Индукция магнитного поля катушки: Магнитное поле катушки с током

Содержание

Магнитное поле катушки с током

Опыт показывает, что индукция магнитного поля на расстоянии R от прямого проводника с током пропорциональна I и обратно пропорциональна R.

где μ0 = 4π∙10—7 Н/А2 ≈ 1,26∙10—6 Н/А2.

Магнитное поле катушки с током. Соленоид. Усиление действия магнитного поля катушки с током железным сердечником

В центре кругового витка с током индукция магнитного поля направлена по нормали к витку.

Рис. 1. Вектор индукции магнитного поля кругового витка с током

В центре кругового проводника радиуса R по которому протекает ток I индукция магнитного поля равна

где магнитная постоянная μ0 = 4π∙10—7 Н/А2 ≈ 1,26∙10—6 Н/А2.

Соленоидом называется проводник, свернутый в виде спирали, в которой N витков, а длина l значительно больше диаметра. Слово «соленоид» происходит от греческих solen — трубка, eidos — вид.

Рис. 2. Соленоид начала XIX века. Вектор магнитной индукции соленоида

Магнитное поле соленоида (катушки с током), который представляет несколько витков с током, является однородным, магнитное поле вне соленоида мало по сравнению с полем внутри. Модуль вектора индукции магнитного поля соленоида (катушки с током)

где n — число витков в соленоиде, I — сила тока, N — число витков, — число витков на единицу длины соленоида (катушки с током).

Рис. 3. Соленоиды

Модель 1. Магнитное поле вокруг проводников с током

Модель 2. Магнитное поле соленоида

Магнитное поле соленоида (катушки с током) можно значительно усилить, не увеличивая число витков и не увеличивая силу тока. Для этого надо ввести внутрь катушки железный стержень (ферромагнетик), который называется сердечником. Это используют при изготовлении электромагнитов, трансформаторов, электродвигателей и т. д.

Рис. 4. При внесении в катушку с током железного сердечника отклонение малой катушки значительно увеличивается

Катушка с железным сердечником называется электромагнитом.

Рис. 5. Мощные электромагниты

Магнитное поле катушки с током — урок. Физика, 8 класс.

Практический интерес представляет собой магнитное поле катушки с током.

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 1). В катушке может быть несколько десятков, сотен или даже тысяч витков.

Соленоид (от греч. solen — «канал», «труба» и eidos — «подобный») — разновидность катушки с током. Обычно под термином «соленоид» подразумевается цилиндрическая обмотка из провода, причём длина такой обмотки многократно превышает её диаметр.

 

Рис. 1. Изображение катушки

 

Рассмотрим рисунок 2. Мы видим цепь, состоящую из источника тока, реостата и катушки. Катушка содержит большое число витков провода. При протекании тока по цепи железные опилки притягиваются к торцу катушки. А если тока нет, то притяжение не наблюдается.

 

Рис. 2. Изображение цепи с катушкой, реостатом и источником тока

 

Если катушка в этом опыте будет подвешена на проводах, то при протекании тока в цепи, она установится в пространстве строго определённым образом. Точно так же, как и магнитная стрелка компаса (в направлении север — юг).

Это наблюдение позволяет сделать вывод, что катушка с током тоже имеет магнитные полюсы (рис. 3).

 

Рис. 3. Изображение катушки, подвешенной на проводах с током

 

Логично предположить, что у катушки магнитное поле тоже имеется. Для доказательства можно воспользоваться железными опилками  (рис. 4).

 

Рис. 4. Изображение катушки с железными опилками

 

Железные опилки располагаются, образуя замкнутые кривые.

За направление линий магнитного поля принято направление от северного полюса катушки к южному (вне катушки с током).

 

Сила магнитного поля постоянного магнита невелика. Другое дело – электромагнит. Сила магнитного поля электромагнита может изменяться. Ее можно увеличивать или уменьшать. Основная часть любого электромагнита – катушка с намотанным на нее проводом. Рассмотрим опыт, изображенный на рисунке 2. По виткам катушки протекает ток, и она притягивает к себе железные предметы (так проявляется магнитное действие тока). Если увеличить количество витков в катушке, не меняя силу тока в ней, то ее магнитное действие усилится, о чем свидетельствует увеличение количества притягиваемых предметов.

 

Физическая величина, характеризующая магнитные свойства катушки с током, связана линейной зависимостью с числом витков в ней.

На рисунке \(5\) показан электрический контур, позволяющий экспериментально выявить взаимосвязь между силой тока и действием магнитного поля катушки.

Действие магнитного поля катушки с током прямо пропорционально силе тока.

 

Рис. 5. Изображение цепи с реостатом, ключом, катушкой и источником тока

  

Усиление магнитного поля произойдёт при использовании железного сердечника (рис. 6).

Сердечник — металлический стержень для усиления мощности электромагнита.

Сердечник, введённый внутрь катушки с током, усиливает магнитное действие катушки.

 

Рис. 6. Изображение цепи с реостатом, ключом, катушкой с железным сердечником и источником тока

 

Направление магнитного поля тока связано с направлением тока в катушке.

Определить направление линий магнитного поля катушки с током можно при помощи правила правой руки, или правила правого буравчика.

 

Принято считать, что та сторона катушки или витка с током, откуда линии магнитного поля выходят, — это и есть северный магнитный полюс (\(N\)), а сторона, куда линии входят, — это южный магнитный полюс (\(S\)) (рис. 7).

 

Рис. 7. Изображение катушки и магнитных полюсов

Источники:

Рис. 1. Указание авторства не требуется: Трансформатор Спираль Власть Технология, https://pixabay.com/images/id-5508211/, 2020-08-23, бесплатно для коммерческого использования.
Рис. 2. Указание авторства не требуется: Трансформатор Спираль Власть Технология, https://pixabay.com/images/id-5508211/, 2020-08-23, бесплатно для коммерческого использования.
Рис. 3. Указание авторства не требуется: Трансформатор Спираль Власть Технология, https://pixabay.com/images/id-5508211/, 2020-08-23, бесплатно для коммерческого использования.

Рис. 4. Изображение катушки с железными опилками. © ЯКласс.

Рис. 5. Изображение цепи с реостатом, ключом, катушкой и источником тока. © ЯКласс.

Рис. 6. Изображение цепи с реостатом, ключом, катушкой с железным сердечником и источником тока. © ЯКласс.

Рис. 7. Изображение катушки и магнитных полюсов. © ЯКласс.

Физика магнитное поле катушки с током. Магнитное поле катушки с током

Если в пространстве вокруг неподвижных электрических зарядов существует электростатическое поле, то в пространстве вокруг движущихся зарядов (как и вокруг изменяющихся во времени электрических полей, что изначально предположил Максвелл) существует . Это легко наблюдать экспериментально.

Именно благодаря магнитному полю и взаимодействуют между собой электрические токи, а также постоянные магниты и токи с магнитами. По сравнению с электрическим взаимодействием, магнитное взаимодействие является значительно более сильным. Это взаимодействие в свое время изучал Андре-Мари Ампер.

В физике характеристикой магнитного поля служит B, и чем она больше, тем сильнее магнитное поле. Магнитная индукция В — величина векторная, ее направление совпадает с направлением силы, действующей на северный полюс условной магнитной стрелки, помещенной в какую-нибудь точку магнитного поля, — магнитное поле сориентирует магнитную стрелку в направлении вектора В, то есть в направлении магнитного поля.

Вектор В в каждой точке линии магнитной индукции направлен к ней по касательной. То есть индукция В характеризует силовое действие магнитного поля на ток. Похожую роль играет напряженность Е для электрического поля, характеризующая силовое действие электрического поля на заряд.

Простейший эксперимент с железными опилками позволяет наглядно продемонстрировать явление действия магнитного поля на намагниченный объект, поскольку в постоянном магнитном поле маленькие кусочки ферромагнетика (такими кусочками являются железные опилки) становится, намагничиваясь по полю, магнитными стрелками, словно маленькими стрелками компаса.

Если взять вертикальный медный проводник, и продеть его через отверстие в горизонтально расположенном листе бумаги (или оргстекла, или фанеры), а затем насыпать металлические опилки на лист, и немного встряхнуть его, после чего пропустить по проводнику постоянный ток, то легко заметить, как опилки выстроятся в форме вихря по окружностям вокруг проводника, в плоскости перпендикулярной току в нем.

Эти окружности из опилок как раз и будут условным изображением линий магнитной индукции В магнитного поля проводника с током. Центр окружностей, в данном эксперименте, будет расположен ровно в центре, по оси проводника с током.

Направление векторов магнитной индукции В проводника с током легко определить или по правилу правого винта: при поступательном движении оси винта по направлению тока в проводнике, направление вращения винта или рукоятки буравчика (вкручиваем или выкручиваем винт) укажет направление магнитного поля вокруг тока.

Почему применяется правило буравчика? Поскольку операция ротор (обозначаемая в теории поля rot), используемая в двух уравнениях Максвелла, может быть записана формально как векторное произведение (с оператором набла), а главное потому, что ротор векторного поля может быть уподоблен (представляет собой аналогию) угловой скорости вращения идеальной жидкости (как представлял сам Максвелл), поле скоростей течения которой изображает собой данное векторное поле, можно воспользоваться для ротора теми формулировками правила, которые описаны для угловой скорости.

Таким образом, если крутить буравчик в направлении завихрения векторного поля, то он будет ввинчиваться в направлении вектора ротора этого поля.

Как видите, в отличие от линий напряженности электростатического поля, которые в пространстве разомкнуты, линии магнитной индукции, окружающие электрический ток, замкнуты. Если линии электрической напряженности Е начинаются на положительных зарядах и заканчиваются на отрицательных, то линии магнитной индукции В просто замкнуты вокруг порождающего их тока.


Теперь усложним эксперимент. Рассмотрим вместо прямого проводника с током виток с током. Допустим, нам удобно расположить такой контур перпендикулярно плоскости рисунка, причем слева ток направлен на нас, а справа — от нас. Если теперь внутри витка с током разместить компас с магнитной стрелкой, то магнитная стрелка укажет направление линий магнитной индукции — они окажутся направлены по оси витка.

Почему? Потому что противоположные стороны от плоскости витка окажутся аналогичны полюсам магнитной стрелки. Откуда линии В выходят — это северный магнитный полюс, куда входят — южный полюс. Это легко понять, если сначала рассмотреть проводник с током и с его магнитным полем, а затем просто свернуть проводник в кольцо.

Для определения направления магнитной индукции витка с током также пользуются правилом буравчика или правилом правого винта. Поместим острие буравчика по центру витка, и станем его вращать по часовой стрелке. Поступательное движение буравчика совпадет по направлению с вектором магнитной индукции В в центре витка.

Очевидно, направление магнитного поля тока связано с направлением тока в проводнике, будь то прямой проводник или виток.

Принято считать, что та сторона катушки или витка с током, откуда линии магнитной индукции В выходят (направление вектора В наружу) — это и есть северный магнитный полюс, а куда линии входят (вектор В направлен внутрь) — это южный магнитный полюс.

Если множество витков с током образуют длинную катушку — соленоид (длина катушки во много раз превышает ее диаметр), то магнитное поле внутри нее однородно, то есть линии магнитной индукции В параллельны друг другу, и имеют одинаковую плотность по всей длине катушки. Кстати, магнитное поле постоянного магнита похоже снаружи на магнитное поле катушки с током.

Для катушки с током I, длиной l, с количеством витков N, магнитная индукция в вакууме будет численно равна:


Итак, магнитное поле внутри катушки с током является однородным, и направлено от южного к северному полюсу (внутри катушки!) Магнитная индукция внутри катушки пропорциональна по модулю числу ампер-витков на единицу длины катушки с током.

Однако, оказалось, что катушка с током имеет и другие замечательные свойства. Чем из большего количества витков состоит катушка, тем сильнее становится магнитное поле. Это позволяет собирать магниты различной силы действия. Однако есть более простые способы воздействия на величину магнитного поля.

Так, при увеличении силы тока в проводах катушки возрастает сила магнитного поля, и, наоборот, при уменьшении силы тока, магнитное поле ослабевает. То есть, при элементарном подключении реостата, мы получаем регулируемый магнит.

Магнитное поле катушки с током можно значительно усилить, введя внутрь спирали железный стержень. Он называется сердечником. Применение сердечника позволяет создавать очень мощные магниты. Например, в производстве используют магниты, способные поднимать и удерживать несколько десятков тонн веса. Это достигается следующим образом.

Сердечник изгибают в виде дуги, а на два его конца надевают две катушки, по которым пускают ток. Катушки соединяют проводами 4е так, что их полюса совпадают. Сердечник усиливает их магнитное поле. Снизу к этой конструкции подводят пластину с крюком, на который подвешивают груз. Подобные устройства используют на заводах и в портах для того, чтобы перемещать грузы очень большого веса. Эти грузы легко подсоединяются и отсоединяются при включении и отключении тока в катушках.

Если проводник, по которому проходит электрический ток, внести в магнитное поле, то в результате взаимодействия магнитного поля и проводника с током проводник будет перемещаться в ту или иную сторону.
Направление перемещения проводника зависит от направления тока в нем и от направления магнитных линий поля.

Допустим, что в магнитном поле магнита NS находится проводник, расположенный перпендикулярно плоскости рисунка; по проводнику протекает ток в направлении от нас за плоскость рисунка.

Ток, идущий от плоскости рисунка к наблюдателю, обозначается условно точкой, а ток, направляющийся за плоскость рисунка от наблюдателя,- крестом.

Движение проводника с током в магнитном поле
1 — магнитное поле полюсов и тока проводника,
2 — результирующее магнитное поле.

Всегда всё уходящее на изображениях обозначается крестом,
а направленное на смотрящего — точкой.

Под действием тока вокруг проводника образуется свое магнитное поле рис.1 .
Применяя правило буравчика, легко убедиться, что в рассматриваемом нами случае направление магнитных линий этого поля совпадает с направлением движения часовой стрелки.

При взаимодействии магнитного поля магнита и поля, созданного током, образуется результирующее магнитное поле, изображенное на рис.2 .
Густота магнитных линий результирующего поля с обеих сторон проводника различна. Справа от проводника магнитные поля, имея одинаковое направление, складываются, а слева, будучи направленными встречно, частично взаимно уничтожаются.

Следовательно, на проводник будет действовать сила, большая справа и меньшая слева. Под действием большей силы проводник будет перемещаться по направлению силы F.

Перемена направления тока в проводнике изменит направление магнитных линий вокруг него, вследствие чего изменится и направление перемещения проводника.

Для определения направления движения проводника в магнитном поле можно пользоваться правилом левой руки, которое формулируется следующим образом:

Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника.

Сила, действующая на проводник с током в магнитном поле, зависит как от тока в проводнике, так и от интенсивности магнитного поля.

Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В . Единицей измерения магнитной индукции является тесла (Тл=Вс/м2 ).

О магнитной индукции можно судить по силе действия магнитного поля на проводник с током, помещенный в это поле. Если на проводник длиной 1 м и с током 1 А , расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н (ньютон), то магнитная индукция такого поля равна 1 Тл (тесла).

Магнитная индукция является векторной величиной, ее направление совпадает с направлением магнитных линий, причем в каждой точке поля вектор магнитной индукции направлен по касательной к магнитной линии.

Сила F , действующая на проводник с током в магнитном поле, пропорциональна магнитной индукции В , току в проводнике I и длине проводника l , т. е.
F=BIl .

Эта формула верна лишь в том случае, когда проводник с током расположен перпендикулярно магнитным линиям равномерного магнитного поля.
Если проводник с током находится в магнитном поле под каким-либо углом а по отношению к магнитным линиям, то сила равна:
F=BIl sin a .
Если проводник расположить вдоль магнитных линий, то сила F станет равной нулю, так кака=0 .

Электромагнитная индукция


Представим себе два параллельных проводника аб и вг , расположенных на близком расстоянии один от другого. Проводник аб подключен к зажимам батареи Б ; цепь включается ключомК , при замыкании которого по проводнику проходит ток в направлении от а к б . К концам же проводника вг присоединен чувствительный амперметрА , по отклонению стрелки которого судят о наличии тока в этом проводнике.

Если в собранной таким образом схеме замкнуть ключ К , то в момент замыкания цепи стрелка амперметра отклонится, свидетельствуя о наличии тока в проводнике вг ;
по прошествии же небольшого промежутка времени (долей секунды) стрелка амперметра придет в исходное (нулевое) положение.

Размыкание ключа К опять вызовет кратковременное отклонение стрелки амперметра, но уже в другую сторону, что будет указывать на возникновение тока противоположного направления.
Подобное отклонение стрелки амперметра А можно наблюдать и в том случае, если, замкнув ключ К , приближать проводник аб к проводнику вг или удалять от него.

Приближение проводника аб к вг вызовет отклонение стрелки амперметра в ту же сорону, что и при замыкании ключа К , удаление проводника аб от проводника вг повлечет за собой отклонение стрелки амперметра, аналогичное отклонению при размыкании ключа К .

При неподвижных проводниках и замкнутом ключе К ток в проводнике вг можно вызвать изменением величины тока в проводнике аб .
Аналогичные явления происходят и в том случае, если проводник, питаемый током, заменить магнитом или электромагнитом.

Так, например, на рисунке схематически изображена катушка (соленоид) из изолированной проволоки, к концам которой подключен амперметр А .

Если внутрь обмотки быстро ввести постоянный магнит (или электромагнит), то в момент его введения стрелка амперметра А отклонится; при выведении магнита будет также наблюдаться отклонение стрелки амперметра, но в другую сторону.

Электрические токи, возникающие при подобных обстоятельствах, называются индукционными, а причина, вызывающая появление индукционных токов, электродвижущей силой индукции.

Эта эдс возникает в проводниках под действием изменяющихся магнитных полей,
в которых находятся эти проводники.
Направление эдс индукции в проводнике, перемещающемся в магнитном поле, может быть определено по правилу правой руки, которое формулируется так.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности . Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – и .

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку:), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный 🙂

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока .

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость 🙂 Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции . Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: , title=»Rendered by QuickLaTeX.com»>, участок 3-4: title=»Rendered by QuickLaTeX.com»>, ). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника). А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока). И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

Где – круговая частота: . – это .

Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто 🙂 По 2-му закону Кирхгофа:

А следовательно:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе () друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались 🙂

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Логично было бы рассказать еще об одном представителе пассивных радиоэлементов — катушках индуктивности. Но рассказ о них придется начать издалека, вспомнить о существовании магнитного поля, ведь именно магнитное поле окружает и пронизывает катушки, именно в магнитном поле, чаще всего переменном, катушки и работают. Короче, это их среда обитания.

Магнетизм, как свойство вещества

Магнетизм является одним из важнейших свойств вещества, так же как, например, масса или электрическое поле. Явления магнетизма, впрочем, как и электричества, были известны давно, вот только тогдашняя наука не могла объяснить сути этих явлений. Непонятное явление получило название «магнетизм» по имени города Магнезия, что был когда-то в Малой Азии. Именно из руды, добываемой поблизости, и получались постоянные магниты.

Но постоянные магниты в рамках данной статьи не особо интересны. Коль скоро было обещано рассказать о катушках индуктивности, то речь пойдет, скорее всего, об электромагнетизме, ведь далеко не секрет, что даже вокруг провода с током существует магнитное поле.

В современных условиях исследовать явление магнетизма на начальном, хотя бы уровне, достаточно легко. Для этого надо собрать простейшую электрическую цепь из батарейки и лампочки для карманного фонаря. В качестве индикатора магнитного поля, его направления и напряженности можно воспользоваться обычным компасом.

Магнитное поле постоянного тока

Как известно, компас показывает направление на Север. Если поблизости расположить провода упомянутой выше простейшей схемы, и включить лампочку, то стрелка компаса несколько отклонится от своего нормального положения.

Подключив параллельно еще одну лампочку можно удвоить ток в цепи, отчего угол поворота стрелки несколько увеличится. Это говорит о том, что магнитное поле провода с током стало больше. Именно на таком принципе работают стрелочные измерительные приборы.

Если полярность включения батарейки изменить на обратную, то и стрелка компаса повернется другим концом — направление магнитного поля в проводах также изменилось по направлению. Когда схема будет отключена, стрелка компаса вновь вернется в свое законное положение. Нет тока в катушке, нет и магнитного поля.

Во всех этих опытах компас играет роль пробной магнитной стрелки, подобно тому, как исследование постоянного электрического поля производится пробным электрическим зарядом.

На основе таких простейших опытов можно сделать заключение, что магнетизм появляется на свет благодаря электрическому току: чем этот ток сильней, тем сильнее магнитные свойства проводника. А откуда же тогда берется магнитное поле у постоянных магнитов, ведь к ним батарейку с проводами никто не подключал?

Фундаментальными научными исследованиями доказано, что и постоянный магнетизм основан на электрических явлениях: каждый электрон находится в собственном электрическом поле и обладает элементарными магнитными свойствами. Только в большинстве веществ эти свойства взаимно нейтрализуются, а у некоторых почему-то складываются в один большой магнит.

Конечно, на самом деле все не так примитивно и просто, но, в общем, даже постоянные магниты имеют свои чудесные свойства за счет движения электрических зарядов.

А какие они магнитные линии?

Магнитные линии можно увидеть визуально. В школьном опыте на уроках физики для этого на лист картона насыпаются металлические опилки, а внизу помещается постоянный магнит. Слегка постукивая по листу картона можно добиться картинки, показанной на рисунке 1.

Рисунок 1.

Нетрудно видеть, что магнитные силовые линии выходят из северного полюса и входят в южный, при этом не разрываясь. Конечно, можно сказать, что как раз, наоборот, из южного в северный, но так уж принято, поэтому из северного в южный. Точно так же, как когда-то приняли направление тока от плюса к минусу.

Если вместо постоянного магнита сквозь картонку пропустить провод с током, то металлические опилки покажут его, проводника, магнитное поле. Это магнитное поле имеет вид концентрических круговых линий.

Для исследования магнитного поля можно обойтись и без опилок. Достаточно вокруг проводника с током перемещать пробную магнитную стрелку, чтобы увидеть, что силовые магнитные линии и впрямь представляют собой замкнутые концентрические окружности. Если перемещать пробную стрелку в сторону, куда ее отклоняет магнитное поле, то непременно вернемся в ту же точку, откуда начали движение. Аналогично, как пешком вокруг Земли: если идти никуда не сворачивая, то рано или поздно придешь на то же место.

Рисунок 2.

Направление магнитного поля проводника с током определяется по правилу буравчика, — инструмента для сверления отверстий в дереве. Тут все очень просто: буравчик надо вращать так, чтобы его поступательное движение совпадало с направлением тока в проводе, тогда направление вращения рукоятки покажет, куда направлено магнитное поле.

Рисунок 3.

«Ток идет от нас» — крестик в середине круга это оперение стрелы, летящей за плоскость рисунка, а где «Ток идет к нам», показан наконечник стрелы, летящей из-за плоскости листа. По крайней мере, такое объяснение этих обозначений давалось на уроках физики в школе.

Рисунок 4.

Если к каждому проводнику применить правило буравчика, то определив направление магнитного поля в каждом проводнике, можно с уверенностью сказать, что проводники с одинаковым направлением тока притягиваются, а их магнитное поля складываются. Проводники с токами разного направления взаимно отталкиваются, магнитное их поле компенсируется.

Катушка индуктивности

Если проводник с током выполнить в виде кольца (витка), то у него появляются свои магнитные полюса, северный и южный. Но магнитное поле одного витка, как правило, невелико. Гораздо лучших результатов можно добиться, намотав провод в виде катушки. Такую деталь называют катушкой индуктивности или просто индуктивностью. В этом случае магнитные поля отдельных витков складываются, взаимно усиливая друг друга.

Рисунок 5.

На рисунке 5 показано, каким образом можно получить сумму магнитных полей катушки. Вроде бы можно запитать каждый виток от своего источника, как показано на рис. 5.2, но проще соединить витки последовательно (просто намотать одним проводом).

Совершенно очевидно, что чем большее количество витков у катушки, тем сильнее ее магнитное поле. Также магнитное поле зависит и от тока через катушку. Поэтому вполне правомерно оценивать способность катушки создавать магнитное поле просто умножив ток через катушку (А) на количество витков (W). Такая величина так и называется ампер — витки.

Катушка с сердечником

Магнитное поле, создаваемое катушкой, можно значительно увеличить, если внутрь катушки ввести сердечник из ферромагнитного материала. На рисунке 6 показана таблица с относительной магнитной проницаемостью различных веществ.

Например, трансформаторная сталь позволит сделать магнитное поле примерно в 7..7,5 тысяч раз сильней, чем при отсутствии сердечника. Другими словами, внутри сердечника магнитное поле будет вращать магнитную стрелку в 7000 раз сильнее (такое можно только представить мысленно).

Рисунок 6.

В верхней части таблицы разместились парамагнитные и диамагнитные вещества. Относительная магнитная проницаемость µ указана относительно вакуума. Следовательно, парамагнитные вещества немного усиливают магнитное поле, а диамагнитные чуть-чуть ослабляют. В общем, особого влияния на магнитное поле эти вещества не оказывают. Хотя, на высоких частотах для настройки контуров иногда применяются латунные или алюминиевые сердечники.

В нижней части таблицы разместились ферромагнитные вещества, которые значительно усиливают магнитное поле катушки с током. Так, например, сердечник из трансформаторной стали сделает магнитное поле сильнее ровно в 7500 раз.

Чем и как измерить магнитное поле

Когда понадобились единицы для измерения электрических величин, то в качестве эталона взяли заряд электрона. Из заряда электрона была сформирована вполне реальная и даже ощутимая единица — кулон, а на ее основе все оказалось просто: ампер, вольт, ом, джоуль, ватт, фарада.

А что можно взять в качестве отправной точки для измерения магнитных полей? Каким-то образом привязать к магнитному полю электрона весьма проблематично. Поэтому в качестве единицы измерения в магнетизме принят проводник, по которому протекает постоянный ток в 1 А.

Основной такой характеристикой является напряженность (H). Она показывает, с какой силой действует магнитное поле на упомянутый выше пробный проводник, если дело происходит в вакууме. Вакуум предназначается для исключения влияния среды, поэтому эту характеристику — напряженность считают абсолютно чистой. За единицу напряженности принят ампер на метр (а/м). Такая напряженность появляется на расстоянии 16см от проводника, по которому идет ток 1А.

Напряженность поля говорит лишь о теоретической способности магнитного поля. Реальную же способность к действию отражает другая величина магнитная индукция (B). Именно она показывает реальную силу, с которой магнитное поле действует на проводник с током в 1А.

Рисунок 7.

Если в проводнике длиной 1м протекает ток 1А, и он выталкивается (притягивается) с силой 1Н (102Г), то говорят, что величина магнитной индукции в данной точке ровно 1 тесла.

Магнитная индукция величина векторная, кроме численного значения она имеет еще и направление, которое всегда совпадает с направлением пробной магнитной стрелки в исследуемом магнитном поле.

Рисунок 8.

Единицей магнитной индукции является тесла (ТЛ), хотя на практике часто пользуются более мелкой единицей Гаусс: 1ТЛ = 10 000Гс. Много это или мало? Магнитное поле вблизи мощного магнита может достигать нескольких Тл, около магнитной стрелки компаса не более 100Гс, магнитное поле Земли вблизи поверхности примерно 0,01Гс и даже ниже.

Вектор магнитной индукции B характеризует магнитное поле лишь в одной точке пространства. Чтобы оценить действие магнитного поля в некотором пространстве вводится еще такое понятие, как магнитный поток (Φ).

По сути дела он представляет собой количество линий магнитной индукции, проходящих через данное пространство, через какую-то площадь: Φ=B*S*cosα. Эту картину можно представить в виде дождевых капель: одна линия это одна капля (B), а все вместе это магнитный поток Φ. Именно так в общий поток соединяются силовые магнитные линии отдельных витков катушки.

Рисунок 9.

В системе СИ за единицу магнитного потока принят Вебер (Вб), такой поток возникает, когда индукция в 1 Тл действует на площади 1 кв.м.

Магнитный поток в различных устройствах (двигатели, трансформаторы и т.п.), как правило, проходит определенным путем, называемым магнитной цепью или просто магнитопроводом. Если магнитная цепь замкнута (сердечник кольцевого трансформатора), то ее сопротивление невелико, магнитный поток проходит беспрепятственно, концентрируется внутри сердечника. На рисунке ниже показаны примеры катушек с замкнутым и разомкнутым магнитопроводами.

Рисунок 10.

Но сердечник можно распилить и вытащить из него кусочек, сделать магнитный зазор. Это увеличит общее магнитное сопротивление цепи, следовательно, уменьшит магнитный поток, а в целом уменьшится индукция во всем сердечнике. Это все равно как в электрическую цепь последовательно запаять большое сопротивление.

Рисунок 11.

Если получившийся зазор перекрыть куском стали, то получится, что параллельно зазору подключили дополнительный участок с меньшим магнитным сопротивлением, что и восстановит нарушенный магнитный поток. Это очень напоминает шунт в электрических цепях. Кстати, для магнитной цепи также существует закон, который называют законом Ома для магнитной цепи.

Рисунок 12.

Через магнитный шунт пойдет основная часть магнитного потока. Именно это явление и используется в магнитной записи звуковых или видеосигналов: ферромагнитный слой ленты перекрывает зазор в сердечнике магнитных головок, и весь магнитный поток замыкается через ленту.

Направление магнитного потока, создаваемого катушкой, можно определить, воспользовавшись правилом правой руки: если четыре вытянутых пальца указывают направление тока в катушке, то большой палец покажет направление магнитных линий, как показано на рисунке 13.

Рисунок 13.

Принято считать, что магнитные линии выходят из северного полюса и заходят в южный. Поэтому большой палец в данном случае указывает расположение южного полюса. Проверить так ли это, можно опять же с помощью стрелки компаса.

Как работает электродвигатель

Известно, что электричество может создавать свет и тепло, участвовать в электрохимических процессах. После знакомства с основами магнетизма можно рассказать о том, как работают электродвигатели.

Электродвигатели могут быть самой разной конструкции, мощности и принципа действия: например постоянного и переменного тока, шаговые или коллекторные. Но при всем многообразии конструкций принцип действия основан на взаимодействии магнитных полей ротора и статора.

Для получения этих магнитных полей по обмоткам пропускают ток. Чем больше ток, и чем выше магнитная индукция внешнего магнитного поля, тем мощнее двигатель. Для усиления этого поля используются магнитопроводы, поэтому в электрических двигателях так много стальных деталей. В некоторых моделях двигателей постоянного тока используются постоянные магниты.

Рисунок 14.

Здесь, можно сказать, все понятно и просто: пропустили по проводу ток, получили магнитное поле. Взаимодействие с другим магнитным полем заставляет этот проводник двигаться, да еще и совершать механическую работу.

Направление вращения можно определить по правилу левой руки. Если четыре вытянутых пальца показывают направление тока в проводнике, а магнитные линии входят в ладонь, то отогнутый большой палец укажет направление выталкивания проводника в магнитном поле.

Электромагнетизм — это совокупность явлений, обусловленных связью электрических токов и магнитных полей. Иногда эта связь приводит к нежелательным эффектам. К примеру, ток, протекающий по электрическим кабелям на корабле, вызывает ненужное отклонение судового компаса. Однако нередко электричество намеренно используется для создания магнитных полей большой интенсивности. В качестве примера можно привести электромагниты. О них мы сегодня и поговорим.

и магнитный поток

Интенсивность магнитного поля можно определить числом линий магнитного потока, которое приходится на единицу площади. возникает всюду, где протекает электрический ток, причем магнитный поток в воздухе пропорционален последнему. Прямой провод, несущий ток, можно согнуть в виток. При достаточно малом радиусе витка это приводит к возрастанию магнитного потока. При этом сила тока не увеличивается.

Эффект концентрации магнитного потока можно еще усилить, увеличивая количество витков, т. е. скручивая провод в катушку. Справедливо и обратное. Магнитное поле катушки с током можно ослабить, если уменьшить количество витков.

Выведем важное соотношение. В точке максимальной плотности магнитного потока (в ней на единицу площади приходится больше всего линий потока) соотношение между электрическим током I, числом витков провода n и магнитным потоком В выражается так: In пропорционально В. Ток в 12 А, текущий по катушке из 3 витков, создает точно такое же магнитное поле, как и ток в 3 А, текущий по катушке из 12 витков. Это важно знать, решая практические задачи.

Соленоид

Катушка из намотанного провода, создающая магнитное поле, называется соленоидом. Провода можно наматывать на железо (железный сердечник). Подойдет и немагнитная основа (например, воздушный сердечник). Как вы видите, можно использовать не только железо, чтобы создать магнитное поле катушки с током. С точки зрения величины потока любой немагнитный сердечник эквивалентен воздуху. То есть приведенное выше соотношение, связывающее ток, число витков и поток, в этом случае выполняется достаточно точно. Таким образом, магнитное поле катушки с током можно ослабить, если применить эту закономерность.

Использование железа в соленоиде

Для чего в соленоиде используется железо? Его наличие влияет на магнитное поле катушки с током в двух отношениях. Оно увеличивает тока, часто в тысячи раз и более. Однако при этом может нарушаться одна важная пропорциональная зависимость. Речь идет о той, которая существует между магнитным потоком и током в катушках с воздушным сердечником.

Микроскопические области в железе, домены (точнее, их при действии магнитного поля, которое создается током, строятся в одном направлении. В результате при наличии железного сердечника данный ток создает больший магнитный поток на единицу сечения провода. Таким образом, плотность потока существенно возрастает. Когда все домены выстраиваются в одном направлении, дальнейшее увеличение тока (или числа витков в катушке) лишь незначительно повышает плотность магнитного потока.

Расскажем теперь немного об индукции. Это важная часть интересующей нас темы.

Индукция магнитного поля катушки с током

Хотя магнитное поле соленоида с железным сердечником гораздо сильнее магнитного поля соленоида с воздушным сердечником, величина его ограничена свойствами железа. Размер того, которое создается катушкой с воздушным сердечником, теоретически не имеет предела. Однако, как правило, получать огромные токи, необходимые для создания поля, сравнимого по величине с полем соленоида с железным сердечником, очень трудно и дорого. Не всегда следует идти этим путем.

Что будет, если изменить магнитное поле катушки с током? Это действие может породить электрический ток точно так же, как ток создает магнитное поле. При приближении магнита к проводнику магнитные силовые линии, пересекающие проводник, индуцируют в нем напряжение. Полярность индуцированного напряжения зависит от полярности и направления изменения магнитного потока. Этот эффект значительно сильнее проявляется в катушке, чем в отдельном витке: он пропорционален числу витков в обмотке. При наличии железного сердечника индуцированное напряжение в соленоиде увеличивается. При таком способе необходимо движение проводника относительно магнитного потока. Если проводник не будет пересекать линии магнитного потока, напряжение не возникнет.

Как получают энергию

Электрические генераторы вырабатывают ток на основе тех же принципов. Обычно магнит вращается между катушками. Величина индуцированного напряжения зависит от величины поля магнита и скорости его вращения (они определяют скорость изменения магнитного потока). Напряжение в проводнике прямо пропорционально скорости магнитного потока в нем.

Во многих генераторах магнит заменен соленоидом. Для того чтобы создать магнитное поле катушки с током, соленоид подключают к Какой в этом случае будет электрическая мощность, вырабатываемая генератором? Она равна произведению напряжения на силу тока. С другой стороны, взаимосвязь тока в проводнике и магнитного потока позволяет использовать поток, создаваемый электрическим током в магнитном поле, для получения механического движения. По этому принципу работают электродвигатели и некоторые электроизмерительные приборы. Однако для создания движения в них необходимо затрачивать дополнительную электрическую мощность.

Сильные магнитные поля

В настоящее время, используя удается получать невиданной интенсивности магнитное поле катушки с током. Электромагниты могут быть очень мощными. При этом ток протекает без потерь, т. е. не вызывает нагрева материала. Это позволяет применять большое напряжение в соленоидах с воздушным сердечником и избежать ограничений, обусловленных эффектом насыщения. Очень большие перспективы открывает такое мощное магнитное поле катушки с током. Электромагниты и их применение не зря интересуют множество ученых. Ведь сильные поля могут использоваться для движения на магнитной «подушке» и создания новых видов электродвигателей и генераторов. Они способны высокую мощность при малой стоимости.

Энергия магнитного поля катушки с током активно используется человечеством. Она уже долгие годы широко применяется, в частности на железных дорогах. О том, как используются магнитные линии поля катушки с током для регулирования движения поездов, мы сейчас и поговорим.

Магниты на железных дорогах

На железных дорогах обычно применяются системы, в которых в целях большей безопасности электромагниты и постоянные магниты дополняют друг друга. Как же действуют эти системы? Сильный прикрепляют вплотную к рельсу на определенном расстоянии от светофоров. Во время прохождения поезда над магнитом ось постоянного плоского магнита в кабине машиниста поворачивается на малый угол, после чего магнит остается в новом положении.

Регулирование движения на железной дороге

Движение плоского магнита включает сигнальный звонок или сирену. Далее происходит следующее. Через пару секунд кабина машиниста проходит над электромагнитом, который связан со светофором. Если тот дает поезду зеленую улицу, то электромагнит оказывается под напряжением и ось постоянного магнита в вагоне поворачивается в свое первоначальное положение, выключая сигнал в кабине. Когда же на светофоре горит красный или желтый свет, электромагнит бывает выключен, и тогда после некоторой задержки автоматически включается тормоз, если, конечно, это забыл сделать машинист. Тормозная цепь (как и звуковой сигнал) подключается к сети с момента поворота оси магнита. Если магнит во время задержки возвращается в первоначальное положение, то тормоз не включается.

Определение магнитного поля катушки. Магнитное поле катушки с током. Обозначение на схемах

Мы продолжаем изучение вопросов электромагнитных явлений. И на сегодняшнем уроке рассмотрим магнитное поле катушки с током и электромагнит.

Наибольший практический интерес представляет собой магнитное поле катушки с током. Чтобы получить катушку, надо взять изолированный проводник и намотать его на каркас. Такая катушка содержит в себе большое количество витков провода. Обратите внимание: эти провода намотаны на пластмассовый каркас и у этого провода есть два вывода (рис. 1).

Рис. 1. Катушка

Исследованием магнитного поля катушки занимались два известных ученых: Андре-Мари Ампер и Франсуа Араго. Они выяснили, что магнитное поле катушки полностью соответствует магнитному полю постоянного магнита (рис. 2).

Рис. 2. Магнитное поле катушки и постоянного магнита

Почему магнитные линии катушки имеют такой вид

Если через прямой проводник протекает постоянный ток, вокруг него возникает магнитное поле. Направление магнитного поля можно определить по «правилу буравчика» (рис. 3).

Рис. 3. Магнтное поле проводника

Сгибаем этот проводник по спирали. Направление тока остается таким же, магнитное поле проводника так же существует вокруг проводника, поле разных участков проводника складывается. Внутри катушки магнитное поле будет сосредоточено. В итоге получим следующую картину магнитного поля катушки (рис. 4).

Рис. 4. Магнитное поле катушки

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого проводника, можно обнаружить при помощи опилок (рис. 5). Линии магнитного поля катушки с током являются также замкнутыми.

Рис. 5. Расположение металлических опилок около катушки с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой — к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса — северный и южный (рис. 6).

Рис. 6. Полюса катушки

На электрических схемах катушка обозначается следующим образом:

Рис. 7. Обозначение катушки на схемах

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять в широких пределах.

Магнитное поле катушки велико по сравнению с магнитным полем проводника (при одинаковой силе тока).

При пропускании тока через катушку вокруг нее образуется магнитное поле. Чем больший ток протекает по катушке, тем сильнее будет магнитное поле.

Его можно фиксировать с помощью магнитной стрелки или металлической стружки.
Также магнитное поле катушки зависит от количества витков. Магнитное поле катушки с током тем сильнее, чем больше число витков в ней. То есть мы можем регулировать поле катушки, изменяя количество ее витков или электрический ток, протекающий по катушке.

Но самым интересным оказалось открытие английского инженера Стёрджента. Он продемонстрировал следующее: ученый взял и надел катушку на железный сердечник. Дело все в том, что, пропуская электрический ток по виткам этих катушек, магнитное поле многократно увеличивалось — и все железные предметы, которые находились вокруг, стали притягиваться к этому устройству (рис. 8). Это устройство получило название «электромагнит».

Рис. 8. Электромагнит

Когда сообразили сделать железный крючок и присоединить его к этому устройству, получили возможность перетаскивать различные грузы. Итак, что такое электромагнит?

Определение

Электромагнит — это катушка с большим количеством витков обмотки, надетая на железный сердечник, которая обретает свойства магнита при прохождении по обмотке электрического тока.

Электромагнит на схеме обозначается как катушка, а сверху располагается горизонтальная линия (рис. 9). Эта линия обозначает железный сердечник.

Рис. 9. Обозначение электромагнита

Когда мы изучали электрические явления, то говорили, что у электрического тока есть разные свойства, в том числе магнитные. И один из экспериментов, которые мы обсуждали, был связан с тем, что мы берем проволоку, присоединенную к источнику тока, наматываем на железный гвоздь и наблюдаем, как к этому гвоздю начинают притягиваться различные железные предметы (рис. 10). Вот это и есть простейший электромагнит. И теперь мы понимаем, что простейший электромагнит нам обеспечивают протекание тока в катушке, большое количество витков и обязательно — металлический сердечник.

Рис. 10. Простейший электромагнит

На сегодняшний день электромагниты очень широко распространены. Электромагниты работают практически везде и всюду. Например, если нам надо перетащить достаточно большие грузы, мы используем электромагниты. И, регулируя силу тока, мы будем, соответственно, силу либо увеличивать, либо уменьшать. Еще одним примером использования электромагнитов является электрический звонок.

Открытие и закрытие дверей и тормоза некоторых транспортных средств (например, трамвая) тоже обеспечиваются электромагнитами.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. — М.: Мнемозина.
  2. Перышкин А.В. Физика 8. — М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. — М.: Просвещение.
  1. Инернет-портал «сайт» ()
  2. Инернет-портал «сайт» ()
  3. Инернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Что представляет собой катушка?
  2. У любой ли катушки есть магнитное поле?
  3. Опишите простейший электромагнит.

Логично было бы рассказать еще об одном представителе пассивных радиоэлементов — катушках индуктивности. Но рассказ о них придется начать издалека, вспомнить о существовании магнитного поля, ведь именно магнитное поле окружает и пронизывает катушки, именно в магнитном поле, чаще всего переменном, катушки и работают. Короче, это их среда обитания.

Магнетизм, как свойство вещества

Магнетизм является одним из важнейших свойств вещества, так же как, например, масса или электрическое поле. Явления магнетизма, впрочем, как и электричества, были известны давно, вот только тогдашняя наука не могла объяснить сути этих явлений. Непонятное явление получило название «магнетизм» по имени города Магнезия, что был когда-то в Малой Азии. Именно из руды, добываемой поблизости, и получались постоянные магниты.

Но постоянные магниты в рамках данной статьи не особо интересны. Коль скоро было обещано рассказать о катушках индуктивности, то речь пойдет, скорее всего, об электромагнетизме, ведь далеко не секрет, что даже вокруг провода с током существует магнитное поле.

В современных условиях исследовать явление магнетизма на начальном, хотя бы уровне, достаточно легко. Для этого надо собрать простейшую электрическую цепь из батарейки и лампочки для карманного фонаря. В качестве индикатора магнитного поля, его направления и напряженности можно воспользоваться обычным компасом.

Магнитное поле постоянного тока

Как известно, компас показывает направление на Север. Если поблизости расположить провода упомянутой выше простейшей схемы, и включить лампочку, то стрелка компаса несколько отклонится от своего нормального положения.

Подключив параллельно еще одну лампочку можно удвоить ток в цепи, отчего угол поворота стрелки несколько увеличится. Это говорит о том, что магнитное поле провода с током стало больше. Именно на таком принципе работают стрелочные измерительные приборы.

Если полярность включения батарейки изменить на обратную, то и стрелка компаса повернется другим концом — направление магнитного поля в проводах также изменилось по направлению. Когда схема будет отключена, стрелка компаса вновь вернется в свое законное положение. Нет тока в катушке, нет и магнитного поля.

Во всех этих опытах компас играет роль пробной магнитной стрелки, подобно тому, как исследование постоянного электрического поля производится пробным электрическим зарядом.

На основе таких простейших опытов можно сделать заключение, что магнетизм появляется на свет благодаря электрическому току: чем этот ток сильней, тем сильнее магнитные свойства проводника. А откуда же тогда берется магнитное поле у постоянных магнитов, ведь к ним батарейку с проводами никто не подключал?

Фундаментальными научными исследованиями доказано, что и постоянный магнетизм основан на электрических явлениях: каждый электрон находится в собственном электрическом поле и обладает элементарными магнитными свойствами. Только в большинстве веществ эти свойства взаимно нейтрализуются, а у некоторых почему-то складываются в один большой магнит.

Конечно, на самом деле все не так примитивно и просто, но, в общем, даже постоянные магниты имеют свои чудесные свойства за счет движения электрических зарядов.

А какие они магнитные линии?

Магнитные линии можно увидеть визуально. В школьном опыте на уроках физики для этого на лист картона насыпаются металлические опилки, а внизу помещается постоянный магнит. Слегка постукивая по листу картона можно добиться картинки, показанной на рисунке 1.

Рисунок 1.

Нетрудно видеть, что магнитные силовые линии выходят из северного полюса и входят в южный, при этом не разрываясь. Конечно, можно сказать, что как раз, наоборот, из южного в северный, но так уж принято, поэтому из северного в южный. Точно так же, как когда-то приняли направление тока от плюса к минусу.

Если вместо постоянного магнита сквозь картонку пропустить провод с током, то металлические опилки покажут его, проводника, магнитное поле. Это магнитное поле имеет вид концентрических круговых линий.

Для исследования магнитного поля можно обойтись и без опилок. Достаточно вокруг проводника с током перемещать пробную магнитную стрелку, чтобы увидеть, что силовые магнитные линии и впрямь представляют собой замкнутые концентрические окружности. Если перемещать пробную стрелку в сторону, куда ее отклоняет магнитное поле, то непременно вернемся в ту же точку, откуда начали движение. Аналогично, как пешком вокруг Земли: если идти никуда не сворачивая, то рано или поздно придешь на то же место.

Рисунок 2.

Направление магнитного поля проводника с током определяется по правилу буравчика, — инструмента для сверления отверстий в дереве. Тут все очень просто: буравчик надо вращать так, чтобы его поступательное движение совпадало с направлением тока в проводе, тогда направление вращения рукоятки покажет, куда направлено магнитное поле.

Рисунок 3.

«Ток идет от нас» — крестик в середине круга это оперение стрелы, летящей за плоскость рисунка, а где «Ток идет к нам», показан наконечник стрелы, летящей из-за плоскости листа. По крайней мере, такое объяснение этих обозначений давалось на уроках физики в школе.

Рисунок 4.

Если к каждому проводнику применить правило буравчика, то определив направление магнитного поля в каждом проводнике, можно с уверенностью сказать, что проводники с одинаковым направлением тока притягиваются, а их магнитное поля складываются. Проводники с токами разного направления взаимно отталкиваются, магнитное их поле компенсируется.

Катушка индуктивности

Если проводник с током выполнить в виде кольца (витка), то у него появляются свои магнитные полюса, северный и южный. Но магнитное поле одного витка, как правило, невелико. Гораздо лучших результатов можно добиться, намотав провод в виде катушки. Такую деталь называют катушкой индуктивности или просто индуктивностью. В этом случае магнитные поля отдельных витков складываются, взаимно усиливая друг друга.

Рисунок 5.

На рисунке 5 показано, каким образом можно получить сумму магнитных полей катушки. Вроде бы можно запитать каждый виток от своего источника, как показано на рис. 5.2, но проще соединить витки последовательно (просто намотать одним проводом).

Совершенно очевидно, что чем большее количество витков у катушки, тем сильнее ее магнитное поле. Также магнитное поле зависит и от тока через катушку. Поэтому вполне правомерно оценивать способность катушки создавать магнитное поле просто умножив ток через катушку (А) на количество витков (W). Такая величина так и называется ампер — витки.

Катушка с сердечником

Магнитное поле, создаваемое катушкой, можно значительно увеличить, если внутрь катушки ввести сердечник из ферромагнитного материала. На рисунке 6 показана таблица с относительной магнитной проницаемостью различных веществ.

Например, трансформаторная сталь позволит сделать магнитное поле примерно в 7..7,5 тысяч раз сильней, чем при отсутствии сердечника. Другими словами, внутри сердечника магнитное поле будет вращать магнитную стрелку в 7000 раз сильнее (такое можно только представить мысленно).

Рисунок 6.

В верхней части таблицы разместились парамагнитные и диамагнитные вещества. Относительная магнитная проницаемость µ указана относительно вакуума. Следовательно, парамагнитные вещества немного усиливают магнитное поле, а диамагнитные чуть-чуть ослабляют. В общем, особого влияния на магнитное поле эти вещества не оказывают. Хотя, на высоких частотах для настройки контуров иногда применяются латунные или алюминиевые сердечники.

В нижней части таблицы разместились ферромагнитные вещества, которые значительно усиливают магнитное поле катушки с током. Так, например, сердечник из трансформаторной стали сделает магнитное поле сильнее ровно в 7500 раз.

Чем и как измерить магнитное поле

Когда понадобились единицы для измерения электрических величин, то в качестве эталона взяли заряд электрона. Из заряда электрона была сформирована вполне реальная и даже ощутимая единица — кулон, а на ее основе все оказалось просто: ампер, вольт, ом, джоуль, ватт, фарада.

А что можно взять в качестве отправной точки для измерения магнитных полей? Каким-то образом привязать к магнитному полю электрона весьма проблематично. Поэтому в качестве единицы измерения в магнетизме принят проводник, по которому протекает постоянный ток в 1 А.

Основной такой характеристикой является напряженность (H). Она показывает, с какой силой действует магнитное поле на упомянутый выше пробный проводник, если дело происходит в вакууме. Вакуум предназначается для исключения влияния среды, поэтому эту характеристику — напряженность считают абсолютно чистой. За единицу напряженности принят ампер на метр (а/м). Такая напряженность появляется на расстоянии 16см от проводника, по которому идет ток 1А.

Напряженность поля говорит лишь о теоретической способности магнитного поля. Реальную же способность к действию отражает другая величина магнитная индукция (B). Именно она показывает реальную силу, с которой магнитное поле действует на проводник с током в 1А.

Рисунок 7.

Если в проводнике длиной 1м протекает ток 1А, и он выталкивается (притягивается) с силой 1Н (102Г), то говорят, что величина магнитной индукции в данной точке ровно 1 тесла.

Магнитная индукция величина векторная, кроме численного значения она имеет еще и направление, которое всегда совпадает с направлением пробной магнитной стрелки в исследуемом магнитном поле.

Рисунок 8.

Единицей магнитной индукции является тесла (ТЛ), хотя на практике часто пользуются более мелкой единицей Гаусс: 1ТЛ = 10 000Гс. Много это или мало? Магнитное поле вблизи мощного магнита может достигать нескольких Тл, около магнитной стрелки компаса не более 100Гс, магнитное поле Земли вблизи поверхности примерно 0,01Гс и даже ниже.

Вектор магнитной индукции B характеризует магнитное поле лишь в одной точке пространства. Чтобы оценить действие магнитного поля в некотором пространстве вводится еще такое понятие, как магнитный поток (Φ).

По сути дела он представляет собой количество линий магнитной индукции, проходящих через данное пространство, через какую-то площадь: Φ=B*S*cosα. Эту картину можно представить в виде дождевых капель: одна линия это одна капля (B), а все вместе это магнитный поток Φ. Именно так в общий поток соединяются силовые магнитные линии отдельных витков катушки.

Рисунок 9.

В системе СИ за единицу магнитного потока принят Вебер (Вб), такой поток возникает, когда индукция в 1 Тл действует на площади 1 кв.м.

Магнитный поток в различных устройствах (двигатели, трансформаторы и т.п.), как правило, проходит определенным путем, называемым магнитной цепью или просто магнитопроводом. Если магнитная цепь замкнута (сердечник кольцевого трансформатора), то ее сопротивление невелико, магнитный поток проходит беспрепятственно, концентрируется внутри сердечника. На рисунке ниже показаны примеры катушек с замкнутым и разомкнутым магнитопроводами.

Рисунок 10.

Но сердечник можно распилить и вытащить из него кусочек, сделать магнитный зазор. Это увеличит общее магнитное сопротивление цепи, следовательно, уменьшит магнитный поток, а в целом уменьшится индукция во всем сердечнике. Это все равно как в электрическую цепь последовательно запаять большое сопротивление.

Рисунок 11.

Если получившийся зазор перекрыть куском стали, то получится, что параллельно зазору подключили дополнительный участок с меньшим магнитным сопротивлением, что и восстановит нарушенный магнитный поток. Это очень напоминает шунт в электрических цепях. Кстати, для магнитной цепи также существует закон, который называют законом Ома для магнитной цепи.

Рисунок 12.

Через магнитный шунт пойдет основная часть магнитного потока. Именно это явление и используется в магнитной записи звуковых или видеосигналов: ферромагнитный слой ленты перекрывает зазор в сердечнике магнитных головок, и весь магнитный поток замыкается через ленту.

Направление магнитного потока, создаваемого катушкой, можно определить, воспользовавшись правилом правой руки: если четыре вытянутых пальца указывают направление тока в катушке, то большой палец покажет направление магнитных линий, как показано на рисунке 13.

Рисунок 13.

Принято считать, что магнитные линии выходят из северного полюса и заходят в южный. Поэтому большой палец в данном случае указывает расположение южного полюса. Проверить так ли это, можно опять же с помощью стрелки компаса.

Как работает электродвигатель

Известно, что электричество может создавать свет и тепло, участвовать в электрохимических процессах. После знакомства с основами магнетизма можно рассказать о том, как работают электродвигатели.

Электродвигатели могут быть самой разной конструкции, мощности и принципа действия: например постоянного и переменного тока, шаговые или коллекторные. Но при всем многообразии конструкций принцип действия основан на взаимодействии магнитных полей ротора и статора.

Для получения этих магнитных полей по обмоткам пропускают ток. Чем больше ток, и чем выше магнитная индукция внешнего магнитного поля, тем мощнее двигатель. Для усиления этого поля используются магнитопроводы, поэтому в электрических двигателях так много стальных деталей. В некоторых моделях двигателей постоянного тока используются постоянные магниты.

Рисунок 14.

Здесь, можно сказать, все понятно и просто: пропустили по проводу ток, получили магнитное поле. Взаимодействие с другим магнитным полем заставляет этот проводник двигаться, да еще и совершать механическую работу.

Направление вращения можно определить по правилу левой руки. Если четыре вытянутых пальца показывают направление тока в проводнике, а магнитные линии входят в ладонь, то отогнутый большой палец укажет направление выталкивания проводника в магнитном поле.

Наибольший практический интерес представляет собой магнитное поле катушки с током. На рисунке 97 изображена катушка, состоящая из большого числа витков провода, намотанного на деревянный каркас. Когда в катушке есть ток, железные опилки притягиваются к её концам, при отключении тока они отпадают.

Рис. 97. Притяжение железных опилок катушкой с током

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой — к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса — северный и южный (рис. 98).

Рис. 98. Полюсы катушки с током

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого тока, можно обнаружить при помощи опилок (рис. 99). Магнитные линии магнитного поля катушки с током являются также замкнутыми кривыми. Принято считать, что вне катушки они направлены от северного полюса катушки к южному (см. рис. 99).

Рис. 99. Магнитные линии катушки с током

Катушки с током широко используют в технике в качестве магнитов. Они удобны тем, что их магнитное действие можно изменять (усиливать или ослаблять) в широких пределах. Рассмотрим способы, при помощи которых можно это делать.

На рисунке 97 изображён опыт, в котором наблюдается действие магнитного поля катушки с током. Если заменить катушку другой, с большим числом витков проволоки, то при той же силе тока она притянет больше железных предметов. Значит, магнитное действие катушки с током тем сильнее, чем больше число витков в ней .

Включим в цепь, содержащую катушку, реостат (рис. 100) и при помощи него будем изменять силу тока в катушке. При увеличении силы тока действие магнитного поля катушки с током усиливается, при уменьшении — ослабляется .

Рис. 100. Действие магнитного поля катушки

Оказывается также, что магнитное действие катушки с током можно значительно усилить, не меняя число её витков и силу тока в ней. Для этого надо ввести внутрь катушки железный стержень (сердечник). Железо, введённое внутрь катушки, усиливает магнитное действие катушки (рис. 101).

Рис. 101. Действие магнитного поля катушки с железным сердечником

    Катушка с железным сердечником внутри называется электромагнитом .

Электромагнит — одна из основных деталей многих технических приборов. На рисунке 102 изображён дугообразный электромагнит, удерживающий якорь (железную пластинку) с подвешенным грузом.

Рис. 102. Дугообразный электромагнит

Электромагниты широко применяют в технике благодаря их замечательным свойствам. Они быстро размагничиваются при выключении тока, в зависимости от назначения их можно изготавливать самых различных размеров, во время работы электромагнита можно регулировать его магнитное действие, меняя силу тока в катушке.

Электромагниты, обладающие большой подъёмной силой, используют на заводах для переноски изделий из стали или чугуна, а также стальных и чугунных стружек, слитков (рис. 103).

Рис. 103. Применение электромагнитов

На рисунке 104 показан в разрезе магнитный сепаратор для зерна. В зерно подмешивают очень мелкие железные опилки. Эти опилки не прилипают к гладким зёрнам полезных злаков, но прилипают к зёрнам сорняков. Зёрна 1 высыпаются из бункера на вращающийся барабан 2. Внутри барабана находится сильный электромагнит 5. Притягивая железные частицы 4, он извлекает зёрна сорняков из потока зерна 3 и таким путём очищает зерно от сорняков и случайно попавших железных предметов.

Рис. 104. Магнитный сепаратор

Применяются электромагниты в телеграфном, телефонном аппаратах и во многих других устройствах.

Вопросы

  1. В каком направлении устанавливается катушка с током, подвешенная на длинных тонких проводниках? Какое сходство имеется у неё с магнитной стрелкой?
  2. Какими способами можно усилить магнитное действие катушки с током?
  3. Что называют электромагнитом?
  4. Для каких целей используют на заводах электромагниты?
  5. Как устроен магнитный сепаратор для зерна?

Упражнение 41

  1. Нужно построить электромагнит, подъёмную силу которого можно регулировать, не изменяя конструкции. Как это сделать?
  2. Что надо сделать, чтобы изменить магнитные полюсы катушки с током на противоположные?
  3. Как построить сильный электромагнит, если конструктору дано условие, чтобы ток в электромагните был сравнительно малым?
  4. Используемые в подъёмном кране электромагниты обладают громадной мощностью. Электромагниты, при помощи которых удаляют из глаз случайно попавшие железные опилки, очень слабы. Какими способами достигают такого различия?

Задание

Если прямой проводник свернуть в виде окружности, то можно исследовать магнитное поле кругового тока.
Проведем опыт (1). Провод в виде окружности пропустим через картон. Поместим несколько свободных магнитных стрелок на поверхности картона в различных точках. Включим ток и видим, что магнитные стрелочки в центре витка показывают направление одинаковое, а вне витка с обеих сторон в другую сторону.
Теперь повторим опыт (2), поменяв полюса, а значит и направление тока. Видим, что магнитные стрелочки изменили направление на всей поверхности картона на 180 градусов.
Сделаем вывод: магнитные линии кругового тока то же зависят от направления тока в проводнике.
Проведем опыт 3. Уберем магнитные стрелочки, включим электрический ток и осторожно по всей поверхности картона насыплем мелкие железные опилки У нас получилась картина магнитных силовых линий, которая называется «спектр магнитного поля кругового тока» . Как же в этом случае определить направление магнитных силовых линий? Вновь применим правило буравчика, но в применении к круговому току. Если направление вращения ручки буравчика совместить с направлением тока в круговом проводнике, то направление поступательного движения буравчика будет совпадать с направлением магнитных силовых линий.
Рассмотрим несколько случаев.
1. Плоскость витка лежит в плоскости листа, ток по витку идет по часовой стрелке. Вращая виток по часовой стрелке, мы определяем, что магнитные силовые линии в центре витка направлены внутрь витка «от нас». Это условно обозначается знаком «+» (плюс). Т.е. в центре витка мы ставим «+»
2. Плоскость витка лежит в плоскости листа, ток по витку идет против часовой стрелки. Вращая виток против часовой стрелки, мы определяем, что магнитные силовые линии выходят из цента витка «к нам». Это условно обозначается «∙» (точкой). Т.е. в центе витка мы должны поставить точку («∙»).
Если прямой проводник намотать на цилиндр, то получится катушка с током, или соленоид.
Проведем опыт (4.) Используем для опыта ту же цепь, только провод теперь пропущен через картон в виде катушки. Расположим несколько свободных магнитных стрелок на плоскости картона в различных точках: у обоих концов катушки, внутри катушки и с обеих сторон снаружи. Пусть катушка расположена горизонтально (в направлении «слева — направо»). Включим цепь и обнаружим, что магнитные стрелки, расположенные по оси катушки, показывают одно направление. Отмечаем, что у правого конца катушки стрелка показывает, что силовые линии входят в катушку, значит -это «южный полюс» (S), а в левом магнитная стрелка показывает, что выходят, это «северный полюс» (N). Снаружи катушки магнитные стрелки имеют противоположное направление по сравнению с направлением внутри катушки.
Проведем опыт (5). В этой же цепи поменяем направление тока. Обнаружим, что направление всех магнитных стрелок изменилось, они повернулись на 180 градусов. Делаем вывод: направление магнитных силовых линий зависит от направления тока по виткам катушки.
Проведем опыт (6). Уберем магнитные стрелки и включим цепь. Осторожно «посолим железными опилками» картон внутри и снаружи катушки. Получим картину магнитных силовых линий, которая называется «спектр магнитного поля катушки с током»
А как же определить направление магнитных силовых линий? Направление магнитных силовых линий определяется по правилу буравчика так же, как и для витка с током: Если направление вращения ручки буравчика совместить с направлением тока в витках, то направление поступательного движения совпадет с направлением магнитных силовых линий внутри соленоида. Магнитное поле соленоида похоже на магнитное поле постоянного полосового магнита. Тот конец катушки, из которого выходят силовые линии, будет «северным полюсом» (N), а тот, в который входят силовые линии — «южным полюсом» (S).
После открытия Ганса Эрстеда многие ученые стали повторять его опыты, придумывая новые, чтобы обнаружить доказательства связи электричества и магнетизма. Французский ученый Доминик Араго поместил железный стержень, в стеклянную трубку и поверх нее намотал медный провод, по которому пропустил электрический ток. Как только Араго замкнул электрическую цепь, стержень из железа так сильно намагнитился, что притянул к себе железные ключи. Чтобы оторвать ключи, пришлось приложить значительные усилия. Когда Араго отключил источник тока, то ключи отвалились сами! Так Араго изобрел первый электромагнит. Современные электромагниты состоят из трех частей: обмотки, сердечника и якоря. Провода помещают в специальную оболочку, которая играет роль изолятора. Проводом наматывают многослойную катушку — обмотку электромагнита. В качестве сердечника используют стальной стержень. Пластина, которая притягивается к сердечнику, называется якорем. Электромагниты получили широкое применение в промышленности благодаря их свойствам: они быстро размагничиваются при выключении тока; их можно изготавливать самых различных размеров в зависимости от назначения; меняя силу тока можно регулировать магнитное действие электромагнита. Электромагниты применяются на заводах для переноски изделий из стали и чугуна. Эти магниты имеют большую подъемную силу. Применяются электромагниты также в электрическом звонке, электромагнитных сепараторах, в микрофонах, в телефонах. Сегодня мы рассмотрели магнитное поле кругового тока, катушки с током. Познакомились с электромагнитами, их применением в промышленности и в народном хозяйстве.

Если в пространстве вокруг неподвижных электрических зарядов существует электростатическое поле, то в пространстве вокруг движущихся зарядов (как и вокруг изменяющихся во времени электрических полей, что изначально предположил Максвелл) существует . Это легко наблюдать экспериментально.

Именно благодаря магнитному полю и взаимодействуют между собой электрические токи, а также постоянные магниты и токи с магнитами. По сравнению с электрическим взаимодействием, магнитное взаимодействие является значительно более сильным. Это взаимодействие в свое время изучал Андре-Мари Ампер.

В физике характеристикой магнитного поля служит B, и чем она больше, тем сильнее магнитное поле. Магнитная индукция В — величина векторная, ее направление совпадает с направлением силы, действующей на северный полюс условной магнитной стрелки, помещенной в какую-нибудь точку магнитного поля, — магнитное поле сориентирует магнитную стрелку в направлении вектора В, то есть в направлении магнитного поля.

Вектор В в каждой точке линии магнитной индукции направлен к ней по касательной. То есть индукция В характеризует силовое действие магнитного поля на ток. Похожую роль играет напряженность Е для электрического поля, характеризующая силовое действие электрического поля на заряд.

Простейший эксперимент с железными опилками позволяет наглядно продемонстрировать явление действия магнитного поля на намагниченный объект, поскольку в постоянном магнитном поле маленькие кусочки ферромагнетика (такими кусочками являются железные опилки) становится, намагничиваясь по полю, магнитными стрелками, словно маленькими стрелками компаса.

Если взять вертикальный медный проводник, и продеть его через отверстие в горизонтально расположенном листе бумаги (или оргстекла, или фанеры), а затем насыпать металлические опилки на лист, и немного встряхнуть его, после чего пропустить по проводнику постоянный ток, то легко заметить, как опилки выстроятся в форме вихря по окружностям вокруг проводника, в плоскости перпендикулярной току в нем.

Эти окружности из опилок как раз и будут условным изображением линий магнитной индукции В магнитного поля проводника с током. Центр окружностей, в данном эксперименте, будет расположен ровно в центре, по оси проводника с током.

Направление векторов магнитной индукции В проводника с током легко определить или по правилу правого винта: при поступательном движении оси винта по направлению тока в проводнике, направление вращения винта или рукоятки буравчика (вкручиваем или выкручиваем винт) укажет направление магнитного поля вокруг тока.

Почему применяется правило буравчика? Поскольку операция ротор (обозначаемая в теории поля rot), используемая в двух уравнениях Максвелла, может быть записана формально как векторное произведение (с оператором набла), а главное потому, что ротор векторного поля может быть уподоблен (представляет собой аналогию) угловой скорости вращения идеальной жидкости (как представлял сам Максвелл), поле скоростей течения которой изображает собой данное векторное поле, можно воспользоваться для ротора теми формулировками правила, которые описаны для угловой скорости.

Таким образом, если крутить буравчик в направлении завихрения векторного поля, то он будет ввинчиваться в направлении вектора ротора этого поля.

Как видите, в отличие от линий напряженности электростатического поля, которые в пространстве разомкнуты, линии магнитной индукции, окружающие электрический ток, замкнуты. Если линии электрической напряженности Е начинаются на положительных зарядах и заканчиваются на отрицательных, то линии магнитной индукции В просто замкнуты вокруг порождающего их тока.


Теперь усложним эксперимент. Рассмотрим вместо прямого проводника с током виток с током. Допустим, нам удобно расположить такой контур перпендикулярно плоскости рисунка, причем слева ток направлен на нас, а справа — от нас. Если теперь внутри витка с током разместить компас с магнитной стрелкой, то магнитная стрелка укажет направление линий магнитной индукции — они окажутся направлены по оси витка.

Почему? Потому что противоположные стороны от плоскости витка окажутся аналогичны полюсам магнитной стрелки. Откуда линии В выходят — это северный магнитный полюс, куда входят — южный полюс. Это легко понять, если сначала рассмотреть проводник с током и с его магнитным полем, а затем просто свернуть проводник в кольцо.

Для определения направления магнитной индукции витка с током также пользуются правилом буравчика или правилом правого винта. Поместим острие буравчика по центру витка, и станем его вращать по часовой стрелке. Поступательное движение буравчика совпадет по направлению с вектором магнитной индукции В в центре витка.

Очевидно, направление магнитного поля тока связано с направлением тока в проводнике, будь то прямой проводник или виток.

Принято считать, что та сторона катушки или витка с током, откуда линии магнитной индукции В выходят (направление вектора В наружу) — это и есть северный магнитный полюс, а куда линии входят (вектор В направлен внутрь) — это южный магнитный полюс.

Если множество витков с током образуют длинную катушку — соленоид (длина катушки во много раз превышает ее диаметр), то магнитное поле внутри нее однородно, то есть линии магнитной индукции В параллельны друг другу, и имеют одинаковую плотность по всей длине катушки. Кстати, магнитное поле постоянного магнита похоже снаружи на магнитное поле катушки с током.

Для катушки с током I, длиной l, с количеством витков N, магнитная индукция в вакууме будет численно равна:


Итак, магнитное поле внутри катушки с током является однородным, и направлено от южного к северному полюсу (внутри катушки!) Магнитная индукция внутри катушки пропорциональна по модулю числу ампер-витков на единицу длины катушки с током.

Магнитное поле катушки с током. Электромагниты и их использование

Электромагнетизм — это совокупность явлений, обусловленных связью электрических токов и магнитных полей. Иногда эта связь приводит к нежелательным эффектам. К примеру, ток, протекающий по электрическим кабелям на корабле, вызывает ненужное отклонение судового компаса. Однако нередко электричество намеренно используется для создания магнитных полей большой интенсивности. В качестве примера можно привести электромагниты. О них мы сегодня и поговорим.

Интенсивность магнитного поля можно определить числом линий магнитного потока, которое приходится на единицу площади. Магнитное поле возникает всюду, где протекает электрический ток, причем магнитный поток в воздухе пропорционален последнему. Прямой провод, несущий ток, можно согнуть в виток. При достаточно малом радиусе витка это приводит к возрастанию магнитного потока. При этом сила тока не увеличивается.

Эффект концентрации магнитного потока можно еще усилить, увеличивая количество витков, т. е. скручивая провод в катушку. Справедливо и обратное. Магнитное поле катушки с током можно ослабить, если уменьшить количество витков.

Выведем важное соотношение. В точке максимальной плотности магнитного потока (в ней на единицу площади приходится больше всего линий потока) соотношение между электрическим током I, числом витков провода n и магнитным потоком В выражается так: In пропорционально В. Ток в 12 А, текущий по катушке из 3 витков, создает точно такое же магнитное поле, как и ток в 3 А, текущий по катушке из 12 витков. Это важно знать, решая практические задачи.

Соленоид

Катушка из намотанного провода, создающая магнитное поле, называется соленоидом. Провода можно наматывать на железо (железный сердечник). Подойдет и немагнитная основа (например, воздушный сердечник). Как вы видите, можно использовать не только железо, чтобы создать магнитное поле катушки с током. С точки зрения величины потока любой немагнитный сердечник эквивалентен воздуху. То есть приведенное выше соотношение, связывающее ток, число витков и поток, в этом случае выполняется достаточно точно. Таким образом, магнитное поле катушки с током можно ослабить, если применить эту закономерность.

Использование железа в соленоиде

Для чего в соленоиде используется железо? Его наличие влияет на магнитное поле катушки с током в двух отношениях. Оно увеличивает магнитное действие тока, часто в тысячи раз и более. Однако при этом может нарушаться одна важная пропорциональная зависимость. Речь идет о той, которая существует между магнитным потоком и током в катушках с воздушным сердечником.

Микроскопические области в железе, домены (точнее, их магнитные моменты), при действии магнитного поля, которое создается током, строятся в одном направлении. В результате при наличии железного сердечника данный ток создает больший магнитный поток на единицу сечения провода. Таким образом, плотность потока существенно возрастает. Когда все домены выстраиваются в одном направлении, дальнейшее увеличение тока (или числа витков в катушке) лишь незначительно повышает плотность магнитного потока.

Расскажем теперь немного об индукции. Это важная часть интересующей нас темы.

Индукция магнитного поля катушки с током

Хотя магнитное поле соленоида с железным сердечником гораздо сильнее магнитного поля соленоида с воздушным сердечником, величина его ограничена свойствами железа. Размер того, которое создается катушкой с воздушным сердечником, теоретически не имеет предела. Однако, как правило, получать огромные токи, необходимые для создания поля, сравнимого по величине с полем соленоида с железным сердечником, очень трудно и дорого. Не всегда следует идти этим путем.

Что будет, если изменить магнитное поле катушки с током? Это действие может породить электрический ток точно так же, как ток создает магнитное поле. При приближении магнита к проводнику магнитные силовые линии, пересекающие проводник, индуцируют в нем напряжение. Полярность индуцированного напряжения зависит от полярности и направления изменения магнитного потока. Этот эффект значительно сильнее проявляется в катушке, чем в отдельном витке: он пропорционален числу витков в обмотке. При наличии железного сердечника индуцированное напряжение в соленоиде увеличивается. При таком способе необходимо движение проводника относительно магнитного потока. Если проводник не будет пересекать линии магнитного потока, напряжение не возникнет.

Как получают энергию

Электрические генераторы вырабатывают ток на основе тех же принципов. Обычно магнит вращается между катушками. Величина индуцированного напряжения зависит от величины поля магнита и скорости его вращения (они определяют скорость изменения магнитного потока). Напряжение в проводнике прямо пропорционально скорости магнитного потока в нем.

Во многих генераторах магнит заменен соленоидом. Для того чтобы создать магнитное поле катушки с током, соленоид подключают к источнику тока. Какой в этом случае будет электрическая мощность, вырабатываемая генератором? Она равна произведению напряжения на силу тока. С другой стороны, взаимосвязь тока в проводнике и магнитного потока позволяет использовать поток, создаваемый электрическим током в магнитном поле, для получения механического движения. По этому принципу работают электродвигатели и некоторые электроизмерительные приборы. Однако для создания движения в них необходимо затрачивать дополнительную электрическую мощность.

Сильные магнитные поля

В настоящее время, используя явление сверхпроводимости, удается получать невиданной интенсивности магнитное поле катушки с током. Электромагниты могут быть очень мощными. При этом ток протекает без потерь, т. е. не вызывает нагрева материала. Это позволяет применять большое напряжение в соленоидах с воздушным сердечником и избежать ограничений, обусловленных эффектом насыщения. Очень большие перспективы открывает такое мощное магнитное поле катушки с током. Электромагниты и их применение не зря интересуют множество ученых. Ведь сильные поля могут использоваться для движения на магнитной «подушке» и создания новых видов электродвигателей и генераторов. Они способны высокую мощность при малой стоимости.

Энергия магнитного поля катушки с током активно используется человечеством. Она уже долгие годы широко применяется, в частности на железных дорогах. О том, как используются магнитные линии поля катушки с током для регулирования движения поездов, мы сейчас и поговорим.

Магниты на железных дорогах

На железных дорогах обычно применяются системы, в которых в целях большей безопасности электромагниты и постоянные магниты дополняют друг друга. Как же действуют эти системы? Сильный постоянный магнит прикрепляют вплотную к рельсу на определенном расстоянии от светофоров. Во время прохождения поезда над магнитом ось постоянного плоского магнита в кабине машиниста поворачивается на малый угол, после чего магнит остается в новом положении.

Регулирование движения на железной дороге

Движение плоского магнита включает сигнальный звонок или сирену. Далее происходит следующее. Через пару секунд кабина машиниста проходит над электромагнитом, который связан со светофором. Если тот дает поезду зеленую улицу, то электромагнит оказывается под напряжением и ось постоянного магнита в вагоне поворачивается в свое первоначальное положение, выключая сигнал в кабине. Когда же на светофоре горит красный или желтый свет, электромагнит бывает выключен, и тогда после некоторой задержки автоматически включается тормоз, если, конечно, это забыл сделать машинист. Тормозная цепь (как и звуковой сигнал) подключается к сети с момента поворота оси магнита. Если магнит во время задержки возвращается в первоначальное положение, то тормоз не включается.

Магнитное поле катушки с током. Электромагниты. Катушки индуктивности и магнитные поля Изображение катушки с током

Если в пространстве вокруг неподвижных электрических зарядов существует электростатическое поле, то в пространстве вокруг движущихся зарядов (как и вокруг изменяющихся во времени электрических полей, что изначально предположил Максвелл) существует . Это легко наблюдать экспериментально.

Именно благодаря магнитному полю и взаимодействуют между собой электрические токи, а также постоянные магниты и токи с магнитами. По сравнению с электрическим взаимодействием, магнитное взаимодействие является значительно более сильным. Это взаимодействие в свое время изучал Андре-Мари Ампер.

В физике характеристикой магнитного поля служит B, и чем она больше, тем сильнее магнитное поле. Магнитная индукция В — величина векторная, ее направление совпадает с направлением силы, действующей на северный полюс условной магнитной стрелки, помещенной в какую-нибудь точку магнитного поля, — магнитное поле сориентирует магнитную стрелку в направлении вектора В, то есть в направлении магнитного поля.

Вектор В в каждой точке линии магнитной индукции направлен к ней по касательной. То есть индукция В характеризует силовое действие магнитного поля на ток. Похожую роль играет напряженность Е для электрического поля, характеризующая силовое действие электрического поля на заряд.

Простейший эксперимент с железными опилками позволяет наглядно продемонстрировать явление действия магнитного поля на намагниченный объект, поскольку в постоянном магнитном поле маленькие кусочки ферромагнетика (такими кусочками являются железные опилки) становится, намагничиваясь по полю, магнитными стрелками, словно маленькими стрелками компаса.

Если взять вертикальный медный проводник, и продеть его через отверстие в горизонтально расположенном листе бумаги (или оргстекла, или фанеры), а затем насыпать металлические опилки на лист, и немного встряхнуть его, после чего пропустить по проводнику постоянный ток, то легко заметить, как опилки выстроятся в форме вихря по окружностям вокруг проводника, в плоскости перпендикулярной току в нем.

Эти окружности из опилок как раз и будут условным изображением линий магнитной индукции В магнитного поля проводника с током. Центр окружностей, в данном эксперименте, будет расположен ровно в центре, по оси проводника с током.

Направление векторов магнитной индукции В проводника с током легко определить или по правилу правого винта: при поступательном движении оси винта по направлению тока в проводнике, направление вращения винта или рукоятки буравчика (вкручиваем или выкручиваем винт) укажет направление магнитного поля вокруг тока.

Почему применяется правило буравчика? Поскольку операция ротор (обозначаемая в теории поля rot), используемая в двух уравнениях Максвелла, может быть записана формально как векторное произведение (с оператором набла), а главное потому, что ротор векторного поля может быть уподоблен (представляет собой аналогию) угловой скорости вращения идеальной жидкости (как представлял сам Максвелл), поле скоростей течения которой изображает собой данное векторное поле, можно воспользоваться для ротора теми формулировками правила, которые описаны для угловой скорости.

Таким образом, если крутить буравчик в направлении завихрения векторного поля, то он будет ввинчиваться в направлении вектора ротора этого поля.

Как видите, в отличие от линий напряженности электростатического поля, которые в пространстве разомкнуты, линии магнитной индукции, окружающие электрический ток, замкнуты. Если линии электрической напряженности Е начинаются на положительных зарядах и заканчиваются на отрицательных, то линии магнитной индукции В просто замкнуты вокруг порождающего их тока.


Теперь усложним эксперимент. Рассмотрим вместо прямого проводника с током виток с током. Допустим, нам удобно расположить такой контур перпендикулярно плоскости рисунка, причем слева ток направлен на нас, а справа — от нас. Если теперь внутри витка с током разместить компас с магнитной стрелкой, то магнитная стрелка укажет направление линий магнитной индукции — они окажутся направлены по оси витка.

Почему? Потому что противоположные стороны от плоскости витка окажутся аналогичны полюсам магнитной стрелки. Откуда линии В выходят — это северный магнитный полюс, куда входят — южный полюс. Это легко понять, если сначала рассмотреть проводник с током и с его магнитным полем, а затем просто свернуть проводник в кольцо.

Для определения направления магнитной индукции витка с током также пользуются правилом буравчика или правилом правого винта. Поместим острие буравчика по центру витка, и станем его вращать по часовой стрелке. Поступательное движение буравчика совпадет по направлению с вектором магнитной индукции В в центре витка.

Очевидно, направление магнитного поля тока связано с направлением тока в проводнике, будь то прямой проводник или виток.

Принято считать, что та сторона катушки или витка с током, откуда линии магнитной индукции В выходят (направление вектора В наружу) — это и есть северный магнитный полюс, а куда линии входят (вектор В направлен внутрь) — это южный магнитный полюс.

Если множество витков с током образуют длинную катушку — соленоид (длина катушки во много раз превышает ее диаметр), то магнитное поле внутри нее однородно, то есть линии магнитной индукции В параллельны друг другу, и имеют одинаковую плотность по всей длине катушки. Кстати, магнитное поле постоянного магнита похоже снаружи на магнитное поле катушки с током.

Для катушки с током I, длиной l, с количеством витков N, магнитная индукция в вакууме будет численно равна:


Итак, магнитное поле внутри катушки с током является однородным, и направлено от южного к северному полюсу (внутри катушки!) Магнитная индукция внутри катушки пропорциональна по модулю числу ампер-витков на единицу длины катушки с током.

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга . Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью . Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC – метра .

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I –

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение


И у нас получится вот такая картина с магнитными силовыми линиями:


Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф) . Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается, то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома :


где

I – сила тока в катушке, А

U – напряжение в катушке, В

R – сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником . Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник:-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:


В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:


Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.


Дроссели

Также есть особый вид катушек индуктивностей. Это так называемые . Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:


Также существует еще один особый вид дросселей – это . Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.


Опыты с катушкой

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.


Имеется ферритовый сердечник


Начинаю вводить катушку в сердечник на самый край


LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита


35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита


20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.


Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту


13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.


Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.


Замеряем индуктивность


15 микрогенри

Отдалим витки катушки друг от друга


Замеряем снова


Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.


Замеряем


Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”. Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах


Последовательное и параллельное соединение катушек

При последовательном соединении индуктивностей , их общая индуктивность будет равняться сумме индуктивностей.


А при параллельном соединении получаем вот так:


При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Проводник, по которому протекает электрический ток, создает магнитное поле которое характеризуется вектором напряженности `H (рис. 3). Напряженность магнитного поля подчиняется принципу суперпозиции

а, согласно закону Био-Савара-Лапласа,

где I – сила тока в проводнике, – вектор, имеющий длину элементарного отрезка проводника и направленный по направлению тока, `r – радиус вектор, соединяющий элемент с рассматриваемой точкой P .

Одной из часто встречающихся конфигураций проводников с током является виток в виде кольца радиуса R (рис. 3, а). Магнитное поле такого тока в плоскости, проходящей через ось симметрии, имеет вид (см. рис. 3, б). Поле в целом должно иметь вращательную симметрию относительно оси z (рис. 3, б), а сами силовые линии должны быть симметричны относительно плоскости петли (плоскости xy ). Поле в непосредственной близости от проводника будет напоминать поле вблизи длинного прямого провода, так как здесь влияние удаленных частей петли относительно невелико. На оси кругового тока поле направлено вдоль оси Z .

Вычислим напряженность магнитного поля на оси кольца в точке расположенной на расстоянии z от плоскости кольца. По формуле (6) достаточно вычислить z-компоненту вектора :

. (7)

Интегрируя по всему кольцу, получим òdl = 2pR . Поскольку, согласно теореме Пифагора r 2 = R 2 + z 2 , то искомое поле в точке на оси по величине равно

. (8)

Направление вектора `H может быть направлено по правилу правого винта.

В центре кольца z = 0 и формула (8) упрощается:

Нас интересуеткороткая катушка – цилиндрическая проволочная катушка, состоящая из N витков одинакового радиуса. Из-за осевой симметрии и в соответствии с принципом суперпозиции магнитное поле такой катушки на оси H представляет собой алгебраическую сумму полей отдельных витков H i: . Таким образом, магнитное поле короткой катушки, содержащей N к витков, в произвольной точке оси рассчитывается по формулам

, , (10)

где H – напряженность, B – индукция магнитного поля.

Магнитное поле соленоида с током

Для расчета индукции магнитного поля в соленоиде используется теорема о циркуляции вектора магнитной индукции:

, (11)

где – алгебраическая сумма токов, охватываемых контуром L произвольной формы, n – число проводников с токами, охватываемых контуром. При этом каждый ток учитывается столько раз, сколько раз он охватывается контуром, а положительным считается ток, направление которого образует с направлением обхода по контуру правовинтовую систему, – элемент контура L .

Применим теорему о циркуляции вектора магнитной индукции к соленоиду, длиной l , имеющим N с витков с силой тока I (рис. 4). В расчете учтем, что практически всё поле сосредоточено внутри соленоида (краевыми эффектами пренебрегаем) и оно является однородным. Тогда формула 11 примет вид:

,

откуда находим индукцию магнитного поля, создаваемую током внутри соленоида:

Рис. 4. Соленоид с током и его магнитное поле


Схема установки

Рис. 5 Принципиальная электрическая схема установки

1 – измеритель индукции магнитного поля (тесламетр), А – амперметр, 2 – соединительный провод, 3 – измерительный щуп, 4 – датчик Холла*, 5 – исследуемый объект (короткая катушка, прямой проводник, соленоид), 6 – источник тока, 7 – линейка для фиксирования положения датчика, 8 – держатель щупа.

* – принцип работы датчика основан на явлении эффекта Холла (см. лаб. работу № 15 Изучение эффекта Холла)

Порядок выполнения работы

1. Исследование магнитного поля короткой катушки

1.1. Включить приборы. Выключатели источника питания и тесламетра расположены на задних панелях.

1.2. В качестве исследуемого объекта 5 (см. рис. 5) установить в держатель короткую катушку и подключить ее к источнику тока 6.

1.3. Регулятор напряжения на источнике 6 поставить в среднее положение. Установить силу тока, равную нулю, путем регулировки выхода силы тока на источнике 6 и произвести контроль по амперметру (значение должно быть равно нулю).

1.4. Регуляторами грубой 1 и тонкой настройки 2 (рис. 6) добиться нулевых показаний тесламетра.

1.5. Установить держатель с измерительным щупом на линейке в удобном для считывания положении – например, в координате 300 мм. В дальнейшем принять это положение за нулевое. Следить при установке и в процессе измерений за параллельностью между щупом и линейкой.

1.6. Расположить держатель с короткой катушкой таким образом, чтобы датчик Холла 4 находился в центре витков катушки (рис. 7). Для этого использовать зажимно – регулировочный винт по высоте на держателе измерительного щупа. Плоскость катушки должна быть перпендикулярна щупу. В процессе подготовки измерений перемещать держатель с исследуемым образцом, оставляя неподвижным измерительный щуп.

1.7. Убедиться, что за время прогрева тесламетра, его показания остались нулевыми. Если это не выполнено – установить нулевые показания тесламетра при нулевом токе в образце.

1.8. Установить силу тока в короткой катушке 5 А (путем регулировки выхода на источнике питания 6, Constanter/Netzgerät Universal).

1.9. Измерить магнитную индукцию B эксп на оси катушки в зависимости от расстояния до центра катушки. Для этого смещать держатель измерительного щупа по линейке, сохраняя параллельность своему первоначальному положению. Отрицательные значения z соответствуют смещению щупа в область меньших координат, чем начальная, и наоборот – положительные значения z – в области больших координат. Данные занести в таблицу 1.

Таблица 1 Зависимость магнитной индукции на оси короткой катушки от расстояния до центра катушки

1.10. Повторить пункты 1.2 – 1.7.

1.11. Измерить зависимость индукции в центре витка от силы тока, проходящей через катушку. Данные занести в таблицу 2.

Таблица 2 Зависимость магнитной индукции в центре короткой катушки от силы тока в ней

2. Исследование магнитного поля соленоида

2.1. В качестве исследуемого объекта 5 установить соленоид на регулируемую по высоте металлическую скамью из немагнитного материала (рис. 8).

2.2. Повторить 1.3 – 1.5.

2.3. Отрегулировать высоту скамьи так, чтобы измерительный щуп проходил по оси симметрии соленоида, а датчик Холла оказался в середине витков соленоида.

2.4. Повторить пункты 1.7 – 1.11 (вместо короткой катушки здесь используется соленоид). Данные занести соответственно в таблицы 3 и 4. При этом координату центра соленоида определить следующим образом: установить датчик Холла в начало соленоида и зафиксировать координату держателя. Затем передвигать держатель по линейке вдоль оси соленоида до тех пор пока конец датчика не окажется на другой стороне соленоида. Зафиксировать координату держателя в этом положении. Координата центра соленоида будет равна среднему арифметическому из двух измеренных координат.

Таблица 3 Зависимость магнитной индукции на оси соленоида от расстояния до его центра.

2.5. Повторить пункты 1.3 – 1.7.

2.6. Измерить зависимость индукции в центре соленоида от силы тока, проходящей через катушку. Данные занести в таблицу 4.

Таблица 4 Зависимость магнитной индукции в центре соленоида от силы тока в нем

3. Исследование магнитного поля прямого проводника с током

3.1. В качестве исследуемого объекта 5 установить прямой проводник с током (рис. 9, a). Для этого соединить провода, идущие от амперметра и источника питания между собой (закоротить внешнюю цепь) и расположить проводник непосредственно на краю щупа 3 у датчика 4, перпендикулярно щупу (рис. 9, b). Для поддержки проводника использовать регулируемую по высоте металлическую скамью из немагнитного материала с одной стороны щупа и держатель для исследуемых образцов – с другой стороны (в одно из гнезд держателя можно включить клемму проводника для более надежной фиксации этого проводника). Проводнику придать прямолинейную форму.

3.2. Повторить пункты 1.3 – 1.5.

3.3. Определить зависимость магнитной индукции от силы тока в проводнике. Измеренные данные занести в таблицу 5.

Таблица 5 Зависимость магнитной индукции, создаваемой прямолинейным проводником, от силы тока в нем

4. Определение параметров исследованных объектов

4.1. Определить (при необходимости – измерить) и записать в таблицу 6 необходимые для расчетов данные: N к – число витков короткой катушки, R – её радиус; N с – число витков соленоида, l – его длина, L – его индуктивность (указано на соленоиде), d – его диаметр.

Таблица 6 Параметры исследуемых образцов

Обработка результатов

1. По формуле (10) рассчитать магнитную индукцию, создаваемую короткой катушкой с током. Данные занести в таблицы 1 и 2. По данным таблицы 1 построить теоретическую и экспериментальную зависимости магнитной индукции на оси короткой катушки от расстояния z до центра катушки. Теоретическую и экспериментальную зависимости построить в одних координатных осях.

2. По данным таблицы 2 построить теоретическую и экспериментальную зависимости магнитной индукции в центре короткой катушки от силы тока в ней. Теоретическую и экспериментальную зависимости построить в одних координатных осях. Рассчитать напряженность магнитного поля в центре катушки при силе тока в ней 5 А с использованием формулы (10).

3. По формуле (12) рассчитать магнитную индукцию, создаваемую соленоидом. Данные занести в таблицы 3 и 4. По данным таблицы 3 построить теоретическую и экспериментальную зависимости магнитной индукции на оси соленоида от расстояния z до его центра. Теоретическую и экспериментальную зависимости построить в одних координатных осях.

4. По данным таблицы 4 построить теоретическую и экспериментальную зависимости магнитной индукции в центре соленоида от силы тока в нем. Теоретическую и экспериментальную зависимости построить в одних координатных осях. Рассчитать напряженность магнитного поля в центре соленоида при силе тока в нем 5 А.

5. По данным таблицы 5 построить экспериментальную зависимость магнитной индукции, создаваемой проводником, от силы тока в нем.

6. На основании формулы (5) определить кратчайшее расстояние r o от датчика до проводника с током (это расстояние обусловлено толщиной изоляции проводника и толщиной изоляции датчика в щупе). Результаты расчета занести в таблицу 5. Вычислить среднее арифметическое значение r o , сопоставить с визуально наблюдаемой величиной.

7. Рассчитать индуктивность соленоида L. Результаты расчетов занести в таблицу 4. Сопоставить полученное среднее значение L с зафиксированным значением индуктивности в таблице 6. Для расчета воспользоваться формулой , где Y – потокосцепление, Y = N с BS, где В – магнитная индукция в соленоиде (по данным таблицы 4), S = pd 2 /4 – площадь сечения соленоида.

Контрольные вопросы

1. В чем заключается закон Био-Савара-Лапласа и как его применять при расчете магнитных полей проводников с током?

2. Как определяется направление вектора H в законе Био-Савара-Лапласа?

3. Как взаимосвязаны вектора магнитной индукции B и напряженности H между собой? Каковы их единицы измерения?

4. Как используется закон Био-Савара-Лапласа в расчете магнитных полей?

5. Как измеряется магнитное поле в данной работе? На каком физическом явлении основан принцип измерения магнитного поля?

6. Дайте определение индуктивности, магнитного потока, потокосцепления. Укажите единицы измерения этих величин.

библиографический список

учебной литературы

1. Калашников Н.П. Основы физики. М.: Дрофа, 2004. Т. 1

2. Савельев И.В . Курс физики. М.: Наука, 1998. Т. 2.

3. Детлаф А.А. , Яворский Б.М. Курс физики. М.: Высшая школа, 2000.

4. Иродов И.Е Электромагнетизм. М.: Бином, 2006.

5. Яворский Б.М. , Детлаф А.А. Справочник по физике. М.: Наука, 1998.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности . Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – и .

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку:), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный 🙂

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока .

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость 🙂 Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции . Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: , title=»Rendered by QuickLaTeX.com»>, участок 3-4: title=»Rendered by QuickLaTeX.com»>, ). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника). А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока). И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

Где – круговая частота: . – это .

Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто 🙂 По 2-му закону Кирхгофа:

А следовательно:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе () друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались 🙂

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Если прямой проводник свернуть в виде окружности, то можно исследовать магнитное поле кругового тока.
Проведем опыт (1). Провод в виде окружности пропустим через картон. Поместим несколько свободных магнитных стрелок на поверхности картона в различных точках. Включим ток и видим, что магнитные стрелочки в центре витка показывают направление одинаковое, а вне витка с обеих сторон в другую сторону.
Теперь повторим опыт (2), поменяв полюса, а значит и направление тока. Видим, что магнитные стрелочки изменили направление на всей поверхности картона на 180 градусов.
Сделаем вывод: магнитные линии кругового тока то же зависят от направления тока в проводнике.
Проведем опыт 3. Уберем магнитные стрелочки, включим электрический ток и осторожно по всей поверхности картона насыплем мелкие железные опилки У нас получилась картина магнитных силовых линий, которая называется «спектр магнитного поля кругового тока» . Как же в этом случае определить направление магнитных силовых линий? Вновь применим правило буравчика, но в применении к круговому току. Если направление вращения ручки буравчика совместить с направлением тока в круговом проводнике, то направление поступательного движения буравчика будет совпадать с направлением магнитных силовых линий.
Рассмотрим несколько случаев.
1. Плоскость витка лежит в плоскости листа, ток по витку идет по часовой стрелке. Вращая виток по часовой стрелке, мы определяем, что магнитные силовые линии в центре витка направлены внутрь витка «от нас». Это условно обозначается знаком «+» (плюс). Т.е. в центре витка мы ставим «+»
2. Плоскость витка лежит в плоскости листа, ток по витку идет против часовой стрелки. Вращая виток против часовой стрелки, мы определяем, что магнитные силовые линии выходят из цента витка «к нам». Это условно обозначается «∙» (точкой). Т.е. в центе витка мы должны поставить точку («∙»).
Если прямой проводник намотать на цилиндр, то получится катушка с током, или соленоид.
Проведем опыт (4.) Используем для опыта ту же цепь, только провод теперь пропущен через картон в виде катушки. Расположим несколько свободных магнитных стрелок на плоскости картона в различных точках: у обоих концов катушки, внутри катушки и с обеих сторон снаружи. Пусть катушка расположена горизонтально (в направлении «слева — направо»). Включим цепь и обнаружим, что магнитные стрелки, расположенные по оси катушки, показывают одно направление. Отмечаем, что у правого конца катушки стрелка показывает, что силовые линии входят в катушку, значит -это «южный полюс» (S), а в левом магнитная стрелка показывает, что выходят, это «северный полюс» (N). Снаружи катушки магнитные стрелки имеют противоположное направление по сравнению с направлением внутри катушки.
Проведем опыт (5). В этой же цепи поменяем направление тока. Обнаружим, что направление всех магнитных стрелок изменилось, они повернулись на 180 градусов. Делаем вывод: направление магнитных силовых линий зависит от направления тока по виткам катушки.
Проведем опыт (6). Уберем магнитные стрелки и включим цепь. Осторожно «посолим железными опилками» картон внутри и снаружи катушки. Получим картину магнитных силовых линий, которая называется «спектр магнитного поля катушки с током»
А как же определить направление магнитных силовых линий? Направление магнитных силовых линий определяется по правилу буравчика так же, как и для витка с током: Если направление вращения ручки буравчика совместить с направлением тока в витках, то направление поступательного движения совпадет с направлением магнитных силовых линий внутри соленоида. Магнитное поле соленоида похоже на магнитное поле постоянного полосового магнита. Тот конец катушки, из которого выходят силовые линии, будет «северным полюсом» (N), а тот, в который входят силовые линии — «южным полюсом» (S).
После открытия Ганса Эрстеда многие ученые стали повторять его опыты, придумывая новые, чтобы обнаружить доказательства связи электричества и магнетизма. Французский ученый Доминик Араго поместил железный стержень, в стеклянную трубку и поверх нее намотал медный провод, по которому пропустил электрический ток. Как только Араго замкнул электрическую цепь, стержень из железа так сильно намагнитился, что притянул к себе железные ключи. Чтобы оторвать ключи, пришлось приложить значительные усилия. Когда Араго отключил источник тока, то ключи отвалились сами! Так Араго изобрел первый электромагнит. Современные электромагниты состоят из трех частей: обмотки, сердечника и якоря. Провода помещают в специальную оболочку, которая играет роль изолятора. Проводом наматывают многослойную катушку — обмотку электромагнита. В качестве сердечника используют стальной стержень. Пластина, которая притягивается к сердечнику, называется якорем. Электромагниты получили широкое применение в промышленности благодаря их свойствам: они быстро размагничиваются при выключении тока; их можно изготавливать самых различных размеров в зависимости от назначения; меняя силу тока можно регулировать магнитное действие электромагнита. Электромагниты применяются на заводах для переноски изделий из стали и чугуна. Эти магниты имеют большую подъемную силу. Применяются электромагниты также в электрическом звонке, электромагнитных сепараторах, в микрофонах, в телефонах. Сегодня мы рассмотрели магнитное поле кругового тока, катушки с током. Познакомились с электромагнитами, их применением в промышленности и в народном хозяйстве.

“Катушка, вращающаяся в магнитном поле ”

Лицейская конференция

 

25 марта 2022 года впервые была организована лицейская научно-практическая конференция, которая состояла из трех секций: 1. Математики и информатики, 2. Физики, химии и биологии, 3. Социальных наук и лингвистики.

Целью конференции является: развитие интеллектуального творчества учащихся на основе выявления способных и одаренных учащихся, активизация исследовательской деятельности школьников, привлечение их к научно-поисковой работе. Каждая секция состояла из членов жюри, модераторов секции, технических работников, слушателей и самих выступающих учащихся. Данная конференция — это школьный этап ежегодной Республиканской научно-практической конференции «Шаг в будущее». В результате плодотворной работы всех трех секций были выделены призеры и составлены списки рекомендованных работ на региональный этап конференции.

На секции математики и информатики:

1 место — Иптышев Виктор (10 А), 2 место — Чимбиян Отчугаш (10 А) и 3 место — Ховалыг Дажы-Доржу (10 А). В списки рекомендованных попадают три призера автоматически и помимо них в этой секции зарекомендованы: Куулар Валерия (10 А), Монгуш Сайдаш (10 А), Казачаков Тимофей (5 А), Хертек Джигме (10 А), Конгаа Оргаадай (10 А).

На секции Физики, Химии и Биологии:

1 место — Ооржак Улана (8 А), 2 место — Нурзет Даваа-Самбуу (10 А) и 3 место — Бады Александра (8 А).

 В списки рекомендованных попадают три призера автоматически и помимо них в этой секции зарекомендованы: Натсак Кьяра (7 А) и Иптышев Артас (8 А).

На секции Социальных наук и лингвистики:

1 место — Биче Лиана (8 А), 2 место — Ойдуп Аюш (8 А) и 3 место — Монгуш Кан-Кыс (7 Б). В списки рекомендованных попадают три призера автоматически и помимо них в этой секции зарекомендованы: Монгуш Анастасия (10 А), Куулар Эвелина (10 А) и Толмачев Батыр (8 А).

Очень отрадно видеть лицеистов, горящих наукой, у которых глаза светятся от жажды знаний и исследований. Лицейская конференция будет традицией лицея и станет ежегодной.

 

 

Занимайтесь наукой, лицеисты!

 

 

 

С Юбилеем!

 

    На этой неделе справляет юбилей учитель математики Государственного лицея Троякова Галина Александровна.

    Галина Александровна — учитель математики высшей категории, к.ф.-м. н., «Почетный работник образования РФ», «Заслуженный работник образования РТ», «Заслуженный преподаватель Тувинского государственного университета, Юбилейная медаль «100-летия единения России и Тувы и 100-летие основания г. Кызыла», награждена почетной грамотой Министерства образования и науки Республики Тыва, соавтор учебной программы по математике, разработчик УМК по математике для профильных классов.

    Со дня основания Лицея, первого инновационного учебного заведения в республике, Галина Александровна работает преподавателем математики в классах с углубленным изучением математики, руководит научной работой лицеистов. Результатом ее работы является участие лицеистов с высокими показателями в научно-практических конференциях «Шаг в будущее», студенческих и международных конференциях, олимпиадах.

    Коллектив Государственного лицея от всей души поздравляет Галину Александровну с Юбилеем! Желаем радовать лицеистов своими глубокими знаниями, дарить им любовь к предмету и к науке. Пусть Ваша работа будет плодотворной и благодарной. Пусть огонь в ваших глазах никогда не погаснет. Долголетия Вам и крепкого здоровья!

 

 

 

Республиканский шахматный турнир «Белая ладья»

 

С 19 по 20 марта на базе Молодежного дворца (кванториум) прошел муниципальный этап Всероссийских соревнований по шахматам «Белая ладья» среди команд общеобразовательных организаций 2022 года. Соревнования были организованы совместно с Федерацией шахмат Республики Тыва в целях пропаганды здорового образа жизни среди подрастающего поколения, духовного, патриотического воспитания молодежи, повышение спортивного мастерства юных спортсменов, дальнейшей популяризации шахмат среди детей и подростков.

Команда Государственного лицея Республики Тыва в составе Монгуша Монгун-Доржу (5 а), Сувакпита Доржу (5 а), Кужугета Сендаюша (5 а) и Данзурун Айталины (7 б) заняла почетное 1 место. Тренер команды Монгуш Ада Ким-ооловна, учитель дополнительного образования лицея, поделилась эмоциями и сказала, что очень волновалась за детей. Впереди детей ждет республиканский этап соревнований.

Лицей гордится своими юными шахматистами и желает им успехов в республиканском этапе!

 

 

 

 

Индукционная катушка – обзор

12.3.3 Индукционный нагрев

Индукционный нагрев 6 – еще один подход к прямому нагреву подложки. Распространено заблуждение, что подложка должна быть магнитной, чтобы ее можно было использовать для индукционного нагрева. Для индукционного нагрева подложка должна проводить электричество. Технически он также должен сопротивляться потоку электричества или иметь сопротивление, но это верно для всех материалов, кроме сверхпроводников.

Принцип индукционного нагрева зависит от понимания того, что при протекании электричества создается магнитное поле, и обратное также верно.Там, где есть магнитное поле и проводник, будет течь электричество.

Индукционные нагреватели используют этот принцип. Нагреватель использует переменное электричество в катушке для создания магнитного поля. Когда кусок металла помещается близко к этой катушке (не касаясь ее), магнитное поле, создаваемое катушкой, взаимодействует с металлом, генерируя электрический ток. Этот ток называется вихревым током , который показан на рисунке 12.12. Сопротивление протеканию тока в металле приводит к потере электроэнергии, как описано основной электрической формулой в уравнении (12.5).

Рисунок 12.12. Схема индукционного нагрева, показывающая магнитное поле, вихревые токи и переменный ток в катушке.

(12,5)P=i2R

В этом уравнении i — количество тока, R — сопротивление металла, а P — потери мощности или выделенное тепло. Уравнение также показывает, что удвоение тока увеличивает в четыре раза выделяемое тепло.

Поскольку в катушке используется переменный ток, магнитное поле со временем усредняется до нуля.

Сила магнитного поля падает по мере удаления от индукционной катушки. Поскольку вихревые токи связаны с силой магнитного поля, нагрев сильнее всего на поверхности. Процесс кажется простым, и в некотором смысле это так. Однако контролировать его сложно, но можно. Скорость нагрева металла под отверждаемым индукционным нагревом покрытием зависит от нескольких свойств металла подложки:

1.

Удельная теплоемкость

2.

Магнитная проницаемость

3.

Удельное сопротивление.

Все эти свойства подложки меняются в зависимости от температуры. Вес и форма металла подложки будут влиять на скорость нагрева. Поскольку большая часть тепла генерируется на поверхности, ближайшей к змеевику, теплопроводность подложки также будет влиять на пиковые температуры на поверхности по мере того, как тепло перемещается к более холодным участкам подложки.

Рис 12.13 показана схема индукционного нагревателя слева и фотография катушки, нагревающей стержень, справа. К параметрам управления индукционной катушки относятся:

1.

Мощность

2.

Частота.

Существует зависимость между частотой переменного тока и глубиной, на которую он проникает в подложку. Индуцированный ток внутри детали наиболее интенсивен на поверхности. Ток быстро затухает под поверхностью.Ближайший к поверхности металл нагревается быстрее, чем внутренний. «Толщина поверхностного слоя» детали описывается как глубина, в пределах которой производится 80% тепла в детали. Глубина скин-слоя уменьшается, когда уменьшается удельное сопротивление, увеличивается проницаемость или увеличивается частота. Высокие частоты 100–400 кГц обеспечивают неглубокое проникновение, которое обычно идеально подходит для отверждения поверхностных покрытий. Низкие частоты 5–30 кГц эффективны для более толстых материалов, требующих глубокого проникновения тепла, таких как изделия с покрытием сложной формы.

Магнитные материалы, такие как сталь, легче нагреваются, чем немагнитные материалы, такие как алюминий. Это связано с механизмом вторичного нагрева, называемым гистерезисом . Магнитные материалы естественным образом сопротивляются быстро меняющимся магнитным полям внутри индукционной катушки. Возникающее трение производит собственное дополнительное тепло — гистерезисный нагрев — в дополнение к нагреву вихревыми токами. Визуальное пояснение дано на рисунке 12.14. Говорят, что металл с высоким сопротивлением обладает высокой магнитной «проницаемостью».«Проницаемость магнитных материалов может варьироваться в диапазоне от 100 до 500; немагнитные имеют проницаемость 1.

Рисунок 12.13. Схема базовой установки оборудования для индукционного нагрева и фотография работающей индукционной катушки.

Рисунок 12.14. Гистерезис в магнитных материалах. 5 Энергия требуется для вращения маленьких внутренних магнитов. Сопротивление этому подобно трению; материал нагревается до температуры.

Преимущества индукционного нагрева по сравнению с обычным конвекционным нагревом:

1.

Быстрое время цикла . Тепло может вырабатываться непосредственно и почти мгновенно внутри подложки, что обеспечивает гораздо более быстрый запуск, чем при обычном конвекционном нагреве. Время цикла выпечки можно значительно сократить

2.

Контролируемый направленный нагрев . Очень небольшие участки подложки могут быть нагреты, не затрагивая другие окружающие участки или крепление, удерживающее деталь. Благодаря точному контролю потребляемой мощности можно быстро или медленно достичь нужной температуры

3.

Повторяемость . В современных системах индукционного нагрева режим нагрева всегда одинаков для данной конфигурации, цикл за циклом и день за днем ​​

4.

Бесконтактный нагрев . Ничто не касается детали с покрытием, когда она помещается в индукционную катушку, процесс вызывает тепло внутри детали, фактически не касаясь ее

5.

Энергоэффективность .

Таким образом, можно купить или приготовить фторсодержащее покрытие высочайшего качества, но если оно неправильно нанесено и запекается неправильно, оно может с треском провалиться при использовании.

Электромагнитная индукция

  • Изучив этот раздел, вы сможете описать:
  • • Магнитные поля вокруг проводников.
  • • Соленоид.

Магнитное поле вокруг проводника

Проводник, по которому течет электрический ток, будет создавать магнитное поле вокруг проводника, как показано на рис.3.1.1. Это поле имеет круглую форму и существует по всей длине проводника.Из-за своей круглой формы магнитное поле не имеет определенных северных или южных полюсов, но считается, что оно течет по непрерывной круговой петле к неопределенному северному полюсу.

Правило хвата правой рукой (или сгибания рук).

Направление магнитного поля вокруг проводника можно запомнить с помощью правила захвата правой рукой, показанного на рис. 3.1.2. Представьте, что вы держите проводник правой рукой, как показано на рисунке, при этом большой палец указывает направление обычного тока от положительного к отрицательному.Пальцы правой руки, обвивающие проводник, указывают направление течения магнитного потока.

Рис. 3.1.1 Магнитное поле вокруг проводника.

Рис. 3.1.2 Правило хвата правой рукой.

Магнитные поля вокруг параллельных проводников.

Если по двум параллельным проводникам течет одинаковый ток, направления магнитных полей вокруг каждого проводника будут взаимосвязаны и противодействуют друг другу между проводниками, как показано на рис.3.1.3 формирование области нулевого магнитного потока (отсутствия потока) между проводниками, это происходит между соседними проводниками вокруг оси катушки.

Магнитные поля вокруг катушек.

Однако, когда проводник согнут в петлю или катушку, направления магнитных полей внутри катушки совпадают, что приводит к концентрации магнитного потока внутри катушки, как показано на рис. 3.1.4.

Рис. 3.1.3 Магнитное поле вокруг параллельных проводников.

Рис. 3.1.4 Магнитное поле вокруг петлевых проводников.

 

Рис. 3.1.5 Магнитное поле вокруг соленоида и стержневого магнита.

Соленоид.

Когда проволочные катушки образуют ряд непрерывных петель, называемых соленоидом, описанные выше эффекты создают картину магнитного поля, аналогичную той, что вокруг стержневого магнита, как показано на рис. 3.1.5. Увеличение или уменьшение тока через индуктор увеличивает или уменьшает силу магнитного поля, создавая эффект стержневого магнита, но с переменной напряженностью поля.

Это изменяющееся магнитное поле может иметь несколько эффектов. Его можно использовать для создания движения, например, в электродвигателях, или его можно использовать для создания электрических эффектов в других проводниках, на которые воздействует поле.

Поскольку этот модуль имеет дело с сигналами переменного тока в статических компонентах, таких как катушки индуктивности и трансформаторы (а не в движущихся машинах, таких как двигатели или генераторы), описанные эффекты связаны с изменениями магнитных полей вокруг статических катушек индуктивности и изменениями тока через эти катушки индуктивности.

Термины, используемые в электромагнетизме.

Магнитный поток — это название, данное магнитному эквиваленту электрического тока. Это поток магнетизма с севера на южный полюс магнита. Магнитный поток течет по линиям магнитной силы , которые составляют магнитное поле .

Как и электрический ток, магнитному потоку легче проходить через одни материалы, чем через другие, например, мягкое железо имеет очень высокую проницаемость . Это означает, что через него очень легко проходит магнитный поток. Высокая магнитная проницаемость также может быть описана как очень низкое сопротивление потоку магнитного потока (сопротивление является магнитным эквивалентом сопротивления).

Воздух обладает большим сопротивлением и поэтому менее проницаем, чем железо. Поэтому потоку легче проходить через железо, чем через воздух, и во многих электромагнитных устройствах используются материалы, такие как железо, для концентрации магнитного потока на небольшой площади и, таким образом, повышения эффективности таких устройств, как трансформаторы, двигатели и электромагниты.

 

Проектирование и изготовление индукционной катушки типа Максвелла для гипертермии с использованием магнитных наночастиц

дои: 10.1080/02656736.2019.1704448.

Принадлежности Расширять

Принадлежности

  • 1 Отделение радиационной онкологии и молекулярной радиации, Медицинский факультет Университета Джона Хопкинса, Балтимор, Мэриленд, США.
  • 2 Факультет машиностроения, Университет штата Пенсильвания, Гаррисберг, Пенсильвания, США.
  • 3 AMF Life Systems, LLC, Оберн-Хиллз, Мичиган, США.
  • 4 Кафедра машиностроения, Инженерная школа Уайтинга, Университет Джона Хопкинса, Балтимор, Мэриленд, США.
  • 5 Отделение онкологии, Медицинский факультет Университета Джона Хопкинса, Балтимор, Мэриленд, США.
  • 6 Lambda Z Technologies Inc, Балтимор, Мэриленд, США.
  • 7 Институт нанобиотехнологий, Университет Джона Хопкинса, Балтимор, Мэриленд, США.
  • 8 Кафедра материаловедения и инженерии, Инженерная школа Уайтинга, Университет Джона Хопкинса, Балтимор, Мэриленд, США.
Бесплатная статья ЧВК

Элемент в буфере обмена

Анилчандра Атталури и др.Int J Гипертермия. 2020.

Бесплатная статья ЧВК Показать детали Показать варианты

Показать варианты

Формат АннотацияPubMedPMID

дои: 10.1080/02656736.2019.1704448.

Принадлежности

  • 1 Отделение радиационной онкологии и молекулярной радиации, Медицинский факультет Университета Джона Хопкинса, Балтимор, Мэриленд, США.
  • 2 Факультет машиностроения, Университет штата Пенсильвания, Гаррисберг, Пенсильвания, США.
  • 3 AMF Life Systems, LLC, Оберн-Хиллз, Мичиган, США.
  • 4 Кафедра машиностроения, Инженерная школа Уайтинга, Университет Джона Хопкинса, Балтимор, Мэриленд, США.
  • 5 Отделение онкологии, Медицинский факультет Университета Джона Хопкинса, Балтимор, Мэриленд, США.
  • 6 Lambda Z Technologies Inc, Балтимор, Мэриленд, США.
  • 7 Институт нанобиотехнологий, Университет Джона Хопкинса, Балтимор, Мэриленд, США.
  • 8 Кафедра материаловедения и инженерии, Инженерная школа Уайтинга, Университет Джона Хопкинса, Балтимор, Мэриленд, США.

Элемент в буфере обмена

Полнотекстовые ссылки Параметры отображения цитирования

Показать варианты

Формат АннотацияPubMedPMID

Абстрактный

Цель: Описана модифицированная индукционная катушка Гельмгольца, или катушка Максвелла, которая генерирует переменные магнитные поля (ПМП) с однородностью поля (≤10%) в пределах a = 3000 см 3 объемов, представляющих интерес для исследования магнитной гипертермии. Материалы и методы: Двумерный анализ конечных элементов (2D-FEA) был использован для электромагнитного проектирования комплекта индукционных катушек и для разработки спецификаций для требуемой согласующей сети. Согласующая сеть и набор индукционных катушек были изготовлены с использованием лучших доступных технологий и подключены к промышленному источнику питания индукционного нагрева мощностью 120 кВт. Рабочие характеристики системы оценивались путем картирования магнитного поля с помощью датчика магнитного поля, а тесты проводились с использованием гелевых фантомов. Результаты: Испытания подтвердили, что система генерировала целевую пиковую амплитуду АМП вдоль оси катушки ∼35 кА/м (пик) на частоте 150 ± 10 кГц, сохраняя при этом однородность поля >90% от пика для объема ∼3000 см 3 . Выводы: Устройство с индукционной катушкой, состоящее из трех независимых контуров, т. е. типа Максвелла, улучшает характеристики простых соленоидов и катушек Гельмгольца за счет обеспечения однородных полей плотности потока в большом объеме при минимальных требованиях к мощности и полям рассеяния.Эксперименты с гелевыми фантомами и аналитические расчеты показывают, что будущие усилия по трансляционным исследованиям должны быть направлены на разработку стратегий по уменьшению воздействия неспецифического нагрева тканей вихревыми токами; и что индуктор, создающий однородное поле, имеет значительный клинический потенциал для гипертермии магнитной жидкости глубоких тканей.

Ключевые слова: магнитные поля переменного тока; катушка Максвелла; гипертермия; гипертермия с использованием магнитных наночастиц; однородные магнитные поля.

Цифры

Рисунок 1:. 2D-моделирование методом конечных элементов…

Рисунок 1:. Двухмерное моделирование методом конечных элементов одновитковой индукционной катушки.

Компьютерное моделирование магнитных…

Фигура 1:. Двухмерное моделирование методом конечных элементов одновитковой индукционной катушки.

Компьютерное моделирование распределения напряженности магнитного поля в одновитковой индукционной катушке.

Рисунок 2:. 2D-моделирование методом конечных элементов…

Рисунок 2:.2D-моделирование методом конечных элементов комплекта индукционных катушек из трех частей и изображение…

Фигура 2:. 2D-моделирование методом конечных элементов набора индукционных катушек, состоящего из трех частей, и изображение прототипа индуктора Максвелла.

a) Схема катушки и сетки из 2D FEA для комплекта индукционной катушки из трех частей. b) Изображение, показывающее комплект индукционных катушек из трех частей, нагревательные станции, осциллограф, датчик магнитного поля и водяную рубашку. c) Изображение цилиндра, используемого для картографирования поля. Левая фотография представляет собой вид по длине цилиндра, а правая показывает радиальный вид.

Рисунок 2:. 2D-моделирование методом конечных элементов…

Рисунок 2:.2D-моделирование методом конечных элементов комплекта индукционных катушек из трех частей и изображение…

Фигура 2:. 2D-моделирование методом конечных элементов набора индукционных катушек, состоящего из трех частей, и изображение прототипа индуктора Максвелла.

a) Схема катушки и сетки из 2D FEA для комплекта индукционной катушки из трех частей. b) Изображение, показывающее комплект индукционных катушек из трех частей, нагревательные станции, осциллограф, датчик магнитного поля и водяную рубашку. c) Изображение цилиндра, используемого для картографирования поля. Левая фотография представляет собой вид по длине цилиндра, а правая показывает радиальный вид.

Рисунок 2:. 2D-моделирование методом конечных элементов…

Рисунок 2:.2D-моделирование методом конечных элементов комплекта индукционных катушек из трех частей и изображение…

Фигура 2:. 2D-моделирование методом конечных элементов набора индукционных катушек, состоящего из трех частей, и изображение прототипа индуктора Максвелла.

a) Схема катушки и сетки из 2D FEA для комплекта индукционной катушки из трех частей. b) Изображение, показывающее комплект индукционных катушек из трех частей, нагревательные станции, осциллограф, датчик магнитного поля и водяную рубашку. c) Изображение цилиндра, используемого для картографирования поля. Левая фотография представляет собой вид по длине цилиндра, а правая показывает радиальный вид.

Рисунок 3:. Конечно-элементная имитационная модель…

Рисунок 3:.Конечно-элементная имитационная модель гелевого фантома.

Схема геометрической установки, сетки…

Рисунок 3:. Конечно-элементная имитационная модель гелевого фантома.

Схема геометрической установки, сетки и граничных условий.

Рисунок 4:.2D-моделирование методом конечных элементов…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренных магнитных полей…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренного магнитного поля, создаваемого трехкомпонентной индукционной системой типа Максвелла.

a) Компьютерное моделирование прогнозируемого распределения напряженности магнитного поля в комплекте из трех частей индукционной катушки. b) Смоделированная карта магнитного поля для комплекта индукционных катушек из трех частей. c) Карта поля измеренной амплитуды АМП. d) Измеренная карта поля амплитуды АМП для 8,2 кА/м (среднеквадратичное значение) в центре цилиндра. Область в прямоугольнике представляет собой область с допустимой погрешностью ±10%.

Рисунок 4:.2D-моделирование методом конечных элементов…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренных магнитных полей…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренного магнитного поля, создаваемого трехкомпонентной индукционной системой типа Максвелла.

a) Компьютерное моделирование прогнозируемого распределения напряженности магнитного поля в комплекте из трех частей индукционной катушки. b) Смоделированная карта магнитного поля для комплекта индукционных катушек из трех частей. c) Карта поля измеренной амплитуды АМП. d) Измеренная карта поля амплитуды АМП для 8,2 кА/м (среднеквадратичное значение) в центре цилиндра. Область в прямоугольнике представляет собой область с допустимой погрешностью ±10%.

Рисунок 4:.2D-моделирование методом конечных элементов…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренных магнитных полей…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренного магнитного поля, создаваемого трехкомпонентной индукционной системой типа Максвелла.

a) Компьютерное моделирование прогнозируемого распределения напряженности магнитного поля в комплекте из трех частей индукционной катушки. b) Смоделированная карта магнитного поля для комплекта индукционных катушек из трех частей. c) Карта поля измеренной амплитуды АМП. d) Измеренная карта поля амплитуды АМП для 8,2 кА/м (среднеквадратичное значение) в центре цилиндра. Область в прямоугольнике представляет собой область с допустимой погрешностью ±10%.

Рисунок 4:.2D-моделирование методом конечных элементов…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренных магнитных полей…

Рисунок 4:. 2D-моделирование методом конечных элементов набора индукционных катушек из трех частей и измеренного магнитного поля, создаваемого трехкомпонентной индукционной системой типа Максвелла.

a) Компьютерное моделирование прогнозируемого распределения напряженности магнитного поля в комплекте из трех частей индукционной катушки. b) Смоделированная карта магнитного поля для комплекта индукционных катушек из трех частей. c) Карта поля измеренной амплитуды АМП. d) Измеренная карта поля амплитуды АМП для 8,2 кА/м (среднеквадратичное значение) в центре цилиндра. Область в прямоугольнике представляет собой область с допустимой погрешностью ±10%.

Рисунок 5:.Измеренное магнитное поле, создаваемое…

Рисунок 5:. Измеряемое магнитное поле, создаваемое системой индукции Максвелла, является однородным.

а) Равномерное магнитное…

Рисунок 5:. Измеряемое магнитное поле, создаваемое системой индукции Максвелла, является однородным.

а) Область однородного магнитного поля (цилиндрический объем ~3.2×10 3 см 3 ) с допустимой погрешностью ±10% (зеленый цвет) при 7,5 кА/м (среднеквадратичное значение). b) Площадь однородного магнитного поля (цилиндрический объем ~2,9×10 3 см 3 ) с допустимой погрешностью ±10% (выделено зеленым цветом) при 10 кА/м (среднеквадратичное значение). c) Площадь однородного магнитного поля (цилиндрический объем ~2,7×10 3 см 3 ) с допустимой погрешностью ±10% (выделено зеленым цветом) при 15 кА/м (среднеквадратичное значение).

Рисунок 5:.Измеренное магнитное поле, создаваемое…

Рисунок 5:. Измеряемое магнитное поле, создаваемое системой индукции Максвелла, является однородным.

а) Равномерное магнитное…

Рисунок 5:. Измеряемое магнитное поле, создаваемое системой индукции Максвелла, является однородным.

а) Область однородного магнитного поля (цилиндрический объем ~3.2×10 3 см 3 ) с допустимой погрешностью ±10% (зеленый цвет) при 7,5 кА/м (среднеквадратичное значение). b) Площадь однородного магнитного поля (цилиндрический объем ~2,9×10 3 см 3 ) с допустимой погрешностью ±10% (выделено зеленым цветом) при 10 кА/м (среднеквадратичное значение). c) Площадь однородного магнитного поля (цилиндрический объем ~2,7×10 3 см 3 ) с допустимой погрешностью ±10% (выделено зеленым цветом) при 15 кА/м (среднеквадратичное значение).

Рисунок 5:.Измеренное магнитное поле, создаваемое…

Рисунок 5:. Измеряемое магнитное поле, создаваемое системой индукции Максвелла, является однородным.

а) Равномерное магнитное…

Рисунок 5:. Измеряемое магнитное поле, создаваемое системой индукции Максвелла, является однородным.

а) Область однородного магнитного поля (цилиндрический объем ~3.2×10 3 см 3 ) с допустимой погрешностью ±10% (зеленый цвет) при 7,5 кА/м (среднеквадратичное значение). b) Площадь однородного магнитного поля (цилиндрический объем ~2,9×10 3 см 3 ) с допустимой погрешностью ±10% (выделено зеленым цветом) при 10 кА/м (среднеквадратичное значение). c) Площадь однородного магнитного поля (цилиндрический объем ~2,7×10 3 см 3 ) с допустимой погрешностью ±10% (выделено зеленым цветом) при 15 кА/м (среднеквадратичное значение).

Рисунок 6:.Испытания с гелевыми фантомами демонстрируют…

Рисунок 6:. Испытания с гелевыми фантомами демонстрируют степень неспецифического нагрева, возникающего из-за вихревых токов.

Рисунок 6:. Испытания с гелевыми фантомами демонстрируют степень неспецифического нагрева, возникающего из-за вихревых токов.

a) Схема экспериментальной установки тканеэквивалентного гелевого фантома, подвергаемого воздействию АМП амплитудой 3 кА/м (среднеквадратичное значение), генерируемого трехсекционной индукционной катушкой типа Максвелла и охлаждаемой водяной рубашкой при температуре 20 °C в течение 20 минут.Измерения переходной температуры проводились в 6 точках (обозначенных «x» на рисунке), начиная с центра геля (r = 0) и с шагом 1 см по направлению к внешнему краю. b) Температуры, измеренные в гелевом фантоме с помощью волоконно-оптических датчиков при воздействии поля 3 кА/м. Показана радиальная зависимость неспецифического нагрева гелевого фантома, имитирующего ткань, помещенного в рубашку с циркуляционной водой при комнатной температуре. c) 2D Распределение температуры в центре моделируемой геометрии при воздействии АМП с амплитудой 3 кА/м (среднеквадратичное значение) при частоте 150 кГц в течение 20 минут.Моделирование FEA распределения температуры в гелевом фантоме из-за неспецифического нагрева, возникающего из-за вихревых токов, предсказывает аналогичные тенденции, измеренные экспериментально, как показано в ( b ).

Рисунок 6:. Испытания с гелевыми фантомами демонстрируют…

Рисунок 6:.Испытания с гелевыми фантомами демонстрируют степень неспецифического нагрева, возникающего из-за вихревых токов.

Рисунок 6:. Испытания с гелевыми фантомами демонстрируют степень неспецифического нагрева, возникающего из-за вихревых токов.

a) Схема экспериментальной установки тканеэквивалентного гелевого фантома, подвергаемого воздействию АМП амплитудой 3 кА/м (среднеквадратичное значение), генерируемого трехсекционной индукционной катушкой типа Максвелла и охлаждаемой водяной рубашкой при температуре 20 °C в течение 20 минут.Измерения переходной температуры проводились в 6 точках (обозначенных «x» на рисунке), начиная с центра геля (r = 0) и с шагом 1 см по направлению к внешнему краю. b) Температуры, измеренные в гелевом фантоме с помощью волоконно-оптических датчиков при воздействии поля 3 кА/м. Показана радиальная зависимость неспецифического нагрева гелевого фантома, имитирующего ткань, помещенного в рубашку с циркуляционной водой при комнатной температуре. c) 2D Распределение температуры в центре моделируемой геометрии при воздействии АМП с амплитудой 3 кА/м (среднеквадратичное значение) при частоте 150 кГц в течение 20 минут.Моделирование FEA распределения температуры в гелевом фантоме из-за неспецифического нагрева, возникающего из-за вихревых токов, предсказывает аналогичные тенденции, измеренные экспериментально, как показано в ( b ).

Рисунок 6:. Испытания с гелевыми фантомами демонстрируют…

Рисунок 6:.Испытания с гелевыми фантомами демонстрируют степень неспецифического нагрева, возникающего из-за вихревых токов.

Рисунок 6:. Испытания с гелевыми фантомами демонстрируют степень неспецифического нагрева, возникающего из-за вихревых токов.

a) Схема экспериментальной установки тканеэквивалентного гелевого фантома, подвергаемого воздействию АМП амплитудой 3 кА/м (среднеквадратичное значение), генерируемого трехсекционной индукционной катушкой типа Максвелла и охлаждаемой водяной рубашкой при температуре 20 °C в течение 20 минут.Измерения переходной температуры проводились в 6 точках (обозначенных «x» на рисунке), начиная с центра геля (r = 0) и с шагом 1 см по направлению к внешнему краю. b) Температуры, измеренные в гелевом фантоме с помощью волоконно-оптических датчиков при воздействии поля 3 кА/м. Показана радиальная зависимость неспецифического нагрева гелевого фантома, имитирующего ткань, помещенного в рубашку с циркуляционной водой при комнатной температуре. c) 2D Распределение температуры в центре моделируемой геометрии при воздействии АМП с амплитудой 3 кА/м (среднеквадратичное значение) при частоте 150 кГц в течение 20 минут.Моделирование FEA распределения температуры в гелевом фантоме из-за неспецифического нагрева, возникающего из-за вихревых токов, предсказывает аналогичные тенденции, измеренные экспериментально, как показано в ( b ).

Рисунок 7:. Моделирование МКЭ распределения температуры…

Рисунок 7:.Моделирование МКЭ распределения температуры в многослойной цилиндрической терморегуляторной модели в сравнении с…

Рисунок 7:. Моделирование МКЭ распределения температуры в многослойной цилиндрической терморегуляторной модели, сравнивающее неспецифический нагрев от неоднородного и однородного АМП.

Тепловое распределение в конце 20-минутного времени нагрева при фиксированной частоте 150 кГц для a) воздействия неоднородных полей, создаваемых MFH®300F с амплитудой ~3.7 кА/м на цели, расположенной на глубине ~12 см. б) То же, что и в а), но от однородного АМП от модифицированной катушки Максвелла человеческого масштаба.

Все фигурки (16)

Похожие статьи

  • Проверка связанной электромагнитной и тепловой модели для оценки температуры во время гипертермии магнитных наночастиц.

    Кандала С.К., Шарма А., Мирпур С., Ляпи Э., Ивков Р., Атталури А. Кандала С.К. и др. Int J Гипертермия. 2021;38(1):611-622. дои: 10.1080/02656736.2021.1913244. Int J Гипертермия. 2021. PMID: 33853493 Бесплатная статья ЧВК.

  • Модифицированная соленоидная катушка, которая эффективно создает высокоамплитудные магнитные поля переменного тока с повышенной однородностью для биомедицинских приложений.

    Борделон Д.Э., Гольдштейн Р.С., Немков В.С., Кумар А., Яцковски Дж.К., ДеВиз Т.Л., Ивков Р. Борделон Д.Э. и соавт. IEEE Trans Magn. 2012 окт;48(1):47-52. doi: 10.1109/TMAG.2011.2162527. IEEE Trans Magn. 2012. PMID: 25392562 Бесплатная статья ЧВК.

  • Сравнение одной оптимизированной катушки и пары Гельмгольца для гипертермии с использованием магнитных наночастиц.

    Нескоски М.Д., Трембли Б.С.Ниескоски, М.Д., и соавт. IEEE Trans Biomed Eng. 2014 июнь; 61 (6): 1642-50. doi: 10.1109/TBME.2013.2296231. Epub 2014 27 марта. IEEE Trans Biomed Eng. 2014. PMID: 24691525

  • Обзор гипертермии с помощью терапии, опосредованной наночастицами.

    Сохаил А., Ахмад З., Бег О.А., Аршад С., Шерин Л. Сохайл А. и др. Бык Рак. 2017 май; 104(5):452-461. дои: 10.1016/j.bulcan.2017.02.003. Epub 2017 3 апр. Бык Рак. 2017. PMID: 28385267 Рассмотрение.

  • Раковая гипертермия с использованием магнитных наночастиц.

    Кобаяши Т. Кобаяши Т. Biotechnol J. 2011 Nov;6(11):1342-7. doi: 10.1002/биот.201100045. Epub 2011 26 августа. Биотехнолог Дж. 2011. PMID: 22069094 Рассмотрение.

Цитируется

4 статьи
  • Визуализация магнитных частиц: новый метод с перспективами в диагностике, нацеливании и терапии рака.

    Тай З.В., Чандрасекаран П., Товарищи Б.Д., Аррисабалага И.Р., Ю Э., Оливо М., Конолли С.М. Тай З.В. и др. Раков (Базель). 2021 21 октября; 13 (21): 5285. doi: 10.3390/раки13215285. Раков (Базель). 2021. PMID: 34771448 Бесплатная статья ЧВК. Рассмотрение.

  • Проверка связанной электромагнитной и тепловой модели для оценки температуры во время гипертермии магнитных наночастиц.

    Кандала С.К., Шарма А., Мирпур С., Ляпи Э., Ивков Р., Атталури А. Кандала С.К. и др. Int J Гипертермия. 2021;38(1):611-622. дои: 10.1080/02656736.2021.1913244. Int J Гипертермия. 2021. PMID: 33853493 Бесплатная статья ЧВК.

  • Гипертермия с использованием магнитных наночастиц для лечения местнораспространенного нерезектабельного и погранично-операбельного рака поджелудочной железы: роль размера опухоли и вихретокового нагрева.

    Атталури А., Кандала С.К., Чжоу Х., Ваблер М., ДеВиз Т.Л., Ивков Р. Атталури А. и др. Int J Гипертермия. 2020 дек;37(3):108-119. дои: 10.1080/02656736.2020.1798514. Int J Гипертермия. 2020. PMID: 33426990 Бесплатная статья ЧВК.

  • Терапия рака наночастицами оксида железа: средства термальной и иммунной терапии.

    Сутарт Ф., Корангат П., Серантес Д., Фиеринг С., Ивков Р.Сутарт Ф. и соавт. Adv Drug Deliv Rev. 2020; 163-164: 65-83. doi: 10.1016/j.addr.2020.06.025. Epub 2020 27 июня. Adv Drug Deliv Rev. 2020. PMID: 32603814 Бесплатная статья ЧВК.

Типы публикаций

  • Поддержка исследований, Национальный институт здравоохранения, заочная

термины MeSH

  • Электромагнитные явления*
  • Гипертермия, индуцированная/методы
  • Наночастицы магнетита / стандарты*

LinkOut — больше ресурсов

  • Полнотекстовые источники

  • Прочие литературные источники

  • Материалы исследований

T106__DC4287

%PDF-1.4 % 2 0 объект >/OCGs[61 0 R]>>/Страницы 3 0 R/Тип/Каталог/ViewerPreferences 58 0 R>> эндообъект 59 0 объект >/Шрифт>>>/Поля 65 0 R>> эндообъект 60 0 объект >поток приложение/pdf

  • Администратор
  • Т106__ДК4287
  • 2016-05-03T22:27:43+08:00pdfFactory Pro www.pdffactory.com2016-05-06T22:09:44+02:002016-05-06T22:09:44+02:00pdfFactory Pro 3.50 (Windows 7 китайский ( Упрощенный))uuid:79e3dc34-c260-48ef-a792-bbdc4f306c40uuid:d422d3c3-7ff7-4af4-8708-a919f3f8c5f0 конечный поток эндообъект 3 0 объект > эндообъект 58 0 объект > эндообъект 5 0 объект >/Шрифт>/ProcSet[/PDF/Text]/XObject>>>/Тип/Страница>> эндообъект 12 0 объект >/ExtGState>/Font>/ProcSet[/PDF/Text/ImageC/ImageI]/XObject>>>/Type/Page>> эндообъект 21 0 объект >/ExtGState>/Font>/ProcSet[/PDF/Text/ImageC/ImageI]/XObject>>>/Type/Page>> эндообъект 25 0 объект >/ExtGState>/Font>/ProcSet[/PDF/Text/ImageC/ImageI]/XObject>>>/Type/Page>> эндообъект 35 0 объект >/ExtGState>/Font>/ProcSet[/PDF/Text/ImageC/ImageI]/XObject>>>/Type/Page>> эндообъект 97 0 объект >поток HWے7}}!\EIzĀw0ao33pٯ_]KTg

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.