ток подает активную мощность на устройство назначения. По мере того, как маятник движется обратно вниз, реактивная мощность возвращается в сеть для поглощения.

    В таких определениях эксперты сказали бы, что реактивная энергия — это энергия, циркулирующая взад и вперед между источником и нагрузкой, в частности, эта реактивная мощность «исчезает» обратно к источнику.В некотором смысле это связано с задержкой между током и напряжением. Помимо конденсаторов, статические компенсаторы VAr и синхронные конденсаторы могут использоваться для управления реактивной мощностью в системе.

    Ключевым моментом является размещение оборудования реактивного тока рядом с силовыми нагрузками. Это уменьшает количество реактивного тока, который система доставки должна переносить на определенное расстояние.

    Реактивная мощность в сети

    Чтобы справиться с реалиями переменного тока и изменения путей передачи энергии, проектировщики принимают меры по контролю напряжения.Эксперты в области энергетики отмечают, что даже изменение напряжения на 5% в данной системе может вызвать отключение электроэнергии и другие проблемы.

    С этой целью многие элементы электрической системы, такие как трансформаторы, могут переключаться с подачи на поглощение реактивной мощности по фазам. Но те, кто близок к отрасли, подчеркивают, что это станет еще более важным, когда мы переведем части американской электросети на возобновляемые источники энергии.

    Реактивная мощность и возобновляемые источники энергии

    Реактивная мощность также очень важна в контексте меняющихся энергосистем.

    По многим важным причинам возобновляемые источники энергии, такие как солнце и ветер, заменяют традиционные источники энергии, такие как уголь и природный газ. Но это может иметь разветвления для электросети в целом.

    «Всплеск возобновляемых источников энергии в сети без достаточной вращающейся массы может вызвать серьезные проблемы: отключение электроэнергии в определенных областях, чтобы привести спрос в соответствие с предложением; и отключение крупных электростанций от сети, чтобы предотвратить их перегрузку », — пишет Арчи Робб из Renewable Energy World, описывая принцип« инерции сети »и то, как это применимо к управлению реактивной мощностью в системе, которая переходит на возобновляемые источники энергии. строить.

    Поскольку возобновляемые источники энергии поставляют энергию в сеть по-разному, возникнет потребность в микроуправлении активной и реактивной мощностью соответственно.

    Что такое реактивная мощность? — Определение из Техопедии

    Что означает реактивная мощность?

    В системах электросетей реактивная мощность — это мощность, которая течет обратно от пункта назначения к сети в сценарии переменного тока.

    В системе постоянного тока напряжение и нагрузка статичны, и, проще говоря, направление энергии «одностороннее», но в переменном токе есть разные фазы, связанные с элементами системы, такими как конденсаторы. и индукторы.

    Реактивная мощность возвращает энергию обратно в сеть во время пассивных фаз.

    Реактивная мощность также известна как фантомное питание.

    Techopedia объясняет реактивную мощность

    Другой способ объяснить это состоит в том, что реактивная мощность — это результирующая мощность в ваттах цепи переменного тока, когда форма волны тока не совпадает по фазе с формой волны напряжения, обычно на 90 градусов, если нагрузка является чисто реактивной, и является результатом емкостных или индуктивных нагрузок.

    Фактическая работа выполняется только тогда, когда ток находится в фазе с напряжением, например, в резистивных нагрузках. Пример — включение лампы накаливания; в реактивной нагрузке энергия течет к нагрузке половину времени, тогда как в другой половине мощность течет от нее, что создает иллюзию, что нагрузка не рассеивает и не потребляет мощность.

    Три вида мощности

    Реактивная мощность — это один из трех типов мощности, присутствующих в нагруженных цепях.

    Истинная мощность

    Фактическая мощность в ваттах, рассеиваемая схемой

    Реактивная мощность

    Рассеиваемая мощность от индуктивных и емкостных нагрузок, измеренная в вольт-амперах, реактивная (VAR)

    Полная мощность

    Комбинация измерения реактивной и истинной мощности в вольт-амперах (ВА)

    Реактивная мощность также называется «фантомной мощностью», потому что неясно, куда она уходит.Общеизвестно, что реактивные нагрузки, такие как конденсаторы и катушки индуктивности, на самом деле не рассеивают мощность в том смысле, что она не используется для их питания, но измерение напряжения и тока вокруг них указывает на то, что они падают напряжение и потребляют ток.

    Мощность, рассеиваемая при этом падении напряжения и потребляемом токе, находится в форме тепла или ненужной энергии и не выполняется как фактическая работа; поэтому инженеры искали способы уменьшить это. Из-за этого фантомного питания проводники и генераторы должны иметь соответствующий номинал и размер, чтобы выдерживать общий ток, включая отходы, а не только ток, который выполняет фактическую работу.

    Маятник часов

    Некоторые эксперты в области энергетики говорят о реактивной мощности как части движения конденсатора, которое напоминает движение маятника часов от зенита до надира. По этой аналогии, когда маятник качается вверх, переменный ток подает активную мощность на устройство назначения. По мере того, как маятник движется обратно вниз, реактивная мощность возвращается в сеть для поглощения.

    В таких определениях эксперты сказали бы, что реактивная энергия — это энергия, циркулирующая взад и вперед между источником и нагрузкой, в частности, эта реактивная мощность «исчезает» обратно к источнику.В некотором смысле это связано с задержкой между током и напряжением. Помимо конденсаторов, статические компенсаторы VAr и синхронные конденсаторы могут использоваться для управления реактивной мощностью в системе.

    Ключевым моментом является размещение оборудования реактивного тока рядом с силовыми нагрузками. Это уменьшает количество реактивного тока, который система доставки должна переносить на определенное расстояние.

    Реактивная мощность в сети

    Чтобы справиться с реалиями переменного тока и изменения путей передачи энергии, проектировщики принимают меры по контролю напряжения.Эксперты в области энергетики отмечают, что даже изменение напряжения на 5% в данной системе может вызвать отключение электроэнергии и другие проблемы.

    С этой целью многие элементы электрической системы, такие как трансформаторы, могут переключаться с подачи на поглощение реактивной мощности по фазам. Но те, кто близок к отрасли, подчеркивают, что это станет еще более важным, когда мы переведем части американской электросети на возобновляемые источники энергии.

    Реактивная мощность и возобновляемые источники энергии

    Реактивная мощность также очень важна в контексте меняющихся энергосистем.

    По многим важным причинам возобновляемые источники энергии, такие как солнце и ветер, заменяют традиционные источники энергии, такие как уголь и природный газ. Но это может иметь разветвления для электросети в целом.

    «Всплеск возобновляемых источников энергии в сети без достаточной вращающейся массы может вызвать серьезные проблемы: отключение электроэнергии в определенных областях, чтобы привести спрос в соответствие с предложением; и отключение крупных электростанций от сети, чтобы предотвратить их перегрузку », — пишет Арчи Робб из Renewable Energy World, описывая принцип« инерции сети »и то, как это применимо к управлению реактивной мощностью в системе, которая переходит на возобновляемые источники энергии. строить.

    Поскольку возобновляемые источники энергии поставляют энергию в сеть по-разному, возникнет потребность в микроуправлении активной и реактивной мощностью соответственно.

    Что такое реактивная мощность? — Определение из Техопедии

    Что означает реактивная мощность?

    В системах электросетей реактивная мощность — это мощность, которая течет обратно от пункта назначения к сети в сценарии переменного тока.

    В системе постоянного тока напряжение и нагрузка статичны, и, проще говоря, направление энергии «одностороннее», но в переменном токе есть разные фазы, связанные с элементами системы, такими как конденсаторы. и индукторы.

    Реактивная мощность возвращает энергию обратно в сеть во время пассивных фаз.

    Реактивная мощность также известна как фантомное питание.

    Techopedia объясняет реактивную мощность

    Другой способ объяснить это состоит в том, что реактивная мощность — это результирующая мощность в ваттах цепи переменного тока, когда форма волны тока не совпадает по фазе с формой волны напряжения, обычно на 90 градусов, если нагрузка является чисто реактивной, и является результатом емкостных или индуктивных нагрузок.

    Фактическая работа выполняется только тогда, когда ток находится в фазе с напряжением, например, в резистивных нагрузках. Пример — включение лампы накаливания; в реактивной нагрузке энергия течет к нагрузке половину времени, тогда как в другой половине мощность течет от нее, что создает иллюзию, что нагрузка не рассеивает и не потребляет мощность.

    Три вида мощности

    Реактивная мощность — это один из трех типов мощности, присутствующих в нагруженных цепях.

    Истинная мощность

    Фактическая мощность в ваттах, рассеиваемая схемой

    Реактивная мощность

    Рассеиваемая мощность от индуктивных и емкостных нагрузок, измеренная в вольт-амперах, реактивная (VAR)

    Полная мощность

    Комбинация измерения реактивной и истинной мощности в вольт-амперах (ВА)

    Реактивная мощность также называется «фантомной мощностью», потому что неясно, куда она уходит.Общеизвестно, что реактивные нагрузки, такие как конденсаторы и катушки индуктивности, на самом деле не рассеивают мощность в том смысле, что она не используется для их питания, но измерение напряжения и тока вокруг них указывает на то, что они падают напряжение и потребляют ток.

    Мощность, рассеиваемая при этом падении напряжения и потребляемом токе, находится в форме тепла или ненужной энергии и не выполняется как фактическая работа; поэтому инженеры искали способы уменьшить это. Из-за этого фантомного питания проводники и генераторы должны иметь соответствующий номинал и размер, чтобы выдерживать общий ток, включая отходы, а не только ток, который выполняет фактическую работу.

    Маятник часов

    Некоторые эксперты в области энергетики говорят о реактивной мощности как части движения конденсатора, которое напоминает движение маятника часов от зенита до надира. По этой аналогии, когда маятник качается вверх, переменный ток подает активную мощность на устройство назначения. По мере того, как маятник движется обратно вниз, реактивная мощность возвращается в сеть для поглощения.

    В таких определениях эксперты сказали бы, что реактивная энергия — это энергия, циркулирующая взад и вперед между источником и нагрузкой, в частности, эта реактивная мощность «исчезает» обратно к источнику.В некотором смысле это связано с задержкой между током и напряжением. Помимо конденсаторов, статические компенсаторы VAr и синхронные конденсаторы могут использоваться для управления реактивной мощностью в системе.

    Ключевым моментом является размещение оборудования реактивного тока рядом с силовыми нагрузками. Это уменьшает количество реактивного тока, который система доставки должна переносить на определенное расстояние.

    Реактивная мощность в сети

    Чтобы справиться с реалиями переменного тока и изменения путей передачи энергии, проектировщики принимают меры по контролю напряжения.Эксперты в области энергетики отмечают, что даже изменение напряжения на 5% в данной системе может вызвать отключение электроэнергии и другие проблемы.

    С этой целью многие элементы электрической системы, такие как трансформаторы, могут переключаться с подачи на поглощение реактивной мощности по фазам. Но те, кто близок к отрасли, подчеркивают, что это станет еще более важным, когда мы переведем части американской электросети на возобновляемые источники энергии.

    Реактивная мощность и возобновляемые источники энергии

    Реактивная мощность также очень важна в контексте меняющихся энергосистем.

    По многим важным причинам возобновляемые источники энергии, такие как солнце и ветер, заменяют традиционные источники энергии, такие как уголь и природный газ. Но это может иметь разветвления для электросети в целом.

    «Всплеск возобновляемых источников энергии в сети без достаточной вращающейся массы может вызвать серьезные проблемы: отключение электроэнергии в определенных областях, чтобы привести спрос в соответствие с предложением; и отключение крупных электростанций от сети, чтобы предотвратить их перегрузку », — пишет Арчи Робб из Renewable Energy World, описывая принцип« инерции сети »и то, как это применимо к управлению реактивной мощностью в системе, которая переходит на возобновляемые источники энергии. строить.

    Поскольку возобновляемые источники энергии поставляют энергию в сеть по-разному, возникнет потребность в микроуправлении активной и реактивной мощностью соответственно.

    Что такое реактивная мощность? — IBERDROLA

    • Ниже
      15 кВт по тарифам 2.0A — 2.1A Счет взимается только в том случае, если реактивная мощность превышает 50% от потребляемой активной мощности.
    • Более
      15 кВт по тарифам 3.0A — 3.1A y 6.x Оплачивается только в том случае, если реактивная мощность превышает 33% активной мощности. Не применяется во внепиковый период (P3 ставки 3.X и P6 ставки 6.X).

    Вы можете рассчитать потребление реактивной мощности, умножив избыточную реактивную мощность на Регулируемый заряд реактивной мощности, который определен в ITC / 688/2011 от 30 июня [PDF].

    Под превышением реактивной мощности в каждый период действия тарифа доступа понимается более 33% от зарегистрированной активной мощности за этот же период.

    Избыточная реактивная мощность i = RPEi — 0,33 * APi
    RPEi: Реактивная мощность при записи в соответствующий период
    APi: Активная мощность при записи в соответствующий период.
    i: Тарифный период доступа.

    Регулируемый заряд реактивной мощности (/ кВАрч) определяется коэффициентом мощности (cosφ), который измеряет количество реактивной мощности по отношению к общей мощности, и рассчитывается следующим образом:

    Никаких затрат не применяется, если значение cosφ больше 0,95.
    Однако стоимость будет 0,041554 / кВАрч, если cosφ находится в пределах от 0,95 до 0,80.
    Стоимость составит 0,62332 / кВАрч, если cosφ меньше 0,80.

    Соотношение между реактивной мощностью и активной мощностью также можно рассчитать следующим образом:

    Cosφ = 0,8 означает, что реактивная мощность составляет 75% от активной мощности.
    Cosφ = 0,95 0,95 означает, что реактивная мощность составляет 33% от активной мощности.

    В счете за электроэнергию отображается надбавка за реактивную мощность следующим образом:

    В этом примере счет за превышение реактивной мощности выставляется за два периода:

    P1: выставление счета за 206,52 кВАр · ч с применением Cosφ меньше 0,80, 0,062332 / кВАрч
    P2: выставление счетов за 1,094,53 кВАрч с применением Cosφ менее 0,80, 0,062332 / кВАрч

    Расчеты были выполнены следующим образом:

    Периоды P1 и P2 (рабочие дни) должны быть добавлены к периодам P4 и P5 (выходные) соответственно; без учета периодов P3 и P6.Таким образом:

    , 64
    Период 1 Период 2 Период 3 Итого
    Доплата
    Активная мощность (кВтч) 256,00 1,259,00 145,00
    Реактивная мощность (кВАрч) 291,00 1,510,00 103,00
    Реактивная мощность, исключенная из счета (*) (кВАарч) 84,48 415 НЕТ
    Реактивная мощность, НЕ исключенная из счета (en kVArh) 206,52 1,094,53 N / A
    cosφ 90,6246
    Расчетная плата за реактивную мощность (дюйм / кВАр · ч) 0,062332 0,062332
    Заряд по току l: Плата за реактивную мощность x Реактивная мощность, НЕ исключенная из счета 12,87 68,22 81,09

    (*), после чего считается превышением (т.е.е., Cosφ <0,95 = 33% от активной мощности)

    Как я могу отказаться от выставления счетов за реактивную мощность?

    Если вы устанавливаете батареи конденсаторов, вы можете исключить штраф за реактивную мощность в вашем счете, поскольку такие батареи снижают потребность в реактивной мощности от сети.

    Дополнительные преимущества, предоставляемые конденсаторными батареями:

    • Они сокращают потери на джоулевом эффекте (нагрев) в проводниках и трансформаторах, расположенных «перед» конденсаторными батареями, что приводит к повышению энергоэффективности электрической системы.
    • При установке на объектах с силовыми трансформаторами (высоковольтные потребители) они увеличивают доступную мощность во вторичной обмотке.

    Iberdrola предоставляет этим банкам услуги по установке «под ключ», так что клиенту не нужно ни о чем беспокоиться.

    Что такое реактивная мощность? — S3 Energy

    Что такое реактивная мощность?

    Этот документ охватывает: Понятия реактивной мощности, низкого коэффициента мощности и методы повышения коэффициента мощности.

    Коэффициент мощности определяется как отношение реальной мощности к полной мощности. Это определение часто математически представляется как кВт / кВА, где числитель — это активная (реальная) мощность, а знаменатель — (активная + реактивная) или полная мощность. Хотя определение очень простое, понятие реактивной мощности расплывчато или сбивает с толку даже многих из тех, кто технически хорошо осведомлен.

    В пояснении к реактивной мощности говорится, что в системе переменного тока, когда напряжение и ток одновременно повышаются и понижаются, передается только реальная мощность, а при временном сдвиге между напряжением и током активная и реактивная мощность передан.Но когда вычисляется среднее значение по времени, средняя активная мощность существует, вызывая чистый поток энергии из одной точки в другую, тогда как средняя реактивная мощность равна нулю, независимо от сети или состояния системы. В случае реактивной мощности количество энергии, протекающей в одном направлении, равно количеству энергии, протекающей в противоположном направлении (или различные части — конденсаторы, катушки индуктивности и т. Д. — обмениваются реактивной мощностью). Это означает, что реактивная мощность не производится и не потребляется.

    Но на самом деле мы можем измерить потери реактивной мощности, можно использовать множество различных типов устройств, оборудования и систем для управления или снижения реактивной мощности. Эти виды компенсации на уменьшают потребление электроэнергии и стоят .

    Заблуждения

    Бесспорный закон сохранения энергии гласит: «энергия не может быть ни создана, ни уничтожена»; все же мы говорим о сохранении энергии !! Путаница возникает, когда мы выкрикиваем теорию сохранения, игнорируя другие теории термодинамики — например, ту, которая утверждает, что энтропия (энергия низкого качества) постоянно увеличивается.Математическая сумма полной энергии не имеет значения для потребителя энергии, и, следовательно, он должен заботиться об эффективности преобразования и сохранения энергии. Точно так же, хотя мы можем математически доказать, что потеря реактивной мощности не является реальной потерей и реактивная энергия не теряется, у нас есть несколько других причин для беспокойства по поводу улучшения реактивной мощности. Это лучше объяснить физическими аналогиями.

    Физические аналогии

    Предположим, я хочу наполнить водой резервуар для воды, по ведру за раз.Единственный способ — подняться по лестнице, неся ведро с водой и наливая воду в резервуар. Как только я наполню бак, мне нужно будет спуститься по лестнице, чтобы набрать еще воды. В этом одном цикле подъема по лестнице и спуска я проделал некоторую «работу», или «энергия, необходимая для подъема, больше, чем энергия, необходимая для спуска».

    Если бы я поднялся по лестнице с пустым ведром и спустился с тем же ведром, я бы не выполнял никакой работы. Энергия движения вверх и вниз одинакова.Хотя я не выполнял никакой работы — за которую стоит платить — мне требуется немного энергии.

    То есть энергия, необходимая для подъема и спуска по лестнице, не несущей в любом направлении ничего, требует реактивной мощности, но не реальной мощности. Энергия, необходимая для того, чтобы подняться по лестнице, неся что-то, и спуститься, не неся ничего, требует как реальной мощности, так и реактивной мощности.

    Аналогия может быть расширена для объяснения трехфазной системы; это похоже на то, как если бы к резервуару поднимались 3 лестницы и 3 человека последовательно поднимались вверх и наливали воду в резервуар так, чтобы поток был постоянным.

    Вот упрощенная аналогия, называемая «аналогия с пивной кружкой»

    «Аналогия с пивной кружкой»

    Коэффициент мощности = Активная мощность / Полная мощность = кВт / кВА
    = Активная мощность / (Активная мощность + Реактивная мощность )
    = кВт / (кВт + кВАр)
    = Пиво / (Пиво + Пена)

    Чем больше пены (более высокий кВАр), тем ниже коэффициент мощности, и наоборот.
    (в электрических терминах кВт, кВА и кВАр являются векторами, и мы должны взять векторную сумму).

    Причины низкого коэффициента мощности в электрической системе

    Ниже перечислены различные причины, которые могут быть связаны с низким коэффициентом мощности.

    1. Индуктивные нагрузки. Особенно малонагруженные асинхронные двигатели и трансформаторы.
    2. Индукционные печи
    3. Дуговые лампы и дуговые печи с реакторами.
    4. Реакторы ограничения неисправности
    5. Высокое напряжение.
    6. Гармонические искажения до 63-й гармоники

    Реактивная мощность, необходимая для этих нагрузок , увеличивает величину полной мощности в системе распределения, и это увеличение реактивной мощности и полной мощности приводит к снижению коэффициента мощности на .

    Как улучшить коэффициент мощности

    Коэффициент мощности можно улучшить, добавив в систему потребителей реактивной мощности, например конденсаторы или синхронные двигатели. Его также можно улучшить, полностью нагружая асинхронные двигатели и трансформаторы, а также используя машины с более высокой частотой вращения. Удаление или уменьшение гармонических искажений. Улучшение и регулирование синусоидальной волны напряжения. Использование системы автоматического переключения ответвлений в трансформаторах также может помочь в поддержании лучшего коэффициента мощности.

    Вопрос: При каких обстоятельствах возможна коррекция коэффициента мощности..

    A) снизить потребление электроэнергии на заводе

    Ответ: Повышение коэффициента мощности на заводе с помощью любого из вышеупомянутых вариантов, как правило, компенсирует потери и снижает текущие нагрузки на питающее оборудование, т.е. кабели, распределительное устройство, трансформаторы, генерирующая установка и т. д. Это означает, что корректировка коэффициента мощности — всякий раз, когда есть возможности для корректировки — снизит потребление электроэнергии на установке и, в свою очередь, стоимость электроэнергии.Многие из этих потерь не отслеживаются должным образом во многих отраслях, и, следовательно, экономия не определяется количественно. Это может быть одной из причин аргумента, что улучшение PF снижает только затраты на электроэнергию; в случае, если энергокомпания предлагает тариф, по которому плата за реактивную мощность является частью ежемесячного счета за электроэнергию.

    Повышение коэффициента мощности приведет к снижению потребления электроэнергии, когда это будет сделано на уровне оборудования или на уровне центра управления (тематические исследования показали экономию в обоих случаях)

    B) снизить затраты на электроэнергию только

    Ответ: Коррекция коэффициента мощности снизит затраты на электроэнергию только тогда, когда установка, получающая энергию из общей сети, выполняет коррекцию на уровне напряжения питания / входящего напряжения, просто чтобы компенсировать реактивную мощность, потребляемую из сети.Но даже такое улучшение PF не всегда может снизить затраты на электроэнергию, поскольку контрактный спрос на заводе очень часто фиксируется на фиктивном потреблении на заводе. Во многих случаях контрактный спрос фиксируется на основе будущих планов расширения и на основе высокого коэффициента разнообразия, принятого на этапах проектирования. В большинстве случаев коммунальные предприятия взимают плату за минимальную контрактную потребность независимо от потребления, а снижение кВА может не принести никакой выгоды, пока контрактная потребность не будет восстановлена ​​до фактической стоимости.

    Обычно коэффициент PF повышается до 0,95–0,98, так как дальнейшее повышение коэффициента PF до единицы (1,0) может привести к увеличению сроков окупаемости.

    C) снизить как затраты на электроэнергию, так и потребление электроэнергии

    Ответ: Во всех других случаях, кроме упомянутого выше исключения, всякий раз, когда выполняется повышение коэффициента мощности , это в конечном итоге приведет к снижению потребления электроэнергии потребление и, следовательно, стоимость электроэнергии.

    Однако окупаемость инвестиций за счет коррекции коэффициента мощности зависит от типа установки и различных других факторов, таких как тариф на электроэнергию, характер нагрузки оборудования, метод выработки / использования электроэнергии, принципы эксплуатации установки и т. Д.

    Разница между активной и реактивной мощностью

    Основное различие между активной и реактивной мощностью

    Основное различие между активной и реактивной мощностью состоит в том, что активная мощность — это фактическая или реальная мощность, которая используется в цепи, в то время как реактивная мощность колеблется между нагрузкой и источником, что теоретически бесполезно.

    Следующий треугольник мощности показывает соотношение между активной, реактивной и полной мощностью. Все эти мощности индуцируются только в цепях переменного тока, когда ток опережает или отстает от напряжения i.е. есть разность фаз (фазовый угол (Φ) между напряжением и током.

    Что такое активная мощность?

    Мощность, которая действительно используется и потребляется для полезной работы в цепи переменного или постоянного тока, известна как активная мощность. Его также называют истинной мощностью, реальной мощностью, полезной мощностью или полной мощностью в ваттах. Он обозначается буквой «P» и измеряется в ваттах, кВт или МВт. Среднее значение активной мощности можно рассчитать по следующим формулам.

    Формулы для активной мощности
    • P = V x I … (цепи постоянного тока)
    • P = V x I x Cosθ … (Однофазные цепи переменного тока)
    • P = √3 x В L x I L x Cosθ … (трехфазные цепи переменного тока)
    • кВт = √ (кВА 2 — кВАр 2 )

    Связанное сообщение: Разница между аналоговым и цифровым мультиметром

    Что такое реактивная мощность

    Мощность, которая движется и возвращается (колеблется назад и вперед) между источником и нагрузкой в ​​цепи, известна как реактивная мощность.Его также называют бесполезной мощностью или мощностью без ватта. Реактивная мощность обозначается буквой «Q» и измеряется в ВАР (вольт-ампер, реактивная мощность), кВАр или МВАр.

    Реактивная мощность

    также полезна, т. Е. Помогает создавать магнитное и электрическое поле и накапливать его в цепях, а также разряжать трансформаторы, соленоиды, асинхронные двигатели и т. Д.

    Формулы реактивной мощности
    • Q = V x I x Sinθ
    • VAR = √ (VA 2 — P 2 )
    • кВАр = √ (кВА 2 — кВт 2 )
    • Реактивная мощность = √ (Полная мощность 2 Истинная мощность 2 )

    Связанное сообщение: Разница между конденсатором и суперконденсатором

    Сравнение активной и реактивной мощности.

    В следующей таблице показаны основные различия между активной и реактивной мощностями.

    Также полезна реактивная мощность
    Характеристики Активная мощность Реактивная мощность
    Определение Истинная или Реальная или Фактическая Мощность , рассеиваемая в цепи, известна как Активная мощность , которая фактически используется или потребляется. Мощность, которая непрерывно колеблется между источником и нагрузкой, известна как Реактивная мощность .(Также известен как бесполезный или Вт без мощности )
    В лице п. Q
    шт. Вт, кВт, МВт ВАр, кВАр, МВАр
    Формулы
    • P = V x I (цепи постоянного тока)
    • P = V x I x Cosθ (однофазные цепи переменного тока)
    • P = √3 x V L x I L x Cosθ (трехфазные цепи переменного тока)
    • P = 3 x V Ph x I Ph x Cosθ
    • P = √ (S 2 — Q 2 ) или
    • P = √ (VA 2 — VAR 2 ) или
    • Q = V x I x Sinθ
    • Реактивная мощность = √ (Полная мощность 2 Истинная мощность 2 )
    • VAR = √ (VA 2 — P 2 )
    • кВАр = √ (кВА 2 — кВт 2 )
    Измерительный прибор Ваттметр Счетчик VAr
    Роль в цепях постоянного тока Активная мощность равна реактивной мощности i.е. в цепях постоянного тока нет VAr. Существует только активная мощность. В цепях постоянного тока отсутствует реактивная мощность из-за нулевого фазового угла (Φ) между током и напряжением.
    Роль в цепях переменного тока Активная мощность важна для производства тепла и использования электрического и магнитного поля, создаваемого реактивной мощностью. Реактивная мощность играет важную роль в цепях переменного тока для создания магнитных и электрических полей.
    Поведение в чисто резистивной цепи Мощность всей цепи рассеивается резисторами, что составляет активную мощность Нет реактивной мощности в чисто резистивной цепи.
    Поведение в чисто емкостной цепи Активная мощность равна нулю (0), т. Е. Вся мощность поочередно потребляется от источника переменного тока и непрерывно возвращается обратно. Ведущие варки. В цепи чисто емкостной нагрузки напряжение и ток не совпадают по фазе на 90 ° друг с другом (ток опережает напряжение на 90 ° (другими словами, напряжение отстает на 90 ° от тока). Т.е. опережающая реактивная мощность.
    Поведение в чисто индуктивной цепи Активная мощность равна нулю (0)

    P = V I Cos θ

    Когда: Cos (90 °) = 0

    Мощность P = V I (0) = 0

    Тогда общая активная мощность = 0 Вт.

    Lagging Vars. В чисто индуктивной или реактивной цепи нагрузки напряжение и ток не совпадают по фазе на 90 ° друг с другом (ток отстает на 90 ° от напряжения (другими словами, напряжение опережает на 90 ° от тока). Т.е. опережающая реактивная мощность.
    Приложения Active Power используется для производства тепла, света, крутящего момента и т. Д. В электрических приборах и машинах. , которая используется для измерения коэффициента мощности и генерации магнитного потока, электрического потока, электрического и магнитного поля в двигателях, трансформаторах, балластах, оборудовании индукционного нагрева и т. Д.

    Похожие сообщения:

    Зачем снижать реактивную мощность? Больше мощности — меньше меди

    Какие типы реактивной мощности бывают?

    Индуктивная реактивная мощность

    Двигатели, трансформаторы и устройства управления являются индуктивными нагрузками. При индуктивных нагрузках требуется питание для намагничивающих катушек. Эта мощность называется индуктивной реактивной мощностью. Мы называем векторную сумму активной мощности (P) и индуктивной реактивной мощности (Q1) полной мощностью (S1).В этом примере полная мощность носит индуктивный характер.

    Емкостная реактивная мощность

    Конденсаторы в электронном оборудовании и длинные кабели представляют собой емкостные нагрузки. При емкостных нагрузках для зарядки этой емкости требуется мощность. Эта мощность называется емкостной реактивной мощностью. Векторная сумма фактической мощности (P) и емкостной реактивной мощности (Q1) называется полной мощностью (S1). В этом примере полная мощность носит емкостной характер. Посмотрите, какие системы компенсации снижают индуктивную и емкостную реактивную мощность.

    Степень, в которой энергия используется для индуктивной и емкостной реактивной мощности, указывается с помощью cos-phi. В международном масштабе это называется коэффициентом смещения мощности (dPF). Это соотношение между фактической и полной мощностью основной составляющей (составляющей 50 Гц).

    Гармоническая реактивная мощность

    В современных установках все больше и больше нелинейных нагрузок. Примерами этого являются, например, выпрямители (блоки питания ноутбуков, серверы) и инверторы в современных ИБП и преобразователях частоты.Характерной чертой нелинейной нагрузки является то, что используемый ток больше не является синусоидальным. Мы также называем искажение тока, возникающее в результате этого гармонического искажения.

    Дополнительная мощность, возникающая в результате гармонических искажений, — это то, что мы называем гармонической реактивной мощностью (Qh). Эта реактивная мощность не является ни индуктивной, ни емкостной. Вот почему мы откладываем реактивную мощность гармоник на третьей оси, так называемой оси z. Векторная сумма реальной мощности (P) и слепой мощности гармоник (Qh) снова называется полной мощностью (S).

    Комбинация видов реактивной мощности

    Практика показывает сочетание разных видов реактивной мощности.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *