Полярность резистора как определить: Полярность падения напряжения

Содержание

Полярность падения напряжения

  1. Радиоэлектроника
  2. Схемотехника
  3. Основы электроники и схемотехники
  4. Том 1 – Цепи постоянного тока
  1. Книги / руководства / серии статей
  2. Основы электроники и схемотехники. Том 1. Цепи постоянного тока

Добавлено 24 октября 2020 в 21:29

Сохранить или поделиться

При использовании традиционного обозначения протекания тока мы можем отследить направление тока в цепи, начав с положительного (+) вывода и перейдя к отрицательному (-) выводу батареи, единственного источника напряжения в заданной цепи. Отсюда мы можем увидеть, что ток течет по часовой стрелке, от точки 1 к 2, к 3, к 4, к 5, к 6 и снова обратно к 1 (рисунок 1).

Когда ток встречает сопротивление 5 Ом, на концах резистора происходит падение напряжения. Полярность этого падения напряжения положительная (+) в точке 3 относительно точки 4. В соответствии с направлением тока мы можем отметить полярность падения напряжения на резисторе символами плюс и минус; на какой бы вывод резистора ток ни

входил, он будет положителен по отношению к выводу резистора, из которого ток выходит:

Рисунок 1 – Полярность падения напряжения на резисторе

Мы могли бы сделать нашу таблицу напряжений немного более полной, отметив полярность напряжения для каждой пары точек в этой цепи:

Между точками 1 (+) и 4 (-) = 10 вольт
Между точками 2 (+) и 4 (-) = 10 вольт
Между точками 3 (+) и 4 (-) = 10 вольт
Между точками 1 (+) и 5 (-) = 10 вольт
Между точками 2 (+) и 5 (-) = 10 вольт
Между точками 3 (+) и 5 (-) = 10 вольт
Между точками 1 (+) и 6 (-) = 10 вольт
Между точками 2 (+) и 6 (-) = 10 вольт
Между точками 3 (+) и 6 (-) = 10 вольт

Хотя документировать полярность падения напряжения в этой цепи может показаться немного глупым, это важная концепция, которую нужно освоить. Это будет критически важно при анализе более сложных схем, включающих несколько резисторов и/или источников напряжения.

Полярность не имеет ничего общего с законом Ома

Следует понимать, что полярность не имеет ничего общего с законом Ома: в уравнения закона Ома никогда не должно входить отрицательное напряжение, ток или сопротивление! Есть и другие математические принципы электричества, которые учитывают полярность с помощью знаков (+ или -), но это не закон Ома.

Резюме

  • Полярность падения напряжения на любом резистивном компоненте определяется направлением тока через него: плюс на входе и минус на выходе.

Оригинал статьи:

Теги

ОбучениеПадение напряженияПолярностьСхемотехникаЭлектрический токЭлектрическое напряжениеЭлектричество

Сохранить или поделиться

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.

com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.


Как определить полярность светодиодов

Светоизлучающий диод, в отличие от лампочки, работает только при соблюдении полярности. Но на самом приборе она обычно не указана. Определить расположение выводов светодиода можно опытным путем.

Изготовьте прибор для проверки полярности светодиодов. Для этого возьмите батарейный отсек на три элемента AA, резистор сопротивлением в 1000 Ом и два щупа: красный и черный. Отрицательный вывод батарейного отсека соедините напрямую с черным щупом, а положительный — через резистор с красным щупом. Поместите прибор в подходящий корпус. Вставьте в отсек батарейки.

Чтобы проверить светодиод, подключите к нему щупы сначала в одной полярности, а затем, если он не засветится, в другой. Когда диод светится, черный щуп подключен к его катоду, а красный — к его аноду. Резистор в приборе выбран таким, чтобы свечение было неярким, зато можно было проверять даже самые маломощные светодиоды.

При работе со светодиодами изумрудного, синего, фиолетового и белого цветов предохраняйте их от воздействия статического электричества.

Изготовьте для хранения изготовленного вами прибора чехол. В нем предусмотрите места для раздельного хранения щупов. Это необходимо для того, чтобы они при переноске не замкнулись между собой. Замыкание не повредит прибору, но если держать щупы замкнутыми долго, элементы питания постепенно разрядятся через резистор.

Определив полярность светодиода, в дальнейшем не подавайте на него обратное напряжение. Вероятность выхода его из строя при этом невелика, но она имеется.

Если вы приобрели большое количество светодиодов одного типа, определите полярность лишь нескольких из них. Убедитесь, что у всех них цоколевка одинакова. В дальнейшем для экономии времени определяйте полярность светодиодов перед впайкой по форме и длине выводов. Но так поступайте лишь в том случае, если вы точно уверены, что все диоды относятся к одному типу.

Никогда не используйте светодиоды без резисторов. Даже превышение тока через такой прибор всего в два раза способно сократить его срок службы почти в сто раз. Десятикратное превышение выведет его из строя мгновенно.

Разность потенциалов

Разность потенциалов между двумя точками в схеме представляет со­бой разность их напряжений (относительно общей точки, обычно зе­мли). Например, разность потенциалов между точками А и В на рис. 1.8 VAВ = (VA — VВ), где VA — напряжение в точке А и VВ — напряжение в точке В. Напряжения Уд и Уд измеряются относительно провода Е, име­ющего нулевой потенциал. Напряжение в любой точке электрической схемы измеряется относительно нулевого провода, корпуса или земли.

Например, если VA = 5 В и VВ = 3 В, то VAВ = VA — VВ = 5 — 3 = 2 В (рис. 1.9(а)).

Напряжения могут отличаться по знаку — быть отрицательными и по­ложительными. Разность потенциалов между двумя точками, имеющими напряжения с противоположными знаками, равна сумме этих напряже­ний.

Например, если VС = 3 В, а VD = -2 В, то V = VС + VD = 3 + 2 = 5 В (рис. 1.9(б)).

Итак, если два напряжения имеют одинаковую полярность, или оди­наковые знаки, то разность потенциалов между ними равна их разности. Если же напряжения имеют разные знаки, то разность потенциалов ме­жду ними равна их сумме.

 

 

Рис. 1.9. Наглядное представление напряжений с разными знаками относи­тельно линии нулевого потенциала

 

Параллельное соединение резисторов

 

На рис. 1.10 изображены два резистора, R1 и R2 соединенные парал­лельно. Ток I от батареи разветвляется в точке А на ток I1, протека­ющий через сопротивление R1, и ток I2, протекающий через сопротив­ление R2. В точке В эти токи складываются и образуют полный ток I = I1 + I2.

Рис. 1.10.

Два резистора, соединенные параллельно

 

С другой стороны, к каждому резистору приложено полное напряже­ние V, т. е.

Полное напряжение V = напряжению на R1

= напряжению на R2.

 

Общее сопротивление

Общее сопротивление (R) двух резисторов, соединенных параллельно, определяется формулой:

Заметим, что общее сопротивление двух параллельных резисторов всегда меньше, чем сопротивление меньшего из них. Общее сопротивление двух параллельно соединенных резисторов, имеющих одинаковое сопротивле­ние, равно половине сопротивления одного из них.

 

Параллельное соединение трех и более резисторов

В общем случае общее сопротивление произвольного числа резисторов, соединенных параллельно, можно определить по формуле выше.

Пример 4

Определить общее сопротивление схемы, изображенной на рис. 1.11(а).

Решение

R1 и R2 соединены последовательно и их общее сопротивление RТ1 = R1 + R2 = 6 + 8 = 14 Ом.

Теперь, после замены резисторов R1 и R2 их общим сопротивлением RТ1, (схема на рис. 1.11(б)), резистор R3 оказался включенным параллельно с RТ1, равным ему по величине.

Следовательно, их общее сопротивление RТ2 вполовину меньше каждого из них. Теперь схема примет вид, как показано на рис. 1.11(в), где RТ2 = 7 Ом и соединено последовательно с R4. Отсюда общее сопротивление схемы между точками А и В равно RТ2 + R4 = 7 + 3 = 10 Ом

Рис. 1.11

 

Добавить комментарий

как определить где плюс, а где минус. Светодиод где плюс где минус Как узнать полярность на диодной лампочке

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом.

В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.

Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    Малые размеры
    Компактное устройство световой сигнализации
    Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит . Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?

Определяем зрительно

Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.

Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.

Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.

Применяем источник питания

Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.

Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.

Применение мультиметра

Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.

Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.

Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.

Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.

Назначение диода, анод диода, катод диода,

Как проверить диод мультиметром

m.katod-anod.ru

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

katod-anod.ru

Определяем полярность светодиода. Где плюс и минус у LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

svetodiodinfo.ru

Обозначение светодиодов и других диодов на схеме

Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

Диоды, какие они бывают?

Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

Обозначение диодного моста

Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


Обозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Варикап — обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

svetodiodinfo.ru

Как проверить диод мультиметром — Практическая электроника

В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

На фото ниже у нас простой диод и светодиод.

Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.

Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

Меняем щупы местами. Светодиодик не загорелся.

Выносим вердикт — вполне работоспособный светодиод!

А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

www.ruselectronic.com

Маркировка диодов: таблица обозначений

Содержание:
  1. Маркировка импортных диодов
  2. Маркировка диодов анод катод

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

electric-220.ru

ДИОДЫ

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.

Плоскостной и точечный диод

Какие бывают типы диодов?

А) На фото изображен рассмотренный нами выше диод.

Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.

Двуханодный стабилитрон — изображение на схеме

В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.

Г) Туннельный диод, может использоваться в качестве усилительного элемента.

Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.

Е) Варикап, применяется как конденсатор переменной ёмкости.

Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок.

З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только.

Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое — это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:

Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:

А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

Светодиодная лампа фото

Светодиоды существуют в разных корпусах, в том числе и SMD.

Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный — Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.

Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил — AKV.

Форум по радиодеталям

Знак осторожно высокое напряжение гост

  • Как измерить угол между током и напряжением в трехфазной видео

  • Как называется соединение если на всех элементах одинаковое напряжение

  • Имеет два вывода: анод и катод.

    Выводы светодиода на схеме указываются таким образом, что стрелка диода обозначает прямое направление тока, от анода (+) к катоду (-), следовательно, анод подключается к положительному полюсу, а катод к отрицательному .

    Как определить где катод, а где анод? Это можно сделать несколькими способами, самый простой – визуально. Обычно длинная ножка светодиода указывает на то, что это анод , его подключаем к “+” источника питания.

    Если же это SMD светодиод, то метка указывает на сторону, где расположен катод светодиода. Зачастую в SMD светодиодах расположено несколько кристаллов, поэтому вывод может быть не один, а к примеру 3 как на светодиоде 5050.

    С помощью батарейки

    Если светодиод не новый, по ножкам определить уже нельзя, но есть еще один простой способ — воспользоваться батарейкой CR2032, которую можно найти в брелоке от сигнализации или материнской плате компьютера. Ее напряжение 3 В, этого вполне хватит практически для всех маломощных светодиодов.

    Необходимо поочередно приложить выводы диода к полюсам батарейки, в том положении, в котором он засветится к “+” батарейки приложен анод, соответственно к “-“ – катод.

    С помощью мультиметра

    Определить полярность светодиода можно также с помощью мультиметра. Необходимо просто поставить в режим прозвонки диодов (или измерения сопротивления) и поочередно приложить к выводам. Когда красный щуп мультиметра будет приложен к аноду, диод начнет светиться.

    Этот способ крайне полезен, когда светодиод имеет очень малые размеры (SMD) или смонтирован на плате. Также с помощью мультиметра можно проверить исправность светодиода, если он не начнет светиться при любом положении щупов, вероятно, он вышел из строя.

    Как правильно подключать светодиоды

    Новиков М.Г.
    09.02.2007

    Те, кому лень изучать данный материал, могут ознакомиться с более компактной версией этой статьи, где просто изложены правила подключения светодиодов без их объяснений. Также там есть глава часто задаваемых вопросов по подключению светодиодов. Остальным предлагаю ознакомится с этой статьёй, где подробно расписана сущность каждого правила, а также очень доступно объяснены основные понятия электротехники.

    Сразу хочу заметить, что современные светодиоды зачастую содержат в себе не только сам светоизлучающий кристалл, но и целые схемы по стабилизации тока и прочие навороты. О таких светодиодах в этой статье речь не пойдёт. Здесь будет рассмотрено лишь подключение классических светодиодов, не включающих в себя никакие дополнительные сборки.

    Правило 1. Светодиод нельзя подключать к питающему напряжению напрямую. Это делается только через ограничивающий ток резистор или специальную микросхему, автоматически ограничивающую ток (драйвер светодиода), например, CL1, CL2 и т.п.

    Правило 2. Светодиоды не различают по напряжению питания! Нет такой характеристики у светодиода, и ближайшая к ней по смыслу характеристика — прямое падение напряжения. Именно так и следует расценивать неграмотное упоминание питающего напряжения на многих сайтах, если только светодиод не снабжён встроенным стабилизатором.

    Содержание

    Введение

    Всем нам с детства знакомы эти красивые яркие лампочки. Сегодня они присутствуют практически в любой аппаратуре. Те, кто постарше, помнят, как покупали их по 40–50 копеек за штуку и вставляли в магнитофоны «Электроника 302».

    Сегодня их тоже используют «самоделкины», но в основном для создания красивой подсветки автомобилей, компьютеров или других устройств (т.н. моддинг). Но правильно ли их подключают? Почему они то работают годами, а то сгорают в первые же дни, хотя подключены к одинаковому напряжению? Ответы на эти вопросы вы найдёте в этой статье.

    Статья рассчитана на дилетантов в электронике, простым языком объясняя основные её понятия, необходимые для осмысленного подключения светодиодов к различным источникам питания.

    [Вернуться в начало]

    Терминология русским языком

    Последовательное включение радиодеталей — это когда детали соединены между собой только одной стороной, т.е. последовательно:

    Параллельное включение радиодеталей — это когда детали соединены между собой в двух точках — в начале и в конце.

    Напряжение — сила, с которой электричество «вдавливается» в провод, чтобы создать его ток.
    Аналогична разности давления в начале и конце трубопровода, зависящей от силы насоса, загоняющего воду в трубу.
    Измеряется в вольтах (В).

    Ток — «количество электричества», проходящее по проводу в единицу времени.
    Аналогичен количеству проходящей воды в трубе.
    Измеряется в Амперах (А).

    Сопротивление — сила, препятствующая прохождению электричества.
    Аналогично сужению трубы, препятствующему свободному протоку воды.
    Измеряется в омах (Ом).

    Мощность — характеристика, отражающая способность, например, резистора без вреда для себя (перегрева или разрушения) пропускать электрический ток.
    Аналогична толщине стенок места сужения трубы.

    Постоянный ток — это когда электричество течёт постоянно в одну сторону, от плюса к минусу.
    Это батарейки, аккумуляторы, ток после выпрямителей.
    Аналогичен потоку воды, гоняемой насосом по закольцованной трубе в одну сторону.

    Падение напряжения — разность потенциалов до и после детали, дающей сопротивление электрическому току, то есть напряжение, замеренное на контактах этой детали.
    Аналогично разности давления воды, гоняемой насосом по кругу, до и после одного из сужений трубы.

    Переменный ток — это когда электричество течёт то вперёд, то назад, меняя направление движения на противоположное с определённой частотой, например, 50 раз в секунду.
    Это электрическая сеть освещения, розетки. В них один провод (ноль) является общим, относительно которого в другом проводе (фазе) напряжение то положительное, то отрицательное. В результате при включении в розетку, например, электрочайника, ток в нём течёт то в одну, то в другую сторону.
    Аналогичен движению воды, которую насос через трубу (фазу), опущенную сверху, то выдавливает в бак (ноль), то всасывает из него.

    Частота переменного тока — число полных циклов (периодов) изменения направления тока (туда-обратно) за секунду.
    Измеряется в герцах (Гц). Один период за секунду равен частоте в 1 герц.
    Переменный ток имеет прямой и обратный (т.е. положительный и отрицательный) полупериод.
    В Российских бытовых электросетях (в розетках и в лампочках) частота равна 50 герцам.

    [Вернуться в начало]

    Важнейшие характеристики светодиодов

    1. Полярность.

    Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод). В этот момент он и зажигается. Поэтому, при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.

    Замечу, что при подключении светодиода к переменному току необходимо обезопасить его от действия напряжения обратного полупериода, поскольку максимально допустимое обратное напряжение большинства индикаторных светодиодов лежит в пределах единиц вольт. Для этого параллельно светодиоду, но с обратной полярностью, нужно включить любой кремниевый диод, который даст току течь в обратном направлении и организует на себе падение напряжения, не превышающее максимально допустимое обратное напряжение светодиода. В качестве такого диода можно использовать и такой же светодиод, просто включённый обратно первому.

    Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!

    2. Напряжение питания и падение напряжения.

    Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).

    Напряжение питания не может являться характеристикой светодиода, поскольку для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

    3. Ток.

    Номинальный ток большинства индикаторных светодиодов соответствует либо 10, либо 20 миллиамперам (у зарубежных светодиодов чаще указывают 20 мА), и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включённого резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса) безразлично.

    Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам. Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.

    [Вернуться в начало]

    Расчёт ограничивающего ток резистора

    Сопротивление резистора:

    R = (Uпит. − Uпад.) / (I * 0,75)

    • R — сопротивление резистора в омах.
    • Uпит. — напряжение источника питания в вольтах.
    • Uпад.— прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
    • I — максимальный прямой ток светодиода в амперах (указывается в характеристиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
    • 0,75 — коэффициент надёжности для светодиода.

    Минимальная мощность резистора:

    P = (Uпит. − Uпад.)2 / R

    • P — мощность резистора в ваттах.
    • Uпит. — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
    • Uпад.— прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
    • R — сопротивление резистора в омах.

    Пример 1:

    Запитать светодиод (характеристики: ток 10 мА т.е. 0,01 А, падение напряжения 2 В) от автомобильного аккумулятора 12 В.

    R = (12 − 2) / (0,01 * 0,75) = 1333

    То есть последовательно со светодиодом нужно ставить резистор 1,333 кОм. Ближайшим по номиналу будет резистор 1,3 кОм (1300 Ом).

    Теперь посчитаем минимальную мощность такого резистора.

    Сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

    I = U / (Rрез.+ Rсветодиода), где

    Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

    I = 12 / (1300 + 200) = 0,008 А

    Отсюда фактическое падение напряжения на светодиоде будет:

    Uпад.светодиода = Rсветодиода * I = 200 * 0,008 = 1,6 В

    Теперь посчитаем мощность:

    P = (Uпит. − Uпад.)2 / R = (12 −1,6)2 / 1300 = 0,0832 Вт).

    Мощность резистора должна быть не менее этой величины (0,0832 Вт), а лучше немного больше, чтобы избежать его нагрева. Ближайшим большим по мощности будет резистор 0,125 Вт.

    Результат: Для подключения светодиода с указанными характеристиками к автомобильному аккумулятору нам потребуется резистор 1,3 кОм мощностью 0,125 Вт.

    Пример 2:

    Запитать светодиод (характеристики: ток 10 мА т.е. 0,01 А, падение напряжения 2 В) от сети переменного тока 220 В. Поскольку физика светодиода несколько отличается от физики простого теплоизлучателя, то для расчёта номинала резистора мы берём не среднеквадратичные 220 вольт, а настоящие присутствующие в розетке амплитудные 311 вольт.

    R = (311 − 2) / (0,01 * 0,75) = 41200

    То есть, последовательно со светодиодом нужно ставить резистор 41,2 кОм. Такой номинал существует в номинальном ряду Е96, но можно взять и более распространённый резистор из номинального ряда Е24 — 43 кОм и даже 39 кОм из номинального ряда Е12. Последний вариант даже более предпочтителен, поскольку напряжение питания достигает 311 вольт лишь в кратком пике, и поэтому имеет смысл округлить номинал резистора вниз.

    Теперь посчитаем минимальную мощность такого резистора.

    Сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Поскольку мы рассчитываем мощность резистора, а резистор является простым теплоизлучателем, то в расчётах используем среднеквадратичное напряжение 220 вольт. Итак,

    I = U / (Rрез.+ Rсветодиода), где

    Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

    I = 220 / (39000 + 200) ≈ 0,006 А

    Отсюда фактическое падение напряжения на светодиоде будет:

    Uпад.светодиода = Rсветодиода * I = 200 * 0,006 = 1,2 В

    Теперь посчитаем мощность:

    P = (Uпит. − Uпад.)2 / R = (220 −1,2)2 / 39000 ≈ 1,23 Вт).

    Мощность резистора должна быть не менее этой величины (1,23 Вт), а лучше немного больше, чтобы избежать его нагрева. Ближайшим по мощности будет резистор 2 Вт.

    Результат: Для включения светодиода с указанными характеристиками в сеть переменного тока 220 В нам потребуется резистор 39 кОм мощностью 2 Вт. Кроме того, следует оградить светодиод от вредного воздействия обратного напряжения, о чём подробно будет рассказано в следующей главе.

    Замечание: Поскольку светодиод питается только одним полупериодом, а второй полупериод по идее пропускать не должен, то мощность резистора можно было бы уменьшить в 2 раза. Но, во-первых, при напряжении 220 вольт у светодиода на каждой волне обратного полупериода происходит электрический пробой, а значит ток будет проходить и в обратном направлении, а во вторых, мы в конце концов будем специально пропускать обратный полупериод (другим обратно включённым параллельным диодом), чтобы не насиловать светодиод электрическими пробоями. Поэтому нагрузку на резистор всё равно надо рассчитывать исходя из двухполупериодных 220 вольт, что мы и сделали.

    [Вернуться в начало]

    Ограничение обратного напряжения при подключении светодиода к переменному току

    При подключении светодиода к переменному току необходимо ограничить влияние опасного для него напряжения обратного полупериода. У большинства светодиодов предельно допустимое обратное напряжение составляет всего около 2 вольт, а поскольку светодиод в обратном направлении заперт и ток по нему практически не течёт, то падение напряжения на нём становится полным, то есть равным напряжению питания. В результате на выводах диода оказывается полное напряжение питания обратного полупериода.

    Для того, чтобы создать на светодиоде приемлемое падение напряжения для обратного полупериода, надо пропустить «через него» обратный ток. Для этого параллельно светодиоду, но с обратной полярностью, надо включить любой кремниевый диод (маркировка начинается на 2Д… или КД…), который рассчитан на прямой ток не менее того, что течёт в цепи (напр. 10 мА).

    Диод пропустит проблемный полупериод и создаст на себе падение напряжения, являющегося обратным для светодиода. В результате обратное напряжение светодиода станет равным прямому падению напряжения диода (для кремниевых диодов это примерно в 0,5–0,7 В), что ниже ограничения большинства светодиодов в 2 вольта. Обратное же максимально допустимое напряжение для диода значительно выше 2 вольт, и в свою очередь с успехом снижается прямым падением напряжения светодиода. В результате все довольны.

    Исходя из соображения экономии места, предпочтение следует отдать малогабаритным диодам (например, диоду КД522Б, который используется, кстати, в сетевых фильтрах «Пилот» именно для этой цели). Вместо кремниевого диода можно также поставить второй светодиод с аналогичным или более высоким максимальным прямым током, но при условии, что для обоих светодиодов падение напряжения одного светодиода не будет превышать максимально допустимое обратное напряжение другого.

    Примечание: Некоторые радиолюбители не защищают светодиод от обратного напряжения, аргументируя это тем, что светодиод и так не перегорает. Тем не менее такой режим опасен. При обратном напряжении свыше указанного в характеристиках светодиода (обычно 2 В) при каждом обратном полупериоде в результате воздействия сильного электрического поля в р-n-переходе, происходит электрический пробой светодиода и через него проходит ток в обратном направлении.

    Сам по себе электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода восстанавливаются. Для стабилитронов, например, это вообще рабочий режим. Тем не менее, этот дополнительный ток, хоть он и ограничен резистором, может вызвать перегрев р-n-перехода светодиода, в результате чего произойдёт необратимый тепловой пробой и дальнейшее разрушение кристалла. Поэтому не стоит лениться ставить шунтирующий диод. Тем более, для этого подходит практически любой кремниевый диод, поскольку у них (в отличие от германиевых) малый обратный ток, а, следовательно, он не будет забирать его на себя, снижая яркость шунтируемого светодиода.

    [Вернуться в начало]

    Наиболее распространённые ошибки при подключении светодиодов

    1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

    2. Подключение параллельно включённых светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

    3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

    4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

    5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

    6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

    [Вернуться в начало]

    Если нет нужного резистора

    Нужное сопротивление (R) и мощность (P) резистора можно получить, комбинируя в последовательно-параллельном порядке резисторы других номиналов и мощностей.

    Формула сопротивления для последовательного соединения резисторов

    R = R1 + R2

    Формула сопротивления для параллельного соединения резисторов

    двух:

    R = (R1 * R2) / (R1 + R2)   или   R = 1 / (1 / R1 + 1 / R2)

    неограниченного количества:

    R = 1 / (1 / R1 + 1 / R2 + … + 1 / Rn)

    Мощности резисторов

    Мощности резисторов в сборке рассчитываются исходя из тех-же формул, что и одиночные резисторы. При последовательном включении, в формулу вычисления мощности подставляется напряжение источника питания за вычетом падения напряжения на других последовательно стоящих резисторах и светодиоде. Подробнее это будет показано на нижеследующих примерах.

    Примеры

    1. Заменим резистор 1,3 кОм 0,125 Вт из первого примера последовательной сборкой.

    1,3 кОм = 1 кОм + 100 Ом + 100 Ом + 100 Ом

    Рассчитаем минимальные мощности для каждого резистора. Для этого посчитаем фактическое падение напряжения на каждом резисторе, для чего сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

    I = U / (Rрез.+ Rсветодиода), где

    Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

    I = 12 / (1300 + 200) = 0,008 А

    Теперь вычисляем фактическое падение напряжения на резисторах и светодиоде:

    Uпад.рез_1000 = Rрез_1000 * I = 1000 * 0,008 = 8 В

    Uпад.рез_100 = Rрез_100 * I = 100 * 0,008 = 0,8 В

    Uпад.светодиода = Rсветодиода * I = 200 * 0,008 = 1,6 В

    Теперь у нас есть все данные для расчёта мощностей:

    Pрез_1000 = (12 −(0,8 + 0,8 + 0,8 + 1,6))2 / 1000 = 0,064 Вт

    Pрез_100 = (12 −(8 + 0,8 + 0,8 + 1,6))2 / 100 ≈ 0,0064 Вт

    Итого, исходя из стандартных мощностей резисторов, получаем 1 кОм 0,125 Вт и 3 резистора 100 Ом по 0,05 Вт. Включив резисторы указанного номинала последовательно, мы получим общее сопротивление 1,3 кОм нужной нам мощности.

    2. Заменим резистор 39 кОм 2 Вт из второго примера параллельной сборкой.

    Занеся формулу R = 1 / (1 / R1 + 1 / R2 + 1 / R3) в Excel, выясним, что
    41,2 кОм ≈ параллельному соединению 100 кОм, 130 кОм и 150 кОм. Точнее это будет сопротивление 41053 Ом.

    Рассчитаем минимальные мощности для каждого резистора. Для этого посчитаем фактическое падение напряжения на каждом резисторе, для чего сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

    I = U / (Rрез.+ Rсветодиода), где

    Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

    I = 220 / (41053 + 200) ≈ 0,005 А

    Теперь вычисляем фактическое падение напряжения на светодиоде:

    Uпад.светодиода = Rсветодиода * I = 200 * 0,005 = 1 В

    Теперь у нас есть все данные для расчёта мощностей:

    Pрез_68 = (220 −1)2 / 100000 ≈ 0,48 Вт

    Pрез_100 = (220 –1)2 / 130000 ≈ 0,37 Вт

    Pрез_110 = (220 –1)2 / 150000 ≈ 0,32 Вт

    Итого, исходя из стандартных мощностей резисторов, получаем все резисторы по 0,5 Вт. Включив резисторы указанного номинала параллельно, мы получим общее сопротивление 41 кОм нужной нам мощности.

    Указанные выше параллельный и последовательный способы можно комбинировать, без проблем создавая вот такие сборки, которые также легко рассчитываются при их разбивании на фрагменты:

    [Вернуться в начало]

    Полезные ссылки:

    Физика работы светодиода — моя статья о физических процессах на уровне электронов, вызывающих свечение светодиода.

    Схема тестера определяющего полярность » S-Led.Ru


    Предлагаемое устройство, без сомнения, принадлежит к самым простым конструкциям, поэтому его может собрать любой желающий. С помощью данного тестера буквально за несколько секунд можно определить полярность батареи и аккумулятора, а также сетевого источника питания, имеющего выходное напряжение от 3 В до 30 В.

    При этом нижний предел указанного диапазона определяется падением напряжения на соответствующих элементах: 2 х 0.6 В — на диодах и примерно 1,5-1.8 В — на соответствующем светодиоде. Верхний предел диапазона ограничен максимальным рабочим током светодиодов. При напряжении 30 В ток ограничивается сопротивлением резистора R1 и составляет менее 30 мА. что кратковременно допустимо для большинства имеющихся в продаже светодиодов.

    Проверяемый источник питания подключается к клеммам «+» и «-». Если полярность источника совпадает с обозначениями клемм, то ток будет протекать но цепи через диод D1. светодиод LD1, резистор R1 и диод D3. При этом свечение зеленого светодиода LD1 сигнализирует, что обозначения контактов устройства и полярность проверяемого источника совпадают. В том случае, если полярность источника не совпадает с обозначениями клемм, ток будет протекать но цепи через диод D4. светодиод LD2, резистор R1 и диод D2. При этом свечение красного светодиода LD2 сигнализирует об ошибочном подключении источника напряжения.

    Детали тестера располагаются на плате размерами 26 х 16 мм, изготовленной из одностороннего фольгированного гетинакса или текстолита. Схема печатной платы и расположение элементов на ней приведены на рис. 2.

    Для подключения к устройству тестируемого источника можно воспользоваться контактными зажимами или измерительными щупами от обычного мультиметра. При этом для контакта «+» рекомендуется использовать щуп красного цвета, а для контакта «-» — щуп черного цвета.

    После проверки правильности монтажа и практической работоспособности тестера печатную плату с расположенными на ней элементами можно разместить в любом подходящем корпусе.


    Поллярность проводов — что это, как определить, обозначение полярности

    Известно, что ток делится на переменный и постоянный.

    Сильная сторона переменного тока – простота преобразования напряжения и возможность создания мощных электродвигателей.

    Постоянный ток имеет свою емкую область использования: он применяется в разнообразном электронном оборудовании. Соответственно, правильная по полярности подача создающего его напряжения на различные дискретные и интегральные электронные компоненты является необходимым условием обеспечения их работоспособности.

    Электродвигатели постоянного тока легко реверсируются, т.е. вращение их вала изменяется на противоположное простой переполюсовкой источника питания.

    Соответственно, при нарушении полярности двигатель вращается не в том направлении, а электронные приборы не будут работать или даже выйдут из строя.

    Как определить полярность проводов?

    При работе с постоянным напряжением необходимо обязательно контролировать правильность подключения создающего его источника. Далеко не во всех случаях источники имеют маркировку своих выводов, т.е. указанную задачу необходимо решить уже в процессе работы. Применяемые для этого способы делятся на основные группы, которые можно условно обозначить как:

    • приборные;
    • визуальные;
    • индикаторные.

    Вариантов внутри каждой группы довольно много. Далее рассмотрим только наиболее популярные из них.


    Определение полярности мультиметром

    Данный способ относится к приборным и является наиболее информативным, так как кроме полярности указывает еще фактическое напряжение источника.

    Мультиметр (часто в просторечии называется тестером) переключается в режим измерения напряжения. Вне зависимости от его исполнения (более старый аналоговый и современный цифровой) прибор имеет две клеммы, обозначаемые как «+» и «-». При подключении положительного вывода проверяемого источника к клемме «+» (напрямую или через штатный провод) цифровой прибор показывает положительное напряжение, а у аналогового стрелка отклоняется вправо. Соответственно, в противном случае на индикаторе цифрового устройства видим минус, а стрелка аналогового тестера ложится на левый упор.

    Определение полярности визуальными способами

    Определить полярность источника постоянного напряжения без измерительных приборов можно двумя визуальными способами, в основу которых положены химические реакции.

    В первом случае разрезается сырая картофелина и в срез одной из ее половинок на расстоянии 2-3 см друг от друга втыкаются два провода источника. После подачи напряжения через такую импровизированную нагрузку начинает протекать ток. В районе плюсового провода через примерно 5-10 минут формируется довольно неяркое, но, тем не менее, неплохо заметное визуально зеленоватое пятно.

    Второй способ основан на проведении электролиза в небольшой емкости. В нее наливается некоторое количество воды и погружаются провода с зачищенными концами, который выполняют функции электродов. Сопутствующее электролизу выделение пузырьков водорода происходит на минусовом проводе. Эффект проявляется сильнее в том случае, если емкость изготовлена из пластика, керамики или стекла, т.е. из неметаллического материала.

    Другие способы, например, помещение концов проводов в пламя свечи, когда на минусовом проводе начинается интенсивное осаждение сажи, используются достаточно редко.

    Индикаторные методы определения полярности

    Индикаторные методы могут быть отнесены к группе визуальных, но в отличие от «химической» ветви дают результат намного быстрее, хотя требуют применения специальных компонентов и более глубоких знаний в электротехнике.

    В качестве индикатора полярности может быть использован вентилятор системы охлаждения компьютерного процессора. При его наличии можно воспользоваться тем, что он приводится в действие электродвигателем постоянного тока. Для решения задачи достаточно подключить источник к черному и красному проводам. Если крыльчатка начала вращаться, то к красному проводу подключен плюс источника.

    Во втором случае применяется светодиод. Известно, что этот компонент имеет всего два вывода и излучает свет при протекании через него прямого тока. По справочнику определяются выводы катода и анода, после чего к диоду через соединенный последовательно маломощный балластный резистор подключается проверяемый источник. Последовательность соединения (сначала резистор, а потом диод или наоборот) значения не имеет.

    Номинал резистора рассчитывается как R = (U – 2)/I, где U – напряжение источника в Вольтах, а величина I берется из справочника и устанавливается равной примерно 70% от максимально допустимого прямого тока. Например, для 12-вольтового источника при предельном токе 50 мА в качестве балластного берется резистор с сопротивлением, равным или отличающимся не более чем на +/-20% от значения

    R = (12 – 2)/ (0,7*50*10-3) = 300 Ом.

    При подключении источника к рассматриваемой цепочке плюсом к аноду светодиода последний будет светиться. В противном случае излучения не будет.

    Обозначение и особенности задания полярности проводов

    Цветовые обозначения полярности проводов

    Помощью в определении полярности может оказать также цвет изоляции проводов источника. В сетях постоянного ток общепринято, что к плюсовой клемме источника постоянного напряжения подключается провод с оболочкой (изоляцией) красного (горячего) цвета, а минусу поставлен в соответствие черный цвет. С учетом обозначения положительного вывода через крест это правило запоминается по фразе «Красный крест».

    Особенности полярности проводов в схемах постоянного тока

    В электрической схеме могут использоваться провода с изоляцией других цветов, что необходимо для правильного подключения различных потребителей. В этой ситуации потребуется индивидуальная проверка мультиметром каждого из таких проводов. В качестве базового всегда берется провод черного цвета. Напряжение на остальных проводах должно быть обязательно положительным.

    Некоторые разновидности электронных схем, например, собранные с использованием операционных усилителей, могут питаться от биполярного источника, т.е. на них может подаваться как положительное, так и отрицательное напряжение. Главным отличительным признаком питающего их источника является наличие у него трех выходов, причем напряжение на двух «горячих» проводах относительно земли (черный провод) равно по величине и отличается только знаком.

    Нужны качесивенные провода и комплектующие? Соберем заказ!
    Отправьте заявку он-лайн или позвоните по бесплатному номеру 8 (800) 555-88-72

    Отправить заявку

    2,8: Полярность падений напряжения

    1. Последнее обновление
    2. Сохранить как PDF
    1. Обзор

    Мы можем проследить направление, в котором электроны будут течь в той же цепи, начав с отрицательной (-) клеммы и пройдя через положительную (+) клемму батареи, единственного источника напряжения в цепи. схема.Из этого мы можем видеть, что электроны движутся против часовой стрелки, от точки 6 к 5, к 4, к 3, к 2, к 1 и снова обратно к 6.

    Когда ток достигает сопротивления 5 Ом, на концах резистора падает напряжение. Полярность этого падения напряжения отрицательная (-) в точке 4 по сравнению с положительной (+) в точке 3. Мы можем отметить полярность падения напряжения на резисторе этими отрицательными и положительными символами в соответствии с направлением тока ( на каком бы конце резистора ни был ток , входящий в отрицательный по отношению к концу резистора, это , выходящий :

    Мы могли бы сделать нашу таблицу напряжений немного более полной, указав полярность напряжения для каждой пары точек в этой цепи:

    Хотя может показаться немного глупым документировать полярность падения напряжения в этой цепи, это важная концепция, которую нужно освоить.Это будет критически важно при анализе более сложных схем, включающих несколько резисторов и / или батарей.

    Следует понимать, что полярность не имеет ничего общего с законом Ома: в уравнения закона Ома никогда не должно входить отрицательное напряжение, ток или сопротивление! Есть и другие математические принципы электричества, которые учитывают полярность с помощью знаков (+ или -), но не закона Ома.

    Обзор

    • Полярность падения напряжения на любом резистивном компоненте определяется направлением потока электронов через него: отрицательный, входящий, и положительный, выходящий.

    Базовая эксплуатация, уход и обслуживание, а также расширенное устранение неисправностей для квалифицированных специалистов

    Как и в последовательных цепях, электрический ток течет «от отрицательного к положительному» через каждый из компонентов нагрузки в параллельной цепи. Как показано на рисунке 6, электроны покидают отрицательную клемму источника и перетекают с отрицательной полярности на положительную через каждый из нагрузочных резисторов. Обратите внимание, что полярность каждого из резисторов такая же, как полярность источника.

    Рисунок 6 — Полярность в параллельной цепи

    Полярность всегда выражается от одной точки цепи относительно другой точки с другим электрическим потенциалом. Обратите внимание, что на рисунке 6 верхняя сторона каждого резистора, отмеченная отрицательным знаком, фактически находится в одной точке. Между этими подобными клеммами нет разницы в потенциале.

    Также обратите внимание, что отдельные токи через каждый резистор (I 1 , I 2 , I 3 ) вместе составляют полный ток (I T ), потребляемый от источника.Когда общий ток, необходимый для работы каждой из этих параллельных нагрузок, превышает номинальный выходной ток одного источника, вам необходимо увеличить выходную мощность источника.

    Проверка полярности для параллельных источников напряжения

    Источники напряжения подключаются параллельно всякий раз, когда необходимо обеспечить выходной ток, превышающий выходной ток, который может обеспечить один источник питания, без увеличения напряжения на нагрузке.

    • Источники питания подключены последовательно для увеличения выходного напряжения.
    • И наоборот, источники питания подключаются параллельно для увеличения текущей мощности.

    Преимущество параллельно подключенных источников питания заключается в том, что один источник может быть отключен для обслуживания или ремонта при сохранении пониженной мощности нагрузки. Если батарея на 6 В имеет максимальный выходной ток 1 А, и если необходимо запитать нагрузку, требующую 2 А, то вы можете подключить вторую батарею на 6 В параллельно с первой.

    Если есть какие-либо сомнения относительно полярности двух батареек, вы можете провести простой вольтметр для определения правильной полярности.

    1. Свяжите одну сторону источников питания вместе.
    2. Перед тем, как подключить перемычку параллельного включения между оставшимися двумя клеммами, вставьте вольтметр между этими двумя точками. См. Рисунок 7.
    3. Если полярность неправильная (рисунок 7b), вольтметр показывает удвоенное напряжение источника, потому что одинаковые ЭДС помогают друг другу. НЕ подключайте через эти клеммы.

    ВНИМАНИЕ! Поскольку между этими двумя точками существует разность потенциалов, подключение перемычки для параллельного включения между ними приведет к короткому замыканию!

    Если полярность правильная (рисунок 7a), то вольтметр показывает 0 В, потому что ЭДС противостоят друг другу.Вы можете подключить перемычку параллельно между этими двумя точками.

    Рисунок 7: Проверка полярности

    Delmar Cengage Learning Companions — Анализ цепей: теория и практика, 3e

    Интернет-помощник: Анализ цепей: теория и практика, 3e

    RealAudio для главы 5

    Кирхгофа Закон напряжения
    Закон напряжения Кирхгофа — один из самых полезных законов в области электричества. схемы.В нем указано:
    Сумма скачков и падений напряжения в замкнутом контуре. равно нулю . Этот важный закон в равной степени применим к простые схемы, а также самые сложные схемы. Чтобы Чтобы иметь возможность применять этот закон, необходимо установить несколько ориентиров.

    Изучите простую последовательную схему, показанную на рисунке 5-7. Обратите внимание, что Схема показывает направление обычного тока I, возникающего в положительный вывод источника напряжения и оканчивается отрицательным Терминал.Полярность падения напряжения для каждого резистора определяется используя это направление. Всегда рекомендуется указывать полярность. падения напряжения на каждом резисторе в цепи до использования Кирхгофа Закон напряжения. Когда мы исследуем схему на рис. 5-7, мы видим, что это простая последовательная схема имеет только один контур. Анализируя эту схему, мы может начинаться в любом месте схемы и завершать один полный цикл в любом по часовой стрелке или против часовой стрелки.Кирхгофа Закон напряжения будет действовать независимо от нашего выбора.

    Если мы начнем с точки a и выберем движение по часовой стрелке (а именно, следуя направлению тока I , первый компонент мы видим это источник напряжения. Обратите внимание, что мы идем от негатива клемму источника по направлению к положительной клемме. Ясно, что это представляет повышение напряжения в том направлении, в котором мы идем.Повышение напряжения в направление по часовой стрелке представлено как положительное напряжение.

    Далее считаем напряжение на резисторах. Следуя направлению тока мы видим, что напряжение на R1 идет от высокого потенциала к более низкому потенциалу (представляющему падение напряжения в выбранном направлении). В соответствии с соглашением падению напряжения присваивается отрицательный знак. Продолжаем по петле и включаем падения напряжения на R 2 и R 3 .Наконец, вернемся к тому моменту, когда мы началось.

    В форме уравнения закон напряжения Кирхгофа позволяет нам записать следующее:

    E — V1 — V2 — V3 = 0 В


    На этой иллюстрации мы решили начать с нижнего левого угла петлю и следуйте по часовой стрелке. Этот способ больше не подходит чем, например, если вы решили начать с точки c и следовать по циклу против часовой стрелки.Единственное, что нужно учитывать, это то, что вы необходимо убедиться, что вы прошли один полный цикл.

    Теперь давайте попробуем проследить схему, показанную на рисунке 5-8. Скорее чем использовать начальную точку и направление примера 5-2, выберите несколько другую отправную точку и обойдите круг против часовой стрелки. направление. Например, давайте начнем с правого верхнего угла схема. Если двинуться влево от этой точки, мы увидим напряжение резистора . V 1 представляет собой подъем в этом направлении.В результате это Напряжение имеет положительный знак.

    Далее двигаемся по шлейфу в сторону источника напряжения. В избранном направлении, мы видим, что источник напряжения представляет собой падение потенциала, переходя от положительного к отрицательному. Следовательно, это напряжение представлено как отрицательный. Напряжения резистора В 5 , В 4 , В 3 , и В 2 — повышение напряжения в выбранное направление.Следовательно, эти значения представлены как положительные. напряжения.

    Теперь приступим к отправной точке. Закон Кирхгофа о напряжении позволяет нам напишите уравнение цикла как

    +2 В — 15 В + 1 В + 3 В + 6 В + 3 В = 0 В


    Ясно, что мы видим, что закон напряжения Кирхгофа снова выполняется. На этой иллюстрации показано, что мы можем выбрать любую точку в цепи и обойти петлю в любом направлении.Важно помнить являются

    • Вы должны сначала поляризуйте каждый резистор в цепи в зависимости от направления ток,
    • Вы можете обойти петлю в любом направлении. Когда вы сталкиваетесь с таким компонентом, как резистор или источник напряжения, повышение напряжения в выбранном направлении дается положительный знак, в то время как падение потенциала дается отрицательный знак.(Мы также видим, что появится подъем в одну сторону как капля в обратном направлении.)
    • Напиши Кирхгофа Уравнение закона напряжения, использующее все падения и возрастания по всему контуру. Вам нужно будет убедиться, что вы не забыли напряжения. ни включал напряжение более одного раза.


    В заключение напомним, что закон Кирхгофа о напряжении применяется к все цепи и состояния:

    Сумма скачков и падений напряжения по замкнутому контуру равно нулю.

    Какая полярность резистора? — AnswersToAll

    Какая полярность резистора?

    резисторы не похожи на диоды или конденсаторы. У них нет полярности. проводящий ток (или резистор) также в обоих направлениях протекания тока. На производстве вы часто увидите резисторы, установленные в одном направлении.

    Как определить положительный и отрицательный полюсы резистора?

    Когда через резистор протекает ток, вывод, через который ток входит в резистор, будет считаться положительным выводом.А другой, через который ток выходит из резистора, будет тогда отрицательной клеммой.

    Есть ли у резисторов полярность?

    Нет, резисторы не имеют полярности. Резисторы — это устройства и материалы, которые препятствуют прохождению электрического тока.

    Как узнать направление резистора?

    Всегда считывайте резисторы слева направо. — Резисторы никогда не начинаются с металлической полосы слева. Если у вас есть резистор с золотой или серебряной полосой на одном конце, у вас есть резистор с допуском 5% или 10%.Поместите резистор с этой полосой с правой стороны и снова прочитайте свой резистор слева направо.

    У резисторов есть положительный и отрицательный?

    Резисторы

    не заботятся о том, какая нога подключена к плюсу или минусу. Знак + означает, что положительный или красный щуп вольтметра должен быть размещен для получения положительного значения. Это называется условным обозначением потока «положительный заряд».

    Как определить полярность источника тока?

    Полярность имеет значение.Источник тока имеет напряжение на клеммах -5 вольт, минус вверху, плюс внизу. Поскольку положительный ток выходит из положительного вывода, источник тока выдает мощность. Если напряжение на клеммах было перевернуто плюс сверху, то источник тока получает питание.

    Как определить, положительный или отрицательный ток?

    Положительный знак для тока соответствует направлению движения положительного заряда. В металлических проводах ток переносится отрицательно заряженными электронами, поэтому стрелка положительного тока указывает в направлении, противоположном движению электронов.

    Как узнать, какой резистор положительный?

    Резистор идет на плюс или минус?

    У резисторов

    нет положительных и отрицательных сторон — вы можете подключить их в любом направлении, и они будут работать одинаково.

    Какая сторона резистора положительная?

    У резисторов

    нет положительных и отрицательных сторон — вы можете подключить их в любом направлении, и они будут работать одинаково.

    Почему у некоторых резисторов 5 полос?

    Пятая цветная полоса справа представляет допуск резистора, а шестая цветная полоса представляет собой TCR (температурный коэффициент сопротивления).1-я цветная полоса указывает на 1-е значащее значение номинала резисторов. Вторая цветная полоса указывает на второе значащее значение номинала резисторов.

    Может ли резистор иметь положительную или отрицательную полярность?

    Поскольку резисторы не имеют полярности, у них нет положительных или отрицательных выводов. На резисторе нет маркировки, указывающей на правильный способ их включения в цепь. На резисторах есть цветные полосы, указывающие на их сопротивление и допуск.В электронике схемы имеют множество конфигураций.

    Как определяется полярность падения напряжения?

    Мы можем обозначить полярность падения напряжения на резисторе отрицательными и положительными символами в соответствии с направлением тока; на какой бы конец резистора ни входил ток, он положителен по отношению к концу резистора, с которого он выходит:

    Как поляризованы резисторы в параллельной цепи?

    Поскольку резисторы не имеют полярности, у них нет положительных или отрицательных выводов.На резисторе нет маркировки, указывающей на правильный способ их включения в цепь. На резисторах есть цветные полосы, указывающие на их сопротивление и допуск. Полярность резистора в последовательной и параллельной цепях

    Что означает полярность цепи?

    В электронике можно найти различные компоненты, мы можем разделить их на поляризованные (светодиоды, электролитические конденсаторы, транзисторы, микроконтроллеры и многие другие) и не имеющие полярности (резисторы, катушки и другие).Поляризованный компонент означает, что для работы он должен быть подключен определенным образом.

    Имеет ли резистор полярность Почему или почему нет

    Резистор имеет полярность. Почему или почему нет?

    Нет, резисторы двунаправленные, поэтому их можно использовать в обоих направлениях.

    Не ошибетесь с цветными линиями, просто укажите приблизительное сопротивление.

    Резисторы являются чисто пассивными компонентами и имеют линейный отклик при приложении напряжения той или иной полярности.

    Сопротивление показывает отсутствие смещения полярности. Почему? потому что это характеристика электрического тока. это похоже на то, почему вещи падают на землю после того, как их выпустили. из-за силы тяжести. Почему? потому что природа гравитации — притягивать высвобождаемые предметы.

    Нет, их можно разместить в любом случае, потому что резисторы не имеют полярности, поэтому они хорошо работают в обоих направлениях, но вы хотите, чтобы ваша схема была читаемой, поэтому рекомендуется выбрать направление и следовать за ней, чтобы иметь возможность читать ваши ленты без необходимости возвращать вещь в руку или в голову.

    Нет, у них нет полярности в том смысле, что они ведут себя одинаково, когда они меняются местами.

    Это потому, что они зависят от общего удельного сопротивления материалов для получения их характеристического сопротивления. и это удельное сопротивление не имеет знака и не имеет электрических свойств, которые отличают его в том или ином направлении.

    В некоторых схемах конструкция резисторов изменяет функцию схемы в соответствии с их направлением. например, резисторы с обмоткой.

    В реальной работе по проектированию большую часть времени я считаю резисторы поляризованными / всенаправленными, поэтому у меня есть более простая задача, которую нужно выполнить позже, чтобы сделать макет платы или уменьшить время размещения в машине, чтобы выбрать и депозит.

    Для этого я всегда отмечаю контакт 1 на схемах, а затем на печатной плате.

    Если я понял ваш вопрос, то да — резисторы обратимые, в том смысле, что их можно подключать в цепь в обоих направлениях.резисторы не похожи на диоды или конденсаторы.

    У них нет полярности. проводящий ток (или резистор) также в обоих направлениях протекания тока.

    На производстве вы часто увидите резисторы, установленные в одном направлении. Две основные причины этого заключаются в том, что [1] оборудование для размещения и вставки компонентов обычно устанавливает резисторы в одной ориентации, потому что это проще, и [2] все резисторы ориентированы одинаково, что облегчает осмотр и устранение неисправностей.

    Нет. придерживайтесь этого, как хотите. Я обычно кладу изоленту слева, если они горизонтальные, и вниз, если они вертикальные (по сравнению с нижней частью платы), так как это облегчает просмотр, когда я проверяю схему. Как бы они ни пошли, они будут работать одинаково.

    Диоды поляризованы. не вставляйте их неправильно. вещи просто не работают, если вы это сделаете. некоторые конденсаторы тоже есть. не вставляйте колпачок в неправильном направлении.

    Вы просто сделаете снимок, затем вам придется немного поклясться и сделать несколько демонтажных работ и еще немного пайки, вставив новый контактный разъем, но без сопротивления.они довольны рисованием в обоих направлениях. вот как они сделаны.

    Сопротивление исходит от материала корпуса или обмотки. независимо от значения сока, сопротивление остается прежним.

    Цепи постоянного тока серии

    Последовательная цепь — это самая простая электрическая цепь, которая дает хорошее введение в анализ основных цепей. Последовательная схема представляет собой первый строительный блок для всех схем, которые необходимо изучить и проанализировать. На рис. 12-81 показана эта простая схема, в которой не более чем источника напряжения или батареи, проводника и резистора.Это классифицируется как последовательная цепь, потому что компоненты соединены встык, так что одинаковый ток течет через каждый компонент одинаково. Есть только один путь для прохождения тока, а батарея и резистор включены последовательно друг с другом. Далее следует внести несколько дополнений в простую схему, показанную на рис. 12-81.

    Рисунок 12-81. Простая цепь постоянного тока.

    На рис. 12-82 показан дополнительный резистор и немного подробнее о его значениях. С этими значениями мы теперь можем начать больше узнавать о природе схемы.В этой конфигурации имеется 12-вольтовый источник постоянного тока, соединенный последовательно с двумя резисторами: R 1 = 10 Ом и R 2 = 30 Ом. Для резисторов в последовательной конфигурации общее сопротивление цепи равно сумме отдельных резисторов.

    Рисунок 12-82. Простая схема постоянного тока с дополнительным резистором.

    Основная формула:

    Для рисунка 12-82 это будет:

    Теперь, когда известно полное сопротивление цепи, можно определить ток в цепи.В последовательной цепи ток не может быть разным в разных точках цепи. Ток в последовательной цепи всегда одинаков в каждом элементе и в любой точке. Следовательно, ток в простой цепи теперь можно определить с помощью закона Ома:

    Закон Ома описывает линейную взаимосвязь между переменными напряжения, тока и сопротивления, которую легко проиллюстрировать с помощью нескольких дополнительных вычислений. Первый — это изменение общего сопротивления цепи, в то время как два других остаются постоянными.В этом примере R T схемы на Рисунке 12-82 удваивается.

    Рисунок 12-82. Простая схема постоянного тока с дополнительным резистором.

    Влияние на общий ток в цепи:

    Можно увидеть количественно и интуитивно, что, когда сопротивление цепи удваивается, ток уменьшается вдвое по сравнению с исходным значением.

    Затем уменьшите R T схемы на Рисунке 12-82 до половины его первоначального значения. Влияние на общий ток:

    Рисунок 12-82.Простая схема постоянного тока с дополнительным резистором.

    Падения напряжения и дальнейшее применение закона Ома

    Пример схемы на рисунке 12-83 используется для иллюстрации идеи падения напряжения. При обсуждении последовательных цепей важно различать напряжение и падение напряжения. Падение напряжения относится к потере электрического давления или ЭДС, вызванной проталкиванием электронов через резистор. Поскольку в этом примере два резистора, есть отдельные падения напряжения. Каждая капля связана с каждым отдельным резистором.Величина электрического давления, необходимого для того, чтобы заставить определенное количество электронов пройти через сопротивление, пропорциональна размеру резистора.

    Рисунок 12-83. Пример трех последовательно соединенных резисторов.

    На рис. 12-83 для иллюстрации падения напряжения используются следующие значения:

    Падение напряжения на каждом резисторе рассчитывается с использованием закона Ома. Падение для каждого резистора является произведением каждого сопротивления и общего тока в цепи. Имейте в виду, что через последовательный резистор протекает тот же ток.

    Теперь можно определить напряжение источника, которое затем можно использовать для подтверждения расчетов для каждого падения напряжения. Использование закона Ома:

    Простые проверки для подтверждения расчетов и иллюстрации концепции падения напряжения складывают отдельные значения падений напряжения и сравнивают их с результатами вышеуказанного расчета.

    1 В + 3 В + 5 В = 9 В

    Источники напряжения серии

    Источник напряжения — это источник энергии, который обеспечивает постоянное напряжение на нагрузке.Два или более из этих источников, соединенных последовательно, равны алгебраической сумме всех последовательно соединенных источников. Значение указания алгебраической суммы состоит в том, чтобы указать, что полярность источников должна учитываться при суммировании источников. Полярность обозначается знаком плюс или минус в зависимости от положения источника в цепи.

    На Рисунке 12-84 все источники находятся в одном направлении с точки зрения их полярности. При сложении все напряжения имеют один и тот же знак.В случае, показанном на Рисунке 12-84, три ячейки напряжением 1,5 В включены последовательно с полярностью в одном направлении.

    Рисунок 12-84. Последовательные источники напряжения складываются алгебраически.

    Добавление достаточно простое:

    Однако на рис. 12-85 один из трех источников перевернут, и полярность противоположна двум другим источникам.

    Рисунок 12-85. Источники напряжения складываются алгебраически; один источник перевернут.

    Опять же, добавление простое:

    Закон напряжения Кирхгофа

    Закон напряжения Кирхгофа, имеющий фундаментальное значение для анализа электрической цепи.Этот закон просто утверждает, что алгебраическая сумма всех напряжений на замкнутом пути или контуре равна нулю. Другими словами: сумма всех падений напряжения равна общему напряжению источника. Упрощенная формула, показывающая этот закон, показана ниже:

    Обратите внимание, что знак источника противоположен знаку отдельных падений напряжения. Следовательно, алгебраическая сумма равна нулю. Написано по-другому:

    Напряжение источника равно сумме падений напряжения. Полярность падения напряжения определяется направлением тока.Обходя цепь, обратите внимание, что полярность резистора противоположна полярности напряжения источника. Положительный полюс резистора обращен к положительному положению источника, а отрицательный полюс резистора обращен к отрицательному полюсу источника.

    Рисунок 12-86 иллюстрирует самую основную идею закона Кирхгофа о напряжении. В этом примере два резистора. У одного падение составляет 14 вольт, а у другого — 10 вольт. Напряжение источника должно равняться сумме падений напряжения в цепи.При осмотре легко определить напряжение источника как 24 вольта.

    Рисунок 12-86. Закон Кирхгофа о напряжении.

    На рис. 12-87 показана последовательная цепь с тремя падениями напряжения и одним источником напряжения, рассчитанным на 24 вольта. Известны два падения напряжения. Однако о третьем ничего не известно. Используя закон Кирхгофа, можно определить третье падение напряжения.

    Рисунок 12-87. Определите неизвестное падение напряжения.

    Определите значение E 4 на Рисунке 12-88.В этом примере I = 200 мА.

    Сначала необходимо определить падение напряжения на каждом отдельном резисторе.

    Закон Кирхгофа по напряжению теперь используется для определения падения напряжения на E 4 .

    Используя закон Ома и подставив в E 4 , теперь можно определить значение R 4 .

    Делители напряжения

    Делители напряжения — это устройства, позволяющие получать более одного напряжения от одного источника питания.Делитель напряжения обычно состоит из резистора или резисторов, соединенных последовательно, с фиксированными или подвижными контактами и двумя фиксированными клеммными контактами. По мере протекания тока через резистор между контактами могут быть разные напряжения.

    Последовательные цепи используются для делителей напряжения. Правило делителя напряжения позволяет технику рассчитать напряжение на одном или нескольких последовательных резисторах без необходимости сначала рассчитывать ток в цепи. [Рисунок 12-89] Поскольку ток течет через каждый резистор, падение напряжения пропорционально омическим значениям составляющих резисторов.

    Рисунок 12-89. Схема делителя напряжения.

    Чтобы понять, как работает делитель напряжения, внимательно изучите рисунок 12-90 и обратите внимание на следующее:

    Каждая нагрузка потребляет заданное количество тока: I 1 , I 2 , I 3 . В дополнение к токам нагрузки протекает некоторый ток утечки (I B ). Ток (I T ) берется из источника питания и равен сумме всех токов.

    Рисунок 12-90. Типовой делитель напряжения.

    Напряжение в каждой точке измеряется относительно общей точки.Обратите внимание, что общая точка — это точка, в которой полный ток (I T ) делится на отдельные токи (I 1 , I 2 , I 3 ). В каждой части делителя напряжения течет разный ток. Распределение тока выглядит следующим образом:

    Напряжение на каждом резисторе делителя напряжения составляет:

    90 вольт на R 1

    60 вольт на R 2

    50 вольт на R 3

    Схема делителя напряжения, обсуждавшаяся до этого момента, имела одну сторону источника питания (батареи) с потенциалом земли.На Рисунке 12-91 общая контрольная точка (символ заземления) перемещена в другую точку делителя напряжения.

    Рисунок 12-91. Положительное и отрицательное напряжение на делителе напряжения.

    Падение напряжения на R1 составляет 20 вольт; однако, поскольку отвод A подключен к точке в цепи, имеющей тот же потенциал, что и отрицательная сторона батареи, напряжение между отводом A и опорной точкой составляет отрицательные (-) 20 вольт. Поскольку резисторы R 2 и R 3 подключены к положительной стороне батареи, напряжения между контрольной точкой и отводом B или C являются положительными.

    Следующие правила обеспечивают простой метод определения отрицательного и положительного напряжения: (1) Если ток входит в сопротивление, текущее от контрольной точки, падение напряжения на этом сопротивлении является положительным по отношению к контрольной точке; (2) если ток течет от сопротивления к контрольной точке, падение напряжения на этом сопротивлении будет отрицательным по отношению к контрольной точке. Расположение контрольной точки определяет, будет ли напряжение отрицательным или положительным.Отслеживание протекания тока позволяет определить полярность напряжения. На рисунке 12-92 показана та же схема с указанием полярностей падений напряжения и направления тока. С отрицательной стороны АКБ ток течет на R 1 . Ответвитель A имеет тот же потенциал, что и отрицательный вывод батареи, поскольку небольшое падение напряжения, вызванное сопротивлением проводника, не учитывается; однако для протекания тока через R 1 требуется 20 вольт напряжения источника, и это падение на 20 вольт имеет указанную полярность.Другими словами, в цепи со стороны заземления R 1 остается только 80 Вольт электрического давления.

    Рисунок 12-92. Ток протекает через делитель напряжения.

    Когда ток достигает отвода B, было использовано еще 30 вольт для перемещения электронов через R 2 , и аналогичным образом оставшиеся 50 вольт используются для R 3 . Но напряжения на R 2 и R 3 являются положительными напряжениями, поскольку они выше потенциала земли.

    На рисунке 12-93 показан ранее использованный делитель напряжения. Падения напряжения на сопротивлениях одинаковы; однако контрольная точка (земля) была изменена. Напряжение между землей и ответвлением A теперь равно отрицательному значению 100 вольт или приложенному напряжению.

    Рисунок 12-93. Делитель напряжения с измененной массой.

    Напряжение между землей и ответвлением B составляет отрицательное значение 80 вольт, а напряжение между землей и ответвлением C составляет отрицательное значение 50 вольт.

    Определение формулы делителя напряжения

    На рисунке 12-94 показан пример сети из четырех резисторов и источника напряжения.С помощью нескольких простых вычислений можно определить формулу для определения деления напряжения в последовательной цепи.

    Рисунок 12-94. Четырехрезисторный делитель напряжения.

    Падение напряжения на любом конкретном резисторе должно называться E X , где нижний индекс x — это значение конкретного резистора (1, 2, 3 или 4). Используя закон Ома, можно определить падение напряжения на любом резисторе.

    Закон Ома: E X = I (R X )

    Как видно ранее в тексте, ток равен напряжению источника, деленному на общее сопротивление последовательной цепи.

    Текущее уравнение теперь можно подставить в уравнение для закона Ома.

    Это уравнение является общей формулой делителя напряжения. Объяснение этой формулы состоит в том, что падение напряжения на любом резисторе или комбинации резисторов в последовательной цепи равно отношению значения сопротивления к общему сопротивлению, деленному на значение напряжения источника. Рисунок 12-95 иллюстрирует это на схеме из трех резисторов и одного источника напряжения.

    Рисунок 12-95.Сеть из трех резисторов и одного источника напряжения.

    Flight Mechanic рекомендует

    Сеть резисторов

    — обзор

    III.C.4 Мультипорты

    Мультипорты представляют собой сеть конденсаторов, катушек индуктивности и резисторов, но они могут быть междисциплинарными и могут объяснить многие эффекты физики. В качестве примера многополюсника C на рис. 8 показан электрический конденсатор с переменным разделением пластин (вверху) и графическим символом связи (внизу). Здесь у нас есть электрический порт с током, который на самом деле является потоком заряда, с силой разделения и притяжения пластин.Мультипортовый я тоже использую.

    РИСУНОК 8. Электрический конденсатор с движущимися пластинами в качестве примера электромеханического многополюсника C. Здесь у нас есть внутренняя энергия U, напряжение u, емкость C, расстояние между пластинами h и сила притяжения F.

    Первоначально многопортовые сети назывались C-поля в Массачусетском технологическом институте и других местах, но многопортовый C более информативен. Можно также сказать многопортовые C-поля.

    Мультипорты C и I накапливают энергию, как элементы C и I. Таким образом, мощность в связях конечна, но затем она сохраняется в виде энергии и изменяет состояние мультипорта.Чтобы вернуться, эту энергию нужно забрать, возможно, через другую связь. В этом смысле мультипорты C и I сохраняют энергию, а не мощность, как трансформатор и гиратор.

    Также интересно то, что вся классическая термодинамика, лучше называемая термостатикой, на самом деле представляет собой управление двухпортовым C, с давлением и объемным потоком на гидравлической (скорее пневматической) связи и температурой и потоком энтропии на тепловом конце. Как уже было сказано, большая часть учебников по термодинамике, например преобразование Лежандра, — это просто манипуляции с двухпортовыми C-полями.Следовательно, такие вещи, как преобразование Лежандра и симметрии Максвелла, применимы ко всем многопортовым C. В отношении упругости, например, симметрия Максвелла называется теоремой Максвелла о смещении.

    Иногда также говорят, что термодинамика применима к другим переменным, таким как магнитные поля и другие. Это верно до тех пор, пока тела ведут себя как многопортовые C, как в случае упругих конструкций. Здесь у нас есть сила и скорость деформации как переменные механических мультипортов.Все мультипорты с накоплением энергии демонстрируют так называемую симметрию Максвелла. Это означает, что они линейны, и их уравнение выражается симметричной матрицей. В качестве противоположного примера: если тело деформируется до уровня пластичности, оно перестает вести себя как многопортовый C. Даже при сверхпроводимости тела могут быть представлены многопортовым C с двумя частями тела, одна из которых не имеет энтропийного содержания.

    Multiport R, не показанный в таблице IV, представляет собой сеть электрических резисторов, но ее также можно построить механически.Подобно R-элементам, они необратимы и поглощают силу, но в этом есть одна изюминка: только сумма сил положительна, но в одной связи сила может стать отрицательной. Например, даже в электрической сети мощность может поступать по одному проводу, если больше энергии проходит через другие провода или соединения. Кроме того, если линейный многопортовый R выражается в виде матрицы, он является симметричным. Это так называемая симметрия Онзагера, аналогичная симметрии Максвелла, но имеющая другие причины.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *