Измерение эдс и внутреннего сопротивления источника тока: Лабораторные работы №4 (10 класс)

Содержание

Урок 31. Лабораторная работа № 08. Измерение ЭДС и внутреннего сопротивления источника тока.

Лабораторная работа № 8

   Тема: «Определение электродвижущей силы и внутреннего сопротивления источника тока».

   Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии.

   Оборудование: 1. Амперметр лабораторный;

                             2. Источник электрической энергии;

                             3. Соединительные провода,

                             4. Набор сопротивлений 2 Ом и 4 Ом;

                             5. Переключатель однополюсный; ключ.

Теория.

   Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами.

   Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются

сторонними силами.

   При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

   Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q внутри источника тока к величине этого заряда, называется электродвижущей силой источника (ЭДС):

 

   ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.

   Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].

   Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи.

   Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источника и обозначают r.

   Если цепь разомкнута, то работа сторонних сил превращается в потенциальную энергию источника тока. При замкнутой цепи эта потенциальная энергия расходуется на работу по перемещению зарядов во внешней цепи с сопротивлением R и во внутренней части цепи с сопротивлением r , т.е.

ε = IR + Ir.

   Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то,  согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir — напряжение на внутреннем участке цепи.

   Таким образом, для участка цепи, содержащего ЭДС:

   Эта формула выражает закон Ома для полной цеписила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.

   ε и r можно определить опытным путем.

   Часто источники электрической энергии соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.

   При последовательном соединении два соседних источника соединяются разноименными полюсами.

   Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.

   Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

   1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε1 + ε2 + ε3

   2. Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников

rбатареи= r1 + r2 + r3

Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε1, а сопротивление rбатареи= nr1

   3. Сила тока в такой цепи по закону Ома 

   При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.

   Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).

   Параллельно соединяют только источники с одинаковой ЭДС. Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.

 


1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε1= ε

2 = ε3

2. Сопротивление батареи меньше, чем сопротивление одного источника rбатареи= r1/n
3. Сила тока в такой цепи по закону Ома 

   Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

   Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.

е увеличивается, то внутреннее сопротивление уменьшается.

Ход работы.

   1. Начертите таблицу:

опыта

Источник электрической энергии ВУП, В

1-й отсчет

2-й отсчет

Э.Д.С.

ε , В

Внутреннее сопротивление,

r , Ом

R1,

Ом

Сила тока

I1 , А

R2,

Ом

Сила тока

I2 , А

1

 

1

1

 

2

 

 

 

   2. Рассмотрите  шкалу амперметра  и определите цену одного деления.
   3. Составьте электрическую цепь по схеме, изображенной на рисунке 1. Переключатель поставить в среднее положение.


Рисунок 1.

   4. Замкнуть цепь, введя меньшее сопротивление R1. Записать величину силы тока I1. Разомкнуть цепь.

   5. Замкнуть цепь, введя большее сопротивление R2. Записать величину силы тока I2. Разомкнуть цепь.

   6. Вычислить значение ЭДС и внутреннего сопротивления источника электрической энергии.

   Закон Ома для полной цепи для каждого случая:     и    

   Отсюда получим формулы для вычисления ε и r:

   

  

   7. Результаты всех измерений и вычислений запишите в таблицу.

   8. Сделайте вывод.

   9. Ответьте на контрольные вопросы.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

   1. Раскройте физический смысл понятия «электродвижущая сила источника тока».

   2. Определить сопротивление внешнего участка цепи, пользуясь результатами полученных измерений и законом Ома для полной цепи.

   3. Объяснить, почему внутреннее сопротивление возрастает при последовательном соединении аккумуляторов и уменьшается при параллельном в сравнении с сопротивлением r0 одного аккумулятора.

   4. В каком случае вольтметр, включенный на зажимы генератора, показывает ЭДС генератора и в каком случае напряжение на концах внешнего участка цепи? Можно ли это напряжение считать также и напряжением на концах внутреннего участка цепи?

Вариант выполнения измерений.

Опыт 1. Сопротивление R1=2 Ом, сила тока I1=1,3 А.

              Сопротивление R2=4 Ом, сила тока I2=0,7 А.

Изменения эдс и внутреннего сопротивления источника тока. Электродвижущая сила

Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила 1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда

Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

 Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет 2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φ o > φ 1 , то есть электрический ток направлен от точки 0 к точке 1 . При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой окружающей среде, поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r , аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir . Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.

1 Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2 Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

— электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

— термоэлектрическая — в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

— фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

— химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

Цель работы: изучить метод измерения ЭДС и внутреннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: металлический планшет, источник тока, амперметр, вольтметр, резистор, ключ, зажимы, соединительные провода.

Для измерения ЭДС и внутреннего сопротивления источника тока собирают электрическую цепь, схема которой показана на рисунке 1.

К источнику тока подключают амперметр, сопротивление и ключ, соединенные последовательно. Кроме того, непосредствен­но к выходным гнездам источника подключают еще и вольтметр.

ЭДС измеряют по показанию вольтметра при разомкнутом ключе. Этот прием определения ЭДС основан на следствии из за­кона Ома для полной цепи, согласно которому при бесконечно большом сопротивлении внешней цепи напряжение на зажимах источника равно его ЭДС. (См. параграф «Закон Ома для полной цепи» учебника «Физика 10»).

Для определения внутреннего сопротивления источника за­мыкают ключ К. При этом в цепи можно условно выделить два участка: внешний (тот, который подключен к источнику) и внутренний (тот, который находится внутри источника тока). Поскольку ЭДС источника равна сумме падения напряжений на внутрен­нем и внешнем участках цепи:

ε = U r +U R , то U r = ε -U R (1)

По закону Ома для участка цепи U r = I· r (2). Подставив равенство (2) в (1) получают:

I · r = ε U r , откуда r = (ε U R )/ J

Следовательно, чтобы узнать внутреннее сопротивление источника тока, необходимо пред­варительно определить его ЭДС, затем замкнуть ключ и измерить падение напряжения на внеш­нем сопротивлении, а также силу тока в нем.

Ход работы

1. Подготовьте таблицу для записи результатов измерений и вычислений:

ε

U r , B

i,a

r , Ом

    Начертите в тетради схему для измерения ЭДС и внутреннего сопротивления источника.

    После проверки схемы соберите электрическую цепь. Ключ разомкните.

    Измерьте величину ЭДС источника.

    Замкните ключ и определите показания амперметра и вольтметра.

    Вычислите внутреннее сопротивление источника.

  1. Определение эдс и внутреннего сопротивления источника тока графическим методом

Цель работы: изучить измерения ЭДС, внутреннего сопротивления и тока короткого замы­кания источника тока, основанный на анализе графика зависимости напряже­ния на выходе источника от силы тока в цепи.

Оборудование: гальванический элемент, амперметр, вольтметр, резистор R 1 , переменный резистор, ключ, зажимы, металлический планшет, соединительные провода.

Из закона Ома для полной цепи следует, что напряжение на выходе источника тока зависит прямо пропорционально от силы тока в цепи:

так как I =E/(R+r), то IR + Ir = Е, но IR = U, откуда U + Ir = Е или U = Е – Ir (1).

Если построить график зависимости U от I, то по его точкам пересечения с осями координат можно определить Е, I К.З. — силу тока короткого замыкания (ток, который потечет в цепи источни­ка, когда внешнее сопротивление R станет равным нулю).

ЭДС определяют по точке пересечения графика с осью напряжений. Эта точка графика со­ответствует состоянию цепи, при котором ток в ней отсутствует и, следовательно, U = Е.

Силу тока короткого замыкания определяют по точке пересечения графика с осью токов. В этом случае внешнее сопротивление R = 0 и, следовательно, напряжение на выходе источника U = 0.

Внутреннее сопротивление источника находят по тангенсу угла наклона графика относи­тельно оси токов. (Сравните формулу (1) с математической функцией вида У = АХ +В и вспомни­те смысл коэффициента при X).

Ход работы

    Для записи результатов измерений подготовьте таблицу:

  1. После проверки схемы преподавателем соберите электрическую цепь. Ползунок переменного резистора установите в положение, при котором сопротивление цепи, подключенной к источ­нику тока, будет максимальным.
  2. Определите значение силы тока в цепи и напряжение на зажимах источника при максимальной величине сопротивления переменного резистора. Данные измерений занесите в таблицу.

    Повторите несколько раз измерения силы тока и напряжения, уменьшая всякий раз величину переменного сопротивления так, чтобы напряжение на зажимах источника уменьшалось на 0,1В. Измерения прекратите, когда сила тока в цепи достигнет значения в 1А.

    Нанесите полученные в эксперименте точки на график. Напряжение откладывайте по верти­кальной оси, а силу тока — по горизонтальной. Проведите по точкам прямую линию.

    Продолжите график до пересечения с осями координат и определите величины Е и, I К.З.

    Измерьте ЭДС источника, подключив вольтметр к его выводам при разомкнутой внешней це­пи. Сопоставьте значения ЭДС, полученные двумя способами, и укажите причину возможного расхождения результатов.

    Определите внутреннее сопротивление источника тока. Для этого вычислите тангенс угла на­клона построенного графика к оси токов. Так как тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то практически это можно сделать, найдя отношение Е / I К.З

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

2014 г.

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи — это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

где r — внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

. (2)

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:
. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

и
(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы
, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

, (4)

где
— переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:
.

Закон Ома для полной цепи.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

. (5)

Из выражений (2), (4) и (5) получаем:


. (6)

Так как
, то

, (7)

или

. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод — для подключения ВУ-4М к гнезду «-»; желтые провода — для подключения к элементам планшета измерительных приборов; синие — для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:


. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Рис.1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника
, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.

. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :

. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что

(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Вычислите внутреннее сопротивление источника тока.

Таблица1.

, В

, В

I , А

, В

r , Ом

2 способ.

Сначала соберите экспериментальную установку, изображенную на рисунке 2.

Рис. 2.

Измерьте силу тока в цепи при помощи амперметра, результат запишите в тетрадь. Сопротивление резистора =5 Ом. Все данные заносятся в таблицу 2. , Ом

Контрольные вопросы :

    Внешний и внутренний участки цепи.

    Какое сопротивление называются внутренним? Обозначение.

    Чему равно полное сопротивление?

    Дайте определение электродвижущей силы (ЭДС). Обозначение. Единицы измерения.

    Сформулируйте закон Ома для полной цепи.

    Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

    Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. — с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.

Допустим, есть простейшая электрическая замкнутая цепь, включающая в себя источник тока, например генератор, гальванический элемент или аккумулятор, и резистор, обладающий сопротивлением R. Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет.

В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r. Для или аккумулятора внутреннее сопротивление — это сопротивление раствора электролита и электродов, для генератора — сопротивление обмоток статора и т. д.

Таким образом, источник тока характеризуется как величиной ЭДС, так и величиной собственного внутреннего сопротивления r – обе эти характеристики свидетельствуют о качестве источника.

Электростатические высоковольтные генераторы (как генератор Ван де Граафа или генератор Уимшурста), к примеру, отличаются огромной ЭДС измеряемой миллионами вольт, при этом их внутреннее сопротивление измеряется сотнями мегаом, потому они и непригодны для получения больших токов.


Гальванические элементы (такие как батарейка) — напротив — имеют ЭДС порядка 1 вольта, хотя внутреннее сопротивление у них порядка долей или максимум — десятка Ом, и от гальванических элементов поэтому можно получать токи в единицы и десятки ампер.

На данной схеме показан реальный источник с присоединенной нагрузкой. Здесь обозначены , его внутреннее сопротивление, а также сопротивление нагрузки. Согласно , ток в данной цепи будет равен:

Поскольку участок внешней цепи однороден, то из закона Ома можно найти напряжение на нагрузке:

Выразив из первого уравнения сопротивление нагрузки, и подставив его значение во второе уравнение, получим зависимость напряжения на нагрузке от тока в замкнутой цепи:

В замкнутом контуре ЭДС равна сумме падений напряжений на элементах внешней цепи и на внутреннем сопротивлении самого источника. Зависимость напряжения на нагрузке от тока нагрузки в идеальном случае линейна.

График это показывает, но экспериментальные данные на реальном резисторе (крестики возле графика) всегда отличаются от идеала:


Эксперименты и логика показывают, что при нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен . Это свойство реальных цепей помогает экспериментально находить ЭДС и внутреннее сопротивление реальных источников.

Экспериментальное нахождение внутреннего сопротивления

Чтобы экспериментально определить данные характеристики, строят график зависимости напряжения на нагрузке от величины тока, затем экстраполируют его до пересечения с осями.

В точке пересечения графика с остью напряжения находится значение ЭДС источника, а в точке пересечения с осью тока находится величина тока короткого замыкания. В итоге внутреннее сопротивление находится по формуле:

Развиваемая источником полезная мощность выделяется на нагрузке. График зависимости этой мощности от сопротивления нагрузки приведен на рисунке. Эта кривая начинается от пересечения осей координат в нулевой точке, затем возрастает до максимального значения мощности, после чего спадает до нуля при сопротивлении нагрузки равном бесконечности.


Чтобы найти максимальное сопротивление нагрузки, при котором теоретически разовьется максимальная мощность при данном источнике, берется производная от формулы мощности по R и приравнивается к нулю. Максимальная мощность разовьется при сопротивлении внешней цепи, равном внутреннему сопротивлению источника:

Это положение о максимальной мощности при R = r, позволяет экспериментально найти внутреннее сопротивление источника, построив зависимость мощности, выделяемой на нагрузке, от величины сопротивления нагрузки. Найдя реальное, а не теоретическое, сопротивление нагрузки, обеспечивающее максимальную мощность, определяют реальное внутреннее сопротивление источника питания.

КПД источника тока показывает отношение максимальной выделяемой на нагрузке мощности к полной мощности, которую в данный момент развивает

Лабораторная работа «Измерение ЭДС и внутреннего сопротивления источника тока (второй вариант)» — ЛАБОРАТОРНЫЕ РАБОТЫ ПО ЭЛЕКТРОДИНАМИКЕ — ПРЕДМЕТЫ ФИЗИКО-МАТЕМАТИЧЕСКОГО ЦИКЛА — Каталог статей

   
      С физической точки зрения этот закон означает, что, чем больше электродвижущая сила , т. е. энергия, которую расходует источник на перемещение каждого единичного заряда, тем быстрее движутся заряды. В свою очередь, от скорости движения зарядов зависит сила тока I.
      Преобразовав формулу, получают выражение для электродвижущей силы:  = IR + Ir, где U = IR — напряжение на зажимах источника тока при замкнутой цепи, U0 = Ir — падение напряжения на внутреннем участке цепи.
      При разомкнутой цепи (см. рис. 44), когда к полюсам источника тока подключен высокоомный вольтметр (мультиметр), внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока. При этом напряжение U на зажимах источника примерно равно .
      Для определения внутреннего сопротивления источника тока замыкают ключ (см. рис. 44), снимают показания амперметра и вольтметра. Далее определяют падение напряжения на внутреннем участке цепи  − U = U0, по формуле находят внутреннее сопротивление r.
      Химические источники (гальванические элементы, аккумуляторы) очень часто соединяют в батареи, например, для питания радиоприемника, плейера и т. д. При последовательном соединении элементов, когда « + » первого источника тока соединяется с « − » второго и т. д., ЭДС батареи равна сумме ЭДС элементов. Это же правило справедливо и для внутреннего сопротивления батареи.
      Цель работы: измерить ЭДС и внутреннее сопротивление источника тока.
      Приборы и материалы: мультиметр M890G, реостат-потенциометр, провода соединительные.
      Указания к работе:
      1. Соберите электрическую цепь по схеме на рисунке 44. При разомкнутом ключе измерьте ЭДС источника. При замкнутом ключе измерьте падение напряжения на внешнем участке.
      2. При наличии одного мультиметра его отключают, переводят в режим измерения силы постоянного тока и включают в электрическую цепь в качестве амперметра (см. рис. 44).

Что внутреннее сопротивление источника. Лабораторная работа «Измерение ЭДС и внутреннего сопротивления источника тока» (11 класс)

Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила 1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда

Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

 Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет 2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φ o > φ 1 , то есть электрический ток направлен от точки 0 к точке 1 . При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой окружающей среде, поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r , аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir . Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.

1 Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2 Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

Лабораторная работа № 8

Тема: « Определение электродвижущей силы и внутреннего сопротивления источника тока ».

Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии.

Оборудование: 1. Амперметр лабораторный;

2. Источник электрической энергии;

3. Соединительные провода,

4. Набор сопротивлений 2 Ом и 4 Ом;

5. Переключатель однополюсный; ключ.

Теория.

Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами.

Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q внутри источника тока к величине этого заряда, называется электродвижущей силой источника (ЭДС):

ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].

Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи .

Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источника и обозначают r .

Если цепь разомкнута, то работа сторонних сил превращается в потенциальную энергию источника тока. При замкнутой цепи эта потенциальная энергия расходуется на работу по перемещению зарядов во внешней цепи с сопротивлением R и во внутренней части цепи с сопротивлением r , т.е. ε = IR + Ir .

Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то, согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir — напряжение на внутреннем участке цепи.

Таким образом, для участка цепи, содержащего ЭДС:

Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.

ε и r можно определить опытным путем.

Часто источники электрической энергии соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.

При последовательном соединении два соседних источника соединяются разноименными полюсами.

Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.

Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε 1 + ε 2 + ε 3

2 . Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников r батареи = r 1 + r 2 + r 3

Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε 1, а сопротивление r батареи = nr 1

3.

При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.

Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).

Параллельно соединяют только источники с одинаковой ЭДС . Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.



1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε 1 = ε 2 = ε 3

2. Сопротивление батареи меньше, чем сопротивление одного источника r батареи = r 1 /n
3. Сила тока в такой цепи по закону Ома

Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.е увеличивается, то внутреннее сопротивление уменьшается.

Ход работы.

1. Начертите таблицу:

2. Рассмотрите шкалу амперметра и определите цену одного деления.
3. Составьте электрическую цепь по схеме, изображенной на рисунке 1. Переключатель поставить в среднее положение.


Рисунок 1.

4. Замкнуть цепь, введя меньшее сопротивление R 1 1 . Разомкнуть цепь.

5. Замкнуть цепь, введя большее сопротивление R 2 . Записать величину силы тока I 2 . Разомкнуть цепь.

6. Вычислить значение ЭДС и внутреннего сопротивления источника электрической энергии.

Закон Ома для полной цепи для каждого случая: и

Отсюда получим формулы для вычисления ε и r:

7. Результаты всех измерений и вычислений запишите в таблицу.

8. Сделайте вывод.

9. Ответьте на контрольные вопросы.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. Раскройте физический смысл понятия «электродвижущая сила источника тока».

2. Определить сопротивление внешнего участка цепи, пользуясь результатами полученных измерений и законом Ома для полной цепи.

3. Объяснить, почему внутреннее сопротивление возрастает при последовательном соединении аккумуляторов и уменьшается при параллельном в сравнении с сопротивлением r 0 одного аккумулятора.

4. В каком случае вольтметр, включенный на зажимы генератора, показывает ЭДС генератора и в каком случае напряжение на концах внешнего участка цепи? Можно ли это напряжение считать также и напряжением на концах внутреннего участка цепи?

Вариант выполнения измерений.

Опыт 1. Сопротивление R 1 =2 Ом, сила тока I 1 =1,3 А.

Сопротивление R 2 =4 Ом, сила тока I 2 =0,7 А.

Цель работы: изучить метод измерения ЭДС и внутреннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: металлический планшет, источник тока, амперметр, вольтметр, резистор, ключ, зажимы, соединительные провода.

Для измерения ЭДС и внутреннего сопротивления источника тока собирают электрическую цепь, схема которой показана на рисунке 1.

К источнику тока подключают амперметр, сопротивление и ключ, соединенные последовательно. Кроме того, непосредствен­но к выходным гнездам источника подключают еще и вольтметр.

ЭДС измеряют по показанию вольтметра при разомкнутом ключе. Этот прием определения ЭДС основан на следствии из за­кона Ома для полной цепи, согласно которому при бесконечно большом сопротивлении внешней цепи напряжение на зажимах источника равно его ЭДС. (См. параграф «Закон Ома для полной цепи» учебника «Физика 10»).

Для определения внутреннего сопротивления источника за­мыкают ключ К. При этом в цепи можно условно выделить два участка: внешний (тот, который подключен к источнику) и внутренний (тот, который находится внутри источника тока). Поскольку ЭДС источника равна сумме падения напряжений на внутрен­нем и внешнем участках цепи:

ε = U r +U R , то U r = ε -U R (1)

По закону Ома для участка цепи U r = I· r (2). Подставив равенство (2) в (1) получают:

I · r = ε U r , откуда r = (ε U R )/ J

Следовательно, чтобы узнать внутреннее сопротивление источника тока, необходимо пред­варительно определить его ЭДС, затем замкнуть ключ и измерить падение напряжения на внеш­нем сопротивлении, а также силу тока в нем.

Ход работы

1. Подготовьте таблицу для записи результатов измерений и вычислений:

ε

U r , B

i,a

r , Ом

    Начертите в тетради схему для измерения ЭДС и внутреннего сопротивления источника.

    После проверки схемы соберите электрическую цепь. Ключ разомкните.

    Измерьте величину ЭДС источника.

    Замкните ключ и определите показания амперметра и вольтметра.

    Вычислите внутреннее сопротивление источника.

  1. Определение эдс и внутреннего сопротивления источника тока графическим методом

Цель работы: изучить измерения ЭДС, внутреннего сопротивления и тока короткого замы­кания источника тока, основанный на анализе графика зависимости напряже­ния на выходе источника от силы тока в цепи.

Оборудование: гальванический элемент, амперметр, вольтметр, резистор R 1 , переменный резистор, ключ, зажимы, металлический планшет, соединительные провода.

Из закона Ома для полной цепи следует, что напряжение на выходе источника тока зависит прямо пропорционально от силы тока в цепи:

так как I =E/(R+r), то IR + Ir = Е, но IR = U, откуда U + Ir = Е или U = Е – Ir (1).

Если построить график зависимости U от I, то по его точкам пересечения с осями координат можно определить Е, I К.З. — силу тока короткого замыкания (ток, который потечет в цепи источни­ка, когда внешнее сопротивление R станет равным нулю).

ЭДС определяют по точке пересечения графика с осью напряжений. Эта точка графика со­ответствует состоянию цепи, при котором ток в ней отсутствует и, следовательно, U = Е.

Силу тока короткого замыкания определяют по точке пересечения графика с осью токов. В этом случае внешнее сопротивление R = 0 и, следовательно, напряжение на выходе источника U = 0.

Внутреннее сопротивление источника находят по тангенсу угла наклона графика относи­тельно оси токов. (Сравните формулу (1) с математической функцией вида У = АХ +В и вспомни­те смысл коэффициента при X).

Ход работы

    Для записи результатов измерений подготовьте таблицу:

  1. После проверки схемы преподавателем соберите электрическую цепь. Ползунок переменного резистора установите в положение, при котором сопротивление цепи, подключенной к источ­нику тока, будет максимальным.
  2. Определите значение силы тока в цепи и напряжение на зажимах источника при максимальной величине сопротивления переменного резистора. Данные измерений занесите в таблицу.

    Повторите несколько раз измерения силы тока и напряжения, уменьшая всякий раз величину переменного сопротивления так, чтобы напряжение на зажимах источника уменьшалось на 0,1В. Измерения прекратите, когда сила тока в цепи достигнет значения в 1А.

    Нанесите полученные в эксперименте точки на график. Напряжение откладывайте по верти­кальной оси, а силу тока — по горизонтальной. Проведите по точкам прямую линию.

    Продолжите график до пересечения с осями координат и определите величины Е и, I К.З.

    Измерьте ЭДС источника, подключив вольтметр к его выводам при разомкнутой внешней це­пи. Сопоставьте значения ЭДС, полученные двумя способами, и укажите причину возможного расхождения результатов.

    Определите внутреннее сопротивление источника тока. Для этого вычислите тангенс угла на­клона построенного графика к оси токов. Так как тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то практически это можно сделать, найдя отношение Е / I К.З

Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила 1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда

Поэтому большинству людей нужны ассоциации или критическая масса в планетарном поле, чтобы получать сигналы энергии и воспоминания о сознании и иметь возможность правильно воспринимать сигналы. Трехмерная система управления не учитывает симптомы вознесения, опыт, связанный с сознанием, или многие радикальные изменения, которые происходят у людей с этой Земли. Заземление — это форма заземления на Земле и относится к прямому контакту тела с элементами Земли. Это может быть полезно для многих людей, которые испытывают недостаток заземления и плотского дискомфорта во время планетарных изменений.

Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет 2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φ o > φ 1 , то есть электрический ток направлен от точки 0 к точке 1 . При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой , поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r , аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir . Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.

Если у вас нет доступа к природе, и вы хотите создать электрическую схему с полем Земли, вы также можете использовать праймер, который связан с человеческим телом. Электрический потенциал цепи заземления зависит от местоположения, атмосферных условий, времени суток и ночи, а также от влаги, которая расположена на поверхности Земли. Интуитивные эмпаты и звездные саженцы, которые хотят восстановить энергетическую настройку с телом планеты, должны обратить внимание на их естественные чувства, потому что они должны знать, должны ли они быть заземлены или нет.

1 Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2 Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

В некоторых случаях из-за неорганических или внешних течений в определенных областях эта практика может оказаться нецелесообразной. Для большинства людей, которые посеяны Землей, на фазе духовной интеграции обоснование будет положительно ощущаться и будет очень полезно для тела, потому что оно будет действовать как нейромодулятор. Нейромодуляция — это процесс, в котором активность нервной системы регулируется путем регулирования физиологических уровней посредством стимуляции нейротрансмиттеров. Таким образом, заземление изменяет плотность отрицательного заряда в области энергии человека и его нервной системы и непосредственно влияет на физиологические процессы, такие как химия мозга.

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Земля посылает электромагнитные сигналы для поддержки человеческих тел при адаптации к ее вознесению, и этот сигнал позволяет человеческой нервной системе лучше адаптироваться к требованиям, предъявляемым к телу и мозгу во время интенсивных изменений сознания. Когда мы хотим восстановить электрический баланс активности мозга, может быть особенно полезно окружить природу, сосредоточиться на глубоком дыхании и соединиться с Землей или с элементом воды.

Почки — это органы, которые питают энергию. В настоящее время население людей переживает эпидемию заболеваний почек, вызванных неспособностью органов быстро адаптироваться к новым обстоятельствам, плохого признания событий, изменяющих жизнь, сердечных заболеваний, перегрузки токсичными химическими веществами и негативных эмоций. Целью почек является удаление вредных метаболических продуктов, выделяемых мочевым пузырем, и поддержание надлежащей химии крови и давления, поскольку они контролируют все химические вещества, растворенные в кровотоке.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи — это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

Когда почки ослаблены и перегружены, в крови и тканях накапливаются токсичные отходы, а также химические вещества, которые невозможно фильтровать надлежащим образом. Почечная недостаточность увеличивается в Соединенных Штатах на 5% в год, при этом в качестве терапии используют почечный диализ или трансплантацию. Десять процентов населения имеют некоторую форму диабета и неврологического дискомфорта, и это число, по-видимому, неуклонно растет — у взрослых и у детей. Что случилось с нашими почками?

Восточная медицинская философия знает, что почки питают другие органы тела. Они действуют как корни жизни, которые отвечают за защиту организма и распределение энергии во всех органах, репродуктивных функциях и всего организма. Почки — это органы взаимоотношений, поэтому они страдают от проблем с межличностными и сексуальными отношениями, которые могут возникнуть в результате отсутствия поддержки у других или чувства нелюбимой или даже из-за отсутствия физической чувствительности. Эмоции циркулируют в личной энергетической области, и когда она будет выпущена, у вас может возникнуть ощущение течения, благодаря которому вы ощущаете эмоции.

где r — внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:

. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

Это позволяет вам освобождать эмоциональную боль и страх и избавляет вас от хронических проблем с почками, открывая для себя большее эмоциональное и духовное расширение энергии. Когда это наоборот, когда сердце закрыто от боли и страха, что блокирует эмоции, оно влияет на функцию управления жидкостью через почки и нарушает распределение жизненной энергии, необходимой для заземленного, здорового и сбалансированного ума и тела.

Более того, когда наше сердце исцеляется, внутри горит пламя, которое также питается жизненной энергией, хранящейся в почках. Треугольный соединитель соединяет сердце с каждой почкой, которая работает в светящемся теле, как электрическая цепь. В основании этого треугольника слева и справа находятся почки, а верхняя точка связана с сердцем. Когда сердце исцеляется, пламя в сердце и почках одновременно активирует конфигурацию сердца во внутреннем двойном пламени. Двойное пламя соответствует восстановленному энергетическому балансу между энергией самца и женщины, т.е. структурой света, созданного в комплексе сердца.


и

(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы

, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

Поэтому, когда два огня зажигаются в сердце, жизненно важная сущность, хранящаяся в почках, помогает переносить чи-пламя по всему физическому телу, чтобы соединиться с духовным пламенем монадического тела. Монада — это большее пламя духа, а физическое тело — меньшее пламя жизненной сущности или жизненной силы. Когда эти два огня зажигаются и объединяются, пламя взрывается от сердца, которое посылает огонь, чтобы поддержать рост сущности жизни, создаваемой почками. В основном, почки помогают построить внутреннее светящееся тело, необходимое для встраивания монадического тела.


, (4)

— переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:

.

Закон Ома для полной цепи.

Любые визуальные упражнения, направленные на создание жизненной силы энергии в низших диенах и вызывают энергию для циркуляции у подножия ног, укрепляют способность почек хранить жизненно важную сущность, помогают исправить механизм заземления и выполнять функции физической очистки крови. Существуют некоторые потенцирующие агенты для почек и трав, которые являются общими для восточной медицины и полезны для тонизирования функции почек, особенно если есть проблема с заземлением или центрированием сердечника.

Почечная недостаточность вызывает выработку надпочечников. Надпочечники — это железы, которые производят много гормонов, и хорошо известно, что под давлением они перекачивают кортизол в кровоток, что приводит к тому, что человеческая нервная система переходит в состояние борьбы или полета. Адреналин обычно продуцируется как надпочечниками, так и некоторыми нейронами, которые также могут активироваться эмоциональными реакциями. Каждая эмоциональная реакция имеет поведенческий компонент, компонент вегетативной нервной системы, секрецию железы или гормональный фактор.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

Гормональные факторы, связанные со стрессом и эмоциональной болью, включают высвобождение адреналина и реакции надпочечников — в ответ на чувства, основанные на страхе, контролируемые симпатической нервной системой. Основная эмоция, которая выделяет адреналин в кровь, — это страх.

Кроме того, надпочечники играют важную роль в реагировании на борьбу или бегство, увеличивая приток крови к мышцам и сердцу, а затем учащиеся расширяются и уровень сахара в крови увеличивается. Адреналин закачивается в кровоток, когда человек провоцируется на террористические акты или страх, чтобы произвести как можно больше негативной эмоциональной энергии, что может быть основной причиной того, что надпочечники полностью истощены у большинства людей. Когда человек не исправляет это состояние и все еще накачивает адреналин или другие гормоны стресса в кровоток, нервная система замерзает, состояние шока и онемения.


. (5)

Из выражений (2), (4) и (5) получаем:

. (6)

, то


, (7)

В какой-то момент, когда вы испытываете постоянную боль или страх, из-за чрезмерной нагрузки адреналина, тело и нервная система попадают в состояние онемения, которое отключает эмоциональные реакции, закрывая сердце. Надпочечники находятся в верхней части каждой почки, поэтому они непосредственно подвержены истощению почек, что, естественно, приводит к выходу надпочечников. Если мы делаем что-то действительно нездоровое для нашего духа, и наша повседневная работа не соответствует тому, кто мы есть, он также истощает почки, адреналин и жизненную силу.


. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Когда нам приходится сталкиваться с трудными стрессовыми факторами на работе, в отношениях или в других ситуациях, организм может подвергаться глубокому бессознательному эмоциональному стрессу. Мы чувствуем себя беспомощными и расстроены тем, что мы должны просто работать, чтобы выполнить финансовые обязательства или выжить. Наше тело дает нам сообщение из-за чрезмерного истощения, что мы уже не можем жить таким же образом, мы должны вносить изменения, и первое изменение должно состоять в том, чтобы осуществить сознание через смерть эго.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод — для подключения ВУ-4М к гнезду «-»; желтые провода — для подключения к элементам планшета измерительных приборов ; синие — для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

Планетарный контроль над человеческими почками Чи. Мы должны стремиться к восстановлению сердечного центра и превращению почек в более высокую цель, связанную с вознесением тела. Существуют оверлеи, кодирующие человеческие тела для порабощения, установленные во время рождения, в записи последовательности трансдукции в теле проявления ядра или в Древе Жизни. Основной шаблон проявления сетки дерева имеет набор инструкций для контроля функций органов и желез на уровне каждого измерения, поскольку железы выделяют вещества и гормоны, которые позволяют человеческому сознанию двигаться быстрее между измерениями.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:

В землях Соединенного Королевства ключи от пробуждения структур Альбиона скрыты, и они являются гигантскими спящими существами. Теги используются для руководства людьми на Земле для будущих временных линий для работы в рабских колониях или в различных галактических местах торговли людьми, которые контролируются этими внеземными коррумпированными конгломератами и группами драконов.

Группы Черного Солнца Ориона оставляли за собой право на некоторые человеческие тела, генетический материал и человеческое Древо Жизни, и именно поэтому они контролируют его. Благодаря этому им легче контролировать и контролировать информацию, связанную со структурой души и многомерной анатомией. Это драконовцы, которые воруют из духовных частей тела, а также из органов и желез.

. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника

, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.


. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :


. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что


(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Сформулируйте закон Ома для полной цепи.

Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. — с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.

Закон Ома для полной цепи, определение которого касается значения электрического тока в реальных цепях, находится в зависимости от источника тока и от сопротивления нагрузки. Этот закон носит и другое название — закон Ома для замкнутых цепей. Принцип действия данного закона заключается в следующем.

В качестве самого простого примера, электрическая лампа, являющаяся потребителем электрического тока, совместно с источником тока есть не что иное, как замкнутая . Данная электрическая цепь наглядно показана на рисунке.

Электроток, проходя через лампочку, также проходит и через сам источник тока. Таким образом, во время прохождения по цепи, ток испытает сопротивление не только проводника, но и сопротивление, непосредственно, самого источника тока. В источнике сопротивление создается электролитом, находящимся между пластинами и пограничными слоями пластин и электролита. Отсюда следует, что в замкнутой цепи, ее общее сопротивление будет состоять из суммы сопротивлений лампочки и источника тока.

Внешнее и внутреннее сопротивление

Сопротивление нагрузки, в данном случае лампочки, соединенной с источником тока, носит название внешнего сопротивления. Непосредственное сопротивление источника тока называется внутренним сопротивлением. Для более наглядного изображения процесса, все значения необходимо условно обозначить. I — , R — внешнее сопротивление, r — внутреннее сопротивление. Когда по электрической цепи протекает ток, то для того, чтобы поддерживать его, между концами внешней цепи должна присутствовать разность потенциалов, которая имеет значение IхR. Однако, протекание тока наблюдается и во внутренней цепи. Значит, для того, чтобы поддержать электроток во внутренней цепи, также необходима разность потенциалов на концах сопротивления r. Значение этой разности потенциалов равно Iхr.

Электродвижущая сила аккумулятора

Аккумулятор должен иметь следующее значение электродвижущей силы, способной поддерживать необходимый ток в цепи: Е=IхR+Iхr . Из формулы видно, что электродвижущая сила аккумулятора составляет сумму внешнего и внутреннего . Значение тока нужно вынести за скобки: Е=I(r+R) . Иначе можно представить: I=Е/(r+R) . Двумя последними формулами выражается закон Ома для полной цепи, определение которого звучит следующим образом: в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений этой цепи.

Лабораторная работа: «Измерение ЭДС и внутреннего сопротивления источника тока» ❤️

Цель урока: формировать умение самостоятельно измерять ЭДС и внутреннее сопротивление источника тока, производить математическую обработку результатов эксперимента.

Ход урока

А) Организационный момент

Б) Проведение инструктажа по технике безопасности

В) Выполнение лабораторной работы

1. Самостоятельно сформулировать цель работы

2. Записать оборудование для лабораторной работы

3. Начертить самостоятельно схему соединения оборудования, сверить ее со схемой на

доске.

4. Собрать электрическую цепь по схеме.

V 5 Проверить работу цепи при разомкнутом и замкнутом выключателе.

ξ 6 Измерить силу тока и напряжение при разных

/>положениях ползунка реостата.

7 Вычислить внутреннее сопротивление источника тока A по формуле: r= U2 – U1/ I1 – I2

R K 8 Разомкнуть электрическую цепь и измерить ЭДС с помощью вольтметра.

9 Занести данные измерений и вычислений в таблицу.

I (A)

U (B)

r (Ом)

ξ изм ( В)

ξ выч (В)

1

2

10 Вычислить ЭДС источника тока по формуле: ξвыч= U1 + I1 r

11 Вычислить погрешности:

а) абсолютная погрешность вычисляется по формуле: Δξ = ξизм- ξвыч

б) относительная погрешность определяется по формуле: Е = Δξ ·100% / ξвыч

12 Сформулировать выводы в словесной и знаковой форме.

Контрольные вопросы

1. При разомкнутом и замкнутом выключателе показания вольтметра различны. Почему?

2. Точность измерения ЭДС источника можно повысить Каким образом это можно сделать?

3. Почему при коротком замыкании напряжение на клеммах источника тока близко к нулю, ведь ток в цепи имеет наибольшее значение? (Вследствие большой величины тока будет весьма велико падение напряжения внутри источника тока, близкое к значению ЭДС.)

4. Если улица освещена лампами питаемыми генератором небольшой мощности, то в конце улицы, который находится дальше от генератора, освещение слабее. Почему?

Ответ. Для генератора малой мощности существенным является падение напряжения на подводящих проводах. Поэтому напряжение на зажимах лампы будет тем меньше, чем дальше она находится от генератора.

Подводим итоги урока.

Домашнее задание: «Краткие итоги главы», упр. 19 № 9, 10.

Определение ЭДС и внутреннего сопротивления источника тока

1. Данные измерений и вычислений занесите в таблицу.

Εср = (E1 + E2 + E3 + E4 + E5)/5 = (4.3 + 4.3 + 4.3 + 4.3 + 4.3)/5 = 4.3 В

2. Замкните ключ K. Измерьте силу тока I в цепи не менее пяти раз. Вычислите среднее значение <I>. Данные измерений и вычислений занесите в таблицу.

<I> = (I1 + I2 + I3 + I4 + I5)/5 = (0.65 + 0.65 + 0.65 + 0.65 + 0.65)/5 = 0.65 А.

 

3. Рассчитайте среднее значение внутреннего сопротивления <r> источника тока. Данные занесите в таблицу.

<r> = E/I — R; R = 4; <r> 4.3/0.65 — 4 = 6.62 — 4 = 2.62 Ом.

№ опыта Измерено Вычислено
E, В I, А r, Ом
1 4,3 0,65  
2 4,3 0,65
3 4,3 0,65
4 4,3 0,65
5 4,3 0,65
Среднее 4,3 0,65 2,62

4. Рассчитайте абсолютную погрешность прямых измерений ЭДС источника тока и силы тока в цепи.

ΔE = ΔиE + ΔоE; ΔE = 0.15 В + 0,18 В = 0,26 В;

ΔI =  ΔиI + ΔоI; ΔI = 0.05 А + 0,025 А = 0,075 А.

5. Приняв абсолютную погрешность измерения сопротивления резистора ΔR = 0,12 Ом, вычислите относительную погрешность косвенных измерений внутреннего сопротивления.

Er = 0.25/4.3 + 0.075/0.65 + 0.1/4 = 0.06 + 0.12 + 0.025 = 0.21 В.

6. Вычислите абсолютную погрешность косвенных измерений внутреннего сопротивления источника тока.

Δr = 0.21 В · 2,62 Ом = 0,55 Ом.

7. Запишите значение ЭДС и относительную погрешность ее прямых измерений в виде:

E = (4.3 ± 0.25) В; εE = 21%.

8. Запишите значение внутреннего сопротивления и относительную погрешность его косвенных измерений в виде.

 

r = (2.62 ± 0.55) Ом; εr = 55%.

Ответы на контрольные вопросы

1. Почему вольтметр включают в цепь параллельно потребителю? Что произойдет, если вольтметр включить в цепь последовательно?

Вольтметр включают параллельно участку цепи, на котором измеряют напряжение. Напряжение на измеренном участке и напряжение на вольтметре будет одним и тем же, т.к. вольтметр и напряжение на вольтметре подключены к общим точкам.

Т.к. вольтметр обладает большим сопротивлением, то при его последовательном подключении к электрической цепи увеличится внешнее сопротивление цепи, а, значит, сила тока в цепи значительно уменьшится.

2. Почему сопротивление амперметра должно быть значительно меньше сопротивления цепи, в которой измеряют ток? Что произойдет, если амперметр включить параллельно потребителю?

Поскольку включение амперметра в электрическую цепь не должно изменять силу тока в ней, то сопротивление амперметра должно быть как можно меньше.

Сопротивление амперметра гораздо меньше сопротивления потребителя, поэтому при таком неправильном подключении почти весь ток пойдёт через амперметр. В итоге «зашкалит» и может перегореть, если вовремя не отключить. Такое включение амперметра недопустимо.

3. Почему показания вольтметра при разомкнутом и замкнутом ключе различаются?

Потому что у источника питания появляется нагрузка в виде резистора. Вольтметр, подключённый к полюсам источника питания ЭДС источника ε. При подключении нагрузки (резистора) напряжение на источнике будет падать, т.к. источник не идеальный.

4. Как можно повысить точность измерения ЭДС источника тока?

Самый простой способ — взять вольтметр с меньшей приборной погрешностью, т.е. более высокого класса точности.

Также повысить точность можно путём совершенствования методики измерения и обработки результатов, таким образом можно уменьшить систематические погрешности.

5. При каком значении КПД будет получена максимальная полезная мощность от данного источника тока? Каким должно быть при этом сопротивление внешней цепи по отношению ко внутреннему сопротивлению источника тока?

Коэффициент полезного действия источника тока определяется как отношение полезной мощности к полной, и зависит от сопротивления нагрузки и внутреннего сопротивления источника тока. Можно доказать, что КПД оказывается равным 50%.

 

 

Внутреннее сопротивление источника тока. Сопротивление

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

2014 г.

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи — это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

где r — внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

. (2)

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:
. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

и
(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы
, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

, (4)

где
— переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:
.

Закон Ома для полной цепи.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

. (5)

Из выражений (2), (4) и (5) получаем:


. (6)

Так как
, то

, (7)

или

. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод — для подключения ВУ-4М к гнезду «-»; желтые провода — для подключения к элементам планшета измерительных приборов; синие — для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:


. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Рис.1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника
, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.

. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :

. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что

(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Вычислите внутреннее сопротивление источника тока.

Таблица1.

, В

, В

I , А

, В

r , Ом

2 способ.

Сначала соберите экспериментальную установку, изображенную на рисунке 2.

Рис. 2.

Измерьте силу тока в цепи при помощи амперметра, результат запишите в тетрадь. Сопротивление резистора =5 Ом. Все данные заносятся в таблицу 2. , Ом

Контрольные вопросы :

    Внешний и внутренний участки цепи.

    Какое сопротивление называются внутренним? Обозначение.

    Чему равно полное сопротивление?

    Дайте определение электродвижущей силы (ЭДС). Обозначение. Единицы измерения.

    Сформулируйте закон Ома для полной цепи.

    Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

    Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. — с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.

Цель работы: изучить метод измерения ЭДС и внутреннего сопротивления источника тока с помощью амперметра и вольтметра.

Оборудование: металлический планшет, источник тока, амперметр, вольтметр, резистор, ключ, зажимы, соединительные провода.

Для измерения ЭДС и внутреннего сопротивления источника тока собирают электрическую цепь, схема которой показана на рисунке 1.

К источнику тока подключают амперметр, сопротивление и ключ, соединенные последовательно. Кроме того, непосредствен­но к выходным гнездам источника подключают еще и вольтметр.

ЭДС измеряют по показанию вольтметра при разомкнутом ключе. Этот прием определения ЭДС основан на следствии из за­кона Ома для полной цепи, согласно которому при бесконечно большом сопротивлении внешней цепи напряжение на зажимах источника равно его ЭДС. (См. параграф «Закон Ома для полной цепи» учебника «Физика 10»).

Для определения внутреннего сопротивления источника за­мыкают ключ К. При этом в цепи можно условно выделить два участка: внешний (тот, который подключен к источнику) и внутренний (тот, который находится внутри источника тока). Поскольку ЭДС источника равна сумме падения напряжений на внутрен­нем и внешнем участках цепи:

ε = U r +U R , то U r = ε -U R (1)

По закону Ома для участка цепи U r = I· r (2). Подставив равенство (2) в (1) получают:

I · r = ε U r , откуда r = (ε U R )/ J

Следовательно, чтобы узнать внутреннее сопротивление источника тока, необходимо пред­варительно определить его ЭДС, затем замкнуть ключ и измерить падение напряжения на внеш­нем сопротивлении, а также силу тока в нем.

Ход работы

1. Подготовьте таблицу для записи результатов измерений и вычислений:

ε

U r , B

i,a

r , Ом

    Начертите в тетради схему для измерения ЭДС и внутреннего сопротивления источника.

    После проверки схемы соберите электрическую цепь. Ключ разомкните.

    Измерьте величину ЭДС источника.

    Замкните ключ и определите показания амперметра и вольтметра.

    Вычислите внутреннее сопротивление источника.

  1. Определение эдс и внутреннего сопротивления источника тока графическим методом

Цель работы: изучить измерения ЭДС, внутреннего сопротивления и тока короткого замы­кания источника тока, основанный на анализе графика зависимости напряже­ния на выходе источника от силы тока в цепи.

Оборудование: гальванический элемент, амперметр, вольтметр, резистор R 1 , переменный резистор, ключ, зажимы, металлический планшет, соединительные провода.

Из закона Ома для полной цепи следует, что напряжение на выходе источника тока зависит прямо пропорционально от силы тока в цепи:

так как I =E/(R+r), то IR + Ir = Е, но IR = U, откуда U + Ir = Е или U = Е – Ir (1).

Если построить график зависимости U от I, то по его точкам пересечения с осями координат можно определить Е, I К.З. — силу тока короткого замыкания (ток, который потечет в цепи источни­ка, когда внешнее сопротивление R станет равным нулю).

ЭДС определяют по точке пересечения графика с осью напряжений. Эта точка графика со­ответствует состоянию цепи, при котором ток в ней отсутствует и, следовательно, U = Е.

Силу тока короткого замыкания определяют по точке пересечения графика с осью токов. В этом случае внешнее сопротивление R = 0 и, следовательно, напряжение на выходе источника U = 0.

Внутреннее сопротивление источника находят по тангенсу угла наклона графика относи­тельно оси токов. (Сравните формулу (1) с математической функцией вида У = АХ +В и вспомни­те смысл коэффициента при X).

Ход работы

    Для записи результатов измерений подготовьте таблицу:

  1. После проверки схемы преподавателем соберите электрическую цепь. Ползунок переменного резистора установите в положение, при котором сопротивление цепи, подключенной к источ­нику тока, будет максимальным.
  2. Определите значение силы тока в цепи и напряжение на зажимах источника при максимальной величине сопротивления переменного резистора. Данные измерений занесите в таблицу.

    Повторите несколько раз измерения силы тока и напряжения, уменьшая всякий раз величину переменного сопротивления так, чтобы напряжение на зажимах источника уменьшалось на 0,1В. Измерения прекратите, когда сила тока в цепи достигнет значения в 1А.

    Нанесите полученные в эксперименте точки на график. Напряжение откладывайте по верти­кальной оси, а силу тока — по горизонтальной. Проведите по точкам прямую линию.

    Продолжите график до пересечения с осями координат и определите величины Е и, I К.З.

    Измерьте ЭДС источника, подключив вольтметр к его выводам при разомкнутой внешней це­пи. Сопоставьте значения ЭДС, полученные двумя способами, и укажите причину возможного расхождения результатов.

    Определите внутреннее сопротивление источника тока. Для этого вычислите тангенс угла на­клона построенного графика к оси токов. Так как тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то практически это можно сделать, найдя отношение Е / I К.З

Мы пришли к выводу, что для поддержания постоянного тока в замкнутой цепи, в нее необходимо включить источник тока. Подчеркнем, что задача источника заключается не в том, чтобы поставлять заряды в электрическую цепь (в проводниках этих зарядов достаточно), а в том, чтобы заставлять их двигаться, совершать работу по перемещению зарядов против сил электрического поля. Основной характеристики источника является электродвижущая сила 1 (ЭДС) − работа, совершаемая сторонними силами по перемещению единичного положительного заряда

Поэтому большинству людей нужны ассоциации или критическая масса в планетарном поле, чтобы получать сигналы энергии и воспоминания о сознании и иметь возможность правильно воспринимать сигналы. Трехмерная система управления не учитывает симптомы вознесения, опыт, связанный с сознанием, или многие радикальные изменения, которые происходят у людей с этой Земли. Заземление — это форма заземления на Земле и относится к прямому контакту тела с элементами Земли. Это может быть полезно для многих людей, которые испытывают недостаток заземления и плотского дискомфорта во время планетарных изменений.

Единицей измерения ЭДС в системе единиц СИ является Вольт. ЭДС источника равна 1 вольт, если он совершает работу 1 Джоуль при перемещении заряда 1 Кулон

Для обозначения источников тока на электрических схемах используется специальное обозначение (рис. 397).

рис. 397
 Электростатическое поле совершает положительную работу по перемещению положительного заряда в направлении уменьшения потенциала поля. Источник тока проводит разделение электрических зарядов − на одном полюсе накапливаются положительные заряды, на другом отрицательный. Напряженность электрического поля в источнике направлена от положительного полюса к отрицательному, поэтому работа электрического поля по перемещению положительного заряда будет положительной при его движения от «плюса» к «минусу». Работа сторонних сил, наоборот, положительна в том случае, если положительные заряды перемещаются от отрицательного полюса к положительному, то есть от «минуса» к «плюсу».
В этом принципиальное отличие понятий разности потенциалов и ЭДС, о котором всегда необходимо помнить.
Таким образом, электродвижущую силу источника можно считать алгебраической величиной, знак которой («плюс» или «минус») зависит от направления тока. В схеме, показанной на рис. 398,

рис. 398
вне источника (во внешней цепи) ток течет 2 от «плюса» источника к «минусу», в внутри источника от «минуса» к «плюсу». В этом случае, как сторонние силы источника, так и электростатические силы во внешней цепи совершают положительную работу.
 Если на некотором участке электрической цепи помимо электростатических действуют и сторонние силы, то над перемещением зарядов «работают» как электростатические, так и сторонние силы. Суммарная работа электростатических и сторонних сил по перемещению единичного положительного заряда называется электрическим напряжением на участке цепи

 В том случае, когда сторонние силы отсутствуют, электрическое напряжение совпадает с разностью потенциалов электрического поля.
 Поясним определение напряжения и знака ЭДС на простом примере. Пусть на участке цепи, по которому протекает электрический ток, имеются источник сторонних сил и резистор (рис. 399).

рис. 399
 Для определенности будем считать, что φ o > φ 1 , то есть электрический ток направлен от точки 0 к точке 1 . При подключении источника, как показано на рис. 399 а, Сторонние силы источника совершают положительную работу, поэтому соотношение (2) в этом случае может быть записано в виде

 При обратном включении источника (рис. 399 б) внутри него заряды движутся против сторонних сил, поэтому работа последних отрицательна. Фактически силы внешнего электрического поля преодолевают сторонние силы. Следовательно, в этом случае рассматриваемое соотношение (2) имеет вид

 Для протекания электрического тока по участку цепи, обладающему электрическим сопротивлением, необходимо совершать работу, по преодолению сил сопротивления. Для единичного положительного заряда эта работа, согласно закону Ома, равна произведению IR = U которое, естественно совпадает с напряжением на данном участке.
 Заряженные частицы (как электроны, так и ионы) внутри источника движутся в некоторой , поэтому со стороны среду на них также действуют тормозящие силы, которые также необходимо преодолевать. Заряженные частицы преодолевают силы сопротивления благодаря действию сторонних сил (если ток в источнике направлен от «плюса» к «минусу») либо благодаря электростатическим силам (если ток направлен от «минуса» к «плюсу»). Очевидно, что работа по преодолению этих сил не зависит от направления движения, так как силы сопротивления всегда направлены в сторону, противоположную скорости движения частиц. Так как силы сопротивления пропорциональны средней скорости движения частиц, то работа по их преодолению пропорциональна скорости движения, следовательно, силе тока силе. Таким образом, мы можем ввести еще характеристику источника − его внутренне сопротивление r , аналогично обычному электрическому сопротивлению. Работа по преодолению сил сопротивления при перемещении единичного положительного заряда между полюсами источника равна A/q = Ir . Еще раз подчеркнем, эта работа не зависит от направления тока в источнике.

Если у вас нет доступа к природе, и вы хотите создать электрическую схему с полем Земли, вы также можете использовать праймер, который связан с человеческим телом. Электрический потенциал цепи заземления зависит от местоположения, атмосферных условий, времени суток и ночи, а также от влаги, которая расположена на поверхности Земли. Интуитивные эмпаты и звездные саженцы, которые хотят восстановить энергетическую настройку с телом планеты, должны обратить внимание на их естественные чувства, потому что они должны знать, должны ли они быть заземлены или нет.

1 Название этой физической величины неудачно − так электродвижущая сила является работой, а не силой в обычном механическом понимании. Но этот термин настолько устоялся, что изменять его не «в наших силах». К слову, сила тока то же не является механической силой! Не говоря уж о таких понятиях «сила духа», «сила воли», «божественная сила» и т.д.
2 Напомним, за направление движения электрического тока принято направление движения положительных зарядов.

В некоторых случаях из-за неорганических или внешних течений в определенных областях эта практика может оказаться нецелесообразной. Для большинства людей, которые посеяны Землей, на фазе духовной интеграции обоснование будет положительно ощущаться и будет очень полезно для тела, потому что оно будет действовать как нейромодулятор. Нейромодуляция — это процесс, в котором активность нервной системы регулируется путем регулирования физиологических уровней посредством стимуляции нейротрансмиттеров. Таким образом, заземление изменяет плотность отрицательного заряда в области энергии человека и его нервной системы и непосредственно влияет на физиологические процессы, такие как химия мозга.

Лабораторная работа

«Измерение ЭДС и внутреннего сопротивления источника тока»

Дисциплина Физика

Преподаватель Виноградов А.Б.

Нижний Новгород

Цель работы: сформировать умение определения ЭДС и внут­реннего сопротивления источника тока с помощью амперметра и вольтметра.

Земля посылает электромагнитные сигналы для поддержки человеческих тел при адаптации к ее вознесению, и этот сигнал позволяет человеческой нервной системе лучше адаптироваться к требованиям, предъявляемым к телу и мозгу во время интенсивных изменений сознания. Когда мы хотим восстановить электрический баланс активности мозга, может быть особенно полезно окружить природу, сосредоточиться на глубоком дыхании и соединиться с Землей или с элементом воды.

Почки — это органы, которые питают энергию. В настоящее время население людей переживает эпидемию заболеваний почек, вызванных неспособностью органов быстро адаптироваться к новым обстоятельствам, плохого признания событий, изменяющих жизнь, сердечных заболеваний, перегрузки токсичными химическими веществами и негативных эмоций. Целью почек является удаление вредных метаболических продуктов, выделяемых мочевым пузырем, и поддержание надлежащей химии крови и давления, поскольку они контролируют все химические вещества, растворенные в кровотоке.

Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, ре­зистор R 1 .

Теоретическое содержание работы .

Внутреннее сопротивление ис­точника тока.

При прохождении тока по замкнутой цепи, электрически заряженные ча­стицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источ­ника тока. Поэтому в замкнутой электрической цепи раз­личают внешний и внутренний участки цепи. Внешний уча­сток цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Вну­тренний участок цепи — это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивле­нием. Таким образом, в электрической цепи, состоящей из источника то­ка и проводников с электриче­ским сопротивлением R , элек­трический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Напри­мер, при подключении лампы накаливания к гальванической батарее карманного фонаря элек­трическим током нагреваются не только спираль лампы и под­водящие провода, но и сама ба­тарея. Электрическое сопротивле­ние источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением яв­ляется электрическое сопротивле­ние провода обмотки генератора. На внутреннем участке электри­ческой цепи выделяется коли­чество теплоты, равное

Когда почки ослаблены и перегружены, в крови и тканях накапливаются токсичные отходы, а также химические вещества, которые невозможно фильтровать надлежащим образом. Почечная недостаточность увеличивается в Соединенных Штатах на 5% в год, при этом в качестве терапии используют почечный диализ или трансплантацию. Десять процентов населения имеют некоторую форму диабета и неврологического дискомфорта, и это число, по-видимому, неуклонно растет — у взрослых и у детей. Что случилось с нашими почками?

Восточная медицинская философия знает, что почки питают другие органы тела. Они действуют как корни жизни, которые отвечают за защиту организма и распределение энергии во всех органах, репродуктивных функциях и всего организма. Почки — это органы взаимоотношений, поэтому они страдают от проблем с межличностными и сексуальными отношениями, которые могут возникнуть в результате отсутствия поддержки у других или чувства нелюбимой или даже из-за отсутствия физической чувствительности. Эмоции циркулируют в личной энергетической области, и когда она будет выпущена, у вас может возникнуть ощущение течения, благодаря которому вы ощущаете эмоции.

где r — внутреннее сопротивле­ние источника тока.

Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно

Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной це­пи равно сумме внешнего и внутреннего сопротивлений:

. Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внеш­ний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи паде­ние напряжений на ее внешнем и внутреннем участках бу­дут соответственно равны:

Это позволяет вам освобождать эмоциональную боль и страх и избавляет вас от хронических проблем с почками, открывая для себя большее эмоциональное и духовное расширение энергии. Когда это наоборот, когда сердце закрыто от боли и страха, что блокирует эмоции, оно влияет на функцию управления жидкостью через почки и нарушает распределение жизненной энергии, необходимой для заземленного, здорового и сбалансированного ума и тела.

Более того, когда наше сердце исцеляется, внутри горит пламя, которое также питается жизненной энергией, хранящейся в почках. Треугольный соединитель соединяет сердце с каждой почкой, которая работает в светящемся теле, как электрическая цепь. В основании этого треугольника слева и справа находятся почки, а верхняя точка связана с сердцем. Когда сердце исцеляется, пламя в сердце и почках одновременно активирует конфигурацию сердца во внутреннем двойном пламени. Двойное пламя соответствует восстановленному энергетическому балансу между энергией самца и женщины, т.е. структурой света, созданного в комплексе сердца.


и

(3)

Электродвижущая сила.

Пол­ная работа сил электростати­ческого поля при движении за­рядов по замкнутой цепи по­стоянного тока равна нулю. Сле­довательно, вся работа электри­ческого тока в замкнутой элек­трической цепи оказывается со­вершенной за счет действия сто­ронних сил, вызывающих разде­ление зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы

, совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей си­лой источника (ЭДС) :

Поэтому, когда два огня зажигаются в сердце, жизненно важная сущность, хранящаяся в почках, помогает переносить чи-пламя по всему физическому телу, чтобы соединиться с духовным пламенем монадического тела. Монада — это большее пламя духа, а физическое тело — меньшее пламя жизненной сущности или жизненной силы. Когда эти два огня зажигаются и объединяются, пламя взрывается от сердца, которое посылает огонь, чтобы поддержать рост сущности жизни, создаваемой почками. В основном, почки помогают построить внутреннее светящееся тело, необходимое для встраивания монадического тела.


, (4)

— переносимый заряд.

ЭДС вы­ражается в тех же единицах, что и напряжение или разность по­тенциалов, т. е. в вольтах:

.

Закон Ома для полной цепи.

Любые визуальные упражнения, направленные на создание жизненной силы энергии в низших диенах и вызывают энергию для циркуляции у подножия ног, укрепляют способность почек хранить жизненно важную сущность, помогают исправить механизм заземления и выполнять функции физической очистки крови. Существуют некоторые потенцирующие агенты для почек и трав, которые являются общими для восточной медицины и полезны для тонизирования функции почек, особенно если есть проблема с заземлением или центрированием сердечника.

Почечная недостаточность вызывает выработку надпочечников. Надпочечники — это железы, которые производят много гормонов, и хорошо известно, что под давлением они перекачивают кортизол в кровоток, что приводит к тому, что человеческая нервная система переходит в состояние борьбы или полета. Адреналин обычно продуцируется как надпочечниками, так и некоторыми нейронами, которые также могут активироваться эмоциональными реакциями. Каждая эмоциональная реакция имеет поведенческий компонент, компонент вегетативной нервной системы, секрецию железы или гормональный фактор.

Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического то­ка в замкнутой цепи, равная работе сторонних сил источни­ка тока, равна количеству тепло­ты, выделившейся на внешнем и внутреннем участках цепи:

Гормональные факторы, связанные со стрессом и эмоциональной болью, включают высвобождение адреналина и реакции надпочечников — в ответ на чувства, основанные на страхе, контролируемые симпатической нервной системой. Основная эмоция, которая выделяет адреналин в кровь, — это страх.

Кроме того, надпочечники играют важную роль в реагировании на борьбу или бегство, увеличивая приток крови к мышцам и сердцу, а затем учащиеся расширяются и уровень сахара в крови увеличивается. Адреналин закачивается в кровоток, когда человек провоцируется на террористические акты или страх, чтобы произвести как можно больше негативной эмоциональной энергии, что может быть основной причиной того, что надпочечники полностью истощены у большинства людей. Когда человек не исправляет это состояние и все еще накачивает адреналин или другие гормоны стресса в кровоток, нервная система замерзает, состояние шока и онемения.


. (5)

Из выражений (2), (4) и (5) получаем:

. (6)

, то


, (7)

В какой-то момент, когда вы испытываете постоянную боль или страх, из-за чрезмерной нагрузки адреналина, тело и нервная система попадают в состояние онемения, которое отключает эмоциональные реакции, закрывая сердце. Надпочечники находятся в верхней части каждой почки, поэтому они непосредственно подвержены истощению почек, что, естественно, приводит к выходу надпочечников. Если мы делаем что-то действительно нездоровое для нашего духа, и наша повседневная работа не соответствует тому, кто мы есть, он также истощает почки, адреналин и жизненную силу.


. (8)

Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источ­ника тока и обратно пропор­циональна сумме электрических сопротивлений внешнего и внут­реннего участков цепи. Выраже­ние (8) называется законом Ома для полной цепи.

Когда нам приходится сталкиваться с трудными стрессовыми факторами на работе, в отношениях или в других ситуациях, организм может подвергаться глубокому бессознательному эмоциональному стрессу. Мы чувствуем себя беспомощными и расстроены тем, что мы должны просто работать, чтобы выполнить финансовые обязательства или выжить. Наше тело дает нам сообщение из-за чрезмерного истощения, что мы уже не можем жить таким же образом, мы должны вносить изменения, и первое изменение должно состоять в том, чтобы осуществить сознание через смерть эго.

Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.

Порядок выполнения работы .

    Подготовка к выполнению работы.

Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.

Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод использу­ют для подключения ВУ-4М к гнезду «+» планшета; белый провод — для подключения ВУ-4М к гнезду «-»; желтые провода — для подключения к элементам планшета измерительных приборов ; синие — для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.

Планетарный контроль над человеческими почками Чи. Мы должны стремиться к восстановлению сердечного центра и превращению почек в более высокую цель, связанную с вознесением тела. Существуют оверлеи, кодирующие человеческие тела для порабощения, установленные во время рождения, в записи последовательности трансдукции в теле проявления ядра или в Древе Жизни. Основной шаблон проявления сетки дерева имеет набор инструкций для контроля функций органов и желез на уровне каждого измерения, поскольку железы выделяют вещества и гормоны, которые позволяют человеческому сознанию двигаться быстрее между измерениями.

2. Ход работы.

В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:

В землях Соединенного Королевства ключи от пробуждения структур Альбиона скрыты, и они являются гигантскими спящими существами. Теги используются для руководства людьми на Земле для будущих временных линий для работы в рабских колониях или в различных галактических местах торговли людьми, которые контролируются этими внеземными коррумпированными конгломератами и группами драконов.

Группы Черного Солнца Ориона оставляли за собой право на некоторые человеческие тела, генетический материал и человеческое Древо Жизни, и именно поэтому они контролируют его. Благодаря этому им легче контролировать и контролировать информацию, связанную со структурой души и многомерной анатомией. Это драконовцы, которые воруют из духовных частей тела, а также из органов и желез.

. (9)

1 способ.

Схема экспериментальной установки показана на рисунке 1.

Внимательно изучите её. При разомкну­том ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника (r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения на­пряжения на внутреннем сопротивлении источника

, и ЭДС источника с пренеб­режимо малой погрешностью равна напря­жения на его зажимах , которое измеряется вольтметром, т.е.


. (10)

Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.

Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :


. (11)

Тогда на основании равенств (9), (10) и (11) можно утверждать, что


(12)

Из формулы (12) вид­но, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напря­жение на резисторе R при замкнутом ключе.

Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.

Соберите цепь по схеме, показанной на рисунке 3.

После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.

При разомкну­том ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.

Сформулируйте закон Ома для полной цепи.

Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?

Уметь собирать электрические цепи, используемые в работе.

Литература

    Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.-3-е изд.-М.:Просвещение,1991.-с.:150-151.

    Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. — с.: 124,500-501.

    Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.-2-е изд., стер.-М.: Издательский центр «Академия», 2003-с.: 181-182.

Цель работы: Научиться экспериментальным путем определять ЭДС, и внутреннее сопротивление источника тока.

Приборы и оборудование: Источники электрической энергии, амперметр (до 2А с делением до 0,1А), вольтметр (постоянного до 3А с делением до 0,3В), магазин (сопротивления до 10 Ом) ключ, соединительные провода.

ТЕОРИЯ:

Для поддержания тока в проводнике необходимо, чтобы разность потенциалов (напряжение) на его концах была неизменной. Для этого используется источник тока. Разность потенциалов на его полюсах образуется вследствие разделения зарядов на положительные и отрицательные. Работу по разделению зарядов выполняют сторонние силы (не электрического происхождения).

Величина, измеряемая работой, совершенной сторонними силами при перемещении единичного положительного электрического заряда внутри источника тока, называется электродвижущей силой источника тока (ЭДС) и выражается в вольтах.

Когда цепь замыкается, разделенные в источнике тока заряды образуют электрическое поле, которое перемещает заряды по внешней цепи; внутри же источника тока заряды движутся навстречу полю под действием сторонних сил. Таким образом, энергия, запасенная в источнике тока, расходуется на работу по перемещению заряда в цепи с внешним R и внутренним r сопротивлениями.

ХОД РАБОТЫ

1. Собрать электрическую цепь как показано на схеме.

2. Измерить ЭДС источника электрической энергии замкнув его на вольтметр (схема).

3. Измерить силу тока и падение напряжения на заданном сопротивлении.

Е U I R r rcр
1.
2.
3.

4. Вычислить внутреннее сопротивление по закону Ома для всей цепи.

5. Произвести опыты с другими сопротивлениями и вычислить внутреннее сопротивление элемента.

6. Вычислить среднее значение внутреннего сопротивления элемента.

7. Результаты всех измерений и вычислений записать в таблицу.

8. Найти абсолютную и относительную погрешность.

9. Сделать вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Укажите условия существования электрического тока в проводнике.

2. Какова роль источника электрической энергии в электрической цепи?

3. От чего зависит напряжение на зажимах источника электрической энергии?

ЛАБОРАТОРНАЯ РАБОТА № 7

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ЭКВИВАЛЕНТА МЕДИ.

Цель работы : научиться на практике рассчитывать электрохимический эквивалент меди.

Оборудование: Весы с разновесом, амперметр, часы., источник электрической энергии, реостат, ключ, медные пластины (электроды), соединительные провода, электролитическая ванна с раствором медного купороса.

Теория

Процесс, при котором молекулы солей, кислот и щелочей при растворении в воде или других растворителях распадаются на заряженные частицы (ионы), назы­вается электролитической диссоциацией, получившийся при этом раствор с поло­жительными и отрицательными ионами называется электролитом.

Если в сосуд с электролитом поместить пластины (электроды), соединенные с зажимами источника тока (создать в электролите электрическое поле), то положи­тельные ионы будут двигаться к катоду, а отрицательные — к аноду. Следовательно, в растворах кислот, солей и щелочей электрический заряд будет перемещаться вместе с частицами вещества. У электродов при этом происходит окислительно-восстановительные реакции, при которых на них выделяется вещест­во. Процесс прохождения электрического тока через электролит, сопровождающий­ся химическими реакциями называется электролизом.

Для электролиза справедлив закон Фарадея: масса выделившегося вещества на электроде прямо пропорциональна заряду, прошедшему через электролит:

где k-электрохимический эквивалент-количествовещества, выделенное при прохождении через электролит 1 Кл электричества. Измерив силу тока в цепи, вре­мя его прохождения и массу выделившегося на катоде вещества можно определить электрохимический эквивалент (1с выражается в кг/Кл).

где m-масса меди, выделившейся на катоде; I-сила тока в цепи; t- время пропускания тока в цепи.

Соберите электрическую цепь по схеме.

1. Одну из пластин, которая будет катодом, (если пластина мокрая, ее надо подсушить) тщательно взвесить с точностью до 10мг и записать результат в таблицу.

2. Вставить электрод в электролитическую ванну и составить электрическую цепь согласно схеме.

3. Отрегулировать реостатом ток, чтобы величина его не превышала 1А на 50см 2 погруженной части катодной пластины.

4. Замкнуть цепь на 15-20 минут.

5. Разомкнуть цепь, вынуть катодную пластинку, смыть с нее остатка раствора и высушить под рукосушителем.

6. Взвесить высушенную пластину с точностью до 10мг.

7. Значение тока, время опыта, увеличение в массе катодной пластину записать в таблицу и определить электрохимический эквивалент.

Оценка погрешностей.

.

Относительная погрешность:
.

, следовательно .

После этого дается результат в виде: .

Сравните полученный результат с табличным.

Контрольные вопросы.

1. Что такое электролитическая диссоциация, электролиз?

2. До каких пор будет происходить электролиз медного купороса, если оба электрода медные? Оба электрода угольные?

3. Быстрее или медленнее пойдет электролиз, если один из медных электродов заменить цинковым?

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

— электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

— термоэлектрическая — в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

— фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

— химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

Эпизод 121: ЭДС и внутреннее сопротивление

Электродвижущая сила

Электричество и магнетизм

Эпизод 121: ЭДС и внутреннее сопротивление

Урок за 16-19

  • Время активности 130 минут
  • Уровень Передовой

Отправной точкой теории может быть либо второй закон Кирхгофа, либо сохранение энергии в цепи (на самом деле одно и то же), но общее обсуждение, основанное на приведенной ниже схеме, должно использовать различные подходы.

Краткое содержание урока

  • Обсуждение: вывод уравнения (15 минут)
  • Обсуждение: Практические эффекты внутреннего сопротивления (10 минут)
  • Вопросы студентов: Внутреннее сопротивление источника питания (20 минут)
  • Студенческий эксперимент: Измерение внутреннего сопротивления и ЭДС (45 минут)
  • Вопросы студентов: практические вопросы (30 минут)
  • Обсуждение: Подробнее о практическом значении внутреннего сопротивления (10 минут)
Обсуждение: Вывод уравнения

Есть три способа получить уравнение, связывающее ЭДС, клеммы PD, ток и внутреннее сопротивление.Стоит обсудить все три, чтобы показать их эквивалентность. Порядок, который вы примете, будет зависеть от подхода, использованного ранее с классом:

Закон Кирхгофа 2 nd : Когда заряд проходит по цепи, сумма ЭДС должна равняться сумме падений напряжения, приводящих к:

E = I R & plus; I r

Напряжение на клеммах равно I R , поэтому его можно изменить на:

В = E I r

и интерпретируется как напряжение на клеммах = ЭДС — потерянное напряжение

Энергия сохраняется.Представьте себе единицу заряда, Q , движущуюся по цепи:

Q E = Q I R & plus; Q I r

Это приводит к тем же уравнениям, что и выше.

Используйте закон Ома с E , управляя током через комбинированное сопротивление ( R + r ):

I = E R + R

Умножение на ( R + r ) приводит к тем же уравнениям и выводам, что и в (1).

Обсуждение: Практические эффекты внутреннего сопротивления

Здесь, возможно, стоит сделать паузу, чтобы проиллюстрировать эффекты. Возьмем, к примеру, машину. Фары подключаются параллельно через 12-вольтовую батарею. Стартер также управляется выключателем зажигания параллельно. Поскольку стартер имеет низкое сопротивление, ему требуется очень большой ток (скажем, 60 А). Сама батарея имеет низкое внутреннее сопротивление (скажем, 0,01 Ом). Сами фары потребляют гораздо меньший ток.Спросите их, что происходит, когда двигатель запускается (переключение на стартер, замкнутый на короткое время). Ищите ответ в общих чертах:

  • внезапный спрос на больше тока
  • большие потери напряжения (около 0,05 Ом × 60 А = 3 В)
  • Напряжение на клеммах
  • падает до 12 В — 3 В = 9 В
  • Тусклый свет фар

При запуске двигателя размыкается выключатель стартера и ток падает. Напряжение на клеммах повышается, и фары возвращаются в нормальное состояние.Лучше выключить фары перед запуском машины.

Кстати, многие студенты думают, что двигатель работает от аккумулятора! Обратите внимание на то, что его основная цель при работающем двигателе состоит в том, чтобы подавать искры для зажигания, и что, пока автомобиль движется, генератор переменного тока постоянно заряжает аккумулятор, энергия как для фар, так и для вождения поступает, в конечном итоге, от сгоревшего топлива (поскольку машина должна немного потрудиться, чтобы включить генератор).

Вопросы слушателя: Внутреннее сопротивление источника питания

Несколько простых вопросов о внутреннем сопротивлении источника питания.

Эпизод 121-1: Внутреннее сопротивление блоков питания (Word, 30 КБ)

Студенческий эксперимент: Измерение внутреннего сопротивления и ЭДС

Здесь есть два эксперимента, в которых студенты определяют ЭДС E и внутреннее сопротивление x клеток — один с клеткой картофеля (что приводит к высокому внутреннему сопротивлению), а другой с нормальной клеткой C (гораздо более низкое внутреннее сопротивление ). Вы можете заставить их сделать и то, и другое, или попросить некоторых студентов сделать одно, а некоторых другое.Помните, что если вы используете щелочной элемент C высокой мощности, он быстро разрядится при низком сопротивлении нагрузки, поэтому вам рекомендуется использовать дешевые элементы с низким энергопотреблением, которые быстро поляризуются, они будут деполяризоваться в течение ночи. Альтернативой является создание искусственной ячейки с большим внутренним сопротивлением путем добавления более высокого последовательного сопротивления (например, 100 Ом) к стандартной ячейке.

Эпизод 121-2: Внутреннее сопротивление источника ЭДС (Word, 48 Кб)

Эпизод 121-3: Внутреннее сопротивление ячейки C (Word, 28 КБ)

Для определения E и r по результатам экспериментов существуют различные подходы.Самый простой — измерить напряжение на клеммах ( В, ) и ток ( I ) и построить график В против I . Это дает точку пересечения V = E по оси y и имеет градиент — r .

Вопросы студентов: Практические вопросы

Вопросы по ЭДС и внутреннему сопротивлению.

Эпизод 121-4: Вопросы по ЭДС и внутреннему сопротивлению (Word, 29 КБ)

Обсуждение: Подробнее о практическом значении внутреннего сопротивления

Иногда желательно иметь высокое внутреннее сопротивление.Спросите у класса, что произойдет, если закорочена ячейка 5 В, т. Е. Ее выводы соединены между собой проводом с нулевым сопротивлением? Некоторые могут подумать, что I = В R с R = 0 должно означать, что будет течь бесконечный ток (ограниченный другими физическими факторами!)

Напомню внутреннее сопротивление r . Это ограничивает максимальный ток ячейки (короткого замыкания):

.

I = E r

Мы можем использовать это для предотвращения неприятного шока от расходных материалов EHT.Возьмите с полки источник питания EHT и покажите соединения для внутреннего сопротивления серии . Обычно это 5 МОм.

Эти источники питания предназначены для подачи высокого напряжения на нагрузку с высоким сопротивлением (например, электронно-лучевую трубку), но если случайно прикоснуться к клеммам или проводам, подключенным к ним, это может привести к сильному удару (более низкое сопротивление в нагрузке и более высокий ток). Один из способов справиться с этим — подключить большое сопротивление последовательно к выходной (положительной) клемме.Если клеммы закорочены (например, при контакте с человеком), потребляемый ток ограничивается до I = E r . Типичный источник питания EHT (до 5000 В) защищен резистором 5 МОм, поэтому максимальный ток в случае короткого замыкания составляет всего 1 мА. Это не должно вас убивать! Однако имейте в виду, что источники питания HT (0–300 В) имеют гораздо более низкое внутреннее сопротивление и могут убить вас, поэтому следует использовать специальные экранированные провода.

Источники питания

EHT часто имеют дополнительный предохранительный резистор (например.г. 10 МОм), чтобы еще больше снизить максимальный ток. При необходимости этот резистор можно шунтировать. Ни один из школьных источников питания EHT не может обеспечивать ток более 5 мА.

4.2 Электродвижущая сила: напряжение на клеммах

Напряжение на клеммах

Выходное напряжение устройства измеряется на его клеммах и, таким образом, называется его напряжением на клеммах Vnull Напряжение на клеммах определяется как

4.44 null

, где ноль — внутреннее сопротивление, а ноль — ток, протекающий во время измерения.

null является положительным, если ток течет от положительного вывода, как показано на рисунке 4.9. Вы можете видеть, что чем больше ток, тем меньше напряжение на клеммах. Точно так же верно, что чем больше внутреннее сопротивление, тем меньше напряжение на клеммах.

Предположим, что нулевое сопротивление нагрузки подключено к источнику напряжения, как показано на рисунке 4.12.Поскольку сопротивления включены последовательно, общее сопротивление в цепи равно нулю. Таким образом, по закону Ома ток равен

.

4,45 пустое

Рис. 4.12. Схема источника напряжения и его нулевая нагрузка. Поскольку нуль внутреннего сопротивления включен последовательно с нагрузкой, он может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку. (Обратите внимание, что сценарий E означает ЭДС.)

Из этого выражения видно, что чем меньше внутреннее сопротивление, равное нулю, тем больше ток, подаваемый источником напряжения на его нулевую нагрузку. Когда батареи разряжены, нулевое значение увеличивается.Если ноль становится значительной частью сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.

Пример 4.4. Расчет напряжения на клеммах, рассеиваемой мощности, тока и сопротивления: напряжение на клеммах и нагрузка

Определенная батарея имеет ЭДС 12,0 В и внутреннее сопротивление, равное нулю. (A) Рассчитайте напряжение на ее клеммах при подключении к нулевой нагрузке. (b) Какое напряжение на клеммах при подключении к нулевой нагрузке? (c) Какая мощность рассеивается при нулевой нагрузке? (d) Если внутреннее сопротивление вырастает до нуля, найдите ток, напряжение на клеммах и мощность, рассеиваемую нулевой нагрузкой.

Стратегия

Приведенный выше анализ дал выражение для тока с учетом внутреннего сопротивления. Как только ток найден, напряжение на клеммах может быть вычислено с использованием нулевого уравнения. Как только ток найден, также может быть найдена мощность, рассеиваемая резистором.

Решение для (a)

Если ввести данные значения ЭДС, сопротивления нагрузки и внутреннего сопротивления в выражение выше, получим

4.46 null

Введите известные значения в нулевое уравнение, чтобы получить напряжение на клеммах.

4,47 В = ЭДС-Ir = 12,0 В- (1,188 A) (0,100 Ом) = 11,9 VV = ЭДС-Ir = 12,0 В- (1,188 A) (0,100 Ом) = 11,9 В

Обсуждение для (а)

Напряжение на клеммах здесь лишь немного ниже, чем ЭДС, подразумевая, что ноль — это небольшая нагрузка для этой конкретной батареи.

Решение для (b)

Аналогично, с нулевым значением ток

4.48 null

Напряжение на клеммах теперь

4.49 В = ЭДС-Ir = 12,0 В- (20,0 A) (0,100 Ом) = 10,0 В. V = ЭДС-Ir = 12,0 В- (20,0 A) (0,100 Ом) = 10,0 В.

Обсуждение для (б)

Это напряжение на клеммах значительно меньше по сравнению с ЭДС, что означает, что ноль является большой нагрузкой для этой батареи.

Решение для (c)

Мощность, рассеиваемая нулевой нагрузкой, может быть найдена по формуле null Ввод известных значений дает

4.50 null

Обсуждение для (c)

Обратите внимание, что эту мощность также можно получить с помощью выражений null или null, где null — это напряжение на клеммах (10.0 В в данном случае).

Решение для (d)

Здесь внутреннее сопротивление увеличилось, возможно, из-за разряда батареи, до точки, в которой оно равно сопротивлению нагрузки. Как и раньше, мы сначала находим ток, вводя известные значения в выражение, что дает

4.51 пустое

Теперь напряжение на клеммах

4,52 В = ЭДС-Ir = 12,0 В- (12,0 A) (0,500 Ом) = 6,00 В, V = ЭДС-Ir = 12,0 В- (12,0 A) (0,500 Ом) = 6,00 В,

, а мощность, рассеиваемая нагрузкой, равна

.

4.53 null

Обсуждение для (d)

Мы видим, что увеличившееся внутреннее сопротивление значительно снизило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.

Применение научных практик: внутреннее сопротивление

Внутреннее сопротивление батареи можно оценить с помощью простого действия. Схема, показанная на рисунке ниже, включает резистор R, соединенный последовательно с батареей, а также амперметр и вольтметр для измерения тока и напряжения соответственно.

Токи и напряжения, измеренные для нескольких значений R , показаны в таблице ниже. Используя данные, приведенные в таблице, и применив графический анализ, определите ЭДС и внутреннее сопротивление аккумулятора. Ваш ответ должен четко объяснять метод, использованный для получения результата.

Сопротивление Ток (А) Напряжение (В)
R I 3.53 4,24
R II 2,07 4,97
R III 1,46 5,27
R IV 1,13 5,43

Таблица 4.1

Ответ

Нанесите измеренные токи и напряжения на график. Напряжение на клеммах батареи равно ЭДС батареи за вычетом падения напряжения на внутреннем сопротивлении батареи, или В = ЭДС — Ir. Используя эту линейную зависимость и построенный график, можно найти внутреннее сопротивление и ЭДС батареи. График для этого случая показан ниже. Уравнение: В = –0,50 I +6,0, следовательно, внутреннее сопротивление будет равно 0,5 Ом, а ЭДС — 6 В.

Тестеры батарей

, такие как показанные на рис. 4.15, используют малые нагрузочные резисторы, чтобы намеренно потреблять ток, чтобы определить, падает ли напряжение на клеммах ниже допустимого уровня.Они действительно проверяют внутреннее сопротивление аккумулятора. Если внутреннее сопротивление велико, батарея разряжена, о чем свидетельствует низкое напряжение на клеммах.

Рис. 4.15. Эти два тестера батарей измеряют напряжение на клеммах под нагрузкой, чтобы определить состояние батареи. Большое устройство используется техником-электронщиком ВМС США для тестирования больших батарей на борту авианосца USS Nimitz и имеет небольшое сопротивление, которое может рассеивать большое количество энергии.(Фотография ВМС США, сделанная помощником фотографа Джейсоном А. Джонстоном) Это небольшое устройство используется на небольших батареях и имеет цифровой дисплей, показывающий допустимое напряжение на их клеммах. (Кейт Уильямсон)

Некоторые батареи можно заряжать, пропуская через них ток в направлении, противоположном току, который они подают на сопротивление. Это обычно делается в автомобилях и аккумуляторах для небольших электроприборов и электронных устройств и графически представлено на Рисунке 4.16. Выходное напряжение зарядного устройства должно быть больше, чем ЭДС аккумулятора, чтобы через него протекал обратный ток. Это приведет к тому, что напряжение на клеммах батареи будет больше, чем ЭДС, поскольку ноль и ноль теперь отрицательны.

Рис. 4.16. Зарядное устройство для автомобильного аккумулятора меняет нормальное направление тока через аккумулятор, обращая вспять его химическую реакцию и пополняя ее химический потенциал.

Идеальный источник напряжения

— обзор

1.4.4 Батареи

Закон Джоуля гласит, что резистор, по которому течет ток, выделяет тепло.Электрическая энергия часто подается на резистор от батареи, которая, в свою очередь, получает энергию в результате химических реакций внутри батареи. Следовательно, выработка тепла с помощью R включает два превращения: от химического до электрического и теплового. Символ батареи показан на рис. 1.1 и на рис. 1.9a, причем более длинная полоса указывает на положительную полярность клемм аккумулятора. Батареи являются важными источниками электроэнергии, когда требуется постоянное напряжение.

Рисунок 1.9. (а) Идеальный аккумулятор. (б) Выходные характеристики идеальной батареи. (c) Внутреннее сопротивление идеальной батареи соответствует сопротивлению короткого замыкания.

Прежде чем приступить к анализу аккумуляторов на практике, давайте сначала охарактеризуем идеальные аккумуляторы или идеальные источники напряжения. Идеальная батарея определяется как батарея, которая поддерживает постоянное напряжение, скажем, В, , , , на своих выводах, независимо от того, течет ток или нет. Следовательно, напряжение В B идеальной батареи полностью не зависит от тока, как показано на рис.1.9b. Такой источник также называется независимым источником (источник, подключенный к цепи, считается независимым, если его значение может быть присвоено произвольно 10 . Поскольку идеальная батарея будет поддерживать напряжение В B через его выводы, даже при коротком замыкании, 11 , мы заключаем, что такой источник может теоретически обеспечивать бесконечную мощность (поскольку P = В 2 / R , поскольку R → 0, P → ∞).Отсюда и название идеальный источник . Мы также видим, что наклон кривой ν i на рис. 1.9b равен нулю. Применение закона Ома, R = V / I , к такой горизонтальной линии ν i подразумевает нулевое сопротивление. Таким образом, мы заключаем, что внутреннее сопротивление идеального источника равно нулю. Это объясняет, почему идеальная батарея вызывает бесконечный ток при коротком замыкании. Игнорируя трудности, которые создают бесконечности, мы узнаем, что, глядя на клеммы идеальной батареи, мы видим короткое замыкание (теперь мы используем общий язык схем).Другими словами, если бы мы каким-то образом могли повернуть циферблат и уменьшить напряжение В, , B, идеальной батареи до нуля, мы остались бы с коротким замыканием, как показано на рис. 1.9c.

Обычно источники напряжения в принципиальных схемах представляют идеальными источниками, что нормально, если в схеме нет путей, замыкающих такие источники (если они есть, то схема неисправна и не представляет собой действительную схему. так или иначе). С другой стороны, практические источники всегда имеют конечное внутреннее сопротивление, как показано на рис.1.10a, который ограничивает ток до бесконечных значений в случае короткого замыкания батареи. Конечно, R i не является реальным резистором внутри батареи, а представляет собой абстракцию химического состава реальной батареи и учитывает уменьшение напряжения на клеммах при увеличении тока нагрузки. Внутреннее напряжение В, , , B, также называется электродвижущей силой , (ЭДС) батареи. Из нашего предыдущего обсуждения мы легко делаем вывод, что мощные батареи характеризуются низким внутренним сопротивлением (0.005 Ом для полностью заряженного автомобильного аккумулятора), а также меньшие, менее мощные батареи за счет большего внутреннего сопротивления (0,15 Ом для щелочной батареи фонарика, размер «C»).

Рисунок 1.10. (a) Практичный аккумулятор с ЭДС V B и внутренним сопротивлением R i . (б) Характеристики разряда двух типов батарей.

Еще одной характеристикой практичных аккумуляторов является их возрастающее внутреннее сопротивление при разряде. Например, на рис.1.10b показывает зависимости напряжения на клеммах от часов непрерывной работы для двух типов. Ртутный элемент поддерживает свое напряжение на практически постоянном уровне 1,35 В в течение всего срока службы (но резко падает, когда батарея разряжена) по сравнению с обычными элементами фонарика, которые начинаются с 1,55 В, но постоянно снижаются по мере использования. Другие типы (литиевые, 3,7 В, очень длительный срок хранения, более 10 лет; никель-кадмиевые, 1,25 В, герметичные, но перезаряжаемые; свинцово-кислотные, 2 В, мощные и перезаряжаемые, используются в качестве автомобильных аккумуляторов при последовательном подключении по три батареи). ячейка 6 В или блоки с шестью ячейками 12 В) находятся где-то между двумя кривыми.Скорость уменьшения доступного напряжения по мере разряда батареи определяется химической реакцией внутри батареи. Хотя химия батарей выходит за рамки этой книги, нас интересует то, что уменьшение химической активности во время разряда может быть связано с увеличением внутреннего сопротивления батареи. Следовательно, полностью заряженный аккумулятор можно рассматривать как обладающий низким внутренним сопротивлением, которое постепенно увеличивается по мере использования аккумулятора и становится очень большим для разряженного аккумулятора.

На рисунке 1.11a показана схема, в которой практическая батарея подключена к нагрузке, представленной как R L , и подает питание на нагрузку. R L может быть эквивалентным сопротивлением радио, телевизора или любого другого электрического устройства или оборудования, которое должно питаться от батареи. Доступная для нагрузки мощность равна i 2 R L . Однако, поскольку батарея имеет внутреннее сопротивление, энергия также будет рассеиваться внутри батареи.Внутренние потери определяются по формуле i 2 R i и отображаются как внутреннее тепло. Поэтому опасно закорачивать мощную батарею, так как вся доступная энергия батареи тогда будет быстро преобразована во внутреннее тепло, и, если закорачивающий элемент быстро не расплавится, возможен опасный взрыв.

Рисунок 1.11. (a) Практичная батарея с подключенной переменной нагрузкой, (b) Характеристики источника с возрастающей нагрузкой, (c) Характеристики истощаемого источника.

Предположим на время, что R i постоянный, но нагрузка R L переменная (представлена ​​стрелкой на R L на рис. 1.11а) и проанализируйте схему по мере увеличения нагрузки на аккумулятор. Используя закон напряжения Кирхгофа (уравнение 1.10), получаем для схемы

(1,22) VB = iRi + iRL

Напряжение на нагрузочном резисторе, ν L = iR L , что составляет также доступное напряжение на клеммах внешней батареи, дается из уравнения.(1.22) как

(1.23) υL = VB − iRi

Это уравнение прямой линии с постоянным наклоном — R i и построено на рис. 1.11b. Таким образом, доступное напряжение — это ЭДС батареи за вычетом внутреннего падения напряжения батареи. Ток, который течет в последовательной цепи, получается из уравнения. (1,22) как

(1,24) i = VBRi + RL

По мере уменьшения сопротивления нагрузки R L нагрузка на аккумулятор увеличивается.Как показано на рис. 1.11b, это сопровождается уменьшением доступного напряжения ν L , что обычно является нежелательным результатом. Исключая i из ур. (1,23) и (1,24) для получения

(1,25) υL = VBRLRi + RL

показывает уменьшение ν L по сравнению с V B по мере уменьшения R L . Таким образом, при отсутствии нагрузки на аккумулятор ( R L очень большой) доступное напряжение максимально на ν L В B , но для большой нагрузки ( R L ≈ 0) доступное напряжение падает до ν L ≈ 0.Коммунальные предприятия, например, испытывают трудности с поддержанием постоянного напряжения летом, когда спрос на электроэнергию увеличивается в основном из-за энергоемкого оборудования для кондиционирования воздуха. 12 Условия напряжения ниже нормы (обычно называемые отключениями) вызывают чрезмерную нагрузку на электрическое оборудование потребителей, что приводит к перегреву и, в конечном итоге, к отказу. 13 Очевидным решением проблемы сбоев является уменьшение внутреннего сопротивления R i генерирующего оборудования, поскольку это уменьшит наклон кривой на рис.1.11b, перемещая точку пересечения V B / R i вправо, таким образом приближая кривую к кривой идеального источника на рис. 1.9b. Конечно, низкое оборудование означает более крупные и дорогие генераторы.

Чтобы получить рис. 1.11b, мы предположили, что внутреннее сопротивление R i остается постоянным при изменении сопротивления нагрузки R L .Рассмотрим теперь случай, когда нагрузка R L остается постоянной, но изменяется R i . Примером этого является разряд аккумулятора включенным фонариком, который оставляют включенным до тех пор, пока аккумулятор не разрядится. На рисунке 1.11c показана кривая ν и для разряда батареи со стрелками, показывающими прогрессирование разряда. Мы видим, что полностью заряженная батарея, начиная с небольшого внутреннего сопротивления ( R i ≈ 0), может выдавать ток i V B / R L и напряжение ν L В B .После разряда ( R i ≈ ∞) ток (уравнение 1.24) и напряжение на клеммах (уравнение 1.25) равны нулю.

Подводя итог, можно сказать, что причина того, что ток падает до нуля при разряде батареи, не в том, что ЭДС, величина которой определяется как В B , стремится к нулю, а в том, что внутреннее сопротивление R i изменяется на очень большое значение. Можно предположить, что ЭДС разряженной батареи все еще не повреждена, но внутреннее сопротивление стало очень большим. R i , таким образом, является переменной, зависящей от состояния заряда и возраста (срока годности) аккумулятора.

Чтобы измерить ЭДС батареи, мы снимаем нагрузку, т. Е. Размыкаем цепь батареи, и когда ток i исчезает, мы получаем из уравнения. (1.23) что ν L = V B ; напряжение, возникающее на клеммах аккумулятора в разомкнутой цепи, является ЭДС аккумулятора. Для измерения ЭДС даже почти полностью разряженной батареи можно подключить к клеммам батареи вольтметр с высоким сопротивлением (10 7 Ом или больше).Такой вольтметр приближается к нагрузке с разомкнутой цепью и требует лишь малейшей струйки заряда, чтобы получить показания. Если входное сопротивление измерителя намного больше, чем R i , показание будет мерой V B батареи.

Чтобы измерить R i батареи, можно коротко замкнуть батарею на очень короткое время, подключив амперметр к батарее и считывая ток короткого замыкания.(Поскольку это опасная процедура, ее следует выполнять только с менее мощными батареями, такими как элементы фонарика. Она также может сжечь амперметр, если не используется соответствующая высокоамперная шкала на измерителе.) Затем задается внутреннее сопротивление. по V B / I sc . Менее рискованная процедура — подключить к батарее переменное сопротивление и измерить напряжение ν L . Продолжайте изменять сопротивление, пока напряжение не составит половину В B .В этот момент переменное сопротивление равно R i . Если это по-прежнему слишком рискованно, так как при этом оказывается слишком низкое сопротивление батареи, рассмотрите процедуру, описанную в следующем примере.

Пример 1.3

Определите R i щелочной батареи (размер C), загрузив в элемент резистор 1 Ом.

Рассмотрим рис. 1.11а. Известно, что V B для щелочного элемента равно 1.5 В. Измеряя напряжение на резисторе 1 Ом, мы получаем 1,3 В, что должно оставлять падение напряжения на 0,2 В на R i . Поскольку ток в цепи равен i = 1,3 В / 1 Ом = 1,3 А, получаем для внутреннего сопротивления R i = 0,2 В / 1,3 А 0,15 Ом.

Измерение ЭДС с помощью потенциометра

Измерение ЭДС с помощью потенциометра

Измерение ЭДС с помощью потенциометра

Посмотреть оборудование

МОТИВАЦИЯ:

Одним из важнейших инструментов, используемых в электротехнической лаборатории, является потенциометр.Потенциометр используется для измерения напряжений или разностей потенциалов, и до появления цифрового вольтметра был практически единственным прибором, способным измерять очень небольшие разности потенциалов. Потенциометр имеет большое преимущество перед обычным вольтметром, потому что в нормальных условиях эксплуатации потенциометр не потребляет ток от источника, напряжение которого измеряется. Таким образом, он не нарушает измеряемую разность потенциалов. Следовательно, потенциометры часто используются для калибровки других инструментов, таких как вольтметры и амперметры.

В этом лабораторном упражнении мы будем использовать концепцию нулевого тока, потребляемого потенциометром, для измерения ЭДС ячейки. Вольтметр, поскольку он должен потреблять некоторый ток, измеряет только напряжение на клеммах элемента. Однако потенциометр может измерять истинную ЭДС ячейки. Помимо измерения ЭДС ячейки, мы будем измерять внутреннее сопротивление ячейки.

ОСОБЫЕ ЗАДАЧИ:

После завершения экспериментальной деятельности вы должны уметь: (1) определять ЭДС, напряжение на клеммах и внутреннее сопротивление; (2) измерьте разность потенциалов с помощью потенциометра; (3) найдите внутреннее сопротивление ячейки по графику зависимости напряжения на ее клеммах от тока; и (4) определить максимальную мощность, которую может доставить сота.

ТЕОРИЯ:

Вольтметр используется для измерения разности потенциалов на каком-либо элементе схемы. Следовательно, он подключается таким образом, что обеспечивает путь для тока через вольтметр, параллельный пути через измеряемый элемент. Это означает, что небольшое изменение тока в остальной цепи происходит из-за введения вольтметра. В большинстве случаев это не вызывает возражений, потому что хороший вольтметр является прибором с высоким сопротивлением и потребляет такой небольшой ток, что эффект незначителен.

Однако, если кто-то интересуется определением ЭДС ячейки, измерения вольтметром будет недостаточно, поскольку определение ЭДС — это разность потенциалов, доступная, когда ток не подается ячейкой. В новой ячейке разница между двумя случаями очень мала, но в старой ячейке разница может быть значительной. Старые батареи обычно имеют высокое внутреннее сопротивление, а разность потенциалов, наблюдаемая на клеммах, равна ЭДС минус падение потенциала из-за внутреннего сопротивления (r), или

(1)

Например, старый сухой элемент часто будет зарегистрируйте меньше 1.3 вольта на вольтметре, показания медленно падают, пока вольтметр подключен. Одна и та же ячейка часто показывает ЭДС до 1,45 В.



Потенциометр — это устройство, которое может измерять разность потенциалов, не требуя прохождения тока через ячейку или другое тестируемое устройство. Таким образом, он может точно измерить ЭДС ячейки. В своей простейшей форме он состоит из провода одинакового сечения, через который рабочий аккумулятор B поддерживает постоянный ток (см. Рисунок 1).По проводу происходит постепенное падение потенциала от P до M, которое прямо пропорционально положению вдоль провода.

Проверяемая ячейка C подключается параллельно сегменту провода PM, при этом положительный вывод ячейки находится на положительном конце провода. Если гальванометр соединен последовательно с испытательной ячейкой, точка Q вдоль провода PM может быть найдена так, что ток не проходит через гальванометр. В этих условиях падение ИК-излучения вдоль провода от P до Q в точности равно ЭДС ячейки C.

Для другого элемента D новое положение Q ‘может быть расположено так, чтобы падение ИК-излучения сегмента PQ’ равнялось ЭДС элемента D. Опять же, в этом состоянии ток через элемент и гальванометр не протекает. Поскольку через тестируемую ячейку ток не течет, ток в скользящей проволоке является постоянным и позволяет нам записать

(2)

Если ячейка C или ячейка D имеют известное значение ЭДС, то это соотношение позволяет нам определить оставшееся или неизвестное значение.Таким образом, известное значение можно использовать для «калибровки» ползунка, чтобы можно было быстро определить неизвестные значения.

ОПЫТНАЯ ДЕЯТЕЛЬНОСТЬ:

Устройство для этого эксперимента представляет собой улучшенную версию потенциометра со скользящей проволокой, которая позволяет пользователю быстро и напрямую считывать разность потенциалов с точностью 10 -4 вольт. Основное улучшение состоит в том, что длина скользящей проволоки увеличена за счет набора калиброванных катушек, каждая из которых имеет сопротивление, равное сопротивлению 1-метровой скользящей проволоки.При правильной калибровке каждая катушка имеет падение потенциала 0,1000 вольт, и, «подсчитав», сколько таких катушек последовательно соединено с ползунком, сразу же получается первое десятичное значение показания. Ползун на 1.000 м также имеет падение потенциала 0,1000 вольт, что дает линейное падение 0,0001 вольт / миллиметр. Последние три десятичных разряда в четырехзначном чтении находятся путем считывания точки контакта на проводе скольжения в миллиметрах. Шкала ползунка специально разработана для облегчения такого чтения.

процедура калибровки:

Перед использованием потенциометра его необходимо откалибровать. Это делается с помощью известной ЭДС для установки падения потенциала на катушках и скользящей проволоке. В этом эксперименте известная ЭДС обеспечивается «стандартной ячейкой» или ячейкой Вестона, довольно дорогой ячейкой, которая обеспечивает хорошо воспроизводимую ЭДС, которая остается постоянной в течение длительных периодов времени. Для того, чтобы ячейка сохраняла постоянство своей ЭДС, от ячейки должны поступать только очень крошечные токи в несколько микроампер и только на короткие периоды времени.Стандартная ячейка не выполняет никаких функций, кроме калибровки.

Рисунок 2


Оборудование собрано в соответствии со схемой рисунка 2 и одобрено инструктором. Значение Emf для стандартной ячейки считывается из тега ячейки и записывается в таблицу данных. Затем потенциометр «настраивается» путем выбора катушки 1.0 и перемещения ползунка, чтобы указать показания стандартной ячейки, а выходное напряжение источника питания регулируется так, чтобы обеспечить нулевое отклонение гальванометра при нажатии кнопки ползунка.После того, как эта регулировка выходного напряжения произведена, ее нельзя изменять. Это напряжение обеспечивает уникальное падение потенциала на скользящей проволоке, что позволяет точно считывать показания потенциометра.

Вы можете периодически проверять калибровку во время этого эксперимента. Вот почему был включен переключатель DPDT. Чтобы проверить калибровку, просто установите значение ЭДС стандартной ячейки на потенциометре и переведите переключатель в положение стандартной ячейки. Если гальванометр не прогибается, значит, прибор все еще правильно откалиброван.

измерительная ячейка:

В качестве испытательной ячейки D используется стандартная батарея фонарика номинальным напряжением 1,5 В. Эта ячейка подключена, как показано на схеме на рисунке 2, и переключатель DPDT перемещен, чтобы подключить его к цепи вместо стандартной. клетка. Ожидаемое значение ЭДС будет около 1,5 В, поэтому потенциометр следует сначала настроить с помощью катушки 1,5 В. Кратковременно нажмите контактную кнопку и отметьте величину и направление отклонения.Вы можете найти ЭДС этой ячейки, регулируя ползунок до тех пор, пока отклонение гальванометра не станет равным нулю. Прочтите и запишите значение в свою таблицу данных.

Замените тестовую ячейку D другой ячейкой, похожей на нее, но более старой. Определите ЭДС этой ячейки и запишите ее в свою таблицу данных. Кроме того, измерьте напряжение обеих этих испытательных ячеек (но НЕ стандартной ячейки) с помощью вольтметра и также запишите эти измерения в свою таблицу данных. Когда закончите тестирование этой старой ячейки, снимите ее и снова подключите тестовую ячейку D.

измерение внутреннего сопротивления ячейки:

Теперь нам нужно иметь возможность потреблять ток от испытательной ячейки, пока мы измеряем разность потенциалов между ее выводами. Для этого мы добавляем боковую ветвь KAR, как показано на рисунке 3. Резистор R представляет собой переменный резистор, который можно регулировать для управления током, который измеряется амперметром A. Переключатель используется для отключения протекания тока, чтобы избежать чрезмерного истощения испытательной ячейки.

Рисунок 3





Вам нужно будет работать быстро, чтобы одновременно измерять как ток, так и напряжение на клеммах для этой ячейки.Предполагается, что вы возьмете около 10 точек данных, позволяя току колебаться между значениями от 0,100 A до 2,0 A. Установите ток с помощью резистора, быстро выполните измерение напряжения, а затем отключите ток до тех пор, пока вы не будете готовы следующее измерение.

Поскольку ток иногда изменяется во время считывания, важно одновременно считывать оба значения и записывать их как можно точнее. Быстрая и точная работа поможет вашим ценностям проявиться правильно.

Чтобы проанализировать эти данные, постройте график зависимости напряжения на клеммах (В) от тока (I) для испытательной ячейки. В идеальных условиях это должна быть прямая линия, поэтому вы должны максимально точно подогнать эту линию к этим данным. После того, как эта подгонка выполнена, значение пересечения Y — это ЭДС ячейки, наклон линии — это отрицательное значение внутреннего сопротивления (-r), а точка пересечения X — это максимальный ток, который может доставить ячейка (Imax ). Укажите эти значения в таблице данных. Кроме того, сравните значение ЭДС на графике со значением, которое вы измерили для этой ячейки в начале эксперимента, используя процентную разницу.

У вас также должно быть достаточно данных, чтобы определить максимальную мощность, которую ячейка может передать внешней нагрузке. Возможно, вам придется экстраполировать некоторые точки данных, используя вашу «линию» на графике, чтобы оценить напряжение при высоких токах, но в данном случае это вполне допустимо. Чтобы найти мощность, постройте произведение напряжения и тока (V * I) как функцию тока (I). Этот график должен быть кривой, на самом деле параболой, которая открывается вниз. Наивысшая точка кривой — это максимальная мощность, P max , которую может выдать элемент.

ИТОГОВЫЕ РЕЗЮМЕ:

Вы должны сообщить лучшие значения ЭДС и внутреннего сопротивления для только что измеренного элемента, а также свои оценки максимального тока и мощности, которые он может выдать. Сообщите о любых выводах, которые вы сделали об ЭДС и внутреннем сопротивлении «старых» ячеек, а также о любых других выводах, которые вы сделали в результате ваших наблюдений.

Вернуться к содержанию

Постоянный электрический ток.ЭДС источника тока и внутреннее сопротивление источника тока

Двухполюсный и его схема замещения

Внутреннее сопротивление двухполюсного устройства — это полное сопротивление в эквивалентной схеме двухполюсного устройства, состоящего из генератора напряжения и импеданса, соединенных последовательно (см. Рисунок). Это понятие используется в теории схем при замене реального источника идеальными элементами, то есть при переходе на эквивалентную схему.

Введение

Рассмотрим пример.В легковом автомобиле мы будем питать бортовую сеть не от штатного свинцово-кислотного аккумулятора напряжением 12 вольт и емкостью 55 Ач, а от восьми последовательно соединенных аккумуляторов (например, типоразмера АА, с емкость около 1 Ач). Попробуем завести двигатель. Опыт показал, что при питании от аккумуляторов вал стартера не поворачивается ни на один градус. Причем даже соленоидное реле не сработает.

Интуитивно понятно, что аккумулятор «недостаточно мощный» для такого применения, однако учет его заявленных электрических характеристик — напряжения и заряда (емкости) — не дает количественного описания этого явления.Напряжение в обоих случаях одинаковое:

Аккумулятор: 12 вольт

Гальванические элементы: 8 1,5 В = 12 В

Емкости тоже вполне хватает: одного ампер-часа в аккумуляторе должно хватить на то, чтобы запустить стартер за 14 секунд (при токе 250 ампер).

Казалось бы, по закону Ома ток в одной и той же нагрузке с электрически идентичными источниками тоже должен быть одинаковым. Однако на самом деле это не совсем так. Источники вели бы себя так же, если бы они были идеальными генераторами напряжения.Для описания степени отличия реальных источников от идеальных генераторов используется понятие внутреннего сопротивления.

Сопротивление и внутреннее сопротивление

Основной характеристикой двухполюсной сети является ее сопротивление (или импеданс). Однако не всегда можно охарактеризовать двухполюсную сеть только по сопротивлению. Дело в том, что термин сопротивление применим только для чисто пассивных элементов, то есть они не содержат источников энергии.Если двухполюсник содержит источник энергии, то понятие «сопротивление» к нему просто не применимо, так как закон Ома в формулировке U = Ir не выполняется.

Таким образом, для двухполюсных сетей, содержащих источники (то есть генераторы напряжения и генераторы тока), необходимо говорить о внутреннем сопротивлении (или импедансе). Если двухполюсное устройство не содержит источников, то «внутреннее сопротивление» для такого двухполюсного устройства означает то же самое, что и просто «сопротивление».

Связанные термины

Если вход и / или выход можно различить в любой системе, то часто используются следующие термины:

Входное сопротивление — это внутреннее сопротивление двухполюсного устройства, которое является входом системы.

Выходное сопротивление — это внутреннее сопротивление двухполюсника, являющегося выходом системы.

Физические принципы

Несмотря на то, что в схеме замещения внутреннее сопротивление представлено как один пассивный элемент (причем в нем всегда присутствует активное сопротивление, то есть резистор), внутреннее сопротивление не сосредоточено ни в одном элементе.Двухполюсное устройство только внешне ведет себя так, как если бы у него было сосредоточенное внутреннее сопротивление и генератор напряжения. В действительности внутреннее сопротивление — это внешнее проявление совокупности физических воздействий:

Если есть только источник энергии в двухполюсном устройстве без какой-либо электрической цепи (например, гальванический элемент), то внутреннее сопротивление является чисто активным, это связано с физическими эффектами, которые не позволяют получить мощность, создаваемую этим. источник нагрузки для превышения определенного лимита.Самый простой пример такого эффекта — ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрического характера. Так, например, в химическом источнике мощность может быть ограничена площадью контакта веществ, участвующих в реакции, в генераторе гидроэлектростанции — ограниченным давлением воды и т. Д.

В случае двухполюсного устройства, содержащего внутри электрическую цепь, внутреннее сопротивление «рассредоточено» по элементам схемы (помимо механизмов, перечисленных выше в источнике).

Отсюда также вытекают некоторые особенности внутреннего сопротивления:

Внутреннее сопротивление невозможно снять с двухполюсной сети

Внутреннее сопротивление не является стабильным значением: оно может измениться при изменении любых внешних условий.

Влияние внутреннего сопротивления на свойства двухполюсной сети

Эффект внутреннего сопротивления является неотъемлемым свойством любой двухполюсной сети. Основным результатом наличия внутреннего сопротивления является ограничение электрической мощности, которая может быть получена в нагрузке, питаемой от этой двухполюсной сети.

Если нагрузка с сопротивлением R подключена к источнику с ЭДС генератора напряжения E и активным внутренним сопротивлением r, то ток, напряжение и мощность в нагрузке выражаются следующим образом.

Платеж

Концепция расчета применима к схеме (но не к реальному устройству). Расчет приведен для случая чисто активного внутреннего сопротивления (различия в реактивных сопротивлениях будут рассмотрены ниже).

Пусть, есть двухполюсник, который можно описать приведенной выше схемой замещения.Двухтерминальная сеть имеет два неизвестных параметра, которые необходимо найти:

ЭДС генератора напряжения У

Внутреннее сопротивление r

Как правило, для определения двух неизвестных необходимо провести два измерения: для измерения напряжения на выходе двухполюсного устройства (то есть разности потенциалов Uout = φ2 — φ1) при двух разных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

, где Uout1 — выходное напряжение при токе I1, Uout2 — выходное напряжение при токе I2.Решая систему уравнений, находим неизвестные неизвестные:

Обычно для расчета внутреннего сопротивления используется более простой метод: напряжение находится в разомкнутом режиме, а ток — в режиме короткого замыкания двухполюсника. В этом случае система (1) записывается следующим образом:

где Uoc — выходное напряжение холостого хода, то есть при нулевом токе нагрузки; Isc — ток нагрузки в режиме короткого замыкания, то есть при нагрузке с нулевым сопротивлением. При этом учитывается, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю.Из последних уравнений сразу получаем:

Измерение

Концепция измерения применима к реальному устройству (но не к цепи). Прямое измерение омметром невозможно, так как нельзя подключить щупы прибора к клеммам внутреннего сопротивления. Следовательно, необходимо косвенное измерение, которое принципиально не отличается от расчетного — напряжения на нагрузке также требуются при двух разных значениях тока.Однако не всегда можно использовать упрощенную формулу (2), поскольку не каждая реальная двухконтактная сеть допускает работу в режиме короткого замыкания.

Часто используется следующий простой метод измерения, не требующий вычислений:

Измеряется напряжение холостого хода

Переменный резистор подключается в качестве нагрузки, и его сопротивление выбирается таким образом, чтобы напряжение на нем составляло половину напряжения холостого хода.

После описанных процедур необходимо измерить сопротивление нагрузочного резистора омметром — оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы метод измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимые значения для этого двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсной сети содержит реактивные элементы — конденсаторы и / или катушки индуктивности, то расчет реактивного внутреннего сопротивления выполняется так же, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов берутся их комплексные амплитуды, то есть расчет производится методом комплексных амплитуд.

Измерение внутреннего реактивного сопротивления имеет некоторые особенности, так как это комплексная функция, а не скалярная величина:

Вы можете искать различные параметры комплексного значения: модуль, аргумент, только действительную или мнимую часть и все комплексное число. Соответственно, методика измерения будет зависеть от того, что мы хотим получить.

Цель работы: для изучения метода измерения ЭДС и внутреннего сопротивления источника тока с помощью амперметра и вольтметра.

Оснащение: Металлический планшет , источник тока, амперметр, вольтметр, резистор, ключ, зажимы, соединительные провода.

Для измерения ЭДС и внутреннего сопротивления источника тока собирается электрическая схема, схема которой представлена ​​на рисунке 1.

К источнику тока подключаются последовательно соединенные амперметр, сопротивление и переключатель. Кроме того, вольтметр также подключается непосредственно к выходным гнездам источника.

ЭДС измеряется показаниями вольтметра при открытом ключе. Этот метод определения ЭДС основан на следствии из закона Ома для замкнутой цепи, согласно которому при бесконечно большом сопротивлении внешней цепи напряжение на выводах истока равно его ЭДС. (См. Параграф «Закон Ома для полной схемы» в учебнике по физике 10).

Для определения внутреннего сопротивления источника переключатель K замкнут. При этом в схеме условно можно выделить два участка: внешний (тот, который подключен к источнику) и внутренний (тот, который находится внутри источника тока).Так как ЭДС источника равна сумме падений напряжения на внутреннем и внешнем участках цепи:

ε = U r + U R , затем U r = ε -U R (1)

По закону Ома для участка цепи U r = I · р (2). Подставляя равенство (2) в (1), получаем:

I · р = ε U r , откуда r = ( ε U R ) / J

Следовательно, чтобы узнать внутреннее сопротивление источника тока, необходимо сначала определить его ЭДС, затем замкнуть ключ и измерить падение напряжения на внешнем сопротивлении, а также ток в Это.

Прогресс

1. Подготовьте таблицу для записи результатов измерений и расчетов:

ε , в

U r , B

и, а

р , Ом

    Нарисуйте в записной книжке схему измерения ЭДС и внутреннего сопротивления источника.

    После проверки цепи соберите электрическую цепь. Откройте ключ.

    Измерьте значение ЭДС источника.

    Закройте ключ и снимите показания амперметра и вольтметра.

    Рассчитайте внутреннее сопротивление источника.

  1. Определение ЭДС и внутреннего сопротивления источника тока графическим методом

Цель работы: исследуют измерения ЭДС, внутреннего сопротивления и тока короткого замыкания источника тока, основываясь на анализе графика зависимости напряжения на выходе источника от тока в цепи.

Оснащение: гальванический элемент, амперметр, вольтметр, резистор R 1 , г. резистор переменный, ключ, зажимы, металлическая пластина, провода соединительные.

Из закона Ома для замкнутой цепи следует, что напряжение на выходе источника тока прямо пропорционально току в цепи:

так как I = E / (R + r), то IR + Ir = E, но IR = U, откуда U + Ir = E или U = E — Ir (1).

Если построить график зависимости U от I, то по его точкам пересечения с осями координат можно определить E, I K.Z. — сила тока короткого замыкания (ток, который будет течь в цепи источника, когда внешнее сопротивление R станет равным нулю).

ЭДС определяется точкой пересечения графика с осью напряжений. Эта точка графика соответствует состоянию цепи, при котором в ней отсутствует ток и, следовательно, U = E.

Сила тока короткого замыкания определяется точкой пересечения графика с осью токи. В этом случае внешнее сопротивление R = 0 и, следовательно, напряжение на выходе источника U = 0.

Внутреннее сопротивление источника определяется по касательной к наклону графика относительно оси тока. (Сравните формулу (1) с математической функцией вида Y = AX + B и запомните значение коэффициента при X).

Прогресс

    Для записи результатов измерений подготовьте таблицу:

  1. После того, как учитель проверит схему, соберите электрическую схему. Установите ползунок переменного резистора в положение, при котором сопротивление цепи, подключенной к источнику тока, будет максимальным.
  2. Определить значение тока в цепи и напряжение на выводах источника при максимальном значении сопротивления переменного резистора. Введите данные измерений в таблицу.

    Повторите измерения тока и напряжения несколько раз, каждый раз уменьшая значение переменного сопротивления так, чтобы напряжение на клеммах источника уменьшилось на 0,1 В. Прекратите измерения, когда ток в цепи достигнет 1А.

    Нанесите на график точки, полученные в эксперименте.Отложите напряжение по вертикальной оси, а силу тока по горизонтали. Проведите по точкам прямую линию.

    Продолжите график до пересечения с осями координат и определите значения E и, I K.Z.

    Измерьте ЭДС источника, подключив вольтметр к его клеммам при разомкнутой внешней цепи. Сравните значения ЭДС, полученные двумя методами, и укажите причину возможного расхождения результатов.

    Определите внутреннее сопротивление источника тока.Для этого рассчитайте тангенс наклона построенного графика к текущей оси. Поскольку тангенс угла в прямоугольном треугольнике равен отношению противоположного плеча к соседнему, на практике это можно сделать, найдя отношение E / I K.Z

В век электричества, наверное, нет такого человека, который не знал бы о существовании электрического тока. Но мало кто помнит из школьного курса физики больше, чем название величин: сила тока, напряжение, сопротивление, закон Ома.И лишь единицы помнят, что означают эти слова.

В этой статье мы обсудим, как возникает электрический ток, как он передается по цепи и как использовать эту величину в расчетах. Но прежде чем перейти к основной части, обратимся к истории открытия электрического тока и его источников, а также к определению того, что такое электродвижущая сила.

История

Электричество как источник энергии известно с древних времен, потому что сама природа генерирует его в огромных количествах.Яркий пример — молния или электрический луч. Несмотря на эту близость к человеку, обуздать эту энергию можно было только в середине семнадцатого века: Отто фон Герике, бургомистр из Магдебурга, создал машину, которая могла генерировать электростатический заряд. В середине восемнадцатого века Петер фон Мушенбрук, ученый из Голландии, создает первый в мире электрический конденсатор, названный Leiden Bank в честь университета, в котором он работал.

Пожалуй, отсчет эпохи настоящих открытий, посвященных электричеству, принято начинать с работ Луиджи Гальвани и Алессандро Вольта, которые соответственно изучали электрические токи в мышцах и возникновение тока в так называемых гальванических ячейках. .Дальнейшие исследования открыли нам глаза на связь между электричеством и магнетизмом, а также на несколько очень полезных явлений (таких как электромагнитная индукция), без которых невозможно представить нашу жизнь сегодня.

Но мы не будем углубляться в магнитные явления, а остановимся только на электрических. Итак, давайте посмотрим, как появляется электричество в гальванических элементах и ​​для чего это нужно.

Что такое гальванический элемент?

Можно сказать, что он производит электричество за счет химических реакций, происходящих между его компонентами.Простейший электрохимический элемент был изобретен Алессандро Вольта и назван в его честь с гальваническим полюсом. Он состоит из нескольких чередующихся между собой слоев: медной пластины, токопроводящей прокладки (в домашней конструкции используется вата, смоченная в соленой воде) и цинковой пластины.

Какие реакции происходят в нем?

Давайте подробнее рассмотрим процессы, которые позволяют получать электричество с помощью гальванического элемента. Таких превращений всего два: окисление и восстановление.Когда один элемент, восстановитель, окисляется, он отдает электроны другому элементу — окислителю. Окислитель, в свою очередь, восстанавливается за счет принятия электронов. Таким образом происходит движение заряженных частиц от одной пластины к другой, и это, как известно, называется электрическим током.

А теперь плавно перейдем к основной теме этой статьи — ЭДС источника тока. И сначала давайте рассмотрим, что такое электродвижущая сила (ЭДС).

Что такое ЭДС?

Это значение может быть представлено как работа сил (а именно «работа»), совершаемая при движении заряда по замкнутой электрической цепи.Очень часто также вносят уточнения, что заряд обязательно должен быть положительным и разовым. И это существенное дополнение, поскольку только в этих условиях электродвижущую силу можно считать точной измеримой величиной. Кстати, измеряется в тех же единицах, что и напряжение: в вольтах (В).

ЭДС источника тока

Как известно, каждый аккумулятор или батарея имеет собственное значение сопротивления, которое они способны выдать. Это значение, ЭДС источника тока, показывает, какую работу совершают внешние силы для перемещения заряда по цепи, в которую включен аккумулятор или аккумулятор.

Также стоит уточнить, какой тип тока вырабатывает источник: постоянный, переменный или импульсный. Гальванические элементы, включая аккумуляторы и батареи, всегда производят только постоянный электрический ток. ЭДС источника тока в этом случае будет равна по величине выходному напряжению на контактах источника.

А теперь пора разобраться, зачем вообще нужна такая величина, как ЭДС, как ее использовать при расчете других значений электрической схемы.

Формула ЭДС

Мы уже выяснили, что ЭДС источника тока равна работе внешних сил по перемещению заряда.Для большей наглядности мы решили записать формулу для этой величины: E = A внешних сил / q, где A — работа, а q — заряд, на котором была совершена работа. Обратите внимание, что взимается полная стоимость, а не разовая оплата. Это сделано потому, что мы учитываем работу сил по перемещению всех зарядов в проводнике. И это отношение работы к заряду всегда будет постоянным для данного источника, поскольку независимо от того, сколько заряженных частиц вы возьмете, конкретный объем работы для каждой из них будет одинаковым.

Как видите, формула для электродвижущей силы не так уж сложна и состоит всего из двух величин. Пришло время перейти к одному из основных вопросов, возникающих в связи с этой статьей.

Зачем вам ЭМП?

Как уже было сказано, ЭДС и напряжение — это, по сути, одни и те же величины. Если мы знаем значения ЭДС и внутреннего сопротивления источника тока, то их несложно подставить в закон Ома для полной цепи, которая выглядит так: I = e / (R + r), где I — сила тока, e — ЭДС, R — сопротивление цепи, r — внутреннее сопротивление источника тока.Отсюда мы можем найти две характеристики схемы: I и R. Следует отметить, что все эти аргументы и формулы действительны только для цепи постоянного тока. В случае переменной формулы будут совершенно другими, поскольку она подчиняется своим собственным колебательным законам.

Но все же остается неясным, какое применение имеет ЭДС источника тока. В цепочке, как правило, много элементов, выполняющих свою функцию. В любом телефоне есть плата, которая также представляет собой не что иное, как электрическую схему.И каждая такая схема требует для работы источника тока. И очень важно, чтобы его ЭДС подходила по параметрам для всех элементов схемы. В противном случае схема либо перестанет работать, либо сгорит из-за высокого напряжения внутри нее.

Заключение

Думаем, эта статья многим пригодилась. Ведь в современном мире очень важно знать как можно больше о том, что нас окружает. Включая необходимые знания о природе электрического тока и его поведении в цепях.И если вы думаете, что такая вещь, как электрическая цепь, используется только в лабораториях, и вы далеки от этого, то сильно ошибаетесь: все устройства, потребляющие электричество, на самом деле состоят из цепей. И у каждого из них есть свой источник тока, создающий ЭДС.

На концах проводника, а значит, и тока, необходимо присутствие внешних сил неэлектрического характера, с помощью которых происходит разделение электрических зарядов.

Внешними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т.е.е., кулоновские силы).

Внешние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, батареях и т. Д.

Когда цепь замкнута, электрическое поле создается во всех проводниках цепи. Внутри источника тока заряды движутся под действием внешних сил против кулоновских сил (электроны движутся от положительно заряженного электрода к отрицательному), а в остальной части цепи они двигаются электрическим полем (см.рис.Выше).

В источниках тока в процессе разделения заряженных частиц различные виды энергии преобразуются в электрическую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

— электростатический — в электрофорной машине, в которой механическая энергия преобразуется в электрическую при трении;

— термоэлектрик — в термоэлементе — внутренняя энергия нагретого спая двух проводов из разных металлов преобразуется в электрическую энергию;

— фотоэлектрический — в фотоэлементе.Здесь происходит преобразование световой энергии в электрическую: при освещении некоторых веществ, например, селена, оксида меди (I), кремния, наблюдается потеря отрицательного электрического заряда;

— химический — в гальванических элементах, батареях и других источниках, в которых происходит преобразование химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г.Ом 1827 г. для цепей постоянного тока. В 1857 году Кирхгоф определил ЭДС как работу внешних сил во время передачи одиночного электрического заряда по замкнутой цепи:

ɛ = А ст / кв ,

, где ɛ — ЭДС источника тока, A st, — работа внешних сил, q — величина смещенного заряда.

Электродвижущая сила выражается в вольтах.

Вы можете говорить о электродвижущей силе в любой части цепи.Это специфическая работа внешних сил (работа по перемещению единичного заряда) не во всей цепи, а только в этой области.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, батареи или генератора) и резистора с сопротивлением R … Ток в замкнутой цепи нигде не прерывается, следовательно, он также существует внутри текущего источника. Любой источник представляет собой какое-то сопротивление току.Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе р — это сопротивление обмотки, в гальванической ячейке — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется значениями ЭДС и внутреннего сопротивления, которые определяют его качество. Например, электростатические машины имеют очень высокую ЭДС (до десятков тысяч вольт), но их внутреннее сопротивление огромно (до сотни МОм).Поэтому они не подходят для приема больших токов. В гальванических элементах ЭДС составляет всего около 1 В, но, с другой стороны, внутреннее сопротивление невелико (около 1 Ом или меньше). Это дает возможность с их помощью получать токи, измеряемые в амперах.

Закон Ома для замкнутой цепи, определение которого относится к величине электрического тока в реальных цепях, зависит от источника тока и сопротивления нагрузки. У этого закона есть и другое название — закон Ома для замкнутых цепей.Принцип действия этого закона заключается в следующем.

В качестве простейшего примера, электрическая лампа, которая является потребителем электрического тока, вместе с источником тока является не чем иным, как замкнутой. Эта электрическая схема четко показана на рисунке.

Электрический ток, проходя через лампочку, также проходит через сам источник тока. Таким образом, при прохождении через цепь ток будет испытывать сопротивление не только проводника, но и непосредственно самого источника тока.В источнике сопротивление создается электролитом между пластинами и пограничными слоями пластин и электролитом. Отсюда следует, что в замкнутой цепи ее полное сопротивление будет складываться из суммы сопротивлений лампочки и источника тока.

Внешнее и внутреннее сопротивление

Сопротивление нагрузки, в данном случае лампочки, подключенной к источнику тока, называется внешним сопротивлением. Прямое сопротивление источника тока называется внутренним сопротивлением.Для более наглядного представления процесса все значения должны быть условно обозначены. I -, R — внешнее сопротивление, r — внутреннее сопротивление. Когда через электрическую цепь протекает ток, для его поддержания должна присутствовать разность потенциалов между концами внешней цепи, которая имеет значение IхR. Однако во внутренней цепи также наблюдается протекание тока. Это означает, что для поддержания электрического тока во внутренней цепи также требуется разность потенциалов на концах сопротивления r.Величина этой разности потенциалов Iхr.

Электродвижущая сила аккумулятора

Батарея должна иметь следующее значение электродвижущей силы, способное поддерживать требуемый ток в цепи: E = IхR + Iхr. Формула показывает, что электродвижущая сила аккумулятора складывается из внешней и внутренней. Текущее значение необходимо вынести за скобки: E = I (r + R). В противном случае вы можете представить: I = E / (r + R). Последние две формулы выражают закон Ома для замкнутой цепи, определение которого следующее: в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений этой цепи.

Разница между ЭДС и напряжением

Самая распространенная путаница среди студентов — это разница между ЭДС и напряжением. Чтобы понять разницу между ЭДС и напряжением, давайте сначала поймем, что мы подразумеваем под терминами ЭДС и напряжением.

Электродвижущая сила и напряжение часто ошибочно принимают за одно и то же, но между ними есть различия. Иногда их также путают с электромагнитными полями. Можно сказать, что все они связаны, но не одно и то же.Электродвижущая сила и напряжение напрямую связаны с генерацией электромагнитных полей (ЭМП). Электродвижущая сила — это невидимая форма энергии, производимая взаимодействием электрического и магнитного полей, которое приводит к перемещению электронов из одной точки в другую.

Электродвижущая сила (ЭДС)

Электродвижущая сила, также известная как ЭДС, представляет собой энергию, потребляемую для зарядки через элемент батареи. Другими словами, он создает и поддерживает напряжение в активной ячейке, подавая энергию в Джоулях на каждую единицу кулоновского заряда.Это обозначается буквой «ε», а единица измерения такая же, как у напряжения, то есть вольт.

ЭДС — максимальная разность потенциалов между двумя точками батареи при отсутствии тока от источника в случае разомкнутой цепи. То есть это вызвано ЭДС и зависит от напряжения или разности потенциалов. Генератор или батарея используются для преобразования одной энергии в другую. В этих устройствах один вывод заряжен положительно, а другой — отрицательно. Следовательно, электродвижущая сила — это работа, совершаемая с единичным электрическим зарядом.

Напряжение

Напряжение — это сила, которая заставляет электрический заряд течь. Это разность потенциалов между двумя соединениями, когда одно соединение собирает больше электронов, чем другое. Напряжение определяется как потенциальная энергия на заряд.

Напряжение измеряется в вольтах (В), которые являются единицей измерения потенциала. Падение напряжения — это падение потенциала на пути тока через цепь. Чем выше сопротивление компонента, тем больше падение напряжения между соединениями.Когда электричество встречает сопротивление, потенциальная энергия теряется, потому что она преобразуется в другую форму энергии для выполнения работы. Например, электрическая потенциальная энергия преобразуется в тепловую с помощью резистора.

Разница между ЭДС и напряжением

Электродвижущая сила

Напряжение

Электродвижущая сила 9034, которая возникает в спецификации 903, электрическая разность потенциалов.

Напряжение — это термин, обозначающий разность потенциалов между любыми двумя точками в цепи.

Разность потенциалов, измеряемая между якорем генератора, солнечными элементами и химическими элементами, иногда называется ЭДС.

Разность потенциалов, измеренная на нагрузке, компоненте схемы, называется напряжением.

Электродвижущая сила следует за действием кулоновской силы.

Напряжение следует за действием неккулоновской силы.

E = I * (R + r)

V = I * R

Что следует помнить

  1. ЭДС или электродвижущая сила — это разность потенциалов, создаваемая одним или несколькими элементы или изменяющееся магнитное поле в солнечном элементе, а напряжение — это разность потенциалов, измеренная в любых двух точках магнитного поля.

  2. Единица СИ и напряжение ЭДС одинаковы (вольт).

  3. Величина ЭДС зависит от изменения магнитного поля, а напряжение зависит от величины и сопротивления тока.

  4. Напряжение можно рассматривать как разницу между двумя электрическими состояниями в электрическом поле, но ЭДС — это сила, которая вызывает разницу в электрических состояниях.

Что такое ЭДС?

1.ЭДС означает электродвижущую силу. ЭДС — это напряжение на выводах источника при отсутствии электрического тока.

2. Концепция ЭДС определяет объем работы, необходимый для разделения носителей заряда в токе источника, так что сила, действующая на заряды на выводах источника, не является прямым следствием поля. ЭДС возникает в результате внутреннего сопротивления.

3. Электродвижущая сила (ЭДС) определяется как: — количество работы, выполняемой при преобразовании энергии, и количество электричества, которое проходит через электрический источник или генератор.

4. ЭДС измеряется в вольтах и ​​обозначается символом ε (или E).

Что такое напряжение?

  • Напряжение определяется как количество энергии, необходимое для перемещения единичного заряда с одного конца на другой. Напряжение измеряется в вольтах и ​​обозначается символом V.

  • Напряжение в основном возникает между двумя полюсами электрической цепи, то есть между анодом и катодом батареи.

  • Положительный вывод батареи известен как катод, а отрицательный вывод батареи известен как анод.Потенциал на катоде источника будет выше, чем на аноде.

  • Когда на пассивных элементах возникает разность потенциалов или напряжение, это называется падением напряжения. (Пассивные элементы — электрические элементы, которые не генерируют мощность, такие как резисторы, конденсаторы и т. Д., Которые используются для рассеивания, накопления зарядов)

  • Возникающее напряжение является результатом электрического поля.

Разница между ЭДС и напряжением на клеммах

Основная разница между ЭДС и напряжением заключается в том, что напряжение или напряжение на клеммах слишком мало по сравнению с ЭДС.Это означает, что интенсивность развиваемой ЭДС всегда будет больше, чем напряжение, существующее в нагруженной цепи. Из-за внешнего сопротивления всегда есть падение напряжения или потеря энергии, что приведет к различной интенсивности. Но ЭДС всегда постоянна.

Давайте посмотрим на другую разницу напряжения и ЭДС, как указано ниже:

Разница между напряжением и ЭДС

S.


ЭДС — это напряжение, возникающее между двумя выводами батареи или источника при отсутствии электрического тока.

Напряжение — это разность потенциалов, возникающая между двумя потенциалами электрода батареи при любых условиях.


Это разность потенциалов между двумя выводами батареи или элемента в разомкнутой цепи.

ЭДС — напряжение холостого хода.

Это разность потенциалов между двумя выводами батареи или элемента в замкнутой цепи.

Напряжение на клеммах — это напряжение покоя.


ЭДС не зависит от сопротивления электрической цепи, но зависит от внутреннего сопротивления цепи.

Оно прямо пропорционально сопротивлению между двумя выводами.


Формула, используемая для расчета ЭДС, имеет следующий вид:

ε = I (R + r)

Где,

R- Внешнее сопротивление электрической цепи.

r- Внутреннее сопротивление данной цепи

Напряжение рассчитывается по закону Ома, учитывая bt:

V = IR

Где,

I- Ток, протекающий по цепи

R- Внешнее сопротивление электрической цепи


ЭДС любой цепи можно измерить с помощью потенциометра.

Напряжение в электрической цепи измеряется с помощью вольтметра.


В системе СИ единицей измерения ЭДС является вольт (В).

Единица измерения напряжения в системе СИ — вольт (В).


ЭДС определяется действием не кулоновской силы или неэлектрической силы.

Напряжение определяется действием кулоновской силы или электрической силы.


Работа, выполняемая ЭДС, будет максимальной работой элемента или батареи.

Работа, выполненная под напряжением, не будет максимальной работой аккумулятора.


ЭДС индуцируется в электрическом поле, гравитационных полях или магнитных полях.

Напряжение индуцируется только в электрическом поле.


Интенсивность всегда постоянна.

Интенсивность будет изменяться из-за падения напряжения на внешнем сопротивлении.

Вот некоторые важные различия между ЭДС и напряжениями на клеммах. Хотя оба измеряются как разности потенциалов, они не совпадают.

Решенные примеры

1. Рассмотрим электрическую цепь с разностью потенциалов 5 В, током 0,9 А и внутренним сопротивлением батареи 0,7 Ом. Рассчитайте ЭДС аккумулятора.

Ответ:

Дано,

Разность потенциалов = V = 5 В

Ток в цепи = I = 0.9A

Внутреннее сопротивление батареи = r = 0,7

Теперь ЭДС цепи определяется как:

=> E = I (R + r)

Где,

R- Внешнее сопротивление электрической цепи .

r- Внутреннее сопротивление данной цепи

I- Ток, протекающий по цепи

Переставив приведенное выше выражение,

=> E = IR + Ir

Мы знаем, что произведение тока в цепи и внешнее сопротивление — это разность потенциалов на сопротивлении.Таким образом,

=> E = V + Ir

Подставляя данные значения в уравнение,

=> E = 5 + (0,9 x 0,7) = 5,63 В

Таким образом, ЭДС батареи определяется как 5,63 В. .

2. Батарея обеспечивает ток 1 А через катушку 3 Ом и 0,8 А через катушку 5 Ом. Рассчитайте ЭДС и внутреннее сопротивление аккумулятора.

Ответ:

Дано,

Пусть ЭДС батареи будет E, а внутреннее сопротивление батареи r.

Итак,

ЭДС батареи определяется по формуле:

E = I (R + r)

Где,

R- Внешнее сопротивление электрической цепи.

r- Внутреннее сопротивление данной цепи

I- Ток, протекающий по цепи

Для катушки 3 Ом: E = 1 (3 + r) …… .. (1)

Для катушки 5 Ом: E = 0,8 (5 + r) ………. (2)

Решая (1) и (2), получаем значение внутреннего сопротивления батареи, r = 5 Ом

Теперь ЭДС батареи равна E = 8V

Следовательно, ЭДС и внутреннее сопротивление батареи составляют 8 вольт и 5 Ом соответственно.

Знаете ли вы?

  • На рынке доступны различные типы батарей, и ЭДС батарей будут отличаться друг от друга.Аккумуляторы ЭДС на 12 В — стандартные, используемые в практических целях.

  • ЭДС батарей также определяется типом протекающей химической реакции. Свинцово-кислотные батареи, используемые в автомобилях и других транспортных средствах, являются наиболее распространенными типами.

  • Хотя ЭДС означает электродвижущую силу, это все же напряжение, развиваемое в цепи. Здесь сила означает энергию на единицу заряда.

Онлайн-конвертеры единиц измерения

Случайный преобразователь

Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияПреобразователь массыКонвертер объема сухого воздуха и общих измерений при варкеПреобразователь площадиПреобразователь объёма и общего измерения при варкеПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь силыПреобразователь силыКонвертер времениЛинейный конвертер скорости и скоростиКонвертер угла Хранение данныхКурсы обмена валютыРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаПреобразователь момента инерцииПреобразователь момента силыКонвертер крутящего моментаПреобразователь удельной энергии, теплоты сгорания (на единицу температуры) Конвертер интерваловКонвертер теплового расширенияКонвертер термического сопротивленияПреобразователь теплопроводности Конвертер удельной теплоемкости ter Конвертер скорости передачиКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер яркостиКонвертер яркостиКонвертер разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоптрия) в преобразователь фокусного расстоянияПреобразователь оптической мощности (диоптрий) в увеличение (X) Конвертер электрического заряда Конвертер плотности зарядаКонвертер плотности поверхностного зарядаКонвертер объёмной плотности заряда Конвертер электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимостиПреобразователь емкостиПреобразователь индуктивностиПреобразователь реактивной мощности переменного токаПреобразователь напряжения магнитного поля в ваттах и ​​дБм Конвертер плотности потока Конвертер мощности поглощенной дозы излучения, Конвертер мощности дозы полного ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифрового изображения Конвертер единиц измерения объема древесиныКалькулятор молярной массыПериодическая таблица

Этот онлайн-конвертер единиц измерения позволяет быстро и точно преобразовывать многие единицы измерения из одной системы в другую. Страница преобразования единиц представляет собой решение для инженеров, переводчиков и для всех, чья деятельность требует работы с величинами, измеряемыми в различных единицах.

Вы можете использовать этот онлайн-конвертер для преобразования нескольких сотен единиц (включая метрическую, британскую и американскую) в 76 категорий или нескольких тысяч пар, включая ускорение, площадь, электрическую энергию, энергию, силу, длину, свет, массу, массовый расход, плотность, удельный объем, мощность, давление, напряжение, температура, время, крутящий момент, скорость, вязкость, объем и емкость, объемный расход и многое другое.
Примечание: Целые числа (числа без десятичной точки или показателя степени) считаются с точностью до 15 цифр, а максимальное количество цифр после десятичной точки равно 10.», То есть« умножить на десять в степени ». Электронная нотация обычно используется в калькуляторах, а также учеными, математиками и инженерами.

Преобразователи общих единиц

Конвертер длины и расстояния : метр, километр, сантиметр, миллиметр, нанометр, ярд, фут, дюйм, парсек, световой год, астрономическая единица, расстояние до Луны (от Земли до Луны), лига , миля, морская миля (международная), сажень, длина кабеля (международная), точка, пиксель, калибр, планковская длина…

Конвертер массы : грамм, килограмм, миллиграмм, тонна (метрическая), фунт, унция, камень (США), камень (Великобритания), карат, зерно, талант (библейский греческий), драхма (библейский греческий), денарий (библейский римский), шекель (библейский иврит), масса Планка, масса протона, атомная единица массы, масса электрона (покой), масса Земли, масса Солнца …

Сухой объем и стандартные измерения при приготовлении пищи : литр, бочка сухой (США), пинта сухой (США), квартовый сухой (США), peck (США), peck (Великобритания), bushel (США), bushel (UK), cor (библейский), homer (библейский), ephah (библейский) ), seah (библейский), omer (библейский), cab (библейский), log (библейский), кубометр.

Конвертер площади : миллиметр², сантиметр², метр², километр², гектар, акр, дюйм², фут², ярд², миля², сарай, круглый дюйм, поселок, роуд, стержень², окунь², усадьба, шест², сабин, арпент, куерда, квадратная верста, квадратный аршин, квадратный фут, квадратный сажень, площадь Планка …

Конвертер объёма и общих единиц измерения температуры : метр³, километр³, миллиметр³, литр, гектолитр, миллилитр, капля, бочка (масло), бочка (США) ), баррель (Великобритания), галлон (США), галлон (Великобритания), кварта (США), кварта (Великобритания), пинта (США), пинта (Великобритания), баррель (нефть), баррель (США), баррель (Великобритания ), галлон (США), галлон (Великобритания), кварта (США), кварта (Великобритания), пинта (США), пинта (Великобритания), ярд³, фут³, дюйм³, регистровая тонна, 100 кубических футов…

Преобразователь температуры : кельвин, градус Цельсия, градус Фаренгейта, градус Ренкина, градус Реомюра, температура Планка.

Преобразователь давления, напряжения, модуля Юнга : паскаль, килопаскаль, мегапаскаль, миллипаскаль, микропаскаль, нанопаскаль, атмосферно-техническая, стандартная атмосфера, ksi, psi, ньютон / метр², бар, миллибар, килограмм-сила / метр², грамм- сила / сантиметр², тонна-сила (короткая) / фут², фунт-сила / фут², миллиметр ртутного столба (0 ° C), дюйм ртутного столба (32 ° F), сантиметр водяного столба (4 ° C), фут водяного столба (4 ° C) , метр морской воды…

Конвертер энергии и работы : джоуль, килоджоуль, мегаджоуль, миллиджоуль, мегаэлектронвольт, электрон-вольт, эрг, киловатт-час, мегаватт-час, ньютон-метр, килокалория (IT), калория (пищевая), Британские тепловые единицы (IT), мегабтеки (IT), тонна-час (охлаждение), тонна нефтяного эквивалента, баррель нефтяного эквивалента (США), мегатонна, тонна (взрывчатые вещества), килограмм в тротиловом эквиваленте, дин-сантиметр, грамм-сила-сантиметр, килограмм-сила-метр, килопонд-метр, фут-фунт, дюйм-фунт, энергия Планка …

Преобразователь мощности : ватт, киловатт, мегаватт, милливатт, лошадиные силы, вольт-ампер, ньютон-метр / секунда, джоуль / секунда, мегаджоуль в секунду, килоджоуль в секунду, миллиджоуль в секунду, джоуль в час, килоджоуль в час, эрг в секунду, британские тепловые единицы (IT) в час, килокалории (IT) в час…

Преобразователь силы : ньютон, килоньютон, миллиньютон, дин, джоуль / метр, джоуль / сантиметр, грамм-сила, килограмм-сила, тонна-сила (короткая), кип-сила, килопунт-сила, фунт-сила сила, унция-сила, фунтал, фунт-фут в секунду², pond, sthene, грав-сила, миллиграв-сила …

Преобразователь времени : секунда, миллисекунда, наносекунда, пикосекунда, минута, час, день, неделя, месяц, год, декада, век, тысячелетие, планковское время, год (юлианский), год (високосный), год (тропический), год (сидерический), год (григорианский), две недели, встряска…

Конвертер линейной скорости и скорости : метр в секунду, километр в час, километр в секунду, миля в час, фут в секунду, миля в секунду, узел, узел (Великобритания), скорость света в вакууме, космический скорость — первая, космическая скорость — вторая, космическая скорость — третья, скорость Земли, скорость звука в чистой воде, Мах (стандарт СИ), Мах (20 ° C и 1 атм), ярд / секунду …

Угол Преобразователь : градус, радиан, град, гон, минута, секунда, знак, мил, оборот, круг, поворот, квадрант, прямой угол, секстант.

Конвертер топливной экономичности, расхода топлива и экономии топлива : метр / литр, километр / литр, миля (США) / литр, морская миля / литр, морская миля / галлон (США), километр / галлон (США), литр / 100 км, галлон (США) / миля, галлон (США) / 100 миль, галлон (Великобритания) / миля, галлон (Великобритания) / 100 миль …

Конвертер чисел : двоичный, восьмеричный, десятичный, шестнадцатеричный, основание-3, основание-4, основание-5, основание-6, основание-7, основание-9, основание-10, основание-11, основание-12, основание-13, основание-14, основание-15, основание-20, основание-21, основание-22, основание-23, основание-24, основание-28, основание-30, основание-32, основание-34, основание-36…

Преобразователь единиц информации и хранения данных : бит, байт, слово, четверное слово, MAPM-слово, блок, килобит (10³ бит), кибибит, кибибайт, килобайт (10³ байтов), мегабайт (10⁶) байтов), гигабайт (10⁹ байтов), терабайт (10¹² байтов), петабайт (10¹⁵ байтов), эксабайт (10¹⁸ байтов), гибкий диск (3,5 ED), гибкий диск (5,25 HD), Zip 250, Jaz 2 ГБ, CD (74 минут), DVD (2 слоя 1 сторона), диск Blu-ray (однослойный), диск Blu-ray (двухслойный) …

Курсы обмена валют : евро, доллар США, канадский доллар, британский фунт стерлингов, японская иена, швейцарский франк, аргентинское песо, австралийский доллар, бразильский реал, болгарский лев, чилийское песо, китайский юань, чешская крона, датская крона, египетский фунт, венгерский форинт, исландская крона, индийская рупия, индонезийская рупия, новый израильский шекель , Иорданский динар, малазийский ринггит, мексиканское песо, новозеландский доллар, норвежская крона, пакистанская рупия, филиппинское песо, румынский лей, российский рубль, саудовский риял, сингапурский доллар, Южноафриканский рэнд, южнокорейский вон, шведская крона, новый тайваньский доллар, тайский бат, турецкая лира, украинская гривна…

Размеры женской одежды и обуви : женские платья, костюмы и свитера, женская обувь, женские купальные костюмы, размер букв, бюст, дюймы, естественная талия, дюймы, заниженная талия, дюймы, бедра, дюймы, бюст, сантиметры, Натуральная талия, сантиметры, Заниженная талия, сантиметры, Бедра, сантиметры, Длина стопы, мм, Торс, дюймы, США, Канада, Великобритания, Европа, континентальный, Россия, Япония, Франция, Австралия, Мексика, Китай, Корея ..

Размеры мужской одежды и обуви : мужские рубашки, мужские брюки / брюки, размер мужской обуви, размер буквы, шея, дюймы, грудь, дюймы, рукав, дюймы, талия, дюймы, шея, сантиметры, грудь, сантиметры, Рукав, сантиметры, Талия, сантиметры, Длина стопы, мм, Длина стопы, дюймы, США, Канада, Великобритания, Австралия, Европа, континентальный, Япония, Россия, Франция, Италия, Испания, Китай, Корея, Мексика…

Механика

Преобразователь угловой скорости и частоты вращения : радиан / секунда, радиан / день, радиан / час, радиан / минута, градус / день, градус / час, градус / минута, градус / секунда, оборот / день, оборот / час, оборот / минута, оборот / секунда, оборот / год, оборот / месяц, оборот / неделя, градус / год, градус / месяц, градус / неделя, радиан / год, радиан / месяц, радиан / неделя.

Преобразователь ускорения : дециметр / секунда², метр / секунда², километр / секунда², гектометр / секунда², декаметр / секунда², сантиметр / секунда², миллиметр / секунда², микрометр / секунда², нанометр / секунда², пикометр / секунда², фемтометр / секунда² , аттометр в секунду², галлон, галилей, миля в секунду², ярд в секунду², фут в секунду², дюйм в секунду², ускорение свободного падения, ускорение свободного падения на Солнце, ускорение свободного падения на Меркурии, ускорение свободного падения на Венере , ускорение свободного падения на Луне, ускорение свободного падения на Марсе, ускорение свободного падения на Юпитере, ускорение свободного падения на Сатурне…

Конвертер плотности : килограмм / метр³, килограмм / сантиметр³, грамм / метр³, грамм / сантиметр³, грамм / миллиметр³, миллиграмм / метр³, миллиграмм / сантиметр³, миллиграмм / миллиметр³, экзаграмм / литр, петаграмм / литр, тераграмм / литр, гигаграмм / литр, мегаграмм / литр, килограмм / литр, гектограмм / литр, декаграмм / литр, грамм / литр, дециграмм / литр, сантиграмм / литр, миллиграмм / литр, микрограмм / литр, нанограмм / литр, пикограмм / литр , фемтограмм / литр, аттограмм / литр, фунт / дюйм³ …

Конвертер удельного объема : метр³ / килограмм, сантиметр³ / грамм, литр / килограмм, литр / грамм, фут³ / килограмм, фут³ / фунт, галлон (США ) / фунт, галлон (Великобритания) / фунт.

Преобразователь момента инерции : килограмм-метр², килограмм-сантиметр², килограмм-миллиметр², грамм-сантиметр², грамм-миллиметр², килограмм-сила-метр-секунда², унция-дюйм², унция-сила-дюйм-секунда², фунт-фут², фунт-сила-фут-секунда, фунт²-дюйм , фунт-сила-дюйм-секунда², ударный фут².

Конвертер момента силы : метр ньютон, метр килоньютон, метр миллиньютон, метр микроньютон, метр тонна-сила (короткий), метр тонна-сила (длинный), метр тонна-сила (метрический), метр килограмм-сила, грамм-сила-сантиметр, фунт-сила-фут, фунт-фут, фунт-дюйм.

Гидротрансформатор : ньютон-метр, ньютон-сантиметр, ньютон-миллиметр, килоньютон-метр, дин-сантиметр, дин-миллиметр, килограмм-сила-метр, килограмм-сила-сантиметр, килограмм-сила-миллиметр, грамм-сила-метр, грамм- сила-сантиметр, грамм-сила-миллиметр, унция-сила-фут, унция-сила-дюйм, фунт-сила-фут, фунт-сила-дюйм.

Термодинамика — тепло

Конвертер удельной энергии, теплоты сгорания (на массу) : джоуль / килограмм, килоджоуль / килограмм, калория (IT) / грамм, калория (th) / грамм, британские тепловые единицы (IT) / фунт, БТЕ (th) / фунт, килограмм / джоуль, килограмм / килоджоуль, грамм / калория (IT), грамм / калория (th), фунт / BTU (IT), фунт / Btu (th), фунт / лошадиная сила-час, грамм / лошадиная сила (метрическая) -час, грамм / киловатт-час.

Конвертер удельной энергии, теплоты сгорания (на объем) : джоуль / метр³, джоуль / литр, мегаджоуль / метр³, килоджоуль / метр³, килокалория (IT) / метр³, калория (IT) / сантиметр³, терм / фут³, терм / галлон (Великобритания), британские тепловые единицы (IT) на фут³, британские тепловые единицы на фут³, CHU / фут³, метр³ / джоуль, литр / джоуль, галлон (США) / лошадиные силы-час, галлон (США) / лошадиные силы (метрические единицы) )-час.

Конвертер теплопроводности : ватт / метр / K, ватт / сантиметр / ° C, киловатт / метр / K, калория (IT) / секунда / сантиметр / ° C, калория (th) / секунда / сантиметр / ° C , килокалория (IT) / час / метр / ° C, килокалория (th) / час / метр / ° C, BTU (IT) дюйм / секунда / фут² / ° F, BTU (th) дюйм / секунда / фут² / ° F , Btu (IT) фут / час / фут² / ° F, Btu (th) фут / час / фут² / ° F, BTU (IT) дюйм / час / фут² / ° F, Btu (th) дюйм / час / фут² / ° F.

Конвертер удельной теплоемкости : джоуль / килограмм / K, джоуль / килограмм / ° C, джоуль / грамм / ° C, килоджоуль / килограмм / K, килоджоуль / килограмм / ° C, калория (IT) / грамм / ° C, калория (IT) / грамм / ° F, калория (th) / грамм / ° C, килокалория (IT) / килограмм / ° C, килокалория (th) / килограмм / ° C, килокалория (IT) / килограмм / K , килокалория (th) / килограмм / K, килограмм-сила-метр / килограмм / K, фунт-сила-фут / фунт / ° R, Btu (IT) / фунт / ° F, Btu (th) / фунт / ° F, Btu (IT) / фунт / ° R, Btu (th) / фунт / ° R, Btu (IT) / фунт / ° C, CHU / фунт / ° C.

Конвертер плотности теплового потока : ватт / метр², киловатт / метр², ватт / сантиметр², ватт / дюйм², джоуль / секунда / метр², килокалория (IT) / час / метр², килокалория (IT) / час / фут², калория (IT) / минута / сантиметр², калория (IT) / час / сантиметр², калория (th) / минута / сантиметр², калория (th) / час / сантиметр², дина / час / сантиметр, эрг / час / миллиметр², фут-фунт / минута на фут², мощность в лошадиных силах на фут², мощность (метрическая) на фут², BTU (IT) / секунда на фут², BTU (IT) / минута на фут², Btu (IT) / час на фут², BTU (th) / секунда на дюйм² , Btu (th) / секунда / фут², Btu (th) / минута / фут², Btu (th) / час / фут², CHU / час / фут².

Преобразователь коэффициента теплопередачи : ватт / метр² / K, ватт / метр² / ° C, джоуль / секунда / метр² / K, килокалория (IT) / час / метр² / ° C, килокалория (IT) / час / фут² / ° C, Btu (IT) / секунда / фут² / ° F, Btu (th) / секунда / фут² / ° F, BTU (IT) / час / фут² / ° F, BTU (th) / час / фут² / ° F, CHU / час / фут² / ° C.

Гидравлика — жидкости

Конвертер объемного расхода : метр³ / секунда, метр³ / день, метр³ / час, метр³ / минута, сантиметр³ / день, сантиметр³ / час, сантиметр³ / минуту, сантиметр³ / секунда, литр / день, литр в час, литр в минуту, литр в секунду, миллилитр в день, миллилитр в час, миллилитр в минуту, миллилитр в секунду, галлон (США) в день, галлон (США) в час, галлон (США) в минуту, галлон (США) в секунду, галлон (Великобритания) в день, галлон (Великобритания) в час, галлон (Великобритания) в минуту, галлон (Великобритания) в секунду, килобаррель (США) в день, баррель (США) в день…

Конвертер массового расхода : килограмм / секунда, грамм / секунда, грамм / минута, грамм / час, грамм / день, миллиграмм / минута, миллиграмм / час, миллиграмм / день, килограмм / минута, килограмм / час , килограмм / день, экзаграмм / секунда, петаграмма / секунда, тераграмма / секунда, гигаграмма / секунда, мегаграмм / секунда, гектограмм / секунда, декаграмма / секунда, дециграмма / секунда, сантиграмма / секунда, миллиграмм / секунда, микрограмм / секунда, тонна (метрическая) в секунду, тонна (метрическая) в минуту, тонна (метрическая) в час, тонна (метрическая) в день …

Конвертер молярной скорости потока : моль / секунда, экзамен / секунда, петамоль / секунда, терамоль / секунда, гигамоль / секунда, мегамоль / секунда, киломоль / секунда, гектомоль / секунда, декамоль / секунда, децимоль / секунда, сантимоль / секунда, миллимоль / секунда, микромоль / секунда, наномоль / секунда, пикомоль / секунда, фемтомоль / секунда, аттомоль в секунду, моль в минуту, моль в час, моль в день, миллимоль в минуту, миллимоль в час, миллимоль в день, километр в минуту, километр в час, километр в день.

Mass Flux Converter : грамм / секунда / метр², килограмм / час / метр², килограмм / час / фут², килограмм / секунда / метр², грамм / секунда / сантиметр², фунт / час / фут², фунт / секунда / фут².

Конвертер молярной концентрации : моль / метр³, моль / литр, моль / сантиметр³, моль / миллиметр³, километр / метр³, километр / литр, километр / сантиметр³, километр / миллиметр³, миллимоль / метр³, миллимоль / литр, миллимоль / сантиметр³, миллимоль / миллиметр³, моль / дециметр³, молярный, миллимолярный, микромолярный, наномолярный, пикомолярный, фемтомолярный, аттомолярный, зептомолярный, йоктомолярный.

Массовая концентрация в преобразователе раствора : килограмм / литр, грамм / литр, миллиграмм / литр, часть / миллион, гран / галлон (США), гран / галлон (Великобритания), фунт / галлон (США), фунт / галлон (Великобритания), фунт / миллион галлон (США), фунт / миллион галлон (Великобритания), фунт / фут³, килограмм / метр³, грамм / 100 мл.

Конвертер динамической (абсолютной) вязкости : паскаль-секунда, килограмм-сила секунда на метр², ньютон-секунда на метр², миллиньютон-секунда на квадратный метр, дин-секунда на сантиметр², равновесие, эксапуаз, петапуаз, терапуаз, гигапуаз, мегапуаз, килопуаз, гектопуаз, декапуаз, деципуаз, сантипуаз, миллипуаз, микропуаз, наноуаз, пикопуаз, фемтопуаз, аттопуаз, фунт-сила-секунда / дюйм², фунт-сила-секунда / фут², фунт-секунда / фут², грамм / сантиметр / секунда…

Конвертер кинематической вязкости : метр² / секунда, метр² / час, сантиметр² / секунда, миллиметр² / секунда, фут² / секунда, фут² / час, дюйм² / секунда, стоксы, экзастоки, петастоксы, терастоки, гигастоксы, мегастоксы, килостоки, гектостоки, декастоки, децистоки, сантистоки, миллистоки, микростоки, наностоки, пикостоки, фемтостоки, аттостоки.

Преобразователь поверхностного натяжения : ньютон на метр, миллиньютон на метр, грамм-сила / сантиметр, дина на сантиметр, эрг / сантиметр², эрг / миллиметр², фунт на дюйм, фунт-сила / дюйм.

Акустика — Звук

Преобразователь чувствительности микрофона : децибел относительно 1 вольт на 1 паскаль, децибел относительно 1 вольта на 1 микропаскаль, децибел относительно 1 вольта на 1 дин на квадратный сантиметр, децибел относительно 1 вольт на 1 микробар, вольт на паскаль, милливольт на паскаль, микровольт на паскаль.

Преобразователь уровня звукового давления (SPL) : ньютон на квадратный метр, паскаль, миллипаскаль, микропаскаль, дин / квадратный сантиметр, бар, миллибар, микробар, уровень звукового давления в децибелах.

Фотометрия — свет

Конвертер яркости : кандела на метр², кандела на сантиметр², кандела на фут², кандела на дюйм², килокандела на метр², стильб, люмен на метр² / стерадиан, люмен на сантиметр² / стерадиан² / лм стерадиан, нит, миллинит, ламберт, миллиламберт, фут-ламберт, апостиль, блондель, брил, скот.

Конвертер силы света : кандела, свеча (немецкий язык), свеча (Великобритания), десятичная свеча, свеча (пентан), пентановая свеча (мощность 10 свечей), свеча Хефнера, единица измерения яркости, десятичный буж, люмен / стерадиан, свеча (Международный).

Конвертер освещенности : люкс, метр-свеча, сантиметр-свеча, фут-свеча, фот, nox, кандела стерадиан на метр², люмен на метр², люмен на сантиметр², люмен на фут², ватт на сантиметр² (при 555 нм) .

Преобразователь частоты и длины волны : герцы, экзагерцы, петагерцы, терагерцы, гигагерцы, мегагерцы, килогерцы, гектогерцы, декагерцы, децигерцы, сантигерцы, единицы длины волны в миллигерц, микрогерцы, микрогерцы, миллигерцы, миллигерцы, миллигерцы, миллигерцы , длина волны в петаметрах, длина волны в тераметрах, длина волны в гигаметрах, длина волны в мегаметрах, длина волны в километрах, длина волны в гектометрах, длина волны в декаметрах…

Конвертер оптической силы (диоптрии) в фокусное расстояние : Оптическая сила (диоптрическая сила или преломляющая сила) линзы или другой оптической системы — это степень, с которой система сходится или рассеивает свет. Он рассчитывается как величина, обратная фокусному расстоянию оптической системы и измеряется в инверсных метрах в СИ или, чаще, в диоптриях (1 диоптрия = м⁻¹)

Электротехника

Конвертер электрического заряда : кулон, мегакулон , килокулон, милликулон, микрокулон, нанокулон, пикокулон, абкулон, EMU заряда, статкулон, ESU заряда, франклин, ампер-час, миллиампер-час, ампер-минута, ампер-секунда, фарадей (на основе углерода 12), элементарный обвинение.

Преобразователь электрического тока : ампер, килоампер, миллиампер, биот, абампер, ЭДС тока, статампер, ЭДС тока, СГС э.м. единица, CGS e.s. единица, микроампер, наноампер, ток Планка.

Линейный преобразователь плотности тока : ампер / метр, ампер / сантиметр, ампер / дюйм, абампер / метр, абампер / сантиметр, абампер / дюйм, эрстед, гильберт / сантиметр, ампер / миллиметр, миллиампер / метр, миллиампер , миллиампер / сантиметр, миллиампер / миллиметр, микроампер / метр, микроампер / дециметр, микроампер / сантиметр, микроампер / миллиметр.

Преобразователь поверхностной плотности тока : ампер / метр², ампер / сантиметр², ампер / дюйм², ампер / мил², ампер / круговой мил, абампер / сантиметр², ампер / миллиметр², миллиампер / миллиметр², микроампер / миллиметр², миллиампер / миллиметр², миллиампер / миллиметр² миллиампер / сантиметр², микроампер / сантиметр², килоампер / сантиметр², ампер / дециметр², миллиампер / дециметр², микроампер / дециметр², килоампер / дециметр².

Преобразователь напряженности электрического поля : вольт на метр, киловольт на метр, киловольт на сантиметр, вольт на сантиметр, милливольт на метр, микровольт на метр, киловольт на дюйм, вольт на дюйм, вольт на мил, абвольт на сантиметр, статвольт / сантиметр, статвольт / дюйм, ньютон / кулон, вольт / микрон.

Преобразователь электрического потенциала и напряжения : вольт, милливольт, микровольт, нановольт, пиковольт, киловольт, мегавольт, гигавольт, теравольт, ватт / ампер, абвольт, EMU электрического потенциала, статвольт, ESU электрического потенциала, планковский электрический потенциал.

Преобразователь электрического сопротивления : Ом, мегаом, микром, вольт / ампер, обратный сименс, abohm, EMU сопротивления, статом, ESU сопротивления, квантованное сопротивление Холла, импеданс Планка, миллиом, кОм.

Преобразователь удельного электрического сопротивления : омметр, ом-сантиметр, ом-дюйм, микром-сантиметр, микром-дюйм, ом-сантиметр, статом-сантиметр, круговой мил-ом / фут, ом-кв.миллиметр на метр.

Преобразователь электрической проводимости : сименс, мегасименс, килосименс, миллисименс, микросименс, ампер / вольт, mho, gemmho, micromho, abmho, statmho, квантованная проводимость Холла.

Конвертер электропроводности : сименс / метр, пикосименс / метр, mho / метр, mho / сантиметр, abmho / метр, abmho / сантиметр, статмо / метр, статмо / сантиметр, сименс / сантиметр, миллисименс / метр, миллисименс / сантиметр, микросименс / метр, микросименс / сантиметр, единица электропроводности, коэффициент проводимости, доли на миллион, шкала 700, шкала частей на миллион, шкала 500, частей на миллион, шкала 640, TDS, частей на миллион, шкала 640, TDS, части на миллион, шкала 550, TDS, частей на миллион, шкала 500, TDS, частей на миллион, шкала 700.

Преобразователь емкости : фарад, экзафарад, петафарад, терафарад, гигафарад, мегафарад, килофарад, гектофарад, декафарад, децифарад, сентифарад, миллифарад, микрофарад, емкость, нанофарад, аттофарад, ед. , статфарад, ЭСУ емкости.

Преобразователь индуктивности : генри, эксагенри, петагенри, терагенри, гигагенри, мегагенри, килогенри, гектогенри, декагенри, децигенри, сантигенри, миллигенри, микрогенри, наногенри, пикогенри, атогенри, атогенри, энтогенри, энтогенри, энтогенри , статенри, ЭСУ индуктивности.

Преобразователь реактивной мощности переменного тока : реактивный вольт-ампер, реактивный милливольт-ампер, реактивный киловольт-ампер, реактивный мегавольт-ампер, реактивный гигавольт-ампер.

Американский преобразователь калибра проволоки : Американский калибр проволоки (AWG) — это стандартизированная система калибра проволоки, используемая в США и Канаде для измерения диаметров цветных электропроводящих проводов, включая медь и алюминий. Чем больше площадь поперечного сечения провода, тем выше его допустимая нагрузка по току.Чем больше номер AWG, также называемый калибром провода, тем меньше физический размер провода. Самый большой размер AWG — 0000 (4/0), а самый маленький — 40. В этой таблице перечислены размеры и сопротивления AWG для медных проводников. Используйте закон Ома для расчета падения напряжения на проводнике.

Магнитостатика, магнетизм и электромагнетизм

Преобразователь магнитного потока : Вебер, милливебер, микровебер, вольт-секунда, единичный полюс, мегалин, килолин, линия, максвелл, тесла-метр², тесла-сантиметр², гаусс-сантиметр², квант магнитного потока.

Конвертер плотности магнитного потока : тесла, Вебер / метр², Вебер / сантиметр², Вебер / дюйм², Максвелл / метр², Максвелл / сантиметр², Максвелл / дюйм², Гаусс, линия / сантиметр², линия / дюйм², гамма.

Radiation and Radiology

Конвертер мощности поглощенной дозы излучения, суммарной мощности дозы ионизирующего излучения : серый цвет в секунду, эксагрей в секунду, петагрей в секунду, терагрей в секунду, гигаграй в секунду, мегагрей в секунду, килограмм в секунду, гектограмм / секунда, декаграй / секунда, дециграй / секунда, сантигрей / секунда, миллиграй / секунда, микрогрей / секунда, наногрей / секунда, пикграй / секунда, фемтогрей / секунда, аттогрей / секунда, рад / секунда, джоуль / килограмм / секунда, ватт на килограмм, зиверт в секунду, миллизиверт в год, миллизиверт в час, микрозиверт в час, бэр в секунду, рентген в час…

Радиоактивность. Конвертер радиоактивного распада : беккерель, петабеккерель, терабеккерель, гигабеккерель, мегабеккерель, килобеккерель, миллибеккерель, кюри, килокюри, милликюри, микрокюри, нанокюри, пикокюри, резерфорд, одно / секунда, дезинтеграция.

Конвертер облучения : кулон на килограмм, милликулон на килограмм, микрокулон на килограмм, рентген, миллирентген, микрорентген, тканевый рентген, Паркер, респ.

Радиация. Конвертер поглощенной дозы : рад, миллирад, джоуль на килограмм, джоуль на грамм, джоуль на сантиграм, джоуль на миллиграмм, серый, эксагрей, петагрей, терагрей, гигагрей, мегагрей, килограмм, гектагрей, декаграй, декаграй, сантигрей, микрогрей, миллиграм , наногрей, пикограй, фемтогрей, аттогрей, зиверт, миллизиверт, микрозиверт …

Разные преобразователи

Конвертер метрических префиксов : нет, yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deka , деци, санти, милли, микро, нано, пико, фемто, атто, зепто, йокто.

Конвертер передачи данных : бит / секунда, байт / секунда, килобит / секунда (SI по умолчанию), килобайт / секунда (SI по умолчанию), кибибит / секунда, кибибайт / секунда, мегабит / секунда (SI по умолчанию) , мегабайт в секунду (SI по умолчанию), мебибит в секунду, мебибайт в секунду, гигабит в секунду (SI по умолчанию), гигабайт в секунду (SI по умолчанию), гибибит в секунду, гибибит в секунду, терабит в секунду (SI по умолчанию). .), терабайт в секунду (по умолчанию SI), тебибит в секунду, тебибайт в секунду, Ethernet, Ethernet (быстрый), Ethernet (гигабит), OC1, OC3, OC12, OC24, OC48 …

Типографика и цифровой Конвертер единиц изображения : твип, метр, сантиметр, миллиметр, символ (X), символ (Y), пиксель (X), пиксель (Y), дюйм, пика (компьютер), пика (принтер), точка (DTP / PostScript) ), point (компьютер), point (принтер), en, cicero, em, Didot point.

Конвертер единиц измерения объема пиломатериалов : кубический метр, кубический фут, кубический дюйм, футы для досок, тысяча футов для досок, шнур, шнур (80 фут3), футы для шнура, узел, поддон, поперечина, стяжка переключателя.

Калькулятор молярной массы : Молярная масса — это физическое свойство, которое определяется как масса вещества, деленная на количество вещества в молях. Другими словами, это масса одного моля определенного вещества.

Периодическая таблица : Периодическая таблица представляет собой список всех химических элементов, упорядоченных слева направо и сверху вниз по их атомным номерам, электронным конфигурациям и повторяющимся химическим свойствам, расположенным в форме таблицы таким образом, чтобы элементы с аналогичные химические свойства отображаются в вертикальных столбцах, называемых группами.У некоторых групп есть имена, а также номера. Например, все элементы группы 1, кроме водорода, являются щелочными металлами, а элементы группы 18 — благородными газами, которые ранее назывались инертными газами. Различные строки таблицы называются периодами, потому что это расположение отражает периодическое повторение сходных химических и физических свойств химических элементов по мере увеличения их атомного номера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2022 © Все права защищены.