Магнитный пускатель что это: Магнитные пускатели: назначение, схема подключения

Содержание

20. Контакторы и магнитные пускатели

Глава 20

КОНТАКТОРЫ  И МАГНИТНЫЕ   ПУСКАТЕЛИ

§ 20.1. Назначение контакторов и магнитных пускателей

Наиболее   распространенным   потребителем   электриче­ской энергии является электродвигатель. Примерно 2/3 всей выра­батываемой в стране электроэнергии потребляется электродвига­телями. Основным коммутационным аппаратом, осуществляющим подключение электродвигателя  к  питающей  сети,  является  кон­тактор. Электромагнитный контактор представляет собой выклю­чатель, приводимый в действие с помощью электромагнита. По сути дела, это мощное электромагнитное реле, контактный узел которого способен замыкать и размыкать силовые цепи с токами в десятки и сотни ампер при напряжениях в сотни вольт. При та­ких электрических нагрузках необходимо принятие специальных мер по гашению дуги. Поэтому по сравнению с обычными элект­ромагнитными реле электромагнитные контакторы имеют дугогасительные устройства и более мощные электромагнит и контакт­ные узлы. Кроме силовых (мощных) контактов! имеются и блоки­ровочные контакты, используемые в цепях управления для целей автоматики.   Различают  контакторы   постоянного   и   переменного тока. Для автоматического пуска, остановки и реверса электродви­гателей применяют

магнитные пускатели.  Они представляют со­бой   комплектные электрические  аппараты,   включающие  в  себя электромагнитные контакторы, кнопки управления, реле защиты и блокировки.

Контакторы и магнитные пускатели используются и для вклю­чения других мощных потребителей электроэнергии: осветительпых и нагревательных установок,  преобразовательного и техно­логического электрического оборудования.

К этой же группе электрических силовых аппаратов следует отнести

автоматические выключатели, которые также предназна­чены для подключения к питающей сети мощных электропотре­бителей. Замыкание их контактов производится не с помощью электромагнита, а вручную. Автоматически они производят лишь выключение нагрузки, защищая ее от перегрузок по току. Если контакторы и магнитные пускатели способны работать при час­тых включениях и отключениях, то автоматические выключатели обычно применяют при включениях па продолжительное время. В типовые схемы электропривода обычно входят автоматический выключатель (питающий и силовые, и управляющие цепи) и маг­нитный пускатель (осуществляющий непосредственную коммута­цию для пуска, остановки и реверса электродвигателя).

Рекомендуемые материалы

§ 20.2. Устройство и особенности контакторов

Принцип действия контакторов такой же, как и у эле­ктромагнитных реле. Поэтому и устройство их во многом сходно. Главное отличие заключается в том, что контакты контакторов коммутируют большие токи. Поэтому они выполняются более мас­сивными, требуют больших усилий, между ними при разрыве воз­никает дуга, которую необходимо погасить.

Основными узлами контактора являются электромагнитный механизм, главный (силовой) контактный узел, дугогасительная система, блокировочный контактный узел.

Электромагнитный механизм осуществляет замыкание и раз­мыкание контактов. При подаче напряжения на втягивающую катушку электромагнита якорь притягивается к сердечнику, а ме­ханически связанные с ним подвижные контакты замыкают сило­вую цепь и выполняют необходимые переключения в цепи управ­ления.

Магнитные системы контакторов в зависимости от характера движения якоря и конструкции различают на поворотные и пря-моходовые. Магпитопровод контактора поворотного типа устроен аналогично клапанному реле. Для устранения залипапия якоря используют немагнитные прокладки. Для замыкания силовых кон­тактов требуются значительно большие усилия, чем развиваемые в реле. Поэтому электромагнитный механизм контактора выполня­ется более мощным и массивным. При срабатывании контактора происходит довольно значительный удар якоря о сердечник. Час­тично этот удар принимает на себя немагнитная прокладка; кро­ме того, магнитную систему амортизируют пружиной, которая так­же уменьшает вибрацию контактов.

Магнитопровод контактора   прямоходного  типа  имеет обычно Ш-образпую форму. В этом случае для устранения заливания яко­ря делают зазор между средними стержнями сердечника и якоря. Втягивающая катушка    обычно    обеспечивает    включение    и удержание якоря в притянутом положении. Но иногда использу­ют две катушки: мощную включающую и менее мощную удержи­вающую. В этом случае контактор во включенном состоянии по­требляет меньше электроэнергии, поскольку включающая катушка находится под током только короткое время. Размыкание контак­тов происходит за счет отключающей пружины при снятии напря­жения с катушки контактора. Втягивающая катушка должна обе­спечивать надежное срабатывание контактора при снижении на­пряжения до 0,85. По нагреву катушка должна выдерживать повышение напряжения до 1,05

В контакторах с поворотным якорем наибольшее распростра­нение получили линейные перекатывающиеся контакты (см. рис. 16.5). В примоходных контактах применяются мостиковые кон­тактные системы (см. рис. 16.4). Контактный мостик имеет не­большую массу и выполняется самоустанавливающимся, что сни­жает вибрацию контактов. Для предотвращения вибрации кон­тактная пружина создает предварительное нажатие, равное при­мерно половине конечной силы нажатия.

У контакторов для длительного режима работы на поверх­ность медных контактов обычно напаивается металлокерамическая или серебряная пластинка. Контакты иногда могут выпол­няться из меди, если образующаяся пленка окисла па рабочей поверхности контактов периодически снимается их самоочисткой. Дугогасительная система контакторов постоянного тока обыч­но выполняется в виде камеры с продольными щелями, куда дуга вытесняется с помощью магнитной силы. Дугогасительная систе­ма контакторов переменного тока обычно имеет вид камеры со стальными дугогасительными пластинами и двойным разрывом дуги в каждой фазе.

Блокировочные или вспомогательные контакты применяются для переключений в цепях управления и сигнализации, поэтому они имеют такое же конструктивное выполнение, как и контакты реле.

§ 20.3. Конструкции контакторов

Как правило, род тока в цепи управления, которая пи­тает катушку контактора, совпадает с родом тока главной цепи. Поэтому контакторы постоянного тока, предназначенные для включения двигателей постоянного тока, имеют электромагнитный механизм, питаемый постоянным током. Соответственно контак­торы переменного тока, предназначенные для включения двигате­лей (или другой нагрузки) переменного тока, имеют электромагнитный механизм, питаемый переменным током. Бывают и исклю­чения. Известны, например, случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Устройство контактора постоянного тока показано на рис. 20.1. Электромагнитный механизм поворотного типа состоит из сердеч­ника / с катушкой 2, якоря 3 и возвратной пружины 4. Сердеч­ник 1 имеет полюсный наконечник, необходимый для увеличения

Рис. 20.1. Контактор посто-                 Рис.   20.2.   Дугогасительная

янного тока                                  камера     с     электромагнит-

ным дутьем

магнитной проводимости рабочего зазора электромагнита. Немаг­нитная прокладка 5 служит для предотвращения залипания яко­ря. Силовой контактный узел состоит из неподвижного 6

и по­движного 7 контактов. Контакт 7 шарнирно закреплен на рычаге 8, связанном с якорем 8 и прижатом к нему нажимной пружиной 9.  Подвод тока к подвижному контакту 7 выполнен гибкой медной
лентой 10. Замыкание главных контактов 6 и 7 происходит с проскальзыванием и перекатыванием, что обеспечивает очистку кон­тактных поверхностей от окислов и нагара. При срабатывании электромагнитного механизма кроме главных контактов переклю­чаются вспомогательные контакты блокировочного контактного уз­ла 11. При размыкании главных контактов 6 и 7 между ними возникает электрическая дуга, ток которой поддерживается за счет ЭДС самоиндукции в обмотках отключаемого электродвига­теля. Для интенсивного гашения электрической дуги служит ду­гогасительная камера
12.
Она имеет дугогасительную решетку в виде тонких металлических пластин, которые разрывают дугу на короткие участки. Пластины интенсивно отводят теплоту от дуги и гасят ее. Однако при большой частоте включения  контактора пластины   не  успевают остывать  и  эффективность дугогашения падает.

Для вытеснения дуги в сторону дугогасителыюй решетки мож­но использовать электромагнитную силу, так называемое магнит­ное дутье. На рис. 20.2 показана дугогасительная камера с уз­кой щелью и магнитным дутьем. Щелевая камера образована дву­мя стенками /, выполненными из изоляционного материала. Си­стема магнитного дутья состоит из катушки 2, включенной после­довательно с главными контактами и размещенной на сердечнике

3. Для подвода магнитного поля в зону образования дуги служат ферромагнитные щеки 4. В результате взаимодействия электриче­ского тока дуги с магнитным полем появляется сила F, которая растягивает дугу и вытесняет ее в щелевую камеру между стенками 1. За счет усиленного отвода теплоты стенками камеры дуга быстро гаснет.

При последовательном включении главных контактов и катуш­ки магнитного дутья направление силы F остается постоянным при любом направлении тока в силовой цепи, поскольку сила F пропорциональна квадрату тока (ведь магнитное поле создается этим же током). Поэтому магнитное дутье можно использовать и в контакторах переменного тока.

Контакторы переменного тока отличаются от контакторов по­стоянного тока, прежде всего тем, что они, как правило, выпол­няются трехполюсиыми. Основное назначение контакторов пере­менного тока — включение трехфазных асинхронных электродви­гателей. Поэтому они имеют три главных (силовых) контактных узла. Все три главных контактных узла работают от общего эле­ктромагнитного приводного механизма клапанного типа, который поворачивает вал с установленными на нем подвижными контак­тами. С этим же приводом связаны вспомогательные контакты. Главные контактные узлы имеют систему дугогашения с магнит­ным дутьем и дугогасителной щелевой камерой или дугогаси­телной решеткой. В контакторах быстрее всего изнашиваются главные контакты, поскольку они подвергаются интенсивной эро­зии (как говорится, контакты выгорают). Для увеличения общего срока службы контакторов предусматривается возможность сме­ны контактов.

Наиболее сложным и трудным этапом работы контактов является процесс их размыкания. Именно в этот момент контакты оп­лавляются, между ними возникает дуга. Для облегчения работы главных контактов при размыкании выпускаются контакторы пе­ременного тока с полупроводниковым блоком. В этих контакторах параллельно главным замыкающим контактам включают по два тиристора (управляемых полупроводниковых диода). Во включен­ном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления на короткое время открывает тиристоры, которые шунтируют цепь главных контак­тов и разгружают их от тока, препятствуя возникновению элект­рической дуги. Такие комбинированные тиристорные контакторы выпускаются на токи в сотни ампер. Поскольку тиристоры рабо­тают в кратковременном режиме, они не перегреваются и не нуж­даются в радиаторах охлаждения.

Коммутационная износостойкость комбинированных контакто­ров составляет несколько миллионов циклов, в то время как глав­ные контакты обычных контакто­ров постоянного и переменного то­ка выдерживают обычно 150—200 тыс. включений.

Для управления электродвига­телями переменного тока неболь­шой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Благодаря двукратному разрыву цепи и облег­ченным условиям гашения дуги пе­ременного тока в этих контакторах не требуются специальные дугогасительные камеры с магнитным дутьем, что существенно уменьшает их габаритные размеры.

Рис. 20.3.  Контактор переменного тока

Электромагнитный привод контактора переменного тока малой мощности (рис. 20.3) имеет Ш-образный сердечник 1 и якорь 2, собранные из пластин электротехнической стали. Часть полюсов сердечника охвачена короткозамкнутым витком, что предотвра­щает вибрацию якоря, вызванную снижением силы электромаг­нитного притяжения до нуля при прохождении переменного сину­соидального тока через нуль. Катушка 3 контактора охватывает сердечник и якорь, она и создает намагничивающую силу в маг­нитной системе контактора. На якоре 2 закреплены подвижные контакты 4 мостикового типа, что повышает надежность отклю­чения за счет двукратного размыкания. В пластмассовом корпусе установлены неподвижные контакты 5 и 6. Пружина 7 возвраща­ет контакты 4 в исходное положение. В трехфазном контакторе — три контактные пары, отделенные друг от друга пластмассовыми перемычками 8. Главные контакты имеют металлокерамические накладки и защищены крышкой. Вспомогательные контакты на рис. 20.3 не показаны.

§ 20.4. Магнитные пускатели

Магнитный пускатель — это комплектное устройство, предназначенное главным образом для пуска трехфазных асин­хронных двигателей. Основной составной частью магнитного пускателя является трехполюсный контактор переменного тока. Кро­ме того, контактор имеет кнопки управления и тепловые реле.

Схема включения трехфазного асинхронного двигателя с короткозамкнутым ротором показана на рис. 20.4. Для пуска элект­родвигателя М нажимается кнопка SB1 («Пуск»). Через катушку контактора КМ проходит ток, электромагнит контактора срабатывает, и замыкаются все его контакты, которые на схеме обоз­начаются теми же буквами КМ. Силовые контакты КМ подклю-

Рис. 20.4. Схема включения трех-           Рис.   20.5.   Конструкция   неревер-

фазного     асинхронного     электро-       сивного магнитного пускателя

двигателя   с   магнитным   пускате­лем

чают на трехфазное напряжение обмотку электродвигателя М. Параллельно кнопке SB1 подсоединены блокировочные контак­ты КМ. Так как они замкнулись, то после отпускания кнопки SB1 катушка контактора получает питание по этим контактам. Сле­довательно, для включения электродвигателя не надо все время держать кнопку нажатой: достаточно ее один раз нажать и от­пустить. Для остановки электродвигателя служит кнопка SB2 («Стоп»), при нажатии которой разрывается цепь питания кон­тактора КМ. Для защиты электродвигателя от перегрева служат тепловые реле FP1 и FP2, чувствительные элементы которых включаются в две фазы электродвигателя, а размыкающие кон­такты, обозначенные теми же буквами, включены в цепь пита­ния катушки контактора КМ. Для защиты самой схемы управле­ния служат плавкие предохранители FV. На схеме показан также рубильник Р, который обычно замкнут. Его размыкают лишь в том случае, когда собираются проводить ремонтные работы. По­добная схема является типовой, она применяется во всех случаях, когда не требуются изменение направления вращения (реверс) электродвигателя и интенсивное (принудительное) торможение.

На рис. 20.5 показана конструкция нереверсивного магнитно­го  пускателя, который  смонтирован в ящике с открывающейся крышкой. Электромагнитный механизм 1 контактора при сраба­тывании перемещает три подвижных контакта 2, размещенных в дугогасительных камерах. Одновременно переключаются блокиро­вочные контакты 3. Последовательно с двумя главными контакт­ными узлами включены тепловые реле 4.

Кнопки «Пуск» и «Стоп» обычно находятся вне ящика пуска­теля, они размещены на пульте управления под рукой у рабочего. Кнопка «Стоп» имеет красный цвет. Реверсивная схема включе-

Рис. 20.6. Схема  включения трехфазного асинхронного элек­тродвигателя с реверсивным магнитным пускателем

ония трехфазного асинхронного двигателя показана на рис. 20.6. Для того чтобы реверсировать (изменить направление вращения) трехфазный асинхронный двигатель, необходимо изменить поря­док чередования фаз на обмотке статора. Например, если для прямого вращения фазы подключались в последовательности ABC, то для обратного вращения необходима последовательность АСВ. Поэтому в состав реверсивного магнитного пускателя входят два контактора: KB для вращения вперед и КН для вращения назад. Кроме того, реверсивный магнитный пускатель имеет три кнопки управления и тепловые реле. В ряде случаев в комплект магнит­ного пускателя входят пакетный переключатель и плавкие предохранители. Схема (рис. 20.6) работает следующим об­разом.

Для включения электродвигателя М в прямом направлении не­обходимо нажать кнопку SB1 («Вперед»). При этом срабатывает контактор KB и своими силовыми контактами подключает к трех­фазной  сети обмотки электродвигателя. Одновременно  блокировочные контакты KB разрывают цепь питания катушки контакто­ра КН, чем исключается возможность одновременного включения обоих контакторов. Для включения электродвигателя в обратном направлении необходимо нажать кнопку SB2 («Назад»). В этом случае срабатывает контактор КН и своими силовыми контактами подключает к трехфазной сети обмотки электродвигателя. После­довательность соединения фаз теперь иная, чем при срабатывании контактора KB: две фазы из трех поменялись местами. При сра­батывании контактора КН его блокировочные контакты разрыва­ют цепь питания катушки контактора КВ. Нетрудно видеть, что при одновременном включении контакторов KB и КН произошло бы короткое замыкание двух линейных проводов трехфазной сети друг на друга. Для того чтобы исключить такую аварию, и нуж­ны блокировочные размыкающиеся контакты контакторов KB и КН. Следовательно, если подряд нажать обе кнопки (SB1 и SB2), то включится только тот контактор, кнопка которого была нажа­та раньше (пусть даже на мгновение).

Для реверса электродвигателя надо предварительно нажать кнопку SB3 («Стоп»). В этом случае блокировочные контакты подготавливают цепь управления для нового включения. Для на­дежной работы необходимо, чтобы силовые контакты контактора разомкнулись раньше, чем произойдет замыкание блокировочных контактов в цепи другого контактора. Это достигается соответст­вующей регулировкой положения блокировочных контактов по хо­ду якоря электромагнитного механизма контактора. Для блоки­ровки кнопок SB1 и SB2 используются замыкающиеся блокиро­вочные контакты соответствующего контактора, подключенные па­раллельно кнопке.

Необходимо исключить одновременное срабатывание обоих контакторов, для чего используют двойную или даже тройную блокировку. Для этой цели в схеме рис. 20.6 применяют двухцепные кнопки SB1 и SB2. Например, кнопка SB1 при нажатии за­мыкает свои контакты в цепи контактора KB и разрывает свои контакты в цепи контактора КН. Аналогично работает двухцепная  кнопка SB2. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препят­ствующим одновременному срабатыванию электромагнитов кон­такторов. Контакты тепловых реле FP1 и FP2, включенные в две фазы обмотки электродвигателя, отключают цепь питания катушек обоих контакторов при длительном протекании большого тока, чтобы не допустить перегрева обмоток. Для защиты схемы уп­равления служат плавкие предохранители FV.

Магнитные пускатели и контакторы выбирают по номинально­му току электродвигателя с учетом условий эксплуатации. В про­мышленности применяются магнитные пускатели серий ПМЕ и ПМЛ с прямоходовыми контакторами и серии ПАЕ с подвижной системой поворотного типа.

§ 20.5. Автоматические выключатели

Автоматический выключатель предназначен для вклю­чения и отключения электрических цепей и электрооборудования, а также для защиты от больших токов, возникающих при корот­ких замыканиях и перегрузках. В отличие от магнитного пускате­ля автоматический выключатель не может использоваться для автоматических систем, использующих электрические управляющие сигналы. Он также не обеспечивает ре­верса электродвигателя. Автоматический выключатель часто используют для про­должительного включения нереверсируемых электродвигателей. Может он также использоваться вместо рубильника в схе­мах с магнитным пускателем (см. рис. 20.4 и 20.6).

Устройство автоматического воздуш­ного выключателя (автомата) показано на рис. 20.7. С помощью рукоятки / про­изводится включение и отключение ав­томата. В состоянии, показанном на ри­сунке, автомат отключен, и подвижный контакт 2 не замкнут с неподвижным контактом 3. Для включения автомата следует взвести пружину 6, при этом ру­коятка / перемещается вниз и повора­чивает деталь 4, которая своим нижним концом входит в зацепление с зубом удерживающего рычага 5.

Рис.20.7.     Автоматический выключатель

Если Вам понравилась эта лекция, то понравится и эта — Глава 1. Принцип действия и виды.

Теперь авто­мат готов к включению. Для его вклю­чения    рукоятку  1  перемещают    вверх.

Пружина 6 займет такое положение, что шарнирно соединенные рычаги 7 и 8 перемещаются вверх по отношению к тому положе­нию, когда они находятся на одной прямой. Автомат включится: цепь тока создается через контакты 2 и 3, разделители 9 и 10.

Автоматическое отключение автомата происходит при сраба­тывании разделителей. При длительных токовых перегрузках сра­батывает тепловой биметаллический расцепитесь 10, свободный конец, которого перемещается вниз, поворачивая рычаг 5 по часо­вой стрелке. Зуб рычага расцепляется с деталью 4, которая пово­рачивается, а рычаги 7 и 8 проходят мертвое положение. Усилие пружины 6 направлено вниз, под его действием размыкаются кон­такты 2 и 3. Отключение при максимально допустимом токе про­исходит под действием электромагнитной силы , выводящей зуб рычага 5 из зацепления с деталью 4. Если произошло автомати­ческое отключение нагрузки, то рукоятка 1 остается в верхнем положении. Ручное отключение автомата происходит при перемещении ру­коятки 1 вниз. Возникающая при размыкании контактов 2 и 3 электрическая дуга гасится с помощью дугогасительной решет­ки 11.

Автоматы могут снабжаться расцепителями минимального на­пряжения, отключающими автомат при напряжении в сети ниже допустимого значения. Для дистанционного управления автомати­ческим выключателем могут использоваться специальные их кон­струкции, дополненные электромагнитным  приводом рукоятки 1.

Выпускаемые промышленностью автоматические выключатели типов АК, АП, АЕ имеют от 1 до 3 пар силовых контактов. Они предназначены для цепей с напряжением от 110 до 500 В при то­ках в десятки ампер. Время автоматического отключения состав­ляет 0,02—0,04 с.

Виды магнитных пускателей. Описание электрических аппаратов.

Магнитные пускатели – это электрические аппараты, которые используются главным образом для осуществления удалённого управления электрическими машинами. Речь идёт об асинхронных двигателях (с короткозамкнутым ротором).

Надёжный магнитный пускатель, цена которого вполне доступна для приобретения, обеспечивает корректный пуск и обладает нулевой защитой. О видах и принципах работы магнитных пускателей читайте ниже.

Два вида магнитных пускателей

По большому счету, существует всего два вида магнитных пускателей:

  • реверсивные;
  • нереверсивные.

Первые могут быть применены не только для пуска и остановки, но и для перехода двигателя в реверсивный режим работы. Вторые – обеспечивают исключительно первые два описанных режима работы электрической машины.

Помимо этого магнитные пускатели классифицируются по типу исполнения на: открытое исполнение, защищённое исполнение, пылебрызгонепроницаемого исполнения. Естественно, открытое исполнение может быть применено исключительно в настенных шкафах или панелях. То есть тем, где гарантированно присутствует защита от пыли.

Магнитные пускатели защищённого исполнения могут применяться в помещениях, где нет большого количества пыли и грязи.

Электрические аппараты последнего типа вполне могут быть использованы и на улице. Однако для этого им необходим надёжный навес, который гарантированно защитит их от дождя.

Принцип работы магнитного пускателя

Главная техническая особенность заключается в следующем. Магнитные пускатели при эксплуатации обеспечивают нулевую защиту. Это означает, что в случае, если напряжение, питающее электрический двигатель, исчезнет или снизится более, чем на половину, катушка в магнитном пускателе «выплюнет» сердечник.

В результате двигатель окажется полностью отключенном от сети. Однако, если электроснабжение сети восстановиться, двигатель не заработает. Сердечник останется стоять на месте.

Благодаря этому двигатель защищён от небезопасного старта, а это означает, что медные обмотки могут быть в безопасности. Помимо магнитных пускателей на электрические машины также устанавливаются тепловые реле.

Они обеспечивают защиту от перегрузок во время работы. Другими словами, если температура обмоток становится критической, реле гарантированно отключит электрическую машину от сети.

В видео будут продемонстрированы несколько магнитных пускателей:

Твитнуть

Контакторы и магнитные пускатели. Разница между контактором и пускателем

И пускатели представляют собой специальные электромагнитные устройства, которые широко используются в системах управления и защиты электрифицированных объектов. При помощи предложенных механизмов можно осуществлять дистанционное подключение, остановку и отключение электрических приводов различного оборудования как промышленного типа, так и некоторого бытового. Эти электромеханические узлы станут незаменимыми в тех случаях, когда требуется выполнять частые пуски электрических моторов или осуществлять подключение электрооборудования, питающегося токами высокого ампеража. Рассмотрим, что же собой представляют эти устройства, и какое между ними сходство и основные отличия.

Что такое контактор?

Контактор представляет собой исполнительный электромеханический механизм, выполненный в виде блока, в котором расположены быстродействующие контактные группы. Контактор может функционировать как самостоятельное устройство или использоваться в конструкции другого оборудования или системе управления и защиты электрифицированного объекта. Контакторная система является коммутационным узлом, который поддерживает дистанционное управление и может использоваться для частых коммутаций электрических цепей, работающих в нормальных режимах эксплуатации. Для замыкания / размыкания контактов в основном применяются электромагнитные приводы, которые приводят в действие исполнительный механизм. В отличие от релейной системы, которая также может замыкать или размыкать контакты контактор производит одновременный разрыв электрической цепи сразу в нескольких местах, в то время, как реле это делает только в одном месте.

Что такое магнитный пускатель?

Магнитные пускатели являются также коммутационными устройствами, которые являются фактически модифицированными контакторами, поддерживающими возможность коммутации мощных нагрузок переменного и постоянного тока. Эти устройства эффективно применяются для включений/отключений силовых электроцепей. Предлагаемые коммутационные системы владеют достаточно широкой областью применения. Основное их предназначение — это пуск, реверсирование током и остановка 3-фазного электрического асинхронного привода. Кроме этого, эти устройства успешно могут применяться в системах дистанционного управления различными электрифицированными объектами. Кроме основных рабочих элементов контакторы могут доукомплектовываться различными дополнительными узлами такими, как тепловые реле, вспомогательные контактные группы, автоматы для пуска электродвигателей и пр.

Что общего между контактором и пускателем?

Чтобы понять, в чем же отличия между этими двумя коммутационными системами сначала разберемся, в чем же они схожи между собой.

Общим между пускателем и контактором является то, что оба этих устройства применяются для коммутации электрических цепей, питающих электрооборудование. И контакторы и пускатели применяются для пуска/остановки электродвигателей переменного тока, а также для ввода или вывода ступеней сопротивления, если пуск/остановка выполняются по реостатному принципу.

И контактор, и пускатель владеет в своей конструкции дополнительными парами контактов, используемыми для цепей управления. Они могут быть нормально замкнутыми или нормально разомкнутыми парами контактов.

Отличия между контакторами и пускателями

Рассмотрим основные отличия между этими двумя коммутационными устройствами.

Габаритные размеры.

Контактор, в отличие от пускателя является довольно таки увесистым и крупногабаритным устройством. Например, 100-амперный контактор в сравнении с таким же пускателем в несколько раз тяжелее и имеет существенно большие размеры.

Конструкционные особенности

Если рассматривать конструкцию контактора, то сразу бросаются в глаза мощные силовые контакторы с дугогасительными камерами. Защитного кожуха, как такового, в контакторах нет, контактор монтируется на специальных щитах, расположенных в закрытых помещениях.

Что касается пускателя, то его силовые контакты всегда находятся под защитой пластикового корпуса. Больших камер дугогашения в пускателях нет, поэтому их не рекомендуют использовать в мощных электроцепях, где требуется частая коммутация.

Защищенность

Благодаря использованию пластикового корпуса в пускателе, а в некоторых случаях и металлического кожуха, эти устройства отличаются высокой степенью защищенности от воздействий внешних факторов. Поэтому такие пускатели можно устанавливать даже под открытым небом, что нельзя делать с контакторами.

Назначение устройств

Основным назначением пускателя является пуск и остановка 3-фазных электрических приводов, работающих на переменном токе. Кроме этого, эти устройства могут осуществлять коммутацию цепей для подачи питания на осветительные системы, обогревательное оборудование и прочее электрическое оборудование.

Что касается контактора, то он подходит для коммутации любых цепей постоянного и переменного тока.

Заключение

Исходя из выше сказанного, следует, что пускатель является своего рода одной из модификаций контактора и может применяться для определенных целей. Контакторы, конструкция которых модифицируется постоянно, могут применяться практически в любом случае для выполнения коммутации электрических цепей. Поэтому на современном потребительском рынке контакторы практически вытеснили пускатели и успешно выполняют их функции.

Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.

Контакторы и пускатели — в чем разница

И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:

  • некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
  • некоторое количество вспомогательных контактов — для организации сигнальных цепей.

Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.

Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.

Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.

Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».

Устройство и принцип работы

Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.

Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.

Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.

При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).

При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.

Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания . В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В

Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.

Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.

Реверсивная схема подключения электродвигателя через пускатели

В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».

Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.

Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.

Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.

Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.

Страница 8 из 18

11 ЭЛЕКТРОМЕХАНИЧЕСКИЕ КОММУТАЦИОННЫЕ АППАРАТЫ

КОНТАКТОРЫ И МАГНИТНЫЕ ПУСКАТЕЛИ

Контактор – это двухпозиционный аппарат с самовозвратом, предназначенный для частых коммутаций токов, не превышающих токи перегрузки, и приводимый в действие приводом. Этот аппарат имеет два коммутационных положения, соответствующие включенному и отключенному его состояниям. В контакторах наиболее широко применяется электромагнитный привод. Возврат контактора в отключенное состояние (самовозврат) происходит под действием возвратной пружины, массы подвижной системы или при совместном действии этих факторов.

Пускатель – это коммутационный аппарат, предназначенный для пуска, остановки и защиты электродвигателей без выведения и введения в их цепи сопротивлений резисторов. Пускатели осуществляют защиту электродвигателей от токов перегрузки. Распространенным элементом такой защиты является тепловое реле, встраиваемое в пускатель.
Токи перегрузки для контакторов и пускателей не превышают (8-20)-кратных перегрузок по отношению к номинальному току. Для режима пуска двигателей с фазовым ротором и торможения противотоком характерны (2.5-4)-кратные токи перегрузки. Пусковые токи электродвигателей с короткозамкнутым ротором достигают (6-10)-кратных перегрузок по сравнению с номинальным током.
Электромагнитный привод контакторов и пускателей при соответствующем выборе параметров может осуществлять функции защиты электрооборудования от понижения напряжения. Если электромагнитная сила, развиваемая приводом, при снижении напряжения в сети окажется недостаточной для удержания аппарата во включенном состоянии, то он самопроизвольно отключится и осуществит таким образом защиту от понижения напряжения. Как известно, понижение напряжения в питающей сети вызывает протекание токов перегрузки по обмоткам электродвигателей, если механическая нагрузка на них будет оставаться неизменной.
Контакторы предназначены для коммутации силовых цепей электродвигателей и других мощных потребителей. В зависимости от рода коммутируемого тока главной цепи различают контакторы постоянного и переменного тока. Они имеют главные контакты, снабженные системой дугогашения, электромагнитный привод и вспомогательные контакты.Как правило, род тока в цепи управления, которая питает электромагнитный привод, совпадает с родом тока главной цепи. Однако известны случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Рисунок 1 — Конструктивная схема контактора
На рис. 1 изображена конструктивная схема контактора, отключающего цепь двигателя. В этом случае напряжение на катушке 12 отсутствует и его подвижная система под действием возвратной пружины 10, создающей силу Fв, придет в нормальное состояние.Возникающая при расхождении главных контактов дуга Д гасится в дугогасительной камере 5.
Быстрое перемещение дуги с контактов в камеру обеспечивается системой магнитного дутья. В цепь главного тока включена последовательная катушка 1, которая размещена на стальном сердечнике 2. Стальные пластины – полюса 3, расположенные по бокам сердечника 2, подводят создаваемое катушкой 1 магнитное поле к зоне горения дуги в камере. Взаимодействие этого поля с током дуги приводит к появлению сил, которые перемещают дугу в камеру.
Контактор включит цепь с током I0, если подать напряжение U на катушку 12 приводного электромагнита. Поток Ф, созданный током, протекающим через катушку электромагнита, разовьет тяговую силу и притянет якорь 9 электромагнита к сердечнику, преодолев силы противодействия возвратной 10 и Fk контактной 8 пружин.
Сердечник электромагнита оканчивается полюсным наконечником 11, поперечное сечение которого больше поперечного сечения самого сердечника. Установкой полюсного наконечника достигается некоторое увеличение силы, создаваемой электромагнитом, а также видоизменение тяговой характеристики электромагнита (зависимости электромагнитной силы от величины воздушного зазора).
Соприкосновение контактов 4 и 6 друг с другом и замыкание цепи при включении контактора произойдет раньше, чем якорь электромагнита полностью притянется к полюсу. По мере движения якоря подвижный контакт 6 будет как бы «проваливаться», упираясь своей верхней частью в неподвижный контакт 4. Он повернется на некоторый угол вокруг точки А и вызовет дополнительное сжатие контактной пружины 8. Появится провал контактов, под которым подразумевается величина смещения подвижного контакта на уровне точки его касания с неподвижным контактом в случае, если неподвижный будет удален.
Провал контактов обеспечивает надежное замыкание цепи, когда толщина контактов уменьшается вследствие выгорания их материала под. действием электрической дуги. Величина провала определяет запас материала контактов на износ в процессе работы контактора.
После соприкосновения, контактов происходит перекатывание подвижного контакта по неподвижному. Контактная пружина создает определенное нажатие в контактах, поэтому при перекатывании происходит разрушение окисных пленок и других химических соединений, которые могут появиться на поверхности контактов. Точки касания контактов при перекатывании переходят на новые места контактной поверхности, не подвергавшиеся воздействию дуги и являющиеся поэтому более «чистыми». Все это уменьшает переходное сопротивление контактов и улучшает условия их работы. В то же время перекатывание повышает механический износ контактов (контакты изнашиваются).
В момент соприкосновения подвижный контакт 6 сразу же оказывает на неподвижный контакт 4 давление, обусловленное предварительным натяжением контактной пружины 8. Вследствие этого переходное сопротивление контактов в момент их касания будет небольшим и контактная площадка не разогреется при включении до значительной температуры. Кроме того, предварительное контактное нажатие, созданное пружиной 8, позволяет снизить вибрацию (отскоки) подвижного контакта при ударе его о неподвижный контакт. Все это предохраняет контакты от приваривания при включении электрической.цепи. На контактах имеются контактные накладки, выполненные из специального материала, например серебра, чтобы улучшить условия длительного прохождения тока через замкнутые контакты во включенном состоянии. Иногда применяются накладки из дугостойкого материала для уменьшения износа контактов под воздействием электрической дуги (металлокерамика «серебро-окись кадмия» и др.). Гибкая связь 7 (для подвода тока к подвижному контакту) изготовляется из медной фольги (ленты) или тонкой проволоки.
Раствором контактов называется расстояние между подвижным и неподвижным контактами в отключенном состоянии контактора. Раствор контактов обычно лежит в пределах от 1 до 20 мм. Чем ниже раствор контактов, тем меньше ход якоря приводного электромагнита. Это приводит к уменьшению в электромагните рабочего воздушного зазора, магнитного сопротивления, намагничивающей силы, мощности катушки электромагнита и его габаритов. Минимальная величина раствора контактов определяется: технологическими и эксплуатационными условиями, возможностью образования металлического мостика между контактами при разрыве цепи тока, условиями устранения возможности смыкания контактов при отскоке подвижной системы от упора при отключении аппарата. Раствор контактов также должен быть достаточным для обеспечения условий надежного гашения дуги при малых токах.


Рисунок 2 — Прямоходовой пускатель
Изображенная на рис. 1 схема контактора поворотного типа довольно типичная. Обычно такие контакторы предназначаются для тяжелого режима работы (большая частота циклов коммутационных операций, индуктивные цепи) при относительно высоких значениях номинального тока (десятки и сотни ампер). Другой распространенный тип контакторов и пускателей — прямоходовой; он рассчитывается преимущественно на меньшие номинальные токи (десятки ампер) и более легкие условия работы. Прямоходовой пускатель (рис. 2) имеет мостиковые контакты 2 и 3, с которых дуга выдувается в дугогасительные камеры 1. Сила Fk контактной пружины создает нажатие в замкнутых контактах, возвратная пружина Fп возвращает подвижную систему аппарата в отключенное состояние, когда будет снято напряжение с катушки. Аппарат включается электромагнитом при подаче напряжения на его катушку 5. На полюсах электромагнита переменного тока устанавливаются короткозамкнутые витки 4, устраняющие вибрацию якоря во включенном положении аппарата.
В отличие от контактора постоянного тока в контакторе переменного тока для уменьшения потерь на вихревые токи применяют шихтованные магнитопроводы и короткозамкнутые витки на полюсах для устранения вибрации якоря. Контакторы переменного тока чаще изготовляют трехполюсными, постоянного тока — однополюсными и двухполюсными. В качестве дугогасительного устройства в контакторах на постоянном токе чаще применяются щелевые камеры, на переменном — чаще дугогасительная решетка.
Для гашения дуги применяют также камеры с дугогасительной решеткой. Дугогасительная решетка представляет собой пакет тонких металлических пластин 5 (рис. 1). Под действием электродинамических сил, создаваемых системой магнитного дутья, электрическая дуга попадает на решетку и рвется на ряд коротких дуг. Пластины интенсивно отводят тепло от дуги и гасят ее, но пластины дугогасительной решетки обладают значительной термической инерционностью — при большой частоте включений они перегреваются и эффективность дугогашения падает.
Мощные контакторы переменного тока имеют главные контакты, снабженные системой дугогашения — магнитным дутьем и дугогасительной камерой с узкой щелью или дугогасительной решеткой, как и контакторы постоянного тока. Конструктивное отличие заключается в том, что контакторы переменного тока выполняют многополюсными; обычно они имеют три главных замыкающих контакта. Все три контактных узла работают от общего электромагнитного привода клапанного типа, который поворачивает вал контактора с установленными на нем подвижными контактами. На том же валу устанавливают вспомогательные контакты мостикового типа. Контакторы имеют достаточно большие габаритные размеры. Их применяют для управления электродвигателями значительной мощности.
Для увеличения срока службы конструкция контакторов допускает смену контактов.
Существуют комбинированные контакторы переменного тока, в которых параллельно главным замыкающим контактам включают два тиристора. Во включенном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления открывает тиристоры, которые шунтируют цепь главных контактов и разгружают их от тока отключения, препятствуя возникновению электрической дуги. Поскольку тиристоры работают в кратковременном режиме, их номинальная мощность невелика и они не нуждаются в радиаторах охлаждения.
Наша промышленность выпускает комбинированные контакторы типа КТ64 и КТ65 на номинальные токи, превышающие 100 А, выполненные на базе широко распространенных контакторов КТ6000 и снабженные дополнительным полупроводниковым блоком.
Коммутационная износостойкость комбинированных контакторов в режиме нормальных коммутаций составляет не менее 5 млн. циклов, а коммутационная износостойкость полупроводниковых блоков примерно в 6 раз выше. Это позволяет многократно использовать их в системах управления.
Для управления электродвигателями переменного тока небольшой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Двукратный разрыв цепи и облегченные условия гашения дуги переменного тока позволяют обойтись без специальных дугогасительных камер, что существенно уменьшает габаритные размеры контакторов.
Прямоходовые контакторы обычно выпускаются промышленностью в трехполюсном исполнении. При этом главные замыкающие контакты разделяются пластмассовыми перемычками 1.
Наряду со слаботочными герконами, созданы герметичные силовые магнитоуправляемые контакты (герсиконы), способные коммутировать токи в несколько десятков ампер. На этой основе были разработаны контакторы для управления асинхронными электродвигателями мощностью до 1.1 кВт. Герсиконы отличаются увеличенным раствором контактов (до 1.5 мм) и повышенным контактным нажатием. Для создания значительной силы электромагнитного притяжения используют специальный магнитопровод.
Область применения электромагнитных контакторов достаточно широка. В машиностроении контакторы переменного тока применяют чаще всего для управления асинхронными электродвигателями. В этом случае их называют магнитными пускателями. Магнитный пускатель представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.
На рисунке 1 (а, б) показаны соответственно монтажная и принципиальная схемы соединений нереверсивного магнитного пускателя. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.


а) б)
Рисунок 1 — Схемы нереверсивного пускателя
На принципиальной схеме все элементы одного аппарата имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.
Нереверсивный магнитный пускатель имеет контактор KM с тремя главными замыкающими контактами (Л1-С1, Л2-С2, Л3-С3) и одним вспомогательным замыкающим контактом (3-5).
Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки контактора (или цепи управления) с наибольшим током – тонкими линиями.
Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки контактора потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 – 5,
что создаст параллельную цепь питания катушки контактора. Если теперь кнопку «Пуск» отпустить, то катушка контактора будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то контактор отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита превращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.
Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют контакторное управление.
Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки контактора.
В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рисунке 2, а. Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки. В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой. Если после нажатия кнопки SВ3 «Вперед» и включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.


Рисунок 2 — Схемы реверсивного пускателя
Аналогичная схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рисунке 2, б. В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.
В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.
Магнитные пускатели открытого исполнения монтируют в шкафах электрооборудования. Пускатели пылезащищенного и пылебрызгонепроницаемого исполнения снабжают кожухом и монтируют на стене или стойке в виде отдельного аппарата.
Электромагнитные контакторы выбирают по номинальному току электродвигателя с учетом условий эксплуатации. ГОСТ 11206-77 устанавливает несколько категорий контакторов переменного и постоянного тока. Контакторы переменного тока категории АС-2, АС-3 и АС-4 предназначены для коммутации цепей питания асинхронных электродвигателей. Контакторы категории АС-2 используют для пуска и отключения электродвигателей с фазным ротором. Они работают в наиболее легком режиме, поскольку эти двигатели обычно пускаются при помощи роторного реостата. Категории АС-3 и АС-4 обеспечивают прямой пуск электродвигателей с короткозамкнутым ротором и должны быть рассчитаны на шестикратный толчок пускового тока. Категория АС-3 предусматривает отключение вращающего асинхронного электродвигателя. Контакторы категории АС-4 предназначены для торможения противотоком электродвигателей с короткозамкнутым ротором или отключения неподвижных электродвигателей и работают в наиболее тяжелом режиме.
Контакторы, предназначенные для работы в режиме АС-3, могут быть использованы в условиях, соответствующих категории АС-4, но номинальный ток контактора при этом снижается в 1.5-3 раза. Аналогичные категории применения предусмотрены для контакторов постоянного тока.
Контакторы категории ДС-1 применяют для коммутации малоиндуктивной нагрузки. Категории ДС-2 и ДС-3 предназначены для управления электродвигателями постоянного тока с параллельным возбуждением и позволяют коммутировать ток, равный . Категории ДС-4 и ДС-5 применяют для управления электродвигателями постоянного тока с последовательным возбуждением.
Указанные категории определяют режим нормальных коммутаций, в котором контактор может непрерывно работать длительное время. Кроме того, различают режим редких (случайных) коммутаций, когда коммутационная способность контактора может быть увеличена примерно в 1.5 раза.
Если асинхронный электродвигатель работает в повторно-кратковременном режиме, то выбор контактора осуществляется по величине среднеквадратичного тока. На выбор контактора влияет степень защиты контактора. Контакторы защищенного исполненияимеют худшие условия охлаждения, и их номинальный ток снижается примерно на 10% по сравнению с контакторами открытого исполнения.

КОНТАКТНО – ДУГОГАСИТЕЛЬНЫЕ СИСТЕМЫ КОНТАКТОРОВ

В контакторах обычно используются рычажные (рис. 1, а) и мостиковые (рис. 1, б) контакты. В рычажных контактах образуется при отключении один разрыв (одна дуга), в мостиковых – два (две дуги). Поэтому при прочих равных условиях возможности для отключения электрических цепей у аппаратов с мостиковыми контактами выше, чем у аппаратов с рычажными (пальцевыми) контактами.

Рисунок 1 – Рычажные и мостиковые контакты
Мостиковые контакты по сравнению с рычажными имеют тот недостаток, что в замкнутом состоянии в них создается два контактных перехода тока, в каждом из которых должно быть создано надежное касание. Поэтому сила контактной пружины должна быть удвоенной (по сравнению с рычажными контактами), что в конечном итоге увеличивает мощность электромагнитного привода контактора.
В контакторах переменного тока на отключаемые токи до 100 А при напряжении сети до 100-200 В можно не применять дугогасительные камеры, так как дуга гасится за счет растяжения ее в атмосферном воздухе (открытый разрыв). Для предотвращения перекрытия электрических дуг на соседних полюсах применяются изоляционные перегородки. Контакторы с открытым разрывом дуги существуют также и на постоянном токе, но отключаемые токи для них существенно меньше.
При высоких значениях отключаемых токов и напряжений аппараты снабжаются дугогасительными камерами, из которых наиболее распространены щелевые камеры и дугогасительные решетки . Щелевая камера (рис. 2, а) образует внутри узкий просвет (щель) между стенками из дугостойкого изоляционного материала (асбестоцемент и др.). В него загоняется электрическая дуга 1 и там она гасится за счет усиленного отвода тепла при тесном соприкосновении со стенками.
Дугогасительная решетка (рис. 2, б) представляетсобой пакет из тонких (мм) металлических пластин 2, на которые выдувается дуга. Пластины выполняют роль радиаторов, интенсивно отводящих тепло от столба дуги и способствующих ее гашению.
Наиболее важной характеристикой дугогасительной камеры является вольт – амперная характеристика. Используя ее, можно рассчитать процессы гашения дуги при отключении цепи.


Рисунок 2 – Дугогасительные камеры
Как показал опыт эксплуатации, дугогасительная решетка непригодна для частых отключений цепи при сравнительно больших токах. При большой частоте отключений ее пластины разогреваются до высоких температур и не успевают остыть. Они оказываются неспособными охлаждать столб дуги, и решетка отказывает в работе. Для режима частых отключений цепи более пригодны щелевые дугогасительные камеры.
Система магнитного дутья предназначена для того, чтобы создать дополнительные силы для схода дуги с контактов и вхождения ее в дугогасительную камеру (рис. 3, а). Катушка 1 магнитного дутья включена последовательно в цепь отключаемого тока. Созданный ею магнитный поток Ф с помощью деталей 2 и 3 магнитопровода подводится к зоне горения дуги у входа в дугогасительную камеру 4.
Рисунок 3 – Система магнитного дутья
Взаимодействие тока дуги (А) с магнитным полем напряженностью (А/м) приводит к появлению действующей на дугу электродинамической силы (Н), которая загоняет дугу длиной (м) в камеру:
, (*)где Гн/м.
В зоне горения дуги (в воздушном зазоре , м, между пластинами 3 на рис. 3, а) в соответствии с законом полного тока для однородного поля (HL=Iw) напряженность поля (А/м)
.
Подставив это значение в (*), получим:
,
где – число витков катушки.
Так как в системе с катушкой последовательного магнитного дутья сила пропорциональна квадрату тока, то целесообразно использовать этот вид дутья в контакторах, рассчитанных на сравнительно большие номинальные токи. Для сокращения расхода меди на изготовление катушки, сечение которой должно выбираться по номинальному току контактора, желательно иметь возможно меньшее число витков катушки. Однако это число витков должно обеспечивать такую напряженность магнитного поля в зоне его взаимодействия с током дуги, которая создаст условия для надежного гашения дуги в заданном диапазоне отключаемых токов. Обычно оноизмеряется единицами при номинальных токах в сотни ампер, а при токах в десятки ампер достигает десяти и выше.
Преимущество систем с катушкой последовательного магнитного дутья заключается в том, что направление силы не зависит от направления тока . Это позволяет применять указанную систему не только на постоянном, но и на переменном токе. Однако на переменном токе вследствие появления вихревых токов в магнитопроводе может возникнуть сдвиг по фазе между током дуги и результирующей напряженностью магнитного поля в зоне горения дуги, что может вызвать обратное «забрасывание» дуги в камеру.
Недостаток системы с катушкой последовательного магнитного дутья – малая напряженность магнитного поля, создаваемая ею при небольших отключаемых токах. Поэтому параметры этой системы надо выбирать так, чтобы в области этих токов обеспечить максимально возможную напряженность магнитного поля в зоне горения дуги, не прибегая к значительному увеличению числа витков катушки магнитного дутья, чтобы не вызывать излишнего расхода меди на её изготовление. При небольших токах магнитопровод этой системы не должен насыщаться. Тогда почти вся намагничивающая сила катушки компенсируется падением магнитного потенциала в воздушном зазоре и напряженность магнитного поля в нем окажется максимально возможной. При больших токах магнитопровод, наоборот, целесообразно вводить в насыщение, когда его магнитное сопротивление становится большим. Это снизит напряженность магнитного поля в зоне расположения дуги, уменьшит силу и интенсивность гашения дуги, снизит перенапряжения при её гашении.
Существует система с катушкой параллельного магнитного дутья, когда катушка 1 (см. рис. 3), содержащая сотни витков из тонкого провода и рассчитываемая на полное напряжение источника питания, создает в зоне горения дуги напряженность магнитного поля (А/м)
.
Действующая на дугу электродинамическая сила (Н) (см. рис. 3, б)
,
где
В этой системе сила, действующая на дугу, пропорциональна току в первой степени. Поэтому она оказывается более целесообразной для контакторов на небольшие токи (примерно до 50 А).
Контактор с параллельной катушкой магнитного дутья реагирует на направление тока. Если направление магнитного поля сохраняется неизменным, а ток изменит свое направление, то сила будет направлена в противоположную сторону. Дуга будет перемещаться не в дугогасительную камеру, а в противоположную сторону – на катушку магнитного дутья, что может привести к аварии в контакторе. Это – недостаток рассматриваемой системы. Недостатком этой системы является также необходимость повышения уровня изоляции катушки в расчете на полное напряжение сети. Понижение напряжения сети приводит к уменьшению намагничивающей силы катушки и ослаблению интенсивности магнитного дутья, что снижает надежность дугогашения.
В системе магнитного дутья вместо катушки напряжения можно применять постоянный магнит. По свойствам такая система аналогична системе с параллельной катушкой магнитного дутья. Замена катушки напряжения постоянным магнитом исключит расход меди и изоляционных материалов, которые потребовались бы на создание катушки. При этом в системе не должны нарушаться свойства постоянного магнита в процессе эксплуатации.
Системы с катушкой параллельного магнитного дутья и постоянными магнитами на переменном токе не применяются, так как практически невозможно согласовать направление магнитного потока с направлением тока дуги, чтобы получить одно и то же направление силы в любой момент времени.
С увеличением напряженности поля магнитного дутья улучшаются условия схода дуги с контактов на дугогасительные рога и облегчается её вхождение в камеру. Поэтому с ростом уменьшается также износ контактов от термического воздействия дуги, но до определенного предела.
Большие напряженности поля создают значительные силы, воздействующие на дугу и выбрасывающие расплавленные металлические мостики из межконтактного промежутка в атмосферу. Это повышает износ контактов . При оптимальной напряженности поля износ контактов минимален.
Износ контактов – важный технический фактор. Поэтому принимаются серьезные меры, например уменьшение вибрации контактов при включении аппарата, чтобы уменьшить износ и увеличить срок службы контактов.
Важной характеристикой дугогасительного устройства переменного тока является закономерность роста восстанавливающейся прочности межконтактного промежутка за переходом тока через нуль.

Контактор — это магнитное устройство, основанное на двухпозиционном способе работы, предназначенное для постоянных промежуточных (дистанционных) включений силовых гальванических цепей, при наличии стандартного режима работы.

В основном применяются одно- или двухполюсные устройства постоянного тока или трехполюсные — переменного тока. Частое число включений и выключений контакторов влечет за собой высокие требования к данному типу устройств (электрическая и механическая стойкость материала).

Контакторы содержат:

  • Контактную систему.
  • Электромагнитную систему.
  • Дугогасительную камеру.
  • Систему вспомогательных контактов, переключающих уровни сигнализации.

Принцип работы

В отличие от коммутационных контактных агрегатов, контакторы могут проводить токи лишь номинально, поскольку они не предназначаются для отключения цепи (как пример: короткого замыкания).

При помощи дополнительной цепи тока осуществляется управление устройством, проходящего по индуктивной катушке с напряжением от 24 до 220-380 вольт . С целью увеличения безопасности при эксплуатации изделия, общая величина тока должна быть несколько ниже уровня рабочего тока в проходящих цепях. Контактор не обладает механическим ресурсом для сдерживания контактов в активном положении, поэтому при отсутствии направляющего потока напряжения на индуктивной катушке, он размыкает цепь. Для сдерживания цепи в активном положении применяется система «автоподхвата» с применением двух открытых контактов (пример: использование программируемого логического контроллера).


Обычно контакторы используют для проводки электрических цепей переменного тока при работе до 650-660 В и силе тока до 1500 А.

Магнитный пускатель представляет собой электромеханическое устройство управления и распределения, назначение которого заключается в запуске электродвигателя, и обеспечения его непрерывного функционирования. Данное устройство работает как трансформированный (модифицированный) контактор, он может быть дополнен комплектующими элементами. Пускатели бывают наделены системой аварийного отключения при обрыве цепи, или одной из фаз питания электродвигателя.

Пускатель выполняет функцию изменения (переключения) направления реверсивной схемы, путем перемены фаз, для чего, с этой целью в устройство помещается еще один контактор.

С целью уменьшения выхода тока двигателя, применяют переключатель трехфазной системы снабжения электричеством.
Работа магнитного пускателя может быть как открытой, так и защищенной (со встроенной защитой электродвигателя).
Магнитные пускателя бывают реверсивными и модульными. Реверсивные производят обращение трехфазных электродвигателей с помощью чередования напряжения и представляют собой два соприкасателя (контактора), соединенные в одном устройстве электрической или механической блокировкой.Они исключают вероятность короткого замыкания (межфазного).

Модульные пускатели являются электромагнитными устройствами, созданными для установки в распределительные электрощиты модульных стандартных изделий с креплениями. Данные модели пускателей отличаются электробезопасностью, и бесперебойной работой.

Общие черты контактора и магнитного пускателя

Вышеупомянутые изделия являются дополняющими друг друга устройствами, с единым принципом работы в электрической цепи, то есть, используются для коммутации. Одинаково используются для запуска электродвигателей переменного тока, ввода-вывода уровней сопротивления. Магнитный пускатель и контактор имеют несколько контактов для управления — замкнутую и разомкнутую цепь.

Отличия контактора от магнитного пускателя

Пускатели используются для коммутации цепей слабого напряжения. Изделия также различаются по своим габаритам: контактор больше пускателя.

Следующие отличие заключается в конструкции: контакторы имеют мощные силовые контакты, и наделены дугогасителями. Пускатели не имеют дугогасительных камер, а силовые контакты гораздо слабее. Отличаются устройства и по своему назначению: магнитные пускатели используются в целом для подачи электрического питания на приборы (светильники, электроприемники), а контакторы предназначаются для коммутации совершенно любой силовой цепи.

Даже самые опытные наладчики электрооборудования и просто специалисты с высшим образованием далеко не всегда могут объяснить принципиальную разницу между и контактором переменного тока. Попробуем самостоятельно разобраться в этом вопросе.

Общим между контактором и пускателем является то, что оба они предназначены для коммутации цепей, как правило, силовых. Поэтому контакторы и пускатели часто используют для запуска двигателей переменного тока, а также для ввода/вывода ступеней сопротивлений, если этот пуск реостатный.

И контактор, и пускатель кроме силовых контактов обязательно имеет в своем составе хотя бы одну (а чаще всего — далеко не одну) пару контактов для цепи управления: нормально замкнутую или нормально разомкнутую. Этим контакторы и пускатели схожи. А чем же они, все-таки, отличаются?

По номенклатуре многих торговых организаций электромагнитные пускатели проходят как «малогабаритные контакторы переменного тока». Так, может быть, ответ на вопрос кроется в компактности пускателя? Ведь действительно, стоит только взять в руки контактор и пускатель с одинаковой номинальной токовой нагрузкой, и разница в их габаритах станет заметна вашим не то, что глазам, — рукам и пальцам.

Скромный трехполюсный контактор на 100 ампер — штука довольно увесистая, ею, как говорят, и зашибить можно. А стоамперный пускатель — это, конечно, не пушинка, но удержать его на ладони одной руки вполне реально. К тому же, надо отметить, что слаботочных контакторов, например, на 10 ампер, просто не выпускают. Поэтому для коммутации слабых цепей приходится использовать исключительно пускатели, которые отличаются совсем уж небольшими размерами. Так что габариты — это действительно одно из различий между контакторами и пускателями.

Рис. 1. Электромагнитный контактор КТ6043 ОАО Завод «Электроконтактор»

Второе различие состоит в конструкции. Любой контактор имеет в своем составе мощные пары силовых контактов, оснащенные дугогасительными камерами. Собственного корпуса контактор не имеет и монтируется в специальных помещениях, закрывающихся на ключ во избежание доступа посторонних лиц и воздействия атмосферных осадков.

А вот силовые контакты пускателя всегда укрыты под пластиковым корпусом, но громоздких дугогасительных камер у них нет. Это приводит к тому, что в составе мощных цепей с частыми коммутациями пускатели не монтируют из опасения, что контакты их менее защищены от часто возникающей электрической дуги, чем у контакторов переменного тока.

Зато пускатель имеет более высокую степень защиты электрооборудования, особенно если он оборудован дополнительным металлическим кожухом. Тогда пускатель можно устанавливать хоть под открытым небом, чего никогда нельзя сделать с контактором.

Третье различие между контактором переменного тока и пускателем заключается в их назначении. Хотя пускатели часто применяют для подачи электропитания на обогреватели, электромагнитные катушки, различные мощные светильники и прочие электроприемники, основное их назначение — запуск асинхронных трехфазных двигателей переменного тока.

Поэтому любой пускатель имеет три пары силовых контактов, а его контакты управления предназначены для удержания пускателя во включенном состоянии и для сборки сложных цепей управления, предусматривающих, например, реверсивный пуск.

Рис. 2. Электромагнитные пускатели ПМЛ

В то же время контактор предназначен для коммутации абсолютно любой силовой цепи переменного тока. Поэтому и количество полюсов, то есть пар силовых контактов, у контактора бывает разным — от двух до четырех.

Вот по этим трем различиям силовые электромагнитные коммутационные устройства переменного тока и были подразделены на контакторы и пускатели.

Что такое магнитный стартер?

Магнитный пускатель — это электрическое переключающее устройство, обычно используемое в качестве инициирующего механизма для электродвигателей и другого сильноточного оборудования. Также известный как контактор, магнитный пускатель использует электромагнитное поле для замыкания набора контактов, которые затем передают мощность на двигатель. Это электромагнитное поле создается двухчастным ламинированным стальным сердечником и проволочной катушкой, соединенной с цепью управления стартера. Когда кнопка запуска нажата и катушка активируется, она создает магнитное поле, которое замыкает контактный механизм и запускает двигатель. Магнитные пускатели могут иметь от двух до четырех наборов основных точек контакта и часто будут иметь встроенные наборы вспомогательных контактов и выключатели для защиты от тепловой перегрузки.

Большинство установок с электродвигателем и тяжелым оборудованием используют магнитный пускатель для запуска работы. Магнитные пускатели, которые часто называют контакторами или реле, обеспечивают дистанционный запуск оборудования и, в зависимости от конкретной конструкции, также обеспечивают защиту от перегрузки и вспомогательное переключение. Главные точки контакта в магнитном пускателе действуют как переключатели для замыкания или размыкания главной цепи питания двигателя. В случае однофазных двигателей меньшего размера потребуются только две точки контакта — по одной для линий под напряжением и нейтрали. Трехфазным двигателям, естественно, потребуются три контакта, по одному для каждой фазы.

Эти пускатели состоят из двух многослойных стальных сердечников и двух наборов контактных точек, которые служат в качестве переключателя для управления электропитанием двигателя. Один стальной сердечник и один набор контактов прикреплены к корпусу магнитного пускателя и не двигаются. Второй сердечник и контакты могут перемещаться и соединяться друг с другом под натяжением пружины, чтобы держать их отдельно от статических узлов. Вокруг статического сердечника размещается проволочная катушка, которая при подаче напряжения создает электромагнитное поле, которое притягивает движущийся сердечник к статическому. Подвижные контакты перемещаются вместе с подвижным сердечником и плотно прижимаются к точкам статического контакта, чтобы завершить цепь питания двигателя.

Цепь, которая подает ток на катушку, называется цепью управления и проходит через кнопки останова и запуска, что позволяет осуществлять дистанционное управление двигателем. Обычно имеется по крайней мере один или два набора вспомогательных контактных точек, отделенных от основных контактных наборов, включенных в магнитные пускатели. Они используются как блокировки, фиксаторы и для переключения дистанционных ламп, которые показывают рабочее состояние двигателя. Пускатели могут также включать устройства тепловой перегрузки, которые отключают питание катушки и останавливают двигатель в случае его перегрузки.

ДРУГИЕ ЯЗЫКИ

Основы пускателя двигателя: пускатели, контакторы и защита от перегрузки

  • Защита от перегрузок предназначена для защиты от длительных перегрузок по току
  • Детали состоят из: устройства измерения тока, механизма отключения цепи
  • .
  • Часто имеют временную задержку, чтобы предотвратить преждевременное отключение двигателей

Стенограмма:

[0m:4s] Привет, я Джош Блум, добро пожаловать в еще одно видео из образовательной серии RSP Supply. Сегодня мы поговорим о стартере двигателя и основах управления двигателем.Основная цель пускателя двигателя — позволить нам безопасно запускать и останавливать двигатель. Это также позволяет нам запускать и останавливать двигатель из удаленного места. Таким образом, пускатель двигателя представляет собой коммутационное устройство с электрическим приводом. В основном они состоят всего из нескольких компонентов. Первый — это контактор, второй — защита от перегрузки, и они обычно используются с какой-либо защитой цепи. Таким образом, контакторы фактически обеспечивают ток для нашего двигателя. Их работа заключается в установлении и отключении питания в электрической цепи.

[0m:46s] Защита от перегрузки защищает двигатель от потребления слишком большого тока в течение длительного периода времени, что может привести к перегреву и возгоранию двигателя.
[0m:55s] Итак, давайте сначала поговорим о контакторе.
[0m:57s] Контактор работает во многом как реле в том смысле, что когда электричество подается на катушку, он захлопывает контакт, пропуская ток, обеспечивая питание нашего двигателя. Для получения дополнительной информации о том, как работают реле и контакторы, посмотрите наше другое видео, ссылку на которое мы приведем в описании ниже.Магнитный контактор управляется электромеханически без вмешательства. Это позволяет нам управлять контактором удаленно, поэтому нам не нужно помещать каких-либо операторов в какую-либо опасную ситуацию, которая может находиться рядом с нашим пускателем двигателя.
[1m:28s] Таким образом, для правильной работы контактор использует небольшой управляющий ток для размыкания и замыкания контактора. Большинство контакторов обычно также имеют вспомогательные контакты. Эти контакты позволяют нам контролировать состояние контактора, независимо от того, включен двигатель или нет.Некоторые подрядчики имеют несколько вспомогательных контактов для контроля других типов систем в контакторе. Далее поговорим о защите от перегрузок. Защита от перегрузки предназначена для защиты двигателя от длительного перегрузки по току. Это означает, что если двигатель слишком долго работает со слишком высоким током, он может перегреться и вывести двигатель из строя. Как перегрузка обеспечивает эту защиту, так это то, что она имеет блок измерения тока, встроенный в саму перегрузку.
[2m:11s] У нас есть либо электронный датчик тока, либо тепловой датчик тока, в зависимости от типа используемой перегрузки.Так, например, при электронной перегрузке у нас есть возможность установить с помощью циферблата на перегрузке величину тока, которую мы хотим дать нашему двигателю в течение определенного периода времени.

[2m:29s] Итак, при тепловой перегрузке у нас есть возможность вставить термоэлемент в соответствии с нашим конкретным приложением и потребностью. Таким образом, как только перегрузка обнаруживает, что двигатель потребляет слишком большой ток в течение длительного периода времени, она может отключить ток, проходящий через пускатель.Таким образом, для удовлетворения потребностей в защите перегрузки имеют временную задержку, позволяющую небольшим перегрузкам происходить без разрыва цепи. Это позволяет нам эксплуатировать наш двигатель без его частого включения и выключения из-за небольших перегрузок.

[2m:59s] И, наконец, обычно используемые с пускателями электродвигателей устройства защиты цепи электродвигателя. По сути, это автоматические выключатели, специально разработанные для использования с пускателями двигателей. Они работают, предотвращая большие скачки тока, которые могут быть вызваны коротким замыканием.
[3m:15s] В устройствах защиты цепи двигателя используется форма магнитной защиты, которая специально разработана для этих типов скачков напряжения. Для получения дополнительной информации о магнитной защите см. наше видео об автоматических выключателях, в котором рассказывается об этом. Мы дадим ссылку в описании ниже. Другой тип защиты, который используется вместо предохранителей цепей двигателя, — это разъединитель с плавким предохранителем. Однако важно, чтобы мы использовали предохранители, предназначенные для такого типа применения.
[3m:39s] Итак, давайте поговорим о нескольких вещах, которые мы хотим учитывать при покупке пускателя двигателя.Во-первых, мы хотим определить, нужен ли нам пускатель NEMA или пускатель IEC. Затем мы хотим убедиться, что наш двигатель соответствует определенному типу пускателя двигателя, который мы покупаем. Для этого нам нужно знать напряжение двигателя. Нам также необходимо знать ток полной нагрузки двигателя или мощность в лошадиных силах. И мы также хотим убедиться, что знаем, каким должно быть напряжение нашей катушки.
[4м:3с] Зная эти вещи, мы можем лучше определить, какой тип пускателя двигателя купить.
[4m:7s] Чтобы ознакомиться с полной линейкой контакторов, устройств защиты от перегрузок или защиты цепи двигателя, а также с тысячами других продуктов, посетите наш веб-сайт.Для получения дополнительной информации или других обучающих видеороликов перейдите на сайт RSPSupply.com, крупнейшего в Интернете источника промышленного оборудования. Также не забывайте: ставьте лайки и подписывайтесь.

GE CR306D002 — NEMA Size 2 Three Phase 120V Max 25HP Magnetic Starter

GE CR306D002 — Трехфазный магнитный пускатель NEMA CR306D002, размер 2, 120 В, макс. мощность 25 л.с.Он соответствует стандартным спецификациям основных производителей. Линия предлагает функции и преимущества, наиболее востребованные пользователями.

  • NEMA Размер 2   
  • Три фазы   
  • 115–120 В   
  • Макс. Просто освободите два фиксатора и потяните зажим, чтобы добраться до магнита, катушки и контактов.
  • Седловидные клеммы (размеры 00-1) — подходят для проводов с кольцами, лопатками и зачищенными проводами и имеют неизменную выштампованную маркировку.Ступенчатое расположение упрощает проводку и помогает предотвратить короткое замыкание между фазами.
  • Токоведущие компоненты — контактные наконечники изготовлены из стойкого к сварке оксида серебра и кадмия (чистое серебро только для размеров 00 и 0). Контакты установлены в конфигурации клина для положительного замыкания с минимальным отскоком.
  • Дополнительные клеммы для конденсаторов PF позволяют легко подключать конденсаторы коррекции коэффициента мощности между контактором и реле перегрузки для экономии энергии.
  • Защита от перегрузки по классу 20   
  • Визуальный индикатор отключения с ручным сбросом — во избежание неожиданных перезапусков.Сброс происходит при движении рычага вверх, поэтому состояние срабатывания нельзя отменить, удерживая рычаг в нижнем положении.
  • Ручная проверка приваривания — обеспечивает удобную проверку на приваривание контактов реле перегрузки. Просто нажмите кнопку проверки сварки, чтобы отключить реле, запустите простую проверку целостности контактов реле, а затем нажмите кнопку ручного сброса, чтобы вернуть стартер в рабочее состояние.
  • Дополнительный изолированный нормально разомкнутый контакт на реле перегрузки — обеспечивает прямой интерфейс с программным контроллером или компьютером для контроля производительности и диагностики неисправностей.
  • Двойные биметаллические элементы — предвосхищают перегрузки, реагируя на рост тока и температуры с более быстрым отключением при серьезных перегрузках для лучшей защиты двигателя. Точки срабатывания откалиброваны на заводе для обеспечения точности.
  • Регулировка срабатывания ±10 % — поворотом ручки на лицевой панели реле перегрузки позволяет «настроить» защиту двигателя на месте.
  • Самый большой выбор модификаций и комплектов принадлежностей — включает вспомогательные контакты, катушки, дополнения к пятому полюсу, вертикальные и горизонтальные механические блокировки, ограничители перенапряжений, предохранители цепей управления, корпуса типа NEMA, кнопки, селекторные переключатели, сигнальные лампы, управляющие трансформаторы, тепловентиляторы и многое другое.

Что делает магнитный пускатель двигателя? – СидмартинБио

Что делает магнитный пускатель двигателя?

Магнитный пускатель представляет собой выключатель с электромагнитным управлением, обеспечивающий безопасный способ запуска электродвигателя с большой нагрузкой. Магнитные пускатели также обеспечивают защиту от пониженного напряжения и перегрузки, а также автоматическое отключение в случае сбоя питания.

В чем разница между контактором и магнитным пускателем двигателя?

Все просто.Контактор на самом деле просто реле-переросток. Контактор подает напряжение на катушку контактора для замыкания контактов, а также для подачи и прерывания питания в цепи. Пускатель двигателя представляет собой просто контактор ПЛЮС реле перегрузки и рассчитан на мощность двигателя или силу тока.

Можно ли управлять магнитным пускателем автоматически?

В магнитных пускателях

используются вспомогательные устройства мгновенного действия (такие как переключатели и реле), которые требуют перезапуска после потери питания или в случае отключения контактора из-за низкого напряжения.Их также можно подключить для автоматического перезапуска двигателей, если этого требует приложение.

Каковы преимущества магнитного пускателя перед ручным пускателем двигателя?

Магнитный пускатель

Обеспечивает более низкое и безопасное напряжение для запуска, а также включает защиту от низкого напряжения и перегрузки по току. При отключении электроэнергии магнитный пускатель автоматически разрывает цепь. В отличие от ручных пускателей, он включает в себя автоматическое и дистанционное управление без участия оператора.

Как выбрать стартер?

При выборе пускателя двигателя вы должны учитывать нагрузку, тип двигателя и сеть, прежде чем решить, какой из них лучше для вас. Устройства плавного пуска: Устройства плавного пуска постепенно увеличивают скорость двигателя, чтобы предотвратить большие скачки тока и минимизировать износ электрических контактов в системе.

Что такое ручной стартер?

Ручные пускатели двигателей, также известные как автоматические выключатели защиты двигателей (MPCB) или ручные устройства защиты двигателей (MMP), представляют собой электромеханические устройства защиты главной цепи.Они в основном используются для включения/выключения двигателей вручную и для защиты без предохранителей от короткого замыкания, перегрузки и обрыва фазы.

Какой стартер используется для двигателя мощностью до л.с.?

Почему пускатели звезда-треугольник предпочтительнее для двигателей с более высокой мощностью: Этот тип пускателя необходим для запуска двигателя мощностью более 10 л.с. Основное назначение этого пускателя — уменьшить пусковой ток. За счет пускового соединения звездой снижает напряжение на 1/корень в 3 раза.

Можете ли вы сделать двигатель с постоянными магнитами?

Таким образом, идея двигателя, приводимого в движение только постоянными магнитами, вполне осуществима и не может быть отклонена как нарушение закона сохранения энергии.Двигатель с постоянными магнитами не будет производить энергию и не будет вечным двигателем.

Как выбрать магнитный пускатель?

Как работает магнитный пускатель двигателя?

Магнитный контактор работает, создавая соединение между двигателем и электромагнитом. Когда в магнитном пускателе нажата кнопка пуска, на электромагнит подается питание, и замыкатель замыкается.

Нужен ли магнитный пускатель двигателя?

Магнитный пускатель представляет собой выключатель с электромагнитным управлением, обеспечивающий безопасный способ запуска электродвигателя с большой нагрузкой.Магнитные пускатели также обеспечивают защиту от пониженного напряжения и перегрузки, а также автоматическое отключение в случае сбоя питания. Магнитный пускатель имеет контактор и реле перегрузки, которое размыкает управляющее напряжение на катушке пускателя, если обнаруживает перегрузку двигателя.

Как подключить магнитный пускатель?

Инструкции по подключению магнитных пускателей ВАЖНО Если компрессор имеет установленный на заводе магнитный пускатель, пускатель подключен к реле давления и двигателю.Подсоедините провода питания и заземления от разъединителя с предохранителем или автоматического выключателя непосредственно к магнитному пускателю. Никаких других электрических соединений не требуется. ВАЖНЫЙ

Что такое пускатель двигателя с магнитным напряжением?

Магнитные пускатели двигателей с сетевым напряжением представляют собой электромеханические устройства, обеспечивающие безопасные, удобные и экономичные средства запуска и остановки двигателей и имеющие преимущество дистанционного управления. Большая часть продаваемых контроллеров моторов относится к этому типу.

Магнитный пускатель

Магнитный пускатель представляет собой переключатель с электромагнитным управлением, обеспечивающий безопасный способ запуска электродвигателя с большой нагрузкой. Магнитные пускатели также обеспечивают защиту от перегрузки и автоматическое отключение в случае сбоя питания.

Реализация

Магнитный пускатель имеет контактор и реле перегрузки, которое размыкает управляющее напряжение на катушке пускателя, если обнаруживает перегрузку двигателя. [1] [2] Реле перегрузки могут использовать тепло, выделяемое током двигателя, для срабатывания биметаллического контакта или размыкания контакта, удерживаемого в замкнутом состоянии легкоплавким сплавом. Реле перегрузки размыкает набор контактов, соединенных последовательно с питанием контактора, питающего двигатель. Характеристики нагревателей можно согласовать с двигателем, чтобы двигатель был защищен от перегрузки. В последнее время цифровые реле защиты двигателей с микропроцессорным управлением предлагают более комплексную защиту двигателей.

Из-за электромагнита в контакторе, в случае сбоя подачи питания на машину, контактор автоматически отключается. В отличие от машин с обычным выключателем с фиксацией (например, обычным выключателем освещения), при возобновлении подачи питания машина не будет работать до тех пор, пока ее снова не включат. В результате в магнитных пускателях часто используются переключатели мгновенного действия для функций «выключено» и «включено», поскольку этот тип переключателя возвращается в определенное нормальное положение при отпускании. Выключатели с фиксацией не имеют этой функции и поэтому обычно не используются с магнитным пускателем.

Контакторы управления двигателем

могут быть оснащены защитой от короткого замыкания (предохранители или автоматические выключатели), средствами отключения, реле перегрузки и кожухом для создания комбинированного пускателя. Несколько комбинированных пускателей и других распределительных устройств и устройств управления могут быть сгруппированы в общем корпусе, называемом центром управления двигателем.

Операция

Обычно пускатели управляются двумя нажимными переключателями: переключателем «пуск», который обычно находится в положении «выключено» (т. е. «нажми и включай»), и переключателем «стоп», который обычно включен (т. е. переключателем «нажми и размыкаешь»).

Когда двигатель не работает, несмотря на наличие сетевого напряжения, пускатель или двигатель не потребляют ток.

При нажатии кнопки «Пуск» двигатель не запитывается напрямую, а включается электромагнит в контакторе. Затем срабатывает магнитный переключатель в контакторе, одновременно переключая ток на двигатель и обеспечивая самоподдерживающийся ток для поддержания своего состояния. Таким образом, когда кнопка пуска отпущена, магнитный переключатель остается включенным, а двигатель продолжает работать.

Нажатие кнопки «Стоп» размыкает цепь контактора, который, следовательно, отключает свой электромагнит, тем самым отключая ток двигателя.

Приложения

Магнитные пускатели обычно используются на оборудовании мощностью в несколько лошадиных сил и выше. Примеры включают деревообрабатывающее оборудование, такое как корпусные пилы или формовочные станки. Машины с меньшими нагрузками, такие как сверлильный станок или большинство ручных инструментов, не требуют стартера и вместо этого обычно используют только переключатель. Смитон, Роберт В.; Уберт, Уильям Х. (1998). Справочник по распределительным устройствам и устройствам управления . Макгроу-Хилл. ISBN 0070584516. 

Что такое стартер двигателя? | Типы пускателей двигателей

Здравствуйте друзья, в сегодняшней статье мы посмотрим сколько существует типов пускателей двигателей и какие они бывают и сколько способов включить двигатель и многое другое о нем.

Что такое стартер двигателя?

Пускатель двигателя — это электрическое устройство, с помощью которого мы можем включить или выключить любой двигатель.Его функция очень похожа на функцию реле, которое включает и выключает двигатель и обеспечивает защиту двигателя от перенапряжения и пониженного напряжения от реле.

Ниже перечислены основные функции пускателя двигателя.

  • Безопасный запуск двигателя.
  • Безопасно выключите двигатель.
  • Необходимость мотора изменить направление времени.
  • Обеспечивает защиту двигателя от перенапряжения и пониженного напряжения.

Пускатель двигателя состоит из двух основных компонентов, которые используются для защиты двигателя и управления им.

Электрический контактор: Основной функцией контактора является включение/выключение питания двигателя путем замыкания или размыкания контактных клемм.

Цепь защиты от перегрузки: Ее можно узнать по названию и назначению. Он работает, чтобы изолировать основной ток от малейшего перегрева двигателя. Благодаря чему статор и ротор двигателя никак не повреждаются.

Читайте также:  Что такое 4-точечный стартер | Принцип работы 4-точечного стартера | Диаграмма и ее приложения

Зачем нужен стартер с двигателем?

Когда ток подается на асинхронный двигатель, ток магнитного поля, движущегося в обмотке ротора, и АДС за создаваемым током увеличивают крутящий момент двигателя, что приводит к более высокому току ротора.

В период между подачей электропитания на двигатель и фактическим ускорением двигателя на полной скорости от источника питания через статор отводится большой ток. Величина пускового тока в 5-6 раз превышает полную нагрузку.

Этот ток только на короткое время. Из-за большого тока, протекающего по кабелю, падение напряжения в системе может привести к повреждению электрооборудования. По этой причине требуется определенный способ запуска двигателя.

Как работает стартер двигателя?

Стартер — это электрическое устройство, используемое для легкого включения и выключения двигателя. Контакты облегчены с помощью пускателя, чтобы двигатель можно было включать и выключать.

С помощью ручного стартера мы можем включать и выключать небольшой двигатель. При этом ручным рычагом управляют вручную, перемещая положение контакта и включая и выключая его. Недостатком ручного стартера является то, что его необходимо перезапускать в случае сбоя питания.Другими словами, оба его действия выполняются вручную.

Иногда такое положение также может быть вызвано усилием обмотки двигателя из-за высокого тока, проходящего через двигатель. Из-за этой ситуации этот стартер мало используется. Вот почему вместо них используются другие альтернативные пускатели двигателей с защитой, такие как автоматические пускатели.

В автоматических пускателях

используются электрохимические реле и контакторы, которые используются для включения/выключения двигателя. Когда на него подается питание, мощность проходит через катушку контактора и образует электромагнитное поле, которое притягивает или толкает контакты для подключения обмоток двигателя к источнику питания.

В пускателе используются кнопки, называемые пуском и остановом, которые запускают и останавливают двигатель. Контактор обесточивается с помощью кнопки стоп. Так что катушка ведет к обесточиванию. Таким образом, между контактами контактора используется пружина, так что контактор возвращается в исходное положение, и двигатель перестает работать.

Читайте также:  Принцип работы стартера звезда-треугольник | Типы стартера «звезда-треугольник» | Теория стартера звезда-треугольник

Типы пускателей двигателей, основанные на различных технологиях и методах пуска:

Для включения асинхронного двигателя в промышленности используются различные методы пуска.Прежде чем мы поговорим о типе двигателя, мы рассмотрим некоторые методы, используемые в пускателях двигателей.

  • Пускатель полного напряжения или от сети.
  • Реверсивный пускатель полного напряжения.
  • Многоскоростной стартер.
  • Пускатель пониженного напряжения.
#1. Полное напряжение или сетевой стартер:

В таком пускателе двигатель питается напрямую от сети. Мощность двигателя, подключенного к такому пускателю, невелика.Чтобы в этих ЛЭП не было больших перепадов напряжения. Такой стартер используется в местах, где мощность двигателя низкая и его необходимо вести в одном направлении.

#2. Реверсивный стартер полного напряжения:

3-фазная индукция Мы можем изменить направление вращения двигателя, переключив любые 2 фазы. Такой пускатель состоит из двух механически связанных магнитных контактов с чередованием фаз в прямом и встречном направлениях. Такой стартер используется там, где двигатель должен вращаться в обоих направлениях и используется для контакта.

#3. Многоскоростной стартер:

Для изменения скорости двигателя переменного тока необходимо изменить частоту данного источника питания или изменить число полюсов двигателя (путем пересоединения обмоток в некоторых). Этот тип пускателя приводит двигатель в движение со слегка заранее выбранной скоростью для выполнения своих задач.

#4. Стартер пониженного напряжения:

Наиболее распространенным способом включения двигателя является резкое снижение напряжения при запуске двигателя для уменьшения протекающего тока, чтобы обмотки двигателя могли быть повреждены в результате резкого снижения напряжения.Этот тип пускателя используется для двигателей с высоким номиналом.

Читайте также:  Что такое обмотка двигателя | Типы обмотки двигателя | Расчет обмотки двигателя

Тип пускателя двигателя:

Типы пускателей двигателей следующие, а также показаны их преимущества и недостатки.

Серийный номер Тип пускателя двигателя
#1. Прямой онлайн-пускатель (DOL)
#2. Стартер сопротивления статора
#3. Сопротивление ротора или пускатель электродвигателя с контактным кольцом
#4. Пускатель автотрансформатора
#5. Стартер звезда-треугольник
#6. Устройство плавного пуска
#7. Преобразователь частоты (ЧРП)

Существует много типов пускателей двигателей, но в основном они делятся на две части:

  • Ручной стартер.
  • Магнитный пускатель.
#1. Ручной стартер:

Этот тип пускателя не требует навыков для включения. Любой может включить его нормально. Для включения и выключения используется кнопка. На обратной стороне кнопки находится механический переключатель. Замыкает цепь при включении и разрывает или размыкает цепь при замыкании.

Ручной пускатель обеспечивает защиту от перегрузки, но не защищает от низкого напряжения.То есть в случае сбоя питания он не может разорвать цепь, что может стать катастрофой для некоторых приложений.

При восстановлении питания необходимо перезапустить двигатель. Используется для маломощных двигателей. Прямой пускатель (DOL) — это тип ручного пускателя, который обеспечивает защиту от перегрузки, но не от низкого напряжения.

#2. Магнитный пускатель: Магнитный пускатель

используется для двигателей переменного тока большой мощности. Он использует электромагнитные реле для создания магнитов, которые помогают разъединить цепь.

Обеспечивает низкое и безопасное напряжение при запуске двигателя. Он защищает двигатель от низкого напряжения и перегрузки по току в таком пускателе. В случае сбоя питания этот стартер автоматически разрывает цепь. В отличие от ручных пускателей сюда входят автоматические и дистанционные операции, исключающие участие оператора.

В основном есть две цепи магнитного пускателя.

  • Цепь питания: В основном отвечает за питание двигателя. Его электрические контакты включены.За счет чего включается/отключается питание, подаваемое на двигатель из питающей сети реле перегрузки.
  • Цепь управления: Используется для управления контактом, подающим питание на двигатель. Электромагнитная катушка дает силу тянуть или толкать контактор, либо обесточивает. Таким образом обеспечивается дистанционное управление магнитным пускателем.
#3. Прямой онлайн-стартер (DOL):

Стартер dol представляет собой простейшую форму пускателя, в котором двигатель подключается непосредственно к входящему электрическому току.Он включает в себя магнитный контактор, который подключает его к входящей мощности, а также защищает его от перегрузки. Какое напряжение не падает при пуске двигателя.

Так такой стартер используется для двигателей мощностью менее 5 л.с. Таким образом, для включения и выключения двигателя используются 2 простые кнопки. Нажатие кнопки пуска двигателя дает силу катушке, которая стягивает контакты вместе, чтобы замкнуть цепь. А нажатие на кнопку «Стоп» стимулирует контактную катушку и выталкивает ее контакты вперед, тем самым разрывая цепь.

Это не обеспечивает безопасное пусковое напряжение для стартера. Но реле с перекрытием также обеспечивают защиту от перегрева и перегрузки по току. Реле перегрузки обычно имеют замкнутые контакты, которые возбуждают катушки контактов. При срабатывании реле катушка контактора возбуждает цепь и разрывает ее.

Преимущества пускателя двигателя DOL:
  • Конструкция этого стартера проста и удобна.
  • Легко понять и использовать.
  • Создает высокий крутящий момент из-за высокого пускового тока
Недостатки пускателя двигателя DOL:
  • Большие токи могут повредить обмотки двигателя.
  • Не подходит для высоких рейтингов.
  • Сокращает срок службы двигателя.
#4. Стартер сопротивления статора:

В методе пуска с сопротивлением статора используется метод пуска с пониженным напряжением для подключения внешнего резистора к каждой серии обмоток двигателя.Основная функция резистора — уменьшить линейное напряжение, подаваемое на стентор. При пуске двигателя переменный резистор поддерживается в состоянии максимального сопротивления. Из-за падения напряжения на резисторе двигатель получает безопасную величину напряжения.

Низкое напряжение статора ограничивает начальный пусковой ток, который повреждает обмотки двигателя. По мере увеличения скорости двигателя сопротивление уменьшается, и двигатель подключается к прямому источнику питания.

Поскольку ток прямо пропорционален величине напряжения, а крутящий момент зависит от квадрата тока, крутящий момент уменьшается в 4 раза при уменьшении напряжения в 2 раза.Таким образом, начальный крутящий момент при использовании такого стартера очень низок, и его необходимо поддерживать.

Преимущества пускателя электродвигателя сопротивления статора:
  • Может использоваться как в Star, так и в Delta.
  • Регулируемый источник питания позволяет легко ускоряться
  • Обеспечивает облегчение начальных характеристик.
Недостатки пускателя электродвигателя сопротивления статора
  • Пусковой момент равен отсутствию напряжения.
  • Резисторы
  • оказались очень дорогими для двигателей больших номиналов.
  • Резисторы зачистки силовые.
#5. Стартер двигателя с сопротивлением ротора или контактным кольцом:

Этот тип пускателя работает при полном напряжении. Он также известен как пускатель двигателя с контактными кольцами, поскольку он работает только с одним асинхронным двигателем с контактными кольцами.

Внешнее сопротивление соединено с ротором в звезду с помощью спящего кольца. Это сопротивление ограничивает ток ротора и помогает увеличить крутящий момент вместо уменьшения начального тока статора.Это также помогает улучшить коэффициент мощности.

Используемые таким образом резисторы используются только в начале двигателя. Как только двигатель достигает своей надлежащей скорости, это удаляется.

Преимущества пускателя электродвигателя сопротивления ротора:
  • Этот метод улучшает коэффициент мощности.
  • Управление движением может быть сделано легко.
  • Благодаря высокому крутящему моменту двигатель может запускаться даже под нагрузкой.
  • Обеспечивает начальный ток при полном напряжении.
Недостатки пускателя двигателя сопротивления ротора:
  • Подходит только для асинхронного двигателя с контактными кольцами.
  • Стоимость ротора увеличивается, а вместе с ним и вес.
#6. Стартер автотрансформатора:

Понижающий или автотрансформатор используется для уменьшения напряжения, подаваемого на статор в начале двигателя. Этот тип трансформатора может быть подключен как к двигателям по схеме «звезда», так и по схеме «треугольник».

Вторичная обмотка автотрансформатора подключается к каждой фазе двигателя. Автотрансформатор Множественные обмотки обеспечивают часть номинального напряжения.

При запуске двигателя реле остается в начальной точке, поэтому двигатель получает напряжение только при низком уровне. Точка ответвления, обеспечивающая напряжение. Поверните реле между точками ленты, чтобы увеличить напряжение со скоростью двигателя. И, наконец, подключите двигатель к полному напряжению.

По сравнению с другими методами снижения напряжения он обеспечивает более высокое напряжение для определенного пускового тока.Было показано, что это помогает обеспечить лучший пусковой крутящий момент.

Преимущества автотрансформаторного стартера:
  • Может также использоваться на ручной скорости.
  • Отлично передает крутящий момент двигателю.
  • Это также облегчает начальные черты.
Недостатки автотрансформаторного стартера:
  • Из-за больших размеров трансформер занимает больше места.
  • Схемы очень сложны и дороги в пропорции.

Читайте также:  Преобразование звезды в треугольник и преобразование треугольника в звезду

#7. Стартер Звезда-Дельта:

Носик стартера

«звезда-треугольник» используется в промышленности для двигателей большой мощности. Обмотка трехфазного асинхронного двигателя преобразована из звезды в треугольник

Соединение асинхронного двигателя звездой соединяется с помощью этого трехполюсного двухпозиционного реле. Благодаря соединению звездой фазное напряжение снижается в 1/3 раза, что снижает начальный ток, а также начальный крутящий момент на 1/3 нормального номинального значения

Когда двигатель достигает нужной скорости, реле времени переключает соединение обмотки статора со звезды на соединение треугольником, чтобы каждая фаза получала полное напряжение и двигатель работал правильно.

Преимущества пускателя звезда-треугольник:
  • Не требует обслуживания.
  • Простой дизайн.
  • Используется для двигателей большой мощности.
  • Лучше всего подходит для длительного ускорения.
  • Обеспечивает низкий ток дребезга.
Недостатки стартера звезда-треугольник:
  • Работает только с двигателями с соединением треугольником.
  • Найдено больше проводных соединений.
  • Двигатель чувствует обычный рывок при вращении со звезды на треугольник.
  • Начальные характеристики очень ограничены в гибкости.
#8. Устройство плавного пуска:

Устройство плавного пуска работает по той же системе снижения напряжения, что и другие пускатели. В этом двигателе используется полупроводниковый переключатель, такой как TRIAC, для управления напряжением, а также током, подаваемым на асинхронный двигатель.

Fuse control TRIAC используется для подачи переменного напряжения. По напряжению угол несущей симистора или угол открытия могут быть разделены. Минимальный угол переноса сохраняется, чтобы дать двигателю это пониженное напряжение.Угол переноса увеличивается, и напряжение постепенно увеличивается. При максимальном угле переноса на асинхронный двигатель подается полное линейное напряжение, и он работает с заданной скоростью.

Пусковой ток и напряжение обеспечивают медленное и плавное увеличение крутящего момента, чтобы никто не почувствовал удара, что обеспечивает плавную работу двигателя, что увеличивает срок службы машины.

Преимущества устройства плавного пуска:
  • Маленький размер.
  • Увеличивает возраст системы.
  • Снижает скачки напряжения в системе.
  • Обеспечивает плавное ускорение, поэтому удары не ощущаются.
  • Снижает скачки напряжения в системе.
  • Высокая эффективность Требуется отсутствие технического обслуживания.
Недостатки устройства плавного пуска:
  • Система очень дорогая.
  • Растворяет энергию в виде тепла.

Читайте также: ЧРП против устройства плавного пуска | Разница между ЧРП и устройством плавного пуска

#9.Преобразователь частоты (VFD): Преобразователь частоты

(VFD) также может изменять заданное напряжение и частоту, как устройство плавного пуска. Преобразователь частоты (VFD)
В основном используется для управления скоростью асинхронного двигателя, поскольку она зависит от заданной частоты питания.

Преобразует питание от сети в постоянный ток с помощью выпрямителей переменного тока. Чистый постоянный ток преобразуется в переменный ток с регулируемой частотой и напряжением с использованием технологии широтно-импульсной модуляции с помощью мощных транзисторов, таких как IGBT.

Дает полный контроль над определенной скоростью двигателя от начала до конца. Вариант регулировки скорости с переменным напряжением обеспечивает лучшее ускорение тока и тока.

Преимущества частотно-регулируемого привода:
  • Обеспечивает полный контроль скорости с легким ускорением и отвлечением внимания
  • Увеличивает продолжительность жизни благодаря отсутствию электрических и механических нагрузок.
  • Обеспечивает хорошее и легкое ускорение двигателей большой мощности.
Недостатки частотно-регулируемого привода:
  • Рассеивает тепло.
  • Стоимость системы увеличивается, если контроль скорости не требуется.
  • VFD создают гармоники в электрических линиях, которые влияют на электронные устройства и коэффициент мощности.

Нравится этот пост? Поделитесь этим с вашими друзьями!

Рекомендуем прочитать —

.

Добавить комментарий

Ваш адрес email не будет опубликован.