Год изобретения электричества: Электричество: история изобретения, факты, опыты

Содержание

Электричество: история изобретения, факты, опыты

Одной из важнейших вех в истории планеты является изобретение электричества. Именно это открытие помогает и по сей день развиваться нашей цивилизации. Электричество – один из наиболее экологичных видов энергии. Кому принадлежит открытие этого явления? Каким образом электричество получают и применяют? Можно ли самостоятельно создать гальванический элемент?

История изобретения электричества кратко

Электричество было обнаружено еще в 7 веке до нашей эры древнегреческим философом Фалесом. Он выяснил, что натертый шерстью янтарь способен притягивать меньшие по массе предметы.

Однако масштабные эксперименты с электричеством начинаются в эпоху возрождения в Европе. В 1650 г. магдебургским бургомистром фон Герике была построена электростатическая установка. В 1729 г. Стивеном Греем был поставлен опыт по передаче электроэнергии на расстояние. В 1747 Бенджамин Франклин издал очерк, где была собраны все известные факты об электричестве и выдвинуты новые теории. В 1785-м был открыт закон Кулона.

1800 год стал переломным: итальянец Вольт изобретает первый источник постоянного тока. В 1820-м датским ученым Эрстедом было обнаружено электромагнитное взаимодействие предметов. Годом позднее Ампер выяснил, что магнитное поле создается электрическим током, но не статическими зарядами.

Такие великие исследователи, как Гаусс, Джоуль, Ленц, Ом внесли неоценимый вклад в изобретение электричества. Год 1830-й также стал важным, ведь Гауссом была разработана теория электростатического поля. Явление электромагнитной индукции и разработка двигателя, работающего на токе, принадлежит Майклу Фарадею.

В конце 19 века опыты с электричеством проводились многими учеными, в их числе Пьер Кюри, Лачинов, Герц, Томсон, Резерфорд. В начале 20 века появилась теория квантовой электродинамики.

Электричество в природе

Открытие и изобретение электричества произошло уже очень давно. Однако ранее считалось, что в природе его просто нет. Но американец Франклин выяснил, что такое явление, как молния, имеет чисто электрическую природу. Долгое время его точка зрения отвергалась научным сообществом.

Электричество имеет огромное значение в природе. Многие ученые полагают, что благодаря разрядам молний осуществился синтез аминокислот, в результате чего на Земле зародилась жизнь. Без нервных импульсов невозможно функционирование организма ни одного животного. Существуют разновидности морских организмов, которые применяют электричество как средство для обороны, нападения, ориентации в пространстве и поиска пищи.

Получение электричества

Изобретение электричества оказало влияние на научно-технический прогресс. Для получения электроэнергии создаются вот уже на протяжении многих десятилетий электростанции. Электричество создается с помощью генераторов энергии, а затем оно передается по ЛЭП. Принцип создания тока заключается в переводе механической энергии в электрическую. Электростанции подразделяются на следующие типы:

  • атомные;
  • ветровые;
  • гидроэнергетические;
  • приливно-отличные;
  • солнечные;
  • тепловые.

Применение электричества

Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.

Любопытный опыт

Оказывается, гальванический элемент можно изготовить самостоятельно, и делается это достаточно просто. Такой способ получил известность в начале 20 века.

Для начала необходимо пополам разрезать достаточно острым ножом лимон посередине. Крайне нежелательно снимать или срывать перегородки между дольками. После этого нужно к каждой дольке подсоединить поочередно небольшой кусок проволоки, размером около 2 сантиметров. В ячейках должны чередоваться медная и цинковая проволоки. Затем следует концы торчащих проволок последовательно соединить металлической проволокой меньшего диаметра. Таким образом можно получить элемент питания. Как проверить, работает ли он? Для этого можно замерить напряжение вольтметром.

Одним из важнейших открытий в истории человечества стало изобретение электричества. Дата открытия точно неизвестна. Однако эксперименты начал проводить еще древнегреческий ученый Фалес. Активное изучение электричества началось в эпоху возрождения. Без него невозможна деятельность ни одного живого организма. Сегодня без этого изобретения мы практически не можем представить свою жизнь. Люди уже давно научились получать, передавать и использовать электроэнергию.

Изобретение электричества год. Кто и когда изобрёл электричество? Кто открыл электричество

Одним из самых величайших открытий человечества стало электричество, с самого начала своего появления оно помогало нашей цивилизации активно развиваться. Электричество – это, пожалуй, самый экологический вид энергии. И не исключено, что в скором времени оно станет основным видом энергии, если на планете не останется сырьевых ресурсов.

Итак, кто изобрел электричество?

Электричество обнаружил ещё в прошлой эре греческий философ Фалес (VII век до нашей эры). Он увидел, что при трении янтаря о шерсть, камень начинает притягивать к себе лёгкие предметы. Кстати, электрон в греческом значит «янтарь», а электричество — «янтарность». Данные термины появились лишь в 1600 году, т.к. наблюдения Фалеса так и ни к чему не привели.

В 1650 году Магдебургским бургомистром Отто фоном Герике была построена электростатическая установка. Выглядела она как металлический стержень с шаром из серы. Это устройство помогало наблюдать свойства притягивания и отталкивания.

В 1729 году англичанин Стивен Грей проводил опыты по передаче электричества на расстояние. Эти опыты показали, что не каждому материалу свойственно проводить электричество, т.е. все материалы можно разделить на электрики и диэлектрики.

В 1733 году Шарль Дюфе открыл 2 вида электричества, получившие названия: стеклянное и смоляное. Обнаружить их удалось во время трения смолы о шерсть и стекол о шёлк.

В 1745 году появился первый электрический конденсатор с названием – Лейденская банка. Автором данного изобретения стал голландец Питер ван Мушенбрук.

В 1747 году американец Бенджамин Франклин написал очерк «Эксперименты и наблюдения над электричеством». Эта работа, по сути, является первой теорией электричества, где Франклином применяется к электричеству термин «нематериальная жидкость». В ней также была выдвинута теория о существовании положительных и отрицательных зарядов. Ещё Бенджамин Франклин придумал громоотвод и с его помощью наглядно доказал, что молния имеет именно электрическую природу.

1785 год стал переломным, исследование электричества попало в научную плоскость. Это открытие Закона Кулона.

В 1800 год – время ещё одного ключевого изобретения, когда удалось исследовать электричество более досконально, поставив много важных опытов. Итальянец Вольт придумал первый источник постоянного тока. Это изобретение было первым гальваническим элементом, состоящим из серебряных и цинковых кружков; между ними помещали бумагу, смоченную в соленой воде.

1820 году датским физиком Эрстедом было открыто электромагнитное взаимодействие, обнаружил которое он практически случайно, заметив колебания стрелки компаса, лежащего рядом с проводником. Электрический ток на проводник подавался циклично, при этом стрелка компаса колебалась в такт с включениями проводника в электрическую цепь.

Уже в 1821 году французский физик Ампер сделал открытие – магнетизм вокруг проводника образуется во время подачи на него электрического тока, в то время как при статическом электричестве магнетизма нет.

Также немалый вклад в изучение электричества был внесён учеными Джоулем, Ленцем, Омом и Гауссом. Гаусс в 1830 году уже описал главную теорию электростатического поля.

Вышеперечисленные открытия в области исследования электричества помогли Майклу Фарадею в 1831 году открыть электромагнитную индукцию. Это был важнейший момент в изучении электричества и его свойств. Благодаря этому открытию Фарадей создал первый электрогенератор. Он задвигал катушку в намагниченный сердечник, в результате на обмотке катушки появлялся электрический ток.

Чуть позже, в 1834 году Фарадеем были открыты законы электролиза. После чего он описал новые термины: электрическое и магнитное поля.

Фарадей также придумал самый первый электродвигатель – проводник с электрическим током, способный вращаться вокруг постоянного магнита.

Как видите, появлению электричества поспособствовали многие учёные, но кого именно стоит считать его изобретателем, ответить крайне сложно.

Вместе со статьёй «Кто изобрел электричество?» читают:

Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.

То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.

История открытия

Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.

Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.

Кто изобрёл электричество

К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.

Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение.

Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация.

Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Кто является основоположниками науки об электричестве

Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.

Французский физик Андре Мари Ампер

Основоположниками науки об электричестве являются:

  1. Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
  2. Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
  3. Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
  4. Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
  5. Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.
  6. Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
  7. Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
  8. Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
  9. Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.

Томас Эдисон

Теории и законы электричества

Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.

Закон Ома

Закон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.

I = V / R или V = IR или R = V / I

I — ток через провод в амперах;

V — напряжение, измеренное на проводнике в вольтах;

R — сопротивление провода в Ом.

В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.

Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.

Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.

Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.

Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало. Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.

Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.

Какое было первое электрическое изобретение

В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.

Создание Лейденской банки

Далее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году. Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.

Когда появилось электричество на территории России

Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.

Энергетика России 2018

Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.

В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.

После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.

2002-04-26T16:35+0400

2008-06-05T12:03+0400

https://сайт/20020426/129934. html

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

РИА Новости

https://cdn22.img..png

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита. —-Основные свойства и законы электричества—установлены любителями. Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров. Электричество—это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания. Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития. Янтарь упорно терли, любовались…

Вадим Прибытков физик теоретик, постоянный автор Терры Инкогнита.

Основные свойства и законы электричества—установлены любителями.

Электричество является основой современной техники. Нет более важного открытия в истории человечества, чем электричество. Могут сказать, что космос и информатика также являются грандиозными научными достижениями. Но без электричества не было бы ни космоса, ни компьютеров.

Электричество—это поток движущихся заряженных частиц- электронов, а также все явления, связанные с перегруппировкой заряда в теле. Самое интересное в истории электричества это то, что основные свойства и законы его были установлены посторонними любителями. Но на этот решающий момент до сих пор как-то не обращалось внимания.

Уже в глубокой древности было известно, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Однако это явление на протяжении тысячелетий не находило практического применения и дальнейшего развития.

Янтарь упорно терли, любовались им, делали из него различные украшения, и на этом дело ограничивалось.

В 1600 г. в Лондоне была опубликована книга английского врача В.Гильберта, в которой он впервые показал, что способностью янтаря притягивать после трения легкие предметы обладают и многие другие тела, в том числе стекло. Он заметил также, что влажность воздуха в значительной степени препятствует этому явлению.

Ошибочная концепция Гильберта.

Однако Гильберт и первым ошибочно установил различительную грань между электрическими и магнитными явлениями, хотя в действительности эти явления порождаются одними и теми же электрическими частицами и никакой грани между электрическими и магнитными явлениями не существует. Эта ошибочная концепция имела далеко идущие последствия и надолго запутала существо вопроса.

Гильберт обнаружил также, что магнит теряет магнитные свойства при нагревании и восстанавливает их при охлаждении. Он использовал насадку из мягкого железа для усиления действия постоянных магнитов, первым стал рассматривать Землю, как магнит. Уже из одного этого краткого перечисления видно, что врачом Гильбертом были сделаны важнейшие открытия.

Самое удивительное в этом анализе заключается в том, что до Гильберта, начиная от древних греков, которые установили свойства янтаря, и китайцев, которые пользовались компасом, не было никого, кто бы сделал такие выводы и так систематизировал наблюдения.

Вклад в науку О.Генрике.

Тогда события развивались необыкновенно медленно. Прошел 71 год, прежде чем немецким бургомистром О.Герике в 1671 г. был сделан следующий шаг. Вклад его в электричество был огромным.

Герике установил взаимное отталкивание двух наэлекризованных тел (Гильберт полагал, что существует лишь притяжение), передачу электричества от одного тела к другому с помощью проводника, электризацию посредством влияния при приближении к незаряженному телу наэлектризованного тела, и, самое главное,— первым построил основанную на трении электрическую машину. Т.е.

он создал все возможности для дальнейшего проникновения в сущность электрических явлений.

Не только физики внесли свой вклад в развитие электричества.

Прошло еще 60 лет, прежде чем французский ученый Ш.Дюфе в 1735-37 гг. и американский политик Б.Франклин в 1747-54 гг.

установили, что электрические заряды бывают двух родов. И, наконец, в 1785 г. французским артиллерийским офицером Ш.Кулоном был сформирован закон взаимодействия зарядов.

Надо указать также на работу итальянского врача Л.Гальвани. Огромное значение имели работы А.Вольта по созданию мощного источника постоянного тока в виде «вольтова столба».

Важный вклад в познание электричества произошел в 1820 г., когда датский профессор физики Х.Эрстед открыл воздействие проводника с током на магнитную стрелку. Практически одновременно было открыто и изучено А.Ампером взаимодействие между собой токов, имеющее чрезвычайно важное прикладное значение.

Большой вклад в изучение электричества был внесен также аристократом Г.Кавендишем, аббатом Д.Пристли, школьным учителем Г.Омом. На основании всех этих исследований подмастерье М. Фарадей открыл в 1831 г. электромагнитную индукцию, которая в действительности является одной из форм взаимодействия токов.

Почему в течение тысячелетий люди ничего не знали об электричестве? Почему в этом процессе участвовали самые различные слои населения? В связи с развитием капитализма был общий подъем экономики, ломались средневековые кастовые и сословные предрассудки и ограничения, поднимался общий культурный и образовательный уровень населения. Однако и тогда не обошлось без трудностей. Например, Фарадею, Ому и ряду других талантливых исследователей приходилось вести ожесточенные бои со своими теоретическими противниками и оппонентами. Но все же, в конечном итоге, их идеи и взгляды публиковались и находили признание.

Из всего этого можно сделать интересные выводы: научные открытия делаются не только академиками, но и любителями науки.

Если мы хотим, чтобы наша наука находилась на передовых позициях, то должны помнить и учитывать историю ее развития, бороться с кастовостью и монополизмом односторонних взглядов, создавать равные условия для всех талантливых исследователей, независимо от их научного статуса.

Поэтому пора открыть страницы наших научных журналов для школьных учителей, артиллерийских офицеров, аббатов, врачей, аристократов и подмастерьев, чтобы и они смогли принять активное участие в научном творчестве. Сейчас они лишены такой возможности.

Электричество

Электричеством или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением. . Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира — Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.

Что такое электричество?

Электричество — это совокупность физических явлений, связанных с наличием электрического заряда. Хотя изначально электричество рассматривалось как явление, отдельное от магнетизма, но с разработкой уравнений Максвелла оба эти явления были признаны частью единого явления: электромагнетизма. Различные распространенные явления связаны с электричеством, такие как молнии, статическое электричество, электрическое отопление, электрические разряды и многие другие. Кроме того, электричество лежит в основе многих современных технологий.

Наличие электрического заряда, который может быть либо положительным, либо отрицательным, порождает электрическое поле. С другой стороны, движение электрических зарядов, которое называется электрическим током, создает магнитное поле.

Когда заряд помещается в точку с ненулевым электрическим полем, на него действует сила. Величина этой силы определяется законом Кулона. Таким образом, если бы этот заряд был перемещен, электрическое поле выполнило бы работу по перемещению (торможению) электрического заряда. Таким образом, можно говорить об электрическом потенциале в определенной точке пространства, равному работе, выполняемой внешним агентом при переносе единицы положительного заряда из произвольно выбранной точки отсчета до этой точки без какого-либо ускорения и, как правило, измеряемому в вольтах.

В электротехнике, электричество используется для:

  • подачи электроэнергии туда, где электрический ток используется для питания оборудования;
  • в электронике, имеющей дело с электрическими цепями, которые включают активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральные схемы, и связанные с ними пассивные элементы.

Электрические явления изучались с античных времен, хотя прогресс в теоретическом понимании начался в XVII и XVIII веках. Даже тогда практическое применение электричества было редкостью, и инженеры смогли использовать его в промышленных и жилых целях только в конце XIX века. Быстрое расширение электрических технологий в это время трансформировало промышленность и общество. Универсальность электричества заключается в том, что оно может использоваться почти в безграничном множестве отраслей, таких как транспорт, отопление, освещение, коммуникации и вычисления. Электроэнергия в настоящее время является основой современного индустриального общества.

История электричества

Задолго до того, как зародились какие-либо знания об электричестве, люди уже знали об ударах током электрической рыбы. Древнеегипетские тексты, датируемые 2750 годом до н. э., называли этих рыб «Громовержцы Нила» и описывали их как «защитников» всех других рыб. Свидетельства об электрических рыбах снова появляются тысячелетиями позже от древнегреческих, римских и арабских естествоиспытателей и врачей. Несколько древних писателей, такие, как Плиний Старший и Скрибониус Ларгус, свидетельствуют об онемении, как эффекте поражения электрическим током, производимым сомиками и электрическими скатами, а также они знали, что такие удары могут передаваться через проводящие ток предметы. Пациентам, страдающим от заболеваний, таких как подагра или головная боль прописывались прикосновения к таким рыбам с надеждой, что мощный электроудар может вылечить их. Возможно, что самое раннее и ближайшее приближение к открытию идентичности молнии и электричества из любого другого источника, было совершено арабами, у которых до 15-го века в языке слово «молния» (раад) применялось к электрическим скатам.

Древние культуры Средиземноморья знали, что если некоторые предметы, такие как янтарные палочки, потереть кошачьим мехом, то он нанёт притягивать легкие предметы, такие как перья. Фалес Милетский сделал ряд наблюдений статического электричества примерно в 600 г. до н.э., из которых он вывел, что для того, чтобы сделать янтарь способным притягивать предметы необходимо трение, в отличие от минералов, таких как магнетит, которым трение было не нужно. Фалес ошибался, полагая, что притяжение янтаря было связано с магнитным эффектом, но позже наука доказала связь между магнетизмом и электричеством. Согласно спорной теории, основанной на обнаружении Багдадской батареи в 1936 году, которая напоминает гальваническую ячейку, хотя неясно, был ли артефакт электрическим по своей природе, парфяне, возможно, знали о гальванотехнике.

Электричество продолжало вызывать не более, чем интеллектуальное любопытство на протяжении тысячелетий до 1600 года, когда английский ученый Уильям Гилберт провел тщательное изучение электричества и магнетизма, и выявил отличая «магнетитного» эффекта от статического электричества, производимого путем трения янтаря. Он придумал новое латинское слово electricus («янтарный» или «как янтарь», от ἤλεκτρον, Elektron, с греческого: «янтарь») для обозначения свойства предметов притягивать мелкие предметы после натирания. Эта лингвистическая ассоциация породила английские слова «электрический» и «электричество», которые впервые появились в печати в работе Томаса Брауна «Pseudodoxia Epidemica» в 1646 году.

Дальнейшую работу проводили Отто фон Герике, Роберт Бойль, Стивен Грей и Шарль Франсуа Дюфе. В 18 веке Бенджамин Франклин провел обширные исследования в области электричества, продав свои владения для финансирования своей работы. В июне 1752 года он, как известно, прикрепил металлический ключ к нижней части нити воздушного змея и запустил змея в грозовое небо. Последовательность искр, соскакивающих с ключа на тыльную сторону ладони показала, что молния действительно имеет электрическую природу. Он также объяснил кажущее парадоксальным поведение лейденской банки в качестве устройства для хранения большого количества электрического заряда с точки зрения электричества, состоящего из положительных и отрицательных зарядов.

В 1791 году Луиджи Гальвани объявил о своем открытии биоэлектромагнетизма, демонстрируя, что электричество является средством, с помощью которого нейроны передают сигналы к мышцам. Аккумуляторная батарея Алессандро Вольта или гальванический столб 1800-х годов изготавливались из чередующихся слоев цинка и меди. Для ученых это был более надежный источник электрической энергии, чем электростатические машины, используемые ранее. Понимание электромагнетизма как единства электрических и магнитных явлений произошло благодаря Эрстеду и Андре-Мари Амперу в 1819-1820 годах. Майкл Фарадей изобрел электрический двигатель в 1821 году, а Георг Ом математически проанализировал электрическую цепь в 1827году. Электричество и магнетизм (и свет) были окончательно связаны Джеймсом Максвеллом, в частности, в его работе «О физических силовых линиях» в 1861 и 1862 годах.

В то время как в начале 19-го века мир стал свидетелем стремительного прогресса в науке об электричестве, в конце 19 века наибольший прогресс случился в области электротехники. С помощью таких людей, как Александр Грэхем Белл, Отто Титус Блати, Томас Эдисон, Галилео Феррарис, Оливер Хевисайда, Аньош Иштван Йедлик, Уильям Томсон, 1-й барон Кельвин, Чарльз Алджернон Парсонс, Вернер фон Сименс, Джозеф Уилсон Суон, Реджинальд Фессенден, Никола Тесла и Джордж Вестингауз, электричество превратилась из научного любопытства в незаменимый инструмент для современной жизни, став движущей силой второй промышленной революции.

В 1887 году Генрих Герц обнаружил, что электроды освещенные ультрафиолетовым светом, создают электрические искры более легко, чем не освещенные. В 1905 году Альберт Эйнштейн опубликовал статью, в которой были объяснены экспериментальные данные фотоэлектрического эффекта как результат переноса световой энергии дискретными квантованными пакетами, возбуждающими электроны. Это открытие привело к квантовой революции. Эйнштейн был удостоен Нобелевской премии по физике в 1921 году за «открытие закона фотоэлектрического эффекта». Фотоэлектрический эффект также используется в фотоэлементах таких, какие можно найти в панелях солнечных батарей, и это часто используется для выработки электроэнергии в коммерческих целях.

Первым полупроводниковым устройством стал детектор «кошачий ус», который был первым в использовании в радиоприемниках в 1900-х годах. Усоподобная проволочка приводится в легкое контактное прикосновение с твердым кристаллом (например, кристаллом германия) для того, чтобы продетектировать радиосигнал посредством контактно-переходного эффекта. В полупроводниковом узле, ток подается в полупроводниковые элементы и соединения, сконструированные специально для переключения и усиления тока. Электрический ток может представляться в двух формах: в виде отрицательно заряженных электронов, а также положительно заряженными вакансиями электронов (незаполненными электронами местами в атоме полупроводника), называемыми дырками. Эти заряды и дырки понимаются с позиции квантовой физики. Строительным материалом чаще всего является кристаллический полупроводник.

Развитие полупроводниковых устройств началось с изобретением транзистора в 1947 году. Распространенными полупроводниковыми устройствами являются транзисторы, микропроцессорные чипы и чипы оперативной памяти. Специализированный тип памяти, называемый флэш-памятью используется в USB флэш-накопителях, и совсем недавно полупроводниковыми накопителями стали заменять и накопители на механически вращающихся жестких магнитных дисках. Полупроводниковые устройства стали распространенными в 1950-х и 1960-х годах, в период перехода от вакуумных ламп к полупроводниковым диодам, транзисторам, интегральным схемам (ИС) и светодиодам (LED).

Основные понятия электричества

Электрический заряд

Наличие заряда порождает электростатическую силу: заряды оказывают друг на друга силовое действие, этот эффект был известен в древности, хотя и не был тогда понятен. Легкий шарик, подвешенный на веревочке может быть заряжен прикосновением к нему стеклянной палочкой, которая сама до этого была заряжена при трении о ткань. Подобный шар, заряженный тем же стеклянным стержнем будет отталкиваться от первого: заряд заставляет два шара отделяться друг от друга. Два шара, которые заряжаются от натертого янтарного стержня также отталкиваются друг от друга. Тем не менее, если один шар заряжается от стеклянной палочки, а другой — от янтарного стержня, то оба шара начинают притягиваются друг к другу. Эти явления были исследованы в конце восемнадцатого века Шарлем Огюстеном де Кулоном, который сделал вывод, что заряд проявляется в двух противоположных формах. Это открытие привело к известной аксиоме: одинаково заряженные объекты отталкиваются, а противоположно заряженные объекты притягиваются.

Сила действует на сами заряженные частицы, следовательно, заряд имеет тенденцию к как можно более равномерному распространению по проводящей поверхности. Величина электромагнитной силы, будь то притяжение или отталкивание, определяется законом Кулона, который гласит, что электростатическая сила пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними. Электромагнитное взаимодействие является очень сильным, оно уступает по силе только сильному взаимодействию, но в отличие от последнего, оно действует на любых расстояниях. По сравнению с гораздо более слабым гравитационным взаимодействием, электромагнитная сила, расталкивает два электрона в 1042 раз сильнее, чем гравитационная сила притягивает их.

Исследование показало, что источником заряда являются определенные типы субатомных частиц, которые обладают свойством электрического заряда. Электрический заряд порождает электромагнитную силу, которая является одной из четырех фундаментальных сил природы, и взаимодействует с ней. Наиболее известными носителями электрического заряда являются электрон и протон. Эксперимент показал, что заряд — сохраняющаяся величина, то есть, суммарный заряд внутри изолированной системы всегда будет оставаться постоянным вне зависимости от каких-либо изменений, которые происходят в пределах этой системы. В системе заряд может передаваться между телами либо прямым контактом, либо путем передачи по проводящему материалу, например проводу. Неофициальный термин «статическое электричество» означает чистое присутствие заряда (или «дисбаланс» зарядов) на теле, обычно вызываемое тем, что разнородные материалы, будучи потертыми друг о друга, передают заряд от один другому.

Заряды электронов и протонов противоположны по знаку, следовательно, суммарный заряд может быть как положительным, так и отрицательным. По соглашению, заряд переносимый электронами, считается отрицательным, а переносимый протонами — положительным, по традиции, заложенной работами Бенджамина Франклина. Величина заряда (количество электричества) обычно обозначается символом Q и выражается в кулонах; каждый электрон несет один и тот же заряд, приблизительно -1,6022 × 10-19 кулона. Протон имеет заряд, равный по значению и противоположный по знаку, и, таким образом, + 1,6022 × 10-19 Кулона. Зарядом обладает не только вещество, но и антивещество, каждая античастица несет равный заряд, но противоположный по знаку к заряду его соответствующей частицы.

Заряд можно измерить несколькими способами: ранний прибор-электроскоп с золотыми лепестками, который, хотя все еще используется для учебных демонстраций, в настоящее время вместо него применяется электронный электрометр.

Электрический ток

Движение электрических зарядов называется электрическим током, интенсивность его обычно измеряется в амперах. Ток может создаваться какими-либо движущимися заряженными частицами; чаще всего это электроны, но в принципе любой заряд приведенный в движение представляет собой ток.

По исторически сложившейся договоренности положительный ток определяется направлением движения положительных зарядов, перетекающих из более положительной части цепи в более отрицательную часть. Ток, определенный таким образом, называется условным током. Одной из наиболее известной формой тока является движение отрицательно заряженных электронов по цепи, и таким образом, положительное направление тока сориентировано в противоположном движению электронов направлении. Тем не менее, в зависимости от условий, электрический ток может состоять из потока заряженных частиц движущегося в любом направлении, и даже в обоих направлениях одновременно. Договоренность считать положительным направлением тока направление движения положительных зарядов широко используется для упрощения этой ситуации.

Процесс, при котором электрический ток проходит через материал, называется электрической проводимостью, и её природа изменяется в зависимости от того, какими заряженными частицами она осуществляется и от материала, через который они перемещаются. В качестве примеров электрических токов можно привести металлическую проводимость, осуществляемую потоком электронов через проводник, такой как металл, и электролиз, осуществляемый потоком ионов (заряженных атомов) через жидкость или плазму, как в электрических искрах. В то время как сами частицы могут двигаться очень медленно, иногда со средней скоростью дрейфа только доли миллиметра в секунду, электрическое поле, что приводит их в движение распространяется со скоростью близкой к скорости света, позволяя электрическим сигналам быстро проходить по проводам.

Ток вызывает ряд наблюдаемых эффектов, которые исторически являлись признаком его присутствия. Возможность разложения воды под действием тока от гальванического столба была обнаружена Николсоном и Карлайлом в 1800 году. Этот процесс теперь называется электролиз. Их работа была значительно расширена Майклом Фарадеем в 1833 году. Ток, протекая через сопротивление, вызывает локализованный нагрев. Данный эффект Джеймс Джоуль описал математически в 1840 году. Одно из наиболее важных открытий, касающихся тока было сделано случайно Эрстедом в 1820 году, когда при подготовке лекции, он обнаружил, что ток, протекающий по проводу, вызвал поворот стрелки магнитного компаса. Так он открыл электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных выбросов, генерируемых электрической дугой, достаточно высок для получения электромагнитных помех, которые могут нанести ущерб работе смежного оборудования.Он обнаружил электромагнетизм, фундаментальное взаимодействие между электричеством и магнетизмом. Уровень электромагнитных излучений, генерируемых электрической дугой достаточно высок, чтобы производить электромагнитные помехи, которые могут вызвать помехи в работе находящегося поблизости оборудования.

Для технического или бытового применения ток часто характеризуется как либо постоянный (DC), либо переменный (AC). Эти термины относятся к тому, как ток изменяется во времени. Постоянный ток, производимый, например, батареей и требуемый для большинства электронных устройств, является однонаправленным потоком от положительного потенциала цепи к отрицательному. Если этот поток, что чаще случается, переносится электронами, они будут перемещаться в противоположном направлении. Переменным током называется любой ток, который непрерывно меняет направление, он почти всегда имеет форму синусоиды. Переменный ток пульсирует назад и вперед внутри проводника без перемещения заряда на какое-нибудь конечное расстояние за длительный промежуток времени. Усредненное по времени значение переменного тока равно нулю, но он доставляет энергию сначала в одном направлении, а затем в обратном. Переменный ток зависит от электрических свойств, которые не проявляют себя при стационарном режиме постоянного тока, например, от индуктивности и емкости. Эти свойства, однако, могут проявить себя, когда схема подвергается переходным процессам, например, при первоначальной подаче энергии.

Электрическое поле

Понятие электрического поля было введено Майклом Фарадеем. Электрическое поле создается заряженным телом в пространстве, которое окружает тело, и приводит к силе, действующей на любые другие заряды, расположенные в поле. Электрическое поле действует между двумя зарядами аналогично гравитационному полю, действующему между двумя массами, и также простирается до бесконечности и обратно пропорционально квадрату расстояния между телами. Тем не менее, есть существенная разница. Сила тяжести всегда притягивает, заставляя соединиться две массы, в то время как электрическое поле может привести либо притяжению, либо к отталкиванию. Так как крупные тела, такие как планеты в целом имеют нулевой суммарный заряд, их электрическое поле на расстоянии обычно равно нулю. Таким образом, сила тяжести является доминирующей силой на больших расстояниях во Вселенной, несмотря на то, что сама она гораздо слабее.

Электрическое поле, как правило, различается в различных точках пространства, а его напряженность в любой точке определяется как сила (отнесенная к единице заряда), которую будет испытывать неподвижный, ничтожно малый заряд, если его поместить в эту точку. Абстрактный заряд, называемый «пробным зарядом», должен иметь исчезающе малое значение, чтобы его собственным электрическим полем, нарушающим основное поле, можно было пренебречь, а также должен быть стационарным (неподвижным), чтобы предотвратить влияние магнитных полей. Поскольку электрическое поле определяется в терминах силы, а сила является вектором, то электрическое поле также является вектором, имеющим как величину, так и направление. А если конкретнее, то электрическое поле является векторным полем.

Учение о электрических полях, создаваемых неподвижными зарядами, называется электростатикой. Поле может быть визуализировано с помощью набора воображаемых линий, направление которых в любой точке пространства совпадает с направлением поля. Это понятие было введено Фарадеем, и термин «силовые линии» до сих пор иногда встречается. Линии поля — это пути, по которым точечный положительный заряд будет совершать движение под действием поля. Они, однако, являются абстрактным, а не физическим объектом, а поле пронизывает всё промежуточное пространство между линиями. Линии поля, исходящие из стационарных зарядов, имеют несколько ключевых свойств: во-первых, они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах; во-вторых, они должны входить в любой идеальный проводник под прямым углом (нормально), и в-третьих, они никогда не пересекаются и не замыкаются сами на себя.

Полое проводящее тело содержит весь свой заряд на своей внешней поверхности. Поэтому поле равно нулю во всех местах внутри тела. На этом принципе работает клетка Фарадея — металлическая оболочка, которая изолирует свое внутреннее пространтсво от внешних электрических воздействий.

Принципы электростатики имеют важное значение при проектировании элементов высоковольтного оборудования. Существует конечный предел напряженности электрического поля, которая может быть выдержана любом материалом. Выше этого значения происходит электрический пробой, который вызывает электрическую дугу между заряженными частями. Например, в воздухе электрический пробой наступает при небольших зазорах при напряженности электрического поля, превышающем 30 кВ на сантиметр. При увеличении зазора предельная напряженность пробоя снижается, примерно, до 1 кВ на сантиметр. Наиболее заметное подобное естественное явление — это молния. Она возникает, когда заряды разделяются в облаках восходящими колоннами воздуха, и электрическое поле в воздухе начинает превышать значение пробоя. Напряжение большого грозового облака может достигать 100 МВ и иметь величину энергии разряда 250 кВт-час.

На величину напряженности поля сильно влияют находящиеся поблизости проводящие объекты, и напряженность особенно велика, когда полю приходится огибать заостренные объекты. Этот принцип используется в громоотводах, острые шпили которых принуждают молнии разряжаться в них, а не в здания, которые они защищают.

Электрический потенциал

Понятие электрического потенциала тесно связано с электрическим полем. Небольшой заряд, помещенный в электрическое поле, испытывает силу, и для того, чтобы переместить заряд против этой силы, требуется совершить работу. Электрический потенциал в любой точке определяется как энергия, которую необходимо затратить, чтобы крайне медленно переместить единичный пробный заряд с бесконечности до этой точки. Потенциал обычно измеряется в вольтах, и потенциал в один вольт — это потенциал, при котором необходимо затратить один джоуль работы, чтобы переместить заряд в один кулон из бесконечности. Это формальное определение потенциала имеет небольшое практическое применение, и более полезным является понятие электрической разности потенциалов, то есть энергия, необходимая для перемещения единицы заряда между двумя заданными точками. Электрическое поле имеет одну особенность, оно является консервативным, что означает, что путь, пройденный пробным зарядом не имеет никакого значения: на прохождение всевозможных путей между двумя заданными точками всегда будет затрачена одна и та же энергия, и, таким образом, существует единственное значение разности потенциалов между двумя положениями. Вольт настолько сильно закрепился в качестве единицы измерения и описания разности электрических потенциалов, что термин вольтаж используется широко и повседневно.

Для практических целей полезно определить общую точку отсчета, относительно которой потенциалы могут быть выражены и сравниваться. Хотя, она может находиться и на бесконечности, гораздо более практично использовать в качестве нулевого потенциала саму Землю, которая во всех местах, как предполагается, имеет один и тот же потенциал. Эту точка отсчета, естественно, обозначают как «земля» (ground). Земля является бесконечным источником равного количества положительных и отрицательных зарядов и, следовательно, она электрически нейтральна и незаряжаема.

Электрический потенциал является скалярной величиной, то есть, он имеет только значение и не имеет направления. Его можно рассматривать как аналог высоты: подобно тому, как выпущенный объект будет падать посредством разности высот, вызванной гравитационным полем, так и заряд будет «падать» посредством напряжения, вызванного электрическим полем. Как на картах обозначается рельеф посредством контурных линий, соединяющих точки одинаковой высоты, так и набор линий, соединяющих точки равного потенциала (известные как эквипотенциали) могут быть прорисованы вокруг электростатически заряженного объекта. Эквипотенциали пересекают все силовые линии под прямым углом. Они также должны лежать параллельно поверхности проводника, в противном случае будет производиться сила, перемещающая носители зарядов по эквипотенциальной поверхности проводника.

Электрическое поле формально определяется как сила, оказываемая на единицу заряда, но понятие потенциала предоставляет более полезное и эквивалентное определение: электрическое поле — это локальный градиент электрического потенциала. Как правило, оно выражается в вольтах на метр, а направление вектора поля является линией наибольшего изменения потенциала, то есть в направлении ближайшего расположения другой эквипотенциали.

Электромагниты

Открытие Эрстедом в 1821 году того факта, что магнитное поле существует вокруг всех сторон провода, несущего электрический ток, показало, что существует прямая связь между электричеством и магнетизмом. Более того, взаимодействие казалось отличающимся от гравитационных и электростатических сил, двух сил природы, тогда известных. Сила действовала на стрелку компаса, не направляя ее к проводу с током или от него, а действовала под прямым углом к нему. Немного неясными словами «электрический конфликт имеет вращающее поведение» Эрстед выразил своё наблюдение. Эта сила также зависела от направления тока, ибо, если ток менял направление, то магнитная сила меняла его тоже.

Эрстед не в полной мере смог понять свое открытие, но наблюдаемый им эффект был взаимным: ток оказывает силовое воздействие на магнит, и магнитное поле оказывает силовое воздействие на ток. Феномен был в дальнейшем изучен Ампером, который обнаружил, что два параллельных провода с током, оказывают силовое действие друг на друга: два провода, с протекающими по ним токами в одном и том же направлении, притягиваются друг к другу, в то время как провода, содержащие токи в противоположных направлениях друг от друга, отталкиваются. Это взаимодействие происходит посредством магнитного поля, которое каждый ток создает, и на основе этого явления определяется единица измерения тока — Ампер в международной системе единиц.

Эта связь между магнитными полями и токами является чрезвычайно важной, поскольку она привела к изобретению Майклом Фарадеем электродвигателя в 1821 году. Его униполярный двигатель состоял из постоянного магнита, помещенного в сосуд с ртутью. Ток пропускался по проводу, подвешенному на шарнирном подвесе над магнитом и погруженному в ртуть. Магнит оказывал тангенциальную силу на провод, что заставляло последний вращаться вокруг магнита до тех пор, пока в проводе поддерживался ток.

Эксперимент, проведенный Фарадеем в 1831 году, показал, что провод, движущийся перпендикулярно магнитному полю, создавал разность потенциалов на концах. Дальнейший анализ этого процесса, известного как электромагнитная индукция, позволил ему сформулировать принцип, теперь известный как закон индукции Фарадея, что разность потенциалов, наведенная в замкнутом контуре пропорциональна скорости изменения магнитного потока пронизывающего контур. Разработка этого открытия позволили Фарадею изобрести первый электрический генератор, в 1831 году, в котором преобразуется механическая энергия вращающегося медного диска в электрическую энергию. Диск Фарадея был неэффективным и не использовался в качестве практического генератора, но он показал возможность выработки электроэнергии с использованием магнетизма, и эта возможность была взята на вооружение теми, кто последовал за его разработками.

Способность химических реакций производить электроэнергию, и, обратная способность электроэнергии производить химические реакцие имеет широкий спектр применений.

Электрохимия всегда была важной частью учения о электричестве. Из первоначального изобретения вольтова столба, гальванические элементы эволюционировали в самые разнообразные типы батарей, гальванические и электролизные элементы. Алюминий получают в огромных количествах электролизным способом, и во многих портативных электронных устройствах используются перезаряжаемые источники электроэнергии.

Электрические схемы

Электрическая цепь представляет собой соединение электрических компонентов таким образом, что электрический заряд, вынужденный проходить по замкнутой траектории (контуру), обычно выполняет ряд некоторых полезных задач.

Компоненты в электрической цепи могут принимать различные формы, выступая в роли таких элементов, как резисторы, конденсаторы, выключатели, трансформаторы и электронные компоненты. Электронные схемы содержат активные компоненты, такие как полупроводники, которые обычно работают в нелинейном режиме и требуют применения к ним комплексного анализа. Наиболее простыми электрическими компонентами являются те, которые называются пассивными и линейными: хотя они могут временно хранить энергию, они не содержат ее источников и работают в линейном режиме.

Резистор, пожалуй, самый простой из пассивных элементов схемы: как предполагает его название, он сопротивляется току, протекающему через него, рассеивая электроэнергию в виде тепла. Сопротивление является следствием движения заряда через проводник: в металлах, например, сопротивление в первую очередь связано со столкновениями электронов и ионов. Закон Ома является основным законом теории цепей, и гласит, что ток, проходящий через сопротивление прямо пропорционален разности потенциалов на нем. Сопротивление большинства материалов относительно постоянно в широком диапазоне температур и токов; материалы, удовлетворяющие этим условиям, известны как «омические». Ом — единица сопротивления, была названа в честь Георга Ома и обозначается греческой буквой Ω. 1 ом — это сопротивление, которое создает разность потенциалов в один вольт при пропускании через него тока величиной в один ампер.

Конденсатор является модернизацией лейденской банки и представляет собой устройство, которое может хранить заряд, и тем самым накапливать электрическую энергию в создающемся поле. Он состоит из двух проводящих пластин, разделенных тонким изолирующим слоем диэлектрика; на практике это пара тонких полосок металлической фольги, смотанных вместе, для увеличения площади поверхности в единице объема и, следовательно, емкости. Единицей емкости является фарад, названный в честь Майкла Фарадея и обозначается символом F: один фарад является емкость, которая создает разность потенциалов в один вольт, при хранении заряда в один кулон. Через конденсатор, подключенный к источнику питания вначале протекает ток, так как в конденсаторе происходит накопление заряда; этот ток будет, однако уменьшаться по мере того, как конденсатор будет заряжаться, и в конце концов станет равным нулю. Конденсатор поэтому не пропускает постоянный ток, а блокирует его.

Индуктивность является проводником, как правило, мотком провода, которая хранит энергию в магнитном поле, возникающем при прохождении тока через неё. При изменении тока, магнитное поле также изменяется, создавая напряжение между концами проводника. Индуцированное напряжение пропорционально скорости изменения тока. Коэффициент пропорциональности называется индуктивностью. Единица индуктивности — генри, названна в честь Джозефа Генри, современника Фарадея. Индуктивность в один генри — это индуктивность, которая вызывает разность потенциалов в один вольт, при скорости изменения тока, проходящего через неё, в один ампер в секунду. Поведение индуктивности противоположенное поведению конденсатора: она будет свободно пропускать постоянный и блокировать быстро меняющийся ток.

Электрическая мощность

Электрическая мощность — это скорость, с которой электрическая энергия передается электрической цепью. Единица СИ мощности — ватт, равный одному джоулю в секунду.

Электрическая мощность как и механическая является скоростью выполнения работы, измеряется в ваттах и обозначается буквой P. Термин потребляемая мощность, используемый в просторечии, означает «электрическую мощность в ваттах.» Электрическая мощность в ваттах, производимая электрическим током I, равным прохождению заряда Q кулон каждые t секунд через электрическую разность потенциалов (напряжение) V равна

P = QV/t = IV

  • Q — электрический заряд в кулонах
  • t — время в секундах
  • I — электрический ток в амперах
  • V — электрический потенциал или напряжение в вольтах

Генерация электроэнергии часто производится с помощью электрогенераторов, но также может производиться химическими источниками, такими как электрические батареи или другими способами с помощью самых разнообразных источников энергии. Электрическая мощность, как правило, поставляется на предприятия и в дома электроэнергетическими компаниями. Оплата за электроэнергию обычно происходит за киловатт-час (3,6 МДж), который является произведенной мощностью в киловаттах, умноженной на время работы в часах. В электроэнергетике измерения мощности производят с использованием счетчиков электроэнергии, которые запоминают количество общей электрической энергии, отдаваемой клиенту. В отличие от ископаемого топлива, электроэнергия является низкоэнтропийной формой энергии и может быть преобразована в энергию движения или многие другие виды энергии с высокой эффективностью.

Электроника

Электроника имеет дело с электрическими цепями, которые включают в себя активные электрические компоненты, такие как вакуумные трубки, транзисторы, диоды и интегральных схемы, и связанные с ними пассивные элементы и элементы коммутации. Нелинейное поведение активных компонентов и их способность контролировать потоки электронов позволяет усиливать слабые сигналы и широко использовать электронику в обработке информации, телекоммуникации и обработке сигналов. Способность электронных устройств работать в качестве переключателей позволяет проводить цифровую обработку информации. Элементы коммутации, такие как печатные платы, технологии компоновки и другие разнообразные формы коммуникационной инфраструктуры дополняют функциональные возможности схемы и превращают разнородные компоненты в обычную рабочую систему.

Сегодня большинство электронных устройств используют полупроводниковые компоненты для осуществления электронного управления. Изучение полупроводниковых приборов и связанных с ними технологий рассматривается как отрасль физики твердого тела, тогда как проектирование и конструирование электронных схем для решения практических задач относятся к области электроники.

Электромагнитные волны

Работы Фарадея и Ампера показали, что изменяющееся во времени магнитное поле порождало электрическое поле, а изменяющееся во времени электрическое поле являлось источником магнитного поля. Таким образом, когда одно поле меняется во времени, то всегда индуцируется другое поле. Такое явление обладает волновым свойствами и естественно называется электромагнитной волной. Электромагнитные волны были теоретически проанализированы Джеймсом Максвеллом в 1864 году. Максвелл разработал ряд уравнений, которые могли однозначно описать взаимосвязь между электрическим полем, магнитным полем, электрическим зарядом и электрическим током. Он смог к тому же доказать, что такая волна обязательно распространяется со скоростью света, и, таким образом, и свет сам является формой электромагнитного излучения. Разработка законов Максвелла, которые объединяют свет, поля и заряд, является одним из важнейших этапов в истории теоретической физики.

Таким образом, работа многих исследователей позволила использовать электронику для преобразования сигналов в высокочастотные колебательные токи, а через соответствующим образом сформированные проводники электричество позволяет передавать и принимать эти сигналы посредством радиоволн на очень большие расстояния.

Производство и использование электрической энергии

Генерация и передача электрического тока

В 6 веке до н. э. греческий философ Фалес Милетский экспериментировал с янтарными стержнями, и эти эксперименты стали первыми исследованиями в области производства электрической энергии. Пока этот метод, теперь известный как трибоэлектрический эффект, мог только поднимать легкие предметы и генерировать искры, он был крайне неэффективен. С изобретением вольтова столба в восемнадцатом веке жизнеспособный источник электроэнергии стал доступным. Вольтов столб и его современный потомок — электрическая батарея, хранит энергию в химическом виде и выдает её в виде электрической энергии по требованию. Батарея является универсальным и очень распространенным источником питания, который идеально подходит для многих применений, но энергия, хранящаяся в ней, конечна, и как только она расходуется, батарею необходимо утилизировать или заряжать. Для больших потребностей электрическая энергия должна генерироваться и передаваться непрерывно по проводящим линиям электропередачи.

Электроэнергия обычно генерируется электромеханическими генераторами, приводимыми в движение паром, получаемым от сжигания ископаемого топлива, или теплом, выделяемым в ядерных реакциях; или из других источников, таких как кинетическая энергия, извлеченная из ветра или проточной воды. Современная паровая турбина, разработанная сэром Чарльзом Парсонсом в 1884 году, сегодня производит около 80 процентов электроэнергии в мире с использованием различных источников тепла. Такие генераторы не имеют никакого сходства с униполярным генератором — диском Фарадея 1831 года, но они по-прежнему полагаться на его электромагнитный принцип, согласно которому проводник, сцепляясь с изменяющимся магнитным полем, индуцирует разность потенциалов на своих концах. Изобретение в конце ХIХ века трансформатора означало, что электрическая энергия может передаваться более эффективно при более высоком напряжении, но более низком токе. Эффективная электрическая передача означает, в свою очередь, что электроэнергия может производиться на централизованных электростанциях с выгодой от масштабной экономии, а затем передаваться на относительно большие расстояния туда, где в ней есть необходимость.

Поскольку электрическая энергия не может быть легко сохранена в количествах, достаточных для удовлетворения потребностей в национальном масштабе, её должно производиться в любое время столько, сколько в данный момент её требуется. Это обязывает энергокомпании тщательно прогнозировать свои электрические нагрузки и постоянно согласовывать эти данные с электростанциями. Некоторое количество генерирующих мощностей должно всегда храниться в запасе в качестве подушки безопасности для электросетей на случай резкого повышения спроса на электроэнергию.

Спрос на электроэнергию растет с большой скоростью по мере модернизации страны и развития ее экономики. Соединенные Штаты демонстрировали 12-процентный рост спроса в течение каждого года первых трех десятилетий ХХ века. Такой темп роста в настоящее время наблюдается в странах с формирующейся экономикой, таких как Индия или Китай. Исторически темпы роста спроса на электроэнергию опережают темпы роста спроса на другие виды энергии.

Экологические проблемы, связанные с производством электроэнергии, привели к усилению внимания к производству электроэнергии из возобновляемых источников, в частности на ветряных и гидроэлектростанциях. Несмотря на то, что можно ожидать продолжения дебатов о воздействии на окружающую среду различных средств производства электроэнергии, её окончательная форма относительно чистая.

Способы применения электричества


Передача электричества является весьма удобным способом передачи энергии, и она была адаптирована к огромному, и продолжающему расти, количеству применений. Изобретение практической лампы накаливания в 1870-х годах привело к тому, что освещение стало одним из первых массово доступных применений электроэнергии. Несмотря на то, что электрификация подразумевала собой определенные риски, замена открытого пламени газового освещения значительно снизила опасность возгорания внутри домов и фабрик. Во многих городах были созданы коммунальные предприятия, ориентированные на растущий рынок электрического освещения.

Нагревающий резистивный эффект Джоуля используется в нитях ламп накаливания и также находит более непосредственное применение в системах электрического отопления. Хотя этот метод отопления универсальный и управляемый, его можно считать расточительным, поскольку для большинства способов электрогенерации уже потребовалось производство тепловой энергии на электростанции. В ряде стран, таких как Дания, выпустили законы, ограничивающие или запрещающие применение резистивного электрического нагрева в новых зданиях. Электричество, однако, до сих пор остается весьма практичным источником энергии для отопления и охлаждения, причем кондиционеры или тепловые насосы представляют собой растущий сектор спроса на электроэнергию для отопления и охлаждения, последствия которого коммунальные предприятия все в большей степени обязаны учитывать.

Электричество используется в сфере телекоммуникаций, и на самом деле электрический телеграф, коммерческое использование которого было продемонстрировано в 1837 году Куком и Уитстоном, было одним из самых ранних электрических телекоммуникационных применений. При строительстве первых межконтинентальных, а затем трансатлантической, телеграфных систем в 1860-х годах, электричество позволило обеспечивать связь в течение нескольких минут со всем земном шаром. Оптоволоконная и спутниковая связь заняли часть рынка систем связи, однако можно ожидать, что электроэнергия будет оставаться важной частью этого процесса.

Наиболее очевидное использование эффектов электромагнетизма происходит в электродвигателе, который представляет собой чистое и эффективное средство движущей силы. Стационарный двигатель, такой как лебедка, легко обеспечить электропитанием, но двигателю для мобильного применения, такого как электрическое транспортное средство, необходимо либо перемещать вместе с собой источники питания, такие как батареи, либо собирать ток скользящим контактом, известным как пантограф.

Электронные устройства используют транзистор, пожалуй, одно из важнейших изобретений ХХ века, который является фундаментальным строительным блоком всех современных схем. Современная интегральная схема может содержать несколько миллиардов миниатюризованных транзисторов на площади всего несколько квадратных сантиметров.

Электричество также используется в качестве источника топлива для общественного транспорта, в том числе в электрических автобусах и поездах.

Влияние электричества на живые организмы

Действие электрического тока на организм человека

Напряжение, приложенное к человеческому телу, вызывает прохождение электрического тока через ткани, и хотя это отношение нелинейно, но чем большее напряжение приложено, тем больший оно вызывает ток. Порог восприятия варьируется в зависимости от частоты питания и местом прохождения тока, он составляет приблизительно от 0,1 мА до 1 мА для электричества сетевой частоты, хотя и ток, настолько малый, как один микроампер, может быть обнаружен как эффект электровибрации при определенных условиях. Если ток достаточно большой, то он может вызвать сокращение мышц, аритмию сердца, а также ожоги тканей. Отсутствие каких-либо видимых признаков того, что проводник находится под напряжением, делает электричество особенно опасным. Боль, вызванная электрическим током может быть интенсивной, что приводит к тому, что электричество иногда используют в качестве метода пытки. Смертная казнь, приведенная в исполнение поражением электрическим током, называется казнью на электрическом стуле (electrocution). Казнь на электрическом стуле до сих пор остается средством судебного наказания в некоторых странах, хотя его использование стало более редким в последнее время.

Электрические явления в природе

Электричество не является изобретением человека, оно может наблюдаться в нескольких формах в природе, заметным проявлением которого является молния. Многие взаимодействия, знакомые на макроскопическом уровне, такие как прикосновение, трение или химическая связь, обусловлены взаимодействиями между электрическими полями на атомном уровне. Магнитное поле Земли, как полагают, возникает из-за естественного производства циркулирующих токов в ядре планеты. Некоторые кристаллы, такие как кварц, или даже сахар, способны создавать разность потенциалов на своих поверхностях, когда подвергаются внешнему давлению. Это явление, известное как пьезоэлектричество, от греческого piezein (πιέζειν), что означает «нажать», было обнаружено в 1880 году Пьером и Жаком Кюри. Этот эффект обратим, и когда пьезоэлектрический материал подвергается воздействию электрического поля, происходит небольшое изменение его физических размеров.

Некоторые организмы, такие как акулы, способны обнаруживать и реагировать на изменения электрических полей, эта способность известна как электрорецепция. В то же время другие организмы, именуемые электрогенными, способны генерировать напряжения сами, что служит им в качестве оборонительного или хищного оружия. Рыбы отряда гимнотообразных, самым известным представителем которого является электрический угорь, могут обнаруживать или оглушать свою добычу с помощью высокого напряжения, генерируемого видоизмененными мышечными клетками, называемыми электричесикими клетками (electrocytes). Все животные передают информацию по клеточным мембранам импульсами напряжения, называемыми потенциалами действия, в чью функцию входит обеспечение нервной системы связью между нейронами и мышцами. Поражение электрическим током стимулирует эту систему, и вызывает сокращение мышц. Потенциалы действия также отвечают за координацию деятельности определенных растений.

В 1850 году Уильям Гладстон спросил ученого Майкла Фарадея, в чем ценность электричества. Фарадей ответил: «В один прекрасный день, сэр, вы сможете обложить его налогом».

В 19-м и начале 20-го века, электричество не было частью повседневной жизни многих людей, даже в промышленно развитом западном мире. Популярная культура того времени, соответственно, часто изображала его как таинственную, квази-магическую силу, которая может умертвлять живых, воскрешать мертвых или иным образом изменять законы природы. Такой взгляд начал царить с опытов Гальвани 1771 года, в которых демонстрировались ноги мертвых лягушек дергающимися при применении животного электричества. Об «оживлении» или реанимации очевидно мертвых или утопленников было сообщено в медицинской литературе вскоре после работы Гальвани. Об этих сообщениях стало известно Мэри Шелли, когда она принялась за написание Франкенштейна (1819), хотя она и не указывает на такой метод оживления монстра. Оживление монстров с помощью электричества стало актуальной темой фильмов ужасов позже.

По мере того, как углублялось общественное знакомство с электричеством, как источником жизненной силы второй промышленной революции, его обладатели чаще показывались в положительном свете, например, электромонтажники, про которых сказано «смерть сквозь перчатки им леденит пальцы, сплетающие провода» в стихотворении Редьярда Киплинга 1907 года «Сыновья Марфы». Разнообразные транспортные средства с электрическим приводом заняли видное место в приключенческих рассказах Жюля Верна и Тома Свифта. Специалисты в области электроэнергетики, будь то вымышленные или реальные — в том числе ученые, такие как Томас Эдисон, Чарльз Штайнмец или Никола Тесла — широко воспринимались как кудесники, наделенные волшебными полномочиями.

По мере того, как электричество переставало быть новинкой и становилось необходимостью в повседневной жизни во второй половине 20-го века, оно обратило к себе особое внимание со стороны популярной культуры только тогда, когда оно переставало поступать, что являлось событием, которое обычно сигнализирует о бедствии. Люди, которые поддерживают его поступление, такие как безымянный герой песни Джимми Уэбба «Монтер из Уичито» (1968), все чаще представлялись в качестве героических и волшебных персонажей.

8.1. Первые электрические машины — Энергетика: история, настоящее и будущее

8.1. Первые электрические машины

К концу первой половины XIX века были доказаны взаимосвязь между различными явлениями природы и взаимопревращение различных форм движения материи: установлена связь тепловой и механической, электрической и тепловой, электрической и химической, электрической и магнитной форм энергии.

Начало практическому использованию электричества положили те области применения, которые не требовали значительных затрат электроэнергии, – телеграфия, телефония, военное дело (воспламенение пороховых зарядов, электрическое взрывание мин), дистанционное управление и др. В процессе создания различных устройств при этом использовании электричества важно было решить ряд практических и теоретических проблем: совершенствовать источники тока, создавать разнообразные приборы и приспособления, в том числе автоматические, изготовлять изолированные проводники, исследовать свойства различных материалов, разрабатывать методы измерений, устанавливать единицы измерения величин. Все это привело к разработке схем и методов, получивших применение в современной телемеханике и телеуправлении.

Практически расширение области применения электричества тормозило отсутствие хорошего, экономичного источника электрического тока. Примерно до 1870 г. наиболее распространенными источниками электрического тока были электрохимические (гальванические) элементы и аккумуляторы (в 1854 г. немецкий врач В.И. Зинстеден открыл способ аккумулирования, а в 1859 г. француз Г. Планте построил свинцовый аккумулятор). Проблема экономичного источника электрической энергии была решена только созданием совершенной конструкции электромашинного генератора, в развитии которого можно отметить три основных этапа. Первый этап (1831–1851) характеризуется созданием магнитоэлектрических машин.

Как отмечалось ранее, опыты Эрстеда по отклонению магнитной стрелки током стали той искрой прометеева огня, которую исследователи и изобретатели превратили в громадное пламя…

Открытие Фарадеем в 1831 году явления электромагнитной индукции указало новый способ получения электрического тока. Уже вскоре после этого открытия ученые и изобретатели стали стремиться к тому, чтобы применить данное явление к получению электричества при помощи энергии движения.

Магнитоэлектрическая машина основана на том, что электрический ток может быть вызван без всякой батареи одним передвижением магнита относительно замкнутых проводников.

Первый изобретатель электрического генератора, основанного на явлении электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие явления электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное латинскими буквами Р. М., и приложенный к нему чертёж. Оно содержало описание первого в мире синхронного генератора с возбуждением от постоянных магнитов. Внимательно разобравшись в этом проекте, Фарадей направил письмо и чертёж в тот же журнал, в котором был напечатан его доклад. Он надеялся, что неизвестный автор, следя за журналом, увидит опубликованным свой проект и сопровождавшее его письмо Фарадея, исключительно высоко оценивающее это изобретение. Действительно, спустя почти полгода Р.М. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами Р.М. Человечество до сих пор, несмотря на тщательные розыски историков электротехники, не знает, кому же оно обязано одним из важнейших изобретений.

Машина Р.М. была первым генератором переменного тока и не имела устройства для выпрямления тока. С помощью этого генератора удалось разложить воду (поскольку ток был переменным, то при электролизе получилась смесь водорода и кислорода – гремучий газ). Необходимо было создать машину, в которой можно было бы получать ток, постоянный по величине и направлению.

Почти одновременно с неизвестным автором конструированием генераторов занимались в Париже братья Пиксии и профессор физики Лондонского университета, член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный – так называемый коллектор. Первая магнитоэлектрическая машина братьев Пиксии (рис. 8.1) была построена в 1832 году. Она явилась предшественницей всех динамо-машин в широком смысле слова, т.е. всех машин, служащих для превращения энергии движения в электрическую энергию. Ее следует считать родоначальницей целого поколения разнообразных машин, предназначенных для получения электрического тока. Мимо неподвижных катушек Е и Е ‘, снабженных сердечниками, движутся посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита А, В, вследствие чего в катушках вызываются токи переменного направления. В генераторе братьев Пиксии нужно было вращать тяжелые постоянные магниты, что затрудняло пользование им. Со временем поняли, что целесообразнее сделать неподвижными постоянные магниты, а вращать более легкие катушки между полюсами магнитов. Магнитоэлектрические генераторы такого типа оказались значительно удобнее и именно в такой конструктивной форме впервые вошли в практику.

Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Сильный толчок к построению более мощных магнитоэлектрических генераторов дали дуговые лампы с регуляторами, получившие применение на маяках в связи с развитием морского транспорта. В 1854 году в Париже была открыта первая фабрика «Compagnie L’Alliance» по изготовлению крупных магнитоэлектрических машин (рис. 8.2). В генераторе

«Альянс» на чугунной станине были укреплены в несколько рядов подковообразные постоянные магниты, расположенные по окружности и радиально по отношению к валу. Различные варианты таких генераторов имели разное число рядов магнитов (3,5,7). В промежутках между рядами магнитов устанавливались на валу кольца с большим числом катушек-якорей. На валу был укреплен коллектор с изолированными друг от друга и от вала машины металлическими пластинами. Коллекторными щетками служили специальные ролики. В машине было предусмотрено устройство для смещения роликов в зависимости от нагрузки.

 

Рис. 8.1. Первая магнитоэлектрическая машина братьев Пиксии

Рис. 8.2. Генератор «Альянс»

 

 

В генераторе «Альянс» можно было изменять соединение обмоток катушек, в результате чего менялась э.д.с. в цепи. Поэтому генератор мог давать или большой ток низкого напряжения и служить, например, для целей гальванопластики и электролиза, или ток меньшей силы, но более высокого напряжения (40–250 В) для питания дуговых ламп.

постоянных магнитов электромагнитами, возбуждаемыми током от магнитоэлектрической машины, высказал в 1851 году В. Зинстеден. Так начался второй этап развития электрогенераторов, занявший сравнительно небольшой отрезок времени.

 

Рис. 8.3. Магнитоэлектрическая машина Сименса

 

Рис. 8.4. Первая динамо-машина постоянного тока Сименса

В 1856 г. важнейшее усовершенствование в конструкцию магнитоэлектрической машины, а именно в конструкцию движущихся магнитных катушек и их железных сердечников, внес Вернер Сименс. Такие катушки с железом внутри называются якорем. Сименс придал якорю более удобную форму в виде «двойного Т». Якорь вращается между полюсами плотно обхватывающих его магнитов, причем количество магнитов может быть легко увеличено при соответствующем увеличении длины якоря. Якорь Сименса позволил в дальнейшем усовершенствовать конструкцию магнитоэлектрической машины (рис. 8.3). В конце того же года Сименс обратил внимание на то, что железо сердечника электромагнита сохраняет следы магнетизма и после выключения тока. Этот остаточный магнетизм оказался достаточным для начала процесса самовозбуждения. Отпала необходимость в отдельном генераторе для питания обмотки электромагнита. Таким образом, Вернер Сименс установил принцип создания и построил первую динамоэлектрическую машину постоянного тока (рис. 8.4) для взрывания мин, которую и продемонстрировал в конце 1866 г. перед несколькими выдающимися физиками. 17 января 1867 г. Сименс выступил в Берлинской академии наук с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». Этот доклад заканчивался словами: «…современной технике даны средства дешевым и удобным способом вызывать электрические токи неограниченной силы повсюду, где имеется рабочая сила. Этот факт будет иметь большое значение во многих ее отраслях».

Большим шагом вперед в развитии электрических генераторов было открытие принципа самовозбуждения, который получил широкую известность после 1867 года. Именно после 1867 года, когда почти одновременно в разных странах были построены генераторы с самовозбуждением, начался третий этап в развитии электрического генератора.

Бельгиец Теофил Грамм в 1869 г. создал генератор, получивший широкое применение в промышленности. В своей динамо-машине Грамм использовал принцип самовозбуждения, а также усовершенствовал якорь Сименса, придав ему форму кольца. Он обвил железное кольцо непрерывной проволокой, концы которой соединил вместе, и таким образом получил спираль. Обороты спирали в каждой половине кольца соединены последовательно, но обе половины обмотки кольца соединены противоположно друг другу. Токи с обеих сторон направляются к верхней точке кольца, образуя положительный полюс. Подобным же образом в нижней точке, откуда берут свое направление токи, будет находиться отрицательный полюс. Кольцевая машина Грамма (рис. 8.5) явилась первой практической динамо-машиной с барабанным якорем. Такая весьма сложная конструкция якоря с незначительными усовершенствованиями используется и в настоящее время. Барабанный якорь позволяет достичь кругового пути прохождения максимального количества линий сил, возбуждающих ток в обмотке электромагнитов. Грамм дал несколько конструкций своей машины. В одной из первых его машин кольцевой якорь был укреплен на горизонтальном валу. Он вращался между охватывавшими его полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводный шкив. Обмотка электромагнита была включена последовательно с обмоткой. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щеток, скользивших по поверхности коллектора.

Вернер Сименс (1816–1892) – немецкий электротехник и предприниматель, член Берлинской академии наук, основатель и главный владелец электротехнических концернов «Сименс и Гальске», «Сименс и Шуккерт» и др. В 1834 году Вернер Сименс с отличием окончил Любекскую гимназию и, успешно выдержав экзамены, поступил в Артиллерийское инженерное училище в Мальденбурге. Счастливым чувствовал себя молодой В. Сименс, когда его командировали на три года в Берлин для получения технического образования в Объединенной инженерноартиллерийской школе. Это полностью отвечало его склонностям к учебе. Здесь под руководством опытных учителей, преподававших также в Берлинском университете, он начал изучать математику, физику, химию и, конечно, баллистику – основу артиллерии. Это дало ему возможность удовлетворить жажду знаний и проявить изобретательский талант, получив фундаментальное образование в военном учебном заведении. В 1841 году Вернер Сименс получил патент на способ гальванического серебрения и золочения. Это было первое изобретение Сименса в области электротехники. Он занимался изобретательством и научными опытами по применению взрывчатой хлопчатой бумаги. Уже в 1845 году Вернер становится одним из наиболее заметных молодых ученых в недавно образованном Физическом обществе. В это время он делает ряд изобретений по телеграфной части, а также изобретает стрелочный телеграф, поскольку оптический телеграф в то время воспринимался как не соответствующий уровню технического развития. В 1846 году Сименс вошел в состав комиссии Политехнического общества Берлина по введению электрических телеграфов в Пруссии. В это время он изобрел специальную машину для покрывания медной проволоки гуттаперчей; машина эта вошла во всеобщее употребление при производстве изолированных проводников для подземных и подводных телеграфных кабелей.17 января 1867 г. в Берлинской академии наук Вернер Сименс изложил теорию, являющуюся исходным моментом всей современной электротехники, и представил совершенную конструкцию генератора постоянного тока с самовозбуждением. Он же предложил ртутную единицу сопротивления, впоследствии преобразованную в Ом, а единице электрической проводимости было присвоено наименование сименс.Сименс много сделал для развития немецкой и европейской электротехники. Он был инициатором образования Берлинского электротехнического союза (1879), основателем и председателем Общества патентов в Берлине, меценатом в области науки и культуры. На своих предприятиях он проводил обдуманную социальную политику. Удивительные слова принадлежат ему: «Мои капиталы будут жечь мне руки подобно раскаленному железу, если я не поделюсь с теми, кто помог мне получить этот доход, причитающейся им долей». Сименс был новатором во всем, чего касался его гений. В конце жизни Сименс написал: «Я считаю свою жизнь удавшейся, так как она была заполнена усилиями, которые почти всегда были успешными, и работой, приносящей пользу людям».

Рис. 8.5. Кольцевая машина Грамма

Машина Грамма в сравнении с магнитоэлектрической машиной такого же веса развивала в шесть раз большую мощность. Этот генератор быстро вытеснил генераторы других типов и получил очень широкое распространение. В начале 70-х годов XIX века был уже хорошо известен принцип обратимости и машина Грамма использовалась как в режиме генератора, так и в режиме двигателя.

В течение 70–80-х годов XIX века машина постоянного тока приобрела все основные черты современной машины. Дальнейшие усовершенствования не затрагивали основных принципов и конструктивных узлов машины, а были направлены на повышение качества, улучшение использования активных материалов и усовершенствование изоляции, повышение качества щеток и пр.

Очень важное усовершенствование заключалось в значительном снижении скорости вращения якоря. Высокая скорость вращения была необходима для получения достаточной электродвижущей силы. Но такой же результат может быть получен и путем увеличения диаметра кольца. При этом электромагнит был помещен внутрь кольца. Такая многополюсная динамо-машина была установлена на центральной электрической станции и питала до 2000 осветительных электроламп накаливания постоянного тока.

В процессе эволюции конструкции динамомашины было подмечено, что для некоторых целей, а главным образом для питания дуговых осветительных ламп, можно пользоваться невыпрямленным током переменного направления. При этом конструкция машины значительно упрощается, так как коллектор становится лишним и заменяется двумя кольцами.

Первой побудительной причиной развития динамо-машин переменного тока (так называемых «альтернаторов») послужило изобретение Яблочковым его «электрической свечи».

На рис. 8.6 представлен альтернатор Ганца, конструкция которого состоит из насаженного на вал лучеобразного индуктора Е, против каждого из десяти лучей (полюсов) которого расположено 10 катушек якоря, закрепленных на внутренней поверхности кольцеобразной железной рамы. При вращении индуктора в обмотках катушек возникают токи, постоянно меняющие направления. Обмотки же этих катушек соединены так, что при каждом положении индуктора в них одновременно возникают токи одного направления.

Рис. 8.6. Альтернатор Ганца

Вскоре берлинская фирма Сименса предложила свою конструкцию динамо-машины переменного тока (рис.8.7), конструкция которой интересна тем, что в индукторах не имеется железных сердечников, а для возбуждения используется дополнительная маленькая машина постоянного тока. Такая динамо-машина позволяла получать переменный ток значительно более высоких напряжений для питания нескольких независимых электрических цепей со многими последовательно включенными дуговыми лампами.

Второй побудительной причиной широкого распространения динамо-машин переменного тока явилась легкость трансформации переменного тока. Эта замечательная способность преобразования (трансформации) переменного тока была впервые использована Голардом в 1883 г. и усовершенствована Ганцем.

Рис. 8.7. Динамо-машина переменного тока Сименса

Первые динамо-машины были предназначены в основном для питания различных осветительных устройств. Однако широкое промышленное применение системы электрического освещения получили с совершенствованием конструкции и технологии строительства мощных центральных городских электрических станций и систем распределения электрической энергии.

Для приведения в действие динамо-машин в первое время применялись три вида двигателей: паровые, газовые и гидравлические.

Паровые двигатели состояли из парового котла, паропроводной трубы и собственно паровой машины. Из-за специфических условий сооружения генераторных станций (ограниченное помещение и относительная близость жилых зданий) преимущественное распространение получили водотрубные котлы, в которых испаряющаяся вода помещается во многих узких сообщающихся между собой трубках, охватываемых пламенем. Паровые двигатели, используемые в качестве привода динамо-машин, должны были отвечать определенным требованиям. В частности, динамо-машина требует от парового двигателя очень равномерного хода

не только относительно числа оборотов в минуту, но и в отношении скорости вращения в течение отдельных оборотов. Если эта равномерность не достигается, то напряжение на выходе динамо-машины колеблется в значительном диапазоне, к чему очень чувствительны осветительные лампы накаливания: они мигают, например, когда по шкиву проходит слишком толстый шов на ремне или когда ремень слишком слабо натянут (рис. 8.8). Подобные случайности заставили машиностроителей и электротехников полностью отказаться от ненадежных ремней. Однако сделать это было нелегко еще и потому, что у паровых машин и динамо-машин была различная угловая скорость вращения валов – соответственно 200 и 1000 оборотов в минуту. Чтобы уравнять угловую скорость шкивы машин приходилось делать различного диаметра, что обуславливало необходимость соединения их ремнем. Первые быстроходные паровые машины, соединенные с динамо-машиной без помощи ремня, были построены на заводах Вестингауза. Сущность устройства заключается в применении паровых цилиндров с кривошипно-шатунным механизмом, приводимым в движение паром. При этом весь механизм заключен в оболочку, так что из движущихся частей наружу выдаются лишь оба конца вала (рис. 8.9).

Рис. 8.8. Паровой двигатель и динамо-машина, соединенные ремнем

Рис. 8.9. Быстроходная паро-динамическая машина Вестингауза

Рис. 8.10. Газомотор Кертинга

 

Кроме паровых машин, для вращения динамо-машин в тех местах, где имелся газопровод, применялись газомоторы. Преимущество газомоторов заключалось в том, что они требуют сравнительно мало места и могут быть приведены в действие за нескольких минут. Самое широкое распространение получили газомоторы Отто, которых к концу 1894 г. для получения электрического освещения было установлено около 3000. Газомоторный завод в Дейтце (Германия) занимался специально разработкой газового двигателя для целей электрического освещения. Такой двигатель обеспечивал достаточно равномерное вращение и, соответственно, совершенно ровный свет. На заводах в Кергтиндорфе близ Ганновера известная в то время фирма братьев Кертинг организовала массовое производство газомоторов для целей электрического освещения (рис. 8.10).

Наиболее экономичными с точки зрения стоимости производства электроэнергии являются гидравлические двигатели, использующие энергию падающей воды. В качестве водяных двигателей применялись гидротурбины как с вертикальной, так и с горизонтальной осью. Динамо-машина с приводом от гидротурбины (рис. 8.11) была построена фирмой «Эсслинген» для завода Терни в Италии. Вода подавалась на лопатки гидротурбин с высоты 280 м при давлении в 18 атмосфер. Благодаря возможности пользования несколькими турбинами в работу вводилось столько динамо-машин, сколько было необходимо в данный момент времени.

Рис. 8.11. Динамо-машина с приводом от гидротурбины

История электрики. Последовательность в открытии электричества. Появление понятие тока

Ученые Вашингтонского университета доказали, что с появлением электричества люди стали спать гораздо меньше, поскольку исчезла необходимость ложиться с заходом солнца. сайт и «Ростех» расскажут о том, как учёные смогли совладать с электрическими зарядами.



Первый опыт

Вплоть до начала XVII века знания об электричестве ограничивались размышлениями античных философов, которые в своё время заметили, что потертый об шерсть янтарь имеет свойство притягивать маленькие предметы. Янтарь по-гречески, кстати, именно так и звучит — «электрон». Само название «электричество», соответственно, и произошло от янтаря.

Устройство для получения статического электричества Отто фон Герике

Отто фон Герике, вероятно, первый наблюдал электролюминесценцию в 1663 г.

Именно эффект трения (как в случае с шерстью и янтарем ) использовал Отто фон Герике для создания одного из первых в мире электрических генераторов. Он натирал руками шар из серы, а ночью видел, как его шар излучает свет и потрескивает. Он, вероятно, одним из первых наблюдал электролюминесценцию уже в 1663 году.

Учёный и шутник Стивен Грей

Стивен Грей — британский астроном-любитель, всю жизнь едва сводивший концы с концами — как-то раз заметил, что пробка, заткнувшая стеклянную трубку, притягивает мелкие кусочки бумаги, если трубку натереть. Затем вместо пробки любопытный учёный вставил длинную щепку и заметил такой же эффект. После этого Стивен Грей заменил щепку на пеньковую верёвку. В результате своих опытов Грей смог передать электрический заряд на расстояние восьмисот футов. По сути, учёный смог открыть явление передачи электричества на расстоянии и дать людям представление о том, что может проводить ток, а что нет.

Стивен Грей смог открыть передачу электричества на расстоянии


Стивен Грей стал первым лауреатом Медали Копли, высшей награды Королевского общества Великобритании

Некоторые источники утверждают, что на своём открытии Стивен Грей сделал забавный бизнес. Он якобы брал мальчишек из приюта Чартерхаус и подвешивал их на шнурках из изолирующего материала. После этого он «электрифицировал его прикосновением натертого стекла и высекал искры из его носа ».

Лейденская банка

У Питера ван Мушенбрука, ученика Ньютона, изобретательство, можно сказать, было в крови, так как его отец занимался созданием специализированных научных приборов.


Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру

Став преподавателем философии Лейденского университета, Мушенбрук направил свои силы на изучение нового на тот момент явления — электричества. Его научная деятельность дала результаты: в 1745 году он вместе со своим учеником соорудил устройство для накопления заряда, так называемую Лейденскую банку. Отчет об этом событии выглядит очень комично: «Банку устроил голландский физик Мушенбрук, впервые испытал удар от разряда банки лейденский гражданин Кюнеус ».

Некто Бозе высказал желание быть убитым электричеством

Создание Лейденской банки продвинуло эксперименты с электричеством на новый уровень. Некто Бозе даже высказал желание быть убитым электричеством, если об этом напишут в изданиях Парижской академии наук. Кстати, именно Мушенбрук впервые сравнил действие разряда с ударом ската, первым употребив термин «электрическая рыба».

Электрическая панацея

После изобретения Лейденской банки опыты с электричеством приобрели небывалую популярность. Почему-то люди стали считать, что электрические разряды обладают врачебными свойствами. На волне этого заблуждения Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», в котором умершего смогли оживить с помощью сильного разряда тока.


Обложка книги «Франкенштейн, или Современный Прометей», 1831 год

Аббе Нолле придумал, используя электричество, необычную забаву. В Версале, демонстрируя королю Людовику чудеса электричества, учёный в 1746 году выстроил монахов в 270-метровую цепь, соединив друг с другом кусками железной проволоки. Когда всё было готово, Нолле подал электричество, и монахи в ту же секунду вскрикнули и вместе подпрыгнули. Ещё практически через сто лет Максвелл подсчитает, что электричество распространяется со скоростью света.

Вольт и гальванический элемент

Эти хорошо знакомые нам обозначения на самом деле произошли от фамилий двух учёных — Александро Вольта и Луиджи Гальвани.



Лаборатория, в которой Гальвани проводил свои опыты

Обозначение «вольт» произошло от фамилии ученого — Александро Вольта

Первый опустил пластины из цинка и меди в кислоту, тем самым получив непрерывный электрический ток, а второй первым исследовал электрические явления при мышечном сокращении. В дальнейшем эти открытия сыграли важнейшую роль в становлении науки об электричестве. На открытия Вольта и Гальвани будут опираться работы Ампера, Джоуля, Ома и Фарадея.

Судьбоносный подарок

Майкл Фарадей, ученик переплетчика в лондонском книжном магазине, заприметил книжку по электричеству и химии. Чтение настолько увлекло его, что уже тогда он сам пытался проводить простейшие опыты с электричеством. Отец, поощряя тягу сына к знаниям, даже купил тому Лейденскую банку, что позволило молодому Фарадею проводить более серьёзные опыты.


Фарадей за опытами в своей лаборатории

Фарадей сыграл едва ли не главную роль в становлении теории электричества


Как выяснилось, подарок скончавшегося вскоре отца оказал огромное влияние на юношу — через двадцать лет Фарадей откроет явление электромагнитной индукции, соберёт первый в мире генератор электроэнергии и электродвигатель, выведет законы электролиза и сыграет едва ли не главную роль в становлении теории электричества.

Современный мир невозможен без электричества. Сейчас никто и не задумывается о технологии его производства, а в древние времена даже не знали такого слова. Но пытливые умы находились и тогда. В 700-м году до нашей эры наблюдательный греческий философ Фалес заметил, что янтарь начинал притягивать лёгкие предметы, когда происходило трение с шерстью. На этом знания приостановились.

Дальнейшее развитие знаний

Только по прошествии многих столетий эта отрасль знаний получила дальнейшее развитие. Английский физик и по совместительству врач при королевском дворе Уильям Гильберт, окончивший лучшие ВУЗы Оксфорда и Кембриджа, стал основоположником науки об электричестве. Он изобрёл первый прообраз электроскопа под названием версор и с его помощью выяснил, что не только янтарь, но и другие камни имеют свойства притягивать мелкие предметы (соломинки). Среди «электрических» минералов:

  • алмаз;
  • аметист;
  • стекло;
  • опал;
  • карборунд;
  • сланцы;
  • сапфир;
  • янтарь.

С помощью аппарата учёный смог сделать несколько интересных открытий. Среди них: серьёзное влияние пламени на электрические свойства тел, которые были приобретены при трении. А ещё Гильберт высказал предположение, что гром и молния — явления электрической природы.

Само понятие «электричество» впервые прозвучало в XVI веке. В 1663 году бургомистром Магдебурга по имени Отто фон Герике была создана специальная машина для исследования. С её помощью можно было наблюдать эффект притяжения и отталкивания.

Первые опыты с электричеством

В 1729 году в Англии был проведён первый опыт передачи электричества на небольшое расстояние учёным Стивеном Греем. Но в процессе было определено, что не все тела могут передавать электричество. Через 4 года после первых серьёзных исследований учёный из Франции Шарль Дюфе выявил, что существует два типа заряда электричества : стеклянного и смоляного в зависимости от материала, используемого для трения.

В середине XVII века в Голландии Питер ван Мушенбрук создаёт конденсатор под названием «Лейденская банка». Немного времени спустя появляется теория Бенджамина Франклина и проводятся первые исследования, которые опытным путём подтверждают теорию. Проведённые исследования стали основой для создания громоотвода.

После этого была открыта новая наука, которую начинают изучать. А в 1791 году выпускается «Трактат о силе электричества при движении мышц» автором Гальвани. В 1800 году итальянский изобретатель Вольта стал тем, кто создал новый источник тока под названием Гальванический элемент. Этот аппарата представляет собой объект в виде столба из цинковых и серебряных колец, разделённых бумажками, смоченными в солёной воде. Через пару лет русский изобретатель Василий Петров открывает «Вольтову дугу».

Примерно в том же десятилетии физик Жан Антуан Нолле изобрёл первый электроскоп, зарегистрировавший более быстрое «стекание» электричества с тел острой формы и сформировал теорию о влиянии тока на живые организмы. Этот эффект стал основой изобретения медицинского электрокардиографа. С 1809 году началась новая эпоха в области электричества, когда англичанин Деларю изобрёл лампу накаливания . Уже через 100 лет появились современные лампочки с вольфрамовой спиралью и заполнением инертным газом. Их разработчиком стал Ирвинг Ленгмюр.

Сложные исследования и великие открытия

В начале XVIII века Майкл Фарадей написал трактат об электромагнитном поле.

Электромагнитное взаимодействие было обнаружено при проведении опытов датским учёным Эрстедом в 1820 году, а уже через год физик Ампер связывает электричество и магнетизм в своей теории. Эти исследования стали основой для появления современной науки — электротехники.

В 1826 году Георг Симон Ом на основании проведённых опытов смог сформулировать основной закон электрической цепи и ввёл новые термины электротехники:

  • «проводимость»;
  • «электродвижущая сила»;
  • «падение напряжения в цепи».

Последователем Эрстеда стал Андре-Мари Ампер, который сформулировал правило определения направления тока на магнитную стрелку. Эта закономерность получила множество названий, одно из которых «правило правой руки». Именно он изобрёл усилитель электромагнитного поля — многовитковые катушки, состоящие из медного провода с установленными сердечниками из мягкого железа. На основании этой разработки в 1829 году был изобретён электромагнитный телеграф.

Новый виток исследований

Когда известный английский учёный в области физики Майкл Фарадей ознакомился с работой Х. Эрстеда, он провёл исследования в области взаимосвязи электромагнитных и электрических явлений и обнаружил, что магнит вращается вокруг проводника тока и, наоборот, проводник — вокруг магнита.

После этих опытов учёный ещё 10 лет пытался трансформировать магнетизм в электрический ток, а в результате открыл электромагнитную индукцию и основы теории электромагнитного поля , а также помог сформировать основу для появления новой отрасли науки — радиотехники. В 20 годы прошлого столетия, когда на территории СССР была начата организация масштабная электрификация, появился термин «лампочка Ильича».

Так как многие разработки проводились параллельно в разных странах, историки спорят о том, кто изобрёл электричество первым. В развитие науки об электричестве вложили свои силы и знания многие учёные-изобретатели: Ампер и Ленц, Джоуль и Ом. Благодаря таким усилиям современный человек не испытывает проблем с организацией подачи электричества в свои дома и другие помещения.

Одной из важнейших вех в истории планеты является изобретение электричества. Именно это открытие помогает и по сей день развиваться нашей цивилизации. Электричество — один из наиболее экологичных Кому принадлежит открытие этого явления? Каким образом электричество получают и применяют? Можно ли самостоятельно создать гальванический элемент?

История изобретения электричества кратко

Электричество было обнаружено еще в 7 веке до нашей эры древнегреческим философом Фалесом. Он выяснил, что натертый шерстью янтарь способен притягивать меньшие по массе предметы.

Однако масштабные эксперименты с электричеством начинаются в эпоху возрождения в Европе. В 1650 г. магдебургским бургомистром фон Герике была построена электростатическая установка. В 1729 г. Стивеном Греем был поставлен опыт по на расстояние. В 1747 издал очерк, где была собраны все известные факты об электричестве и выдвинуты новые теории. В 1785-м был открыт закон Кулона.

1800 год стал переломным: итальянец Вольт изобретает первый источник постоянного тока. В 1820-м датским ученым Эрстедом было обнаружено предметов. Годом позднее Ампер выяснил, что магнитное поле создается электрическим током, но не статическими зарядами.

Такие великие исследователи, как Гаусс, Джоуль, Ленц, Ом внесли неоценимый вклад в изобретение электричества. Год 1830-й также стал важным, ведь Гауссом была разработана теория и разработка двигателя, работающего на токе, принадлежит Майклу Фарадею.

В конце 19 века опыты с электричеством проводились многими учеными, в их числе Лачинов, Герц, Томсон, Резерфорд. В начале 20 века появилась теория квантовой электродинамики.

Электричество в природе

Открытие и изобретение электричества произошло уже очень давно. Однако ранее считалось, что в природе его просто нет. Но американец Франклин выяснил, что такое явление, как молния, имеет чисто электрическую природу. Долгое время его точка зрения отвергалась научным сообществом.

Электричество имеет огромное значение в природе. Многие ученые полагают, что благодаря разрядам молний осуществился синтез аминокислот, в результате чего на Земле зародилась жизнь. Без нервных импульсов невозможно функционирование организма ни одного животного. Существуют разновидности морских организмов, которые применяют электричество как средство для обороны, нападения, ориентации в пространстве и поиска пищи.

Получение электричества

Изобретение электричества оказало влияние на научно-технический прогресс. Для получения электроэнергии создаются вот уже на протяжении многих десятилетий электростанции. Электричество создается с помощью генераторов энергии, а затем оно передается по ЛЭП. Принцип создания тока заключается в переводе механической энергии в электрическую. Электростанции подразделяются на следующие типы:

  • атомные;
  • ветровые;
  • гидроэнергетические;
  • приливно-отличные;
  • солнечные;
  • тепловые.

Применение электричества

Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.

Любопытный опыт

Оказывается, гальванический элемент можно изготовить самостоятельно, и делается это достаточно просто. Такой способ получил известность в начале 20 века.

Для начала необходимо пополам разрезать достаточно острым ножом лимон посередине. Крайне нежелательно снимать или срывать перегородки между дольками. После этого нужно к каждой дольке подсоединить поочередно небольшой кусок проволоки, размером около 2 сантиметров. В ячейках должны чередоваться медная и цинковая проволоки. Затем следует концы торчащих проволок последовательно соединить металлической проволокой меньшего диаметра. Таким образом можно получить элемент питания. Как проверить, работает ли он? Для этого можно замерить напряжение вольтметром.

Одним из важнейших открытий в истории человечества стало изобретение электричества. Дата открытия точно неизвестна. Однако эксперименты начал проводить еще древнегреческий ученый Фалес. Активное изучение электричества началось в эпоху возрождения. Без него невозможна деятельность ни одного живого организма. Сегодня без этого изобретения мы практически не можем представить свою жизнь. Люди уже давно научились получать, передавать и использовать электроэнергию.

ἤλεκτρον : электрон ) приобретает свойства притягивать лёгкие предметы . Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания . В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество . В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного , которые выявлялись при трении стекла о шёлк и смолы о шерсть . В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку . Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов .

Первую теорию электричества создаёт американец Бенджамин Франклин , который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний . Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона .

Теория

Производство и практическое использование

Генерирование и передача

Обычно для её порождения применяются электромеханические генераторы, приводимые в действие либо за счёт сжигания ископаемого топлива , либо с использованием энергии от ядерных реакций , либо посредством силы воздушных или водных течений. Современная паровая турбина , изобретённая Ч. Парсонсом в 1884 году , в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея , созданный им в 1831 году , однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него . Ближе к концу XIX века был изобретён трансформатор , что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока . В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяжённые дистанции к конечным потребителям .

Получение электричества из кинетической энергии ветра набирает популярность во многих странах мира

Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети .

Применение

Лампа накаливания

Использование электричества обеспечивает довольно удобный [ ] способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений . Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах . Создателем лампы накаливания является русский электротехник А.Н. Лодыгин . Первая лампа накаливания представляла собой замкнутый сосуд без воздуха с угольным стержнем. . Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократила количество возгораний в быту и на производстве .

В целях получения электричества созданы оснащённые электрогенераторами электростанции , а для его хранения — аккумуляторы и электрические батареи .

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка) и создания музыки (электрогитара).

Хронология основных открытий и изобретений

Примечания

  1. Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52, ББК 22.3 С72
  2. Электричество до Франклина
  3. Электростатическая машина Герике
  4. Первые опыты по передаче электричества на расстояние
  5. История электричества
  6. Открытие электричества
  7. Это не единственное свойство заряженных тел; например, заряженные тела при движении способны создавать ещё и магнитное поле , а также подвергаются воздействию последнего (также в случае своего движения).
  8. , с. 178.
  9. , с. 66.
  10. Богданов К. Ю. Физик в гостях у биолога. — М.: «Наука», Гл. ред. физ.-мат. лит., 1986, 144 с. (Б-чка «Квант», Вып. 49) тир. 135000 экз., ББК 22.3 + 28 Гл. 1. Живое электричество.
  11. Dell, Ronald & Rand, David (2001), «Understanding Batteries», Unknown (Royal Society of Chemistry) . — Т. 86: 2–4, ISBN 0-85404-605-4
  12. McLaren, Peter G. (1984), Elementary Electric Power and Machines , Ellis Horwood, сс. 182–183, ISBN 0-85312-269-5
  13. Patterson, Walter C. (1999), Transforming Electricity: The Coming Generation of Change , Earthscan, сс. 44–48, ISBN 1-85383-341-X
  14. Edison Electric Institute, History of the Electric Power Industry , . Проверено 8 декабря 2007.
  15. Edison Electric Institute, History of the U.S. Electric Power Industry, 1882-1991 , . Проверено 8 декабря 2007.
  16. Carbon Sequestration Leadership Forum,

Среди жителей планеты найти таких, которые не имеют понятия об электричестве, трудно. Но вот тех, кто знает, когда и кто открыл электричество, из чего оно состоит, кто сделал важное и полезное для человечества открытие, мало. Потому стоит разобраться, что представляют собой электрические явления и кому мы обязаны их открытием.

Вконтакте

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии , ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Первые опыты

В середине XVII столетия Отто Герике занялся научным исследованием наблюдений Фалеса. Немецкий ученый сконструировал первый прибор в форме вращающегося шара, который он зафиксировал на железном штифте.

После его смерти исследования продолжили другие ученые:

  • немецкие физики Бозе и Винклер;
  • англичанин Хоксби.

Они усовершенствовали прибор, изобретенный Генрике, и открыли некоторые другие свойства явления. Первые опыты, проводимые с помощью этого аппарата, послужили толчком для новых изобретений.

История открытия

Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.

В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки .

Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды.

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод , действие которого пояснялось возникновением разности напряжений.

А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым .

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. — ученый Л. Гальвани открыл зарядов по проводникам, т.е. электрический ток;
  • 1800 г. – представлен генератор тока А. Вольтом;
  • 1802 г. — Петров открыл электродугу;
  • 1827 г. — Дж. Генри сконструировал изоляцию проводов;
  • 1832 г. — член академии Петербурга Шиллинг показал электрический телеграф;
  • 1834 г. — академик Якоби создал электродвигатель;
  • 1836 год — С. Морзе запатентовал телеграф;
  • 1847 г. — Сименс предложил резиновый материал для изоляции проводов;
  • 1850 год — Якоби изобрел буквопечатающий телеграф;
  • 1866 г. — Сименс предложил динамо-машину;
  • 1872 г. — А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить;
  • 1876 г — изобретен телефон;
  • 1879 год — Эдисон разработал систему электроосвещения, используемую до сих пор;
  • 1890 год — стал стартовым относительно широкого применения электроприборов в быту;
  • 1892 г. — появились первые бытовые приборы, используемые хозяйками на кухне;

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд . С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В. Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

Явления в природе, связанные с электричеством

Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.

Северное сияние

Верхние слои воздушной оболочки часто накапливают мелкие частички, прилетающие из космоса. Их столкновение с атмосферой и пылью вызывает свечение на небе, которое сопровождают сполохи. Такое явление наблюдают жители полярных районов. Назвали это явление полярным сиянием . Северное свечение длится порой несколько суток, переливаясь разными цветами.

Молния

Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.

Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.

Огни святого Эльма

Так называют явление, знакомое плававшим на парусниках морякам с древности. Они радовались, когда видели свечение мачт в непогоду. Моряки считали, что огни свидетельствуют о покровительстве святого Эльма.

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.

Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту . Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы). Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: . Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику. Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц . Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой . Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в . Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество

Изобретение электричества. История, применение, получение

1. Изобретение электричества: история, применение, получение.

Выполнил
Нечупей Артём
161 группы

2. История изобретения электричества кратко.

Электричество было обнаружено еще в 7 веке до нашей эры
древнегреческим философом Фалесом. Он выяснил, что натертый
шерстью янтарь способен притягивать меньшие по массе предметы.
Однако масштабные эксперименты с электричеством начинаются в
эпоху возрождения в Европе. В 1650 г. магдебургским бургомистром
фон Герике была построена электростатическая установка. В 1729 г.
Стивеном Греем был поставлен опыт по передаче электроэнергии
на расстояние. В 1747 Бенджамин Франклин издал очерк, где была
собраны все известные факты об электричестве и выдвинуты новые
теории. В 1785-м был открыт закон Кулона.
1800 год стал переломным: итальянец Вольт изобретает первый
источник постоянного тока. В 1820-м датским ученым Эрстедом
было обнаружено электромагнитное взаимодействие предметов.
Годом позднее Ампер выяснил, что магнитное поле создается
электрическим током, но не статическими зарядами. Такие великие
исследователи, как Гаусс, Джоуль, Ленц, Ом внесли неоценимый
вклад в изобретение электричества. Год 1830-й также стал важным,
ведь Гауссом была разработана теория электростатического поля.
Явление электромагнитной индукции и разработка двигателя,
работающего на токе, принадлежит Майклу Фарадею. В конце 19
века опыты с электричеством проводились многими учеными, в их
числе Пьер Кюри, Лачинов, Герц, Томсон, Резерфорд. В начале 20
века появилась теория квантовой электродинамики.

4. Получение электричества.

Изобретение электричества оказало влияние на научнотехнический прогресс. Для получения электроэнергии
создаются вот уже на протяжении многих десятилетий
электростанции. Электричество создается с помощью
генераторов энергии, а затем оно передается по ЛЭП.
Принцип создания тока заключается в переводе
механической энергии в электрическую. Электростанции
подразделяются на следующие типы:
Атомные
Ветровые
Гидроэнергетические
Приливно-отличные
Солнечные
Тепловые

5. Применение электричества.

Изобретение электричества по праву является
величайшим открытием, ведь без него становится
невозможной современная жизнь. Оно имеется почти в
каждом доме и применяется для освещения, обмена
информацией, приготовления пищи, обогрева,
функционирования бытовых приборов. Также
электроэнергия необходима для движения трамваем,
троллейбусов, метро, электропоездов. Работа
компьютера, сотового телефона тоже невозможна без
электричества.
Одним из важнейших открытий в истории человечества
стало изобретение электричества. Дата открытия точно
неизвестна. Однако эксперименты начал проводить еще
древнегреческий ученый Фалес. Активное изучение
электричества началось в эпоху возрождения. Без него
невозможна деятельность ни одного живого организма.
Сегодня без этого изобретения мы практически не можем
представить свою жизнь. Люди уже давно научились
получать, передавать и использовать электроэнергию.

7. Спасибо за внимание!

История применения электричества. Изобретение электричества: история, применение, получение

Одной из важнейших вех в истории планеты является изобретение электричества. Именно это открытие помогает и по сей день развиваться нашей цивилизации. Электричество — один из наиболее экологичных Кому принадлежит открытие этого явления? Каким образом электричество получают и применяют? Можно ли самостоятельно создать гальванический элемент?

История изобретения электричества кратко

Электричество было обнаружено еще в 7 веке до нашей эры древнегреческим философом Фалесом. Он выяснил, что натертый шерстью янтарь способен притягивать меньшие по массе предметы.

Однако масштабные эксперименты с электричеством начинаются в эпоху возрождения в Европе. В 1650 г. магдебургским бургомистром фон Герике была построена электростатическая установка. В 1729 г. Стивеном Греем был поставлен опыт по на расстояние. В 1747 издал очерк, где была собраны все известные факты об электричестве и выдвинуты новые теории. В 1785-м был открыт закон Кулона.

1800 год стал переломным: итальянец Вольт изобретает первый источник постоянного тока. В 1820-м датским ученым Эрстедом было обнаружено предметов. Годом позднее Ампер выяснил, что магнитное поле создается электрическим током, но не статическими зарядами.

Такие великие исследователи, как Гаусс, Джоуль, Ленц, Ом внесли неоценимый вклад в изобретение электричества. Год 1830-й также стал важным, ведь Гауссом была разработана теория и разработка двигателя, работающего на токе, принадлежит Майклу Фарадею.

В конце 19 века опыты с электричеством проводились многими учеными, в их числе Лачинов, Герц, Томсон, Резерфорд. В начале 20 века появилась теория квантовой электродинамики.

Электричество в природе

Открытие и изобретение электричества произошло уже очень давно. Однако ранее считалось, что в природе его просто нет. Но американец Франклин выяснил, что такое явление, как молния, имеет чисто электрическую природу. Долгое время его точка зрения отвергалась научным сообществом.

Электричество имеет огромное значение в природе. Многие ученые полагают, что благодаря разрядам молний осуществился синтез аминокислот, в результате чего на Земле зародилась жизнь. Без нервных импульсов невозможно функционирование организма ни одного животного. Существуют разновидности морских организмов, которые применяют электричество как средство для обороны, нападения, ориентации в пространстве и поиска пищи.

Получение электричества

Изобретение электричества оказало влияние на научно-технический прогресс. Для получения электроэнергии создаются вот уже на протяжении многих десятилетий электростанции. Электричество создается с помощью генераторов энергии, а затем оно передается по ЛЭП. Принцип создания тока заключается в переводе механической энергии в электрическую. Электростанции подразделяются на следующие типы:

  • атомные;
  • ветровые;
  • гидроэнергетические;
  • приливно-отличные;
  • солнечные;
  • тепловые.

Применение электричества

Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.

Любопытный опыт

Оказывается, гальванический элемент можно изготовить самостоятельно, и делается это достаточно просто. Такой способ получил известность в начале 20 века.

Для начала необходимо пополам разрезать достаточно острым ножом лимон посередине. Крайне нежелательно снимать или срывать перегородки между дольками. После этого нужно к каждой дольке подсоединить поочередно небольшой кусок проволоки, размером около 2 сантиметров. В ячейках должны чередоваться медная и цинковая проволоки. Затем следует концы торчащих проволок последовательно соединить металлической проволокой меньшего диаметра. Таким образом можно получить элемент питания. Как проверить, работает ли он? Для этого можно замерить напряжение вольтметром.

Одним из важнейших открытий в истории человечества стало изобретение электричества. Дата открытия точно неизвестна. Однако эксперименты начал проводить еще древнегреческий ученый Фалес. Активное изучение электричества началось в эпоху возрождения. Без него невозможна деятельность ни одного живого организма. Сегодня без этого изобретения мы практически не можем представить свою жизнь. Люди уже давно научились получать, передавать и использовать электроэнергию.

Содержание:

Совершенно невозможно представить жизнь современных людей без электричества. Однако так было далеко не всегда. Активное использование электрического тока началось лишь в 20 веке, а до этого все ограничивалось опытами и исследованиями, проводимыми отдельными учеными из разных стран. Поэтому вопрос, когда появилось электричество не имеет однозначного ответа, поскольку первые понятия о нем возникли еще в 7 веке до нашей эры. Наблюдая за некоторыми физическими явлениями, греческий ученый и философ Фалес Милетский обратил внимание на то, что янтарь способен притягивать легкие мелкие предметы после его трения о шерсть. На этом уровне знания об электричестве приостановились на многие века.

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны. Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих , которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой. Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление , и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество» . С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта , который придумал и изобрел гальванический элемент — источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ — двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый — американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году . Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие — было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток , так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Сейчас электричество в наши дома поступает благодаря электрическим станциям . На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе , первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение — все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Этапы создания теории

XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.

Появление термина

Английский физик и придворный врач в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:

  • стекло;
  • алмаз;
  • сапфир;
  • аметист;
  • опал;
  • сланцы;
  • карборунд.

В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.

Два вида зарядов

Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:

  • «стеклянный», который теперь именуется положительным;
  • «смоляной», называющийся отрицательным.

Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно — отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Бенджамин Франклин

В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.

В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:

  1. Известное сегодня обозначение электрических состояний (-) и (+).
  2. Франклин доказал электрическую природу молнии.
  3. Он смог придумать и представить в 1752 году проект громоотвода.
  4. Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.

Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.

От теории к точной науке

Проведенные исследования и опыты позволили изучению электричества перейти в категорию точной науки. Первым в череде научных достижений стало открытие закона Кулона.

Закон взаимодействия зарядов

Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.

Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.

Изобретение батареи

В 1791 году итальянский врач, физиолог и физик написал «Трактат о силах электричества при мышечном движении». В нем он фиксировал наличие электрических импульсов в мышечных тканях животных. А также он обнаружил разность потенциалов при взаимодействии двух видов металла и электролита.

Открытие Луиджи Гальвани получило свое развитие в работе итальянского химика, физика и физиолога Алессандро Вольты. В 1800 году он изобретает «Вольтов столб» — источник непрерывного тока. Он представлял собой стопку серебряных и цинковых пластин, которые были разделены между собой смоченными в соленом растворе бумажными кусочками. «Вольтов столб» стал прототипом гальванических элементов, в которых химическая энергия преобразовывалась в электрическую.

В 1861 году в его честь было введено название «вольт» — единица измерения напряжения.

Гальвани и Вольта являются одними из основоположников учения об электрических явлениях. Изобретение батареи спровоцировало бурное развитие и последующий рост научных открытий. Конец XVIII века и начало XIX века можно характеризовать как время, когда изобрели электричество.

Появление понятия тока

В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».

Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.

Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу — «амперметрами».

Закон электрической цепи

Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:

  • падение напряжения в сети;
  • проводимость;
  • электродвижущая сила.

Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.

Английский химик и физик Майкл Фарадей совершил в 1831 году открытие электромагнитной индукции, которая лежит в основе массового производства электроэнергии. На основе этого явления он создает первый электродвигатель. В 1834 году Фарадей открывает законы электролиза, которые привели его к выводу, что носителем электрических сил можно считать атомы. Исследования электролиза сыграли существенную роль в возникновении электронной теории.

Фарадей является создателем учения об электромагнитном поле. Он сумел предсказать наличие электромагнитных волн.

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин .

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Появление электроэнергии в России

Будет интересно выяснить, в каком году появилось электричество в России. Освещение впервые появилось в 1879 году в Санкт-Петербурге. Тогда фонари установили на Литейном мосту. Затем в 1883 году начала работу первая электростанция у Полицейского (Народного) моста.

В Москве освещение впервые появилось 1881 году. Первая городская электростанция заработала в Москве в 1888 году.

Днем основания энергетических систем России считается 4 июля 1886 года, когда Александр III подписал устав «Общества электрического освещения 1886 года». Оно было основано Карлом Фридрихом Сименсом, который являлся братом организатора всемирно известного концерна Siemens.

Невозможно точно сказать, когда появилось электричество в мире. Слишком много разбросанных во времени событий, которые являются одинаково важными. Поэтому вариантов ответа может быть много, и все они будут правильными.

Среди жителей планеты найти таких, которые не имеют понятия об электричестве, трудно. Но вот тех, кто знает, когда и кто открыл электричество, из чего оно состоит, кто сделал важное и полезное для человечества открытие, мало. Потому стоит разобраться, что представляют собой электрические явления и кому мы обязаны их открытием.

Вконтакте

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии , ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Первые опыты

В середине XVII столетия Отто Герике занялся научным исследованием наблюдений Фалеса. Немецкий ученый сконструировал первый прибор в форме вращающегося шара, который он зафиксировал на железном штифте.

После его смерти исследования продолжили другие ученые:

  • немецкие физики Бозе и Винклер;
  • англичанин Хоксби.

Они усовершенствовали прибор, изобретенный Генрике, и открыли некоторые другие свойства явления. Первые опыты, проводимые с помощью этого аппарата, послужили толчком для новых изобретений.

История открытия

Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.

В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки .

Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды.

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод , действие которого пояснялось возникновением разности напряжений.

А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым .

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. — ученый Л. Гальвани открыл зарядов по проводникам, т.е. электрический ток;
  • 1800 г. – представлен генератор тока А. Вольтом;
  • 1802 г. — Петров открыл электродугу;
  • 1827 г. — Дж. Генри сконструировал изоляцию проводов;
  • 1832 г. — член академии Петербурга Шиллинг показал электрический телеграф;
  • 1834 г. — академик Якоби создал электродвигатель;
  • 1836 год — С. Морзе запатентовал телеграф;
  • 1847 г. — Сименс предложил резиновый материал для изоляции проводов;
  • 1850 год — Якоби изобрел буквопечатающий телеграф;
  • 1866 г. — Сименс предложил динамо-машину;
  • 1872 г. — А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить;
  • 1876 г — изобретен телефон;
  • 1879 год — Эдисон разработал систему электроосвещения, используемую до сих пор;
  • 1890 год — стал стартовым относительно широкого применения электроприборов в быту;
  • 1892 г. — появились первые бытовые приборы, используемые хозяйками на кухне;

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд . С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В. Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

Явления в природе, связанные с электричеством

Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.

Северное сияние

Верхние слои воздушной оболочки часто накапливают мелкие частички, прилетающие из космоса. Их столкновение с атмосферой и пылью вызывает свечение на небе, которое сопровождают сполохи. Такое явление наблюдают жители полярных районов. Назвали это явление полярным сиянием . Северное свечение длится порой несколько суток, переливаясь разными цветами.

Молния

Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.

Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.

Огни святого Эльма

Так называют явление, знакомое плававшим на парусниках морякам с древности. Они радовались, когда видели свечение мачт в непогоду. Моряки считали, что огни свидетельствуют о покровительстве святого Эльма.

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.

Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту . Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы). Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: . Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику. Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц . Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой . Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в . Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество

История электротехники | Микропроцессорные Технологии

С древних времен и до XIX века

Еще в седьмом веке до нашей эры, греческий философ Фалес Милетский заметил необычное свойство янтаря – при трении о шерсть камень начинал притягивать к себе нетяжелые предметы.

В более неопределённый период времени (между 250 годом до н. э. и 250 годом н. э) произошло изобретение багдадской батареи, которое некоторые ученые считают первым гальваническим элементом.

                                                                         багдадская батарея   (фото .wikipedia.org)

В 17 веке Отто фон Герике соорудил первую электростатическую машину — шар из серы, который натирается руками.

В следующем веке уже намечался будущий прорыв – открыт «закон Кулона», Вольта изобрёл источник гальванического тока, ученые впервые разложили воду электрическим током. Также были проведены исследования атмосферного электричества, разработаны первые теории электричества.

Однако, до девятнадцатого века сложно говорить об электротехнике, как о науке – скорее, это были наблюдения и первые предвестники, которые позже переросли в великие открытия и полностью перевернули жизнь человечества.

XIX век

В XIX веке произошел настоящий прорыв в изучении и освоении электричества. Условно, с точки зрения становления электротехники, в девятнадцатом столетии обозначаются несколько периодов.

Зарождение научных основ электротехники

Начиная с 1800 года и до 30-тых годов XIX столетия закладываются научные основы электротехники. Первый электрохимический генератор – «Вольтов столб», стал толчком в развитии электротехники, за которым последовала череда важных открытий. На этом этапе были открыты законы Ома, Ампера, Био – Савара; найдены и описаны основные свойства электрического тока. Швейгер изобрел первый индикатор электрического тока.

Становление электротехники

Далее, вплоть до семидесятых годов XIX века, появляются первые электрические устройства.

Одно из важнейших открытий данного этапа – явление электромагнитной индукции, которое выявил Фарадей. Затем последовали изобретения первых электрических машин постоянного и переменного токов, Якоби построил первый электродвигатель с непосредственным вращением якоря.


                                                                                      электродвигатель Якоби
                                                                             (фото engineering-solutions.ru/motorcontrol/history)

В этот период сформировались законы Ленца и Кирхгофа, впервые были созданы источники электрического освещения и электрические приборы, происходит зарождение электроизмерительной техники.

Тем не менее в это время электрическая энергия не получает обширного применения, так как на тот момент еще не был изобретен экономичный электрический генератор.

Электротехника – самостоятельная отрасль

После 70-х годов XIX столетия начинается эра электротехники как самостоятельной отрасли техники. Новый этап открывает изобретение электромашинного генератора с самовозбуждением.

На это время приходится невероятный прогресс промышленности, сопровождавшийся непрерывным ростом потребности в электрической энергии.
Появляются первые электрические станции постоянного тока, П. Н. Яблочков изобретает «электрическую свечу» (о нем и других выдающихся русских ученых читайте в нашем обзоре), разрабатываются способы передачи электричества на большие расстояния за счёт существенного повышения напряжения ЛЭП.


                                                                   электрическая свеча (фото .wikipedia.org)                                                                              

Дальнейшее развитие электрического освещения способствовало улучшению электрических машин и трансформаторов; ближе к концу века стартовало массовое производство однофазных трансформаторов с замкнутой магнитной системой. 

В конце XIX века происходят значительные события – начинается строительство центральных электростанций переменного тока, открывается первая в мире ГЭС, разработаны трёхфазная электрическая сеть, трехфазные электрические двигатели и трансформаторы. Огромный вклад в развитие электротехники в эти годы внесли Михаил Доливо-Добровольский, Никола Тесла, Чарльз Браун и другие.

Начинается эпоха электричества: повышаются мощности и напряжения, возникают новые образы и виды электрических машин. Электрическая энергия проникает в различные отрасли производства и получает огромное распространение в различных сферах жизни.

XX век и наши дни

В начале века в России положено начало Московскому энергетическому институту – он вырос из появившейся в 1905 году специальности по электротехнике, которую ввели в Московском высшем техническом училище.

С появлением специального образования, а, следовательно, и приумножением профессиональных кадров, электротехника продолжает получать широчайшее распространение. Таким образом, развивается преобразовательная техника, а в дальнейшем и необыкновенный рост промышленной электроники.

На основе электротехники разрабатываются первые электронные вычислительные машины, без которых сложно представить сегодняшний мир.

Одно из последних достижений электротехники – беспроводная передача электричества: изобретатели смогли зажечь обыкновенную лампочку с расстояния более двух метров.

Электротехника стала незыблемой частью жизни нашего общества, надежное функционирование которой обеспечивают современные цифровые устройства релейной защиты и автоматики (РЗА).

электричество: | Infoplease

Из сочинений Фалеса Милетского следует, что жители Запада знали еще в 600 г. до н.э., что янтарь заряжается при трении. Настоящего прогресса было мало, пока английский ученый Уильям Гилберт в 1600 году не описал электрификацию многих веществ и не ввел термин электричество от греческого слова, обозначающего янтарь. В результате Гилберта называют отцом современного электричества. В 1660 году Отто фон Герике изобрел грубую машину для производства статического электричества.Это был шар из серы, который одной рукой вращали рукояткой, а другой натирали. Преемники, такие как Фрэнсис Хоксби, внесли усовершенствования, которые предоставили экспериментаторам готовый источник статического электричества. Сегодняшним высокоразвитым потомком этих ранних машин является генератор Ван де Граафа, который иногда используется в качестве ускорителя частиц. Роберт Бойль понял, что притяжение и отталкивание взаимны и что электрическая сила передается через вакуум (около 1675 г.). Стивен Грей различал проводников и непроводников (1729 г.).К. Ф. Дю Фэй выделил два вида электричества, которые Бенджамин Франклин и Эбенезер Киннерсли из Филадельфии позже назвали положительным и отрицательным.

Прогресс ускорился после изобретения лейденской банки в 1745 году Питером ван Мусшенбруком. Лейденская банка накопила статическое электричество, которое можно было полностью разрядить сразу. В 1747 году Уильям Уотсон разрядил лейденскую банку через цепь, и понимание тока и цепи положило начало новой области экспериментов. Генри Кавендиш, измерив проводимость материалов (он сравнил одновременные удары, которые он получил, разрядив лейденские банки через материалы), и Чарльз А.Кулон, выразив математически притяжение наэлектризованных тел, начал количественное изучение электричества.

Новый интерес к току начался с изобретения батареи. Луиджи Гальвани заметил (1786 г.), что разряд статического электричества заставляет лягушачью лапку дергаться. Последующие эксперименты создали то, что представляло собой простую электронную ячейку, использующую жидкости ноги в качестве электролита и мышцы в качестве цепи и индикатора. Гальвани думал, что эта ножка поставляет электричество, но Алессандро Вольта думал иначе, и в качестве доказательства построил гальваническую батарею, ранний тип батареи.Непрерывный ток от батарей проложил путь к открытию закона Г.С. Ома (опубликовано в 1827 г.), связывающего ток, напряжение (электродвижущая сила) и сопротивление (см. закон Ома), а также закона электрического нагрева Дж. П. Джоуля (опубликовано в 1841 г.). . Закон Ома и открытые позже Г. Р. Кирхгофом правила относительно суммы токов и суммы напряжений в цепи (см. законы Кирхгофа) являются основными средствами расчета цепи.

В 1819 году Ганс Христиан Эрстед обнаружил, что магнитное поле окружает проводник с током.В течение двух лет Андре Мари Ампер облекла в математическую форму несколько законов электромагнитного поля, Д. Ф. Араго изобрел электромагнит, а Майкл Фарадей изобрел грубую форму электродвигателя. Однако практическое применение двигателя пришлось ждать 10 лет, пока Фарадей (а ранее, независимо, Джозеф Генри) не изобрел электрический генератор для питания двигателя. Через год после лабораторной аппроксимации генератора Фарадеем Ипполит Пикси сконструировал модель с ручным приводом.С тех пор инженеры сменили ученых, и последовало медленное развитие; первые электростанции были построены спустя 50 лет (см. силовые, электрические).

В 1873 году Джеймс Клерк Максвелл начал другой путь развития с уравнений, описывающих электромагнитное поле, и предсказал существование электромагнитных волн, распространяющихся со скоростью света. Генрих Р. Герц экспериментально подтвердил это предсказание, а Маркони впервые применил эти волны при разработке радио (1895 г.).Джон Амброуз Флеминг изобрел (1904 г.) вакуумную лампу с диодным выпрямителем в качестве детектора для радио Маркони. Три года спустя Ли Де Форест превратил диод в усилитель, добавив третий электрод, и началась электроника. Теоретическое понимание стало более полным в 1897 году с открытием электрона Дж. Дж. Томсоном. В 1910–1911 годах Эрнест Р. Резерфорд и его помощники изучили распределение заряда внутри атома. Роберт Милликен измерил заряд одного электрона к 1913 году.

Разделы этой статьи:

Электронная энциклопедия Колумбии, 6-е изд. Авторское право © 2012, издательство Колумбийского университета. Все права защищены.

См. больше статей энциклопедии на тему: Электротехника

Электричество — Центр истории штата Огайо


Портрет изобретателя Томаса Альвы Эдисона, ок. 1920 —

1929.

Жители Огайо были одними из первых и самых выдающихся пионеров в использовании электричества.В 1879 году Чарльз Браш изобрел дуговое освещение, предоставив простой и экономичный способ освещения городов в ночное время. Браш представил свое изобретение в Кливленде, штат Огайо, сделав этот город первым в мире, где появились электрические уличные фонари. Житель Огайо Томас Эдисон разработал пригодную для использования лампочку среди десятков других изобретений, использующих электричество. Бенджамин Ламме за свою жизнь накопил 162 патента, большинство из которых касалось усовершенствований в использовании электричества. Эти мужские открытия и изобретения помогли Огайо стать лидером индустриализации в конце 1800-х годов, когда владельцы бизнеса начали использовать электричество на своих фабриках.К 1900 году в большинстве крупных городов штата были электрические уличные фонари. В этих общинах также обычно были электрические железные дороги, соединяющие центры городов с пригородами. Большинство домов в крупных городах Огайо также имели доступ к электричеству.

В то время как крупные города Огайо быстро использовали электричество, сельские общины имели ограниченный доступ к этому источнику энергии до 1930-х и 1940-х годов. Только когда президент Франклин Делано Рузвельт в 1930-х годах подписал Закон об электрификации сельских районов, многие сельские жители Огайо получили электричество.В 1937 году только десять процентов жителей Огайо, живущих в сельской местности на юге и в центре Огайо, имели в своих домах электричество. К 1948 году процент этих жителей Огайо вырос почти до семидесяти пяти процентов. В том же году заводы в Огайо стали третьими по величине производителями электроэнергии в США. Промышленность использовала три четверти электроэнергии, производимой этими заводами.

Угольные электростанции производили большую часть электроэнергии в Огайо в 1950 году, и то же самое верно и в начале двадцать первого века.Электростанции использовали уголь из Огайо, Пенсильвании и Западной Вирджинии для преобразования воды из озера Эри и многих рек Огайо в пар для выработки электроэнергии. Большинство электрогенераторов Огайо избегали перехода на ядерную энергию во второй половине двадцатого века по нескольким причинам. Многие американцы опасались ядерной энергетики и потенциальных аварий. Высокая стоимость строительства атомной электростанции также помешала большинству владельцев бизнеса отказаться от угольных электростанций. В конце двадцатого и начале двадцать первого веков стоимость электроэнергии постоянно росла, особенно потому, что постановления федерального правительства требовали, чтобы электростанции производили меньше загрязнения.К несчастью для владельцев электростанций, большинство видов угля не являются экологически чистым топливом. Владельцы бизнеса переложили расходы на снижение загрязнения на потребителей.

См. также

История электричества — краеведение

Тим Ламберт

Кто изобрел электричество? Ни один человек не изобрел электричество. Многие люди совершали открытия и изобретения. Однако в 1819 году датчанин Ганс Христиан Эрстед обнаружил, что электрический ток в проводе заставляет близлежащую стрелку компаса двигаться.Англичанин Майкл Фарадей (1791-1867) показал, что магнит может производить электричество. В 1831 году Фарадей изобрел динамо. В конце концов, в конце 19 века люди изобрели всевозможные электроприборы.

Электрическая батарея

Вольта изобрел электрическую батарею в 1800 году.

Электрическое одеяло

Первое практичное электрическое одеяло было изобретено в 1912 году Сидни И. Расселом.

Электрическая сушилка для бельяЭлектрическая сушилка для белья была изобретена в 1935 году человеком по имени Дж.Росс Мур.

Электрическая посудомоечная машина

Электрическая посудомоечная машина была изобретена братьями Уокер в 1913 году.

Электрический дверной звонок

Электрический дверной звонок был изобретен Джозефом Генри в 1831 году.

Электрическая дрель

Электрическая дрель была изобретена Уильямом Бланчем Брэйном в 1889 году. Но это было тяжелое устройство. Первую портативную электрическую дрель изобрели Вильгельм и Карл Фейн в 1895 году.

Электрический вентилятор

Электрический вентилятор был изобретен в 1882 году доктором Шайлер Уиллер.

Электрический огонь

Первый практический электрический камин был изготовлен в 1912 году.

ФонарикФонарик был изобретен Дэвидом Мизеллом в 1899 году.

Электрический фен

Электрический фен был изобретен французом Александром-Фердинандом Годфри в 1890 году.

Электрический утюг

Первый электрический утюг был изобретен в 1882 году Генри Сили.

Электрический чайник

Первый электрический чайник был изготовлен в 1891 году.

Электрический свет

Электрическая лампочка была изобретена Джозефом Суоном в 1878 году.

Электродвигатель

Еще в 1837 году Томас Давенпорт изготовил электродвигатель. Однако электричество редко использовалось в промышленности до конца 19 века.

Неоновые огни

Первые неоновые лампы были сделаны Жоржем Клодом в 1910 году.

Электроорган

Морзе Робб изобрел электрический орган в 1928 году.

Электрическая духовка

Первая электрическая духовка поступила в продажу в США в 1891 году. В Великобритании они поступили в продажу в 1893 году.К 1939 году в Британии насчитывалось около 1 1/2 миллиона электрических духовок и около 9 миллионов газовых.

Радио

Кто изобрел радио, спорят, но к 1901 году Маркони посылал сигналы через Атлантику.

Электробритва

Первая успешная электрическая бритва была изобретена в 1928 году Джейкобом Шиком.

Холодильник

Холодильник изобрел не один человек. Однако холодильник для использования в вашем доме был изобретен Фрэнком Вольфом в 1913 году.

Электрическая швейная машина

Первая электрическая швейная машина была продана в 1889 году.

Электропила

Ручная электрическая пила была изобретена Эдмоном Мишелем в 1923 году.

Электрический тостер

Первый электрический тостер был запатентован в Великобритании в 1893 году компанией Crompton and Co. Выдвижной тостер был запатентован в 1919 году Чарльзом Страйтом.

Электрическая зубная щетка

Первая беспроводная электрическая зубная щетка была продана в 1961 году.

Телеграф

Электрический телеграф был изобретен в 1837 году сэром Уильямом Куком и сэром Чарльзом Уитстоном.

Телефон

Телефон был изобретен в 1876 году Александром Грэмом Беллом.

Телевидение

Телевидение было изобретено в 1925 году Джоном Логи Бэрдом. BBC начала вещание в 1936 году.

Пылесос

Пылесос был изобретен в 1901 году Хьюбертом Бутом.

Стиральная машина

Первые электрические стиральные машины были изготовлены в 1907 году.

Силовая установка

Последняя редакция 2021 г.

Родственные

Технологические разработки: Электричество | Ребекка Уайт

Девятнадцатый век был ключевым периодом в развитии научных знаний об электричестве.Электричество из научной диковинки превратилось в практический инструмент, который все чаще присутствовал в жизни простых людей. Было два направления развития: сначала научные разработки в области теории и понимания электричества, затем связанные с ними разработки в области практического использования электричества в повседневных целях.

Электрические явления интересовали ученых на протяжении сотен лет, хотя до 1600 года они были исключительно предметом интеллектуального любопытства.Даже к 1800 году представления о физических явлениях, связанных с электричеством, были относительно запутанными. Это должно было измениться в девятнадцатом веке, когда произошли значительные изменения в понимании различных аспектов электричества. Они не ограничивались одной страной или группой ученых, а опирались на знакомства и связи, выходящие за местные и национальные границы.

Достижения девятнадцатого века начались с изобретения Вольтова столба, которое было завершено в 1800 году.Кульминация работы итальянца Алессандро Вольта, Вольтов столб (который состоял из ряда электрических ячеек, образующих таким образом батарею) стал первым средством получения постоянного электрического тока. Это превратило электричество из переходного явления в явление, которое можно было должным образом изучить. Плоды этого изобретения появились быстро. В течение года Николсону и Карлайлу удалось провести электролиз воды. В дальнейшем Хамфри Дэви использовал его для разложения различных веществ, что привело к открытию калия и натрия.Батарея получила дальнейшее развитие в девятнадцатом веке. Первая серийно выпускаемая батарея была разработана Уильямом Круикшенком и использовалась по умолчанию до изобретения неполяризующего элемента в 1836 году. Ячейка, первичная батарея, была усовершенствована в 1868 году Жоржем Лекланше, что сделало ее надежным источником энергии. власть. Как и первичные батареи, вторичные батареи также стали играть важную роль в практическом использовании электричества, поскольку они позволяли хранить и экономить электричество до тех пор, пока оно не понадобится.Эти батареи были неотъемлемой частью систем постоянного тока, используемых для производства электроэнергии в домашних условиях. Таким образом, в девятнадцатом веке батареи как способ производства и хранения электроэнергии получили значительное развитие.

Другая ключевая область развития была в области электромагнетизма. В 1819 году датский ученый Ганс Кристиан Эрстед обнаружил, что стрелка компаса отклоняется от провода, по которому течет электрический ток. Это спровоцировало дополнительные исследования в этой области.Андре-Мари Ампер, французский ученый, быстро подхватил открытия Эрстеда, разработав математическую теорию, которая объяснила уже наблюдаемые электромагнитные явления и предсказала многие другие. Майкл Фарадей, британский химик и физик, опираясь на эту работу, сделал несколько чрезвычайно важных открытий в этой области. В 1831 году его эксперименты привели его к открытию взаимной индукции, формы электромагнитной индукции, заложившей основу для многих последующих разработок. В течение следующих нескольких десятилетий различные ученые и экспериментаторы пытались узнать больше об этих механизмах и улучшить их, и эти усилия привели к отрывочным и сложным достижениям.Однако в этот период принцип индукционной катушки был лучше понят и развит, что повлияло на дальнейшие разработки.

Достижения в области электромагнетизма сыграли важную роль в развитии механического производства электроэнергии. Изучение связи между движением и электричеством началось в 1820-х и 1830-х годах, а первый патент был получен Томасом Дэвенпортом в 1837 году. Машины были основаны на теории, а не на эффективной практике, и имели небольшое влияние. В следующие несколько десятилетий принцип электрического движения получил дальнейшее развитие.Значительным событием стало изобретение Теслой асинхронного двигателя в 1883 году, устройство, которое ранее считалось невозможным. Достижения в понимании электромагнитного поля также привели к разработке генератора. Важным шагом на пути к эффективным генераторам стало введение «самовозбуждения». Он использовал ток, вырабатываемый генератором, для питания собственных проводов. Несколько человек независимо друг от друга пришли к открытию в 1866 году, и в конце 1860-х годов в этом типе модели произошли значительные изменения.Это развитие производства электроэнергии сделало ток более надежным и привело к возобновлению интереса к электрическому освещению. Технология производства электроэнергии продолжала совершенствоваться до конца века, и к 1887 году в Дептфорде была построена первая в мире электростанция высокого давления. Это не имело коммерческого успеха, но продемонстрировало жизнеспособность крупномасштабного производства и распространения электроэнергии.

Разработка индукционных катушек также привела к разработке трансформатора, который мог передавать электрическую энергию из одной цепи в другую с помощью проводников с индуктивной связью.Использование таких устройств предлагалось в течение нескольких десятилетий, и практическая система была разработана Голаром и Гиббсом в 1883 году. Это позволяло изменять напряжение между цепями, решая несколько практических проблем, связанных с передачей электроэнергии на большие расстояния и подключением оборудования. разных напряжений к одному и тому же источнику питания. До 1880-х годов почти все трансформаторы были «открытого» типа, без железного стержня, соединяющего цепь. Были разногласия по поводу эффективности этих моделей, но практика показала, что «закрытые» трансформаторы более эффективны, и к концу века они стали нормой.Разработка трансформаторов продемонстрировала важность практических знаний, а также теории в развитии электричества.

Еще одним ключевым аспектом развития электротехники была «война токов». Конфликт касался того, должно ли электроснабжение обеспечиваться постоянным током (DC), обычно вырабатываемым батареями, или переменным током (AC), вырабатываемым генераторами. Наряду с рядом практических проблем, связанных с генерацией, хранением и колебаниями спроса, дебаты также включали спорные обсуждения относительной безопасности каждой системы, причем основные сторонники с обеих сторон утверждали, что другая система представляет угрозу для безопасности пользователей и широкая публика.Однако практические проблемы системы постоянного тока и преимущества системы переменного тока для передачи на большие расстояния означали, что к 1900 году система переменного тока была признана наиболее подходящей для общественного снабжения, хотя большая часть бытовой электроэнергии продолжала производиться на постоянном токе. система.

Наряду с развитием понимания электрических явлений к концу девятнадцатого века технологические разработки все больше превращали электричество в практический инструмент. Первым из них был телеграф.Эта идея была предложена в восемнадцатом веке, но открытие электромагнитных сил в девятнадцатом веке позволило ее развить дальше. Первый коммерчески жизнеспособный телеграф был разработан Куком и Уитстоном в 1837 году, за ним последовала система Сэмюэля Морса в 1838 году. Все системы основывались на отклонении намагниченных игл от электрического тока. Изобретение Морса изначально считалось диковинкой, а телеграф Кука и Уитстона изначально не имел коммерческого успеха.Тем не менее телеграфы вскоре получили более широкое распространение. В 1870–1871 годах в Великобритании было отправлено 9,8 миллиона сообщений. Влияние на коммуникации внутри и между странами было драматическим. Подводные телеграфные кабели были разработаны позже, после открытия подходящего материала покрытия для проводов, и первые (хотя и недолговечные) кабели через Ла-Манш были проложены в 1850 году, а в 1866 году — более долговечные кабели через Атлантику. К концу века телеграфия стала основной электрической технологией, с которой был знаком средний человек.

Другие коммуникационные технологии были разработаны в девятнадцатом веке. Грубая система передачи звука с помощью электричества была изобретена в 1860-х годах, но только после параллельных работ Белла, Хауса и Грея был изобретен телефон. Беллу часто приписывают изобретение, но большая часть работы была проделана одновременно Хаусом и Греем. Хотя Беллу был выдан патент на изобретение в 1875 году, он оказался очень спорным, что привело к более чем 600 судебным искам.Затем быстро развивалась телефония. Девятнадцатый век также стал свидетелем открытия и развития радио. В 1877 году Клерк Максвелл опубликовал свой знаменитый «Трактат об электричестве и магнетизме», в котором он доказал существование и предсказал многие свойства волн, которые позже стали известны как радиоволны. В 1886 году Генрих Рудольф Герц продемонстрировал создание и обнаружение этих волн, а в 1896 году Гульельмо Маркони использовал их для радиосвязи на расстояние в пару миль. Первая коммерческая радиокомпания была основана в 1897 году, а первое коммерческое сообщение было отправлено в 1898 году.Таким образом, конец девятнадцатого века ознаменовался первыми проявлениями технологии электросвязи, телефонии и радио.

Другим применением электричества было освещение. Первым разработанным типом было дуговое освещение, в котором ток протекал между двумя углеродными стержнями, вызывая серию искр и, следовательно, свет. Электрические принципы, лежащие в основе этого, впервые были продемонстрированы Дэви в 1802 году, но практические проблемы означали, что для дальнейшего развития технологии потребовалось несколько десятилетий.Значительное развитие произошло в 1876 году с изобретением свечи Яблочкова, усовершенствованной версии дуговой лампы, которая перегорала медленнее. Дуговые лампы стали появляться в общественных местах с 1878 года. В 1880-х и 1890-х годах было подано гораздо больше патентов, но двумя наиболее важными разработками в области дуговых ламп были «заключение» света в стеклянную трубку и добавление солей, обеспечивающих пламя, к угольным стержням. К 1890 году в Англии использовалось около 1400 дуговых ламп, а к 1910 году их количество увеличилось до 21 400.Однако на смену дуговым лампам пришла новая, более надежная и удобная форма освещения: лампы накаливания.

В 1860 году Джон Ванамакер, английский ученый, изобрел то, что принято считать первой лампой накаливания. Однако проблемы, связанные с быстрым выгоранием нити накала, означали, что в течение следующих двадцати лет в технологии был достигнут небольшой прогресс. Никакая практическая лампа не могла появиться до тех пор, пока внутри колбы не создавался подходящий вакуум; это было достигнуто с изобретением ртутного насоса Шпренгеля в 1875 году.Также были необходимы улучшенные нити накала, и различные эксперименты проводились такими фигурами, как Свон и Эдисон. Эти двое, среди прочих, в конце концов придумали жизнеспособные нити накала и начали коммерческое производство ламп примерно с 1880 года. Между Эдисоном и Суоном были серьезные споры относительно того, кто разработал усовершенствования, а также споры по поводу того факта, что Эдисон приобрел патент, но компания Свана объединилась с компанией Эдисона в 1883 году, что положило конец проблемам.Пока действовал патент, лампочки были относительно дорогими, но их цена упала по мере роста спроса. Срок действия патента истек в 1893 году, и компания Эдисона столкнулась с серьезной конкуренцией со стороны других производителей. В 1890-е годы лампы накаливания получили дальнейшее развитие, в качестве нитей накала использовались различные металлы, кульминацией которых стала вольфрамовая лампа накаливания, впервые представленная в 1909 году. Общественные места, в том числе Британская библиотека, одними из первых стали использовать яркое и резкое дуговое освещение.Электрическое освещение также начало проникать в бытовую сферу с 1880-х годов, хотя сначала только аристократия могла позволить себе дорогую и пока еще экспериментальную технологию освещения. Некоторые считали электричество в доме опасным, и его противники, в том числе газовая промышленность, представляли его таковым. Ранние лампочки относительно быстро ломались, были относительно дорогими и вызывали опасения как потенциальная причина пожара. Домашние генераторы могут быть ненадежными, как и некоторые электросети.Закон об электрическом освещении 1882 года возложил бремя безопасности на поставщиков сетевого электричества, и были разработаны различные меры безопасности. Однако, несмотря на эти проблемы, количество домов с внутренним освещением в районе Лондона выросло с дюжины в середине 1880-х годов до нескольких тысяч к концу десятилетия. Это число продолжало расти до конца века, демонстрируя все более широкое распространение электрического освещения в доме в качестве замены газового освещения.

В девятнадцатом веке произошли важные изменения в понимании науки, лежащей в основе электричества, благодаря работам таких великих ученых, как Фарадей, заложивших основы для разработки более практичных технологий, которые превратили электричество из научного любопытства в повседневную практическую деятельность. инструмент, заложивший основу для программ массовой электрификации, которые появятся в двадцатом веке.

БИБЛИОГРАФИЯ

Бауэрс, Б. История электрического света и энергии . Стивенидж: Питер Перегринус, 1982.

Кавички, Э. «Разработки спиральных инструментов девятнадцатого века и опыт с электромагнитной индукцией», Annals of Science 63 (июль 2006 г.): 319-61.

Чант, К. (редактор)  Наука, технологии и повседневная жизнь, 1870–1950 годы . Лондон: Routledge/The Open University, 1989.

.

Кроутер, Дж.G. Британские ученые девятнадцатого века . Лондон: Кеган Пол, 1935.

.

Дибнер, Б. Алессандро Вольта и электрическая батарея . Нью-Йорк: Франклин Уоттс, 1964.

.

Диллон, М.  Искусственный солнечный свет: социальная история домашнего освещения . Лондон: Национальный фонд, 2002.

.

Даншит, П. (редактор) Век технологий, 1851-1951 . Лондон: Хатчинсонс, 1951.

.

Форман Пек, Дж. «Конкуренция, сотрудничество и национализация в телеграфной системе девятнадцатого века», Business History 31 (июль 1989 г.): 81–102.

Gooday, G. Приручение электричества: технология, неопределенность и гендер, 1880-1914 . Лондон: Пикеринг и Чатто, 2008.

.

Хофман, Дж. Р.  Андре-Мари Ампер . Кембридж: Издательство Кембриджского университета, 1995.

.

Хонг, С. «Эффективность и авторитет в полемике о «открытых и закрытых» трансформаторах», Annals of Science  52 (январь 1995 г.): 49–75.

Джеймс, Ф. Майкл Фарадей, статья в Национальном биографическом словаре , http://www.oxforddnb.com/view/article/9153

Найт, Д. Сэр Хамфри Дэви, запись в Национальном биографическом словаре , http://www.oxforddnb.com/view/article/7314?docPos=2

Лукин, B . Вопрос о власти: электричество и окружающая среда в межвоенной Британии 90 168 . Манчестер: Издательство Манчестерского университета, 1990.

.

МакНикол, Т. AC/DC: The Savage Tale of the First Standards War . Сан-Франциско: Джосси Басс, 2006.

.

Миллс, А. «Ранние вольтовые батареи: оценка современных единиц и применение к работе Дэви и Фарадея», Annals of Science 60 (2003): 373-98.

Морус, И.Р. «Социология искр: эпизод из истории и значение электричества», Social Studies of Science  18 (август 1998 г.): 387–417.

Най, DE . Технологии имеют значение: вопросы, с которыми нужно жить . Кембридж, Массачусетс: MIT Press, 2006.

.

Росс, С. Отношение девятнадцатого века: люди науки . Лондон: Kluwer Academic Publishers, 1991.

.

Томас, Дж. М.  Майкл Фарадей и Королевский институт: гений человека и место .Бристоль: Адам Хилгер, 1991.

.

Трикер, Р.А. Ранняя электродинамика: первый закон циркуляции . Оксфорд: Pergamon Press, 1965.

.

Уиттакер, Э.  История теорий эфира и электричества: классические теории . Лондон: Томас Нельсон и сыновья, 1910.

.

ЦИТАТА: Уайт, Ребекка: «Технологические разработки: электричество». Газеты Британской библиотеки . Детройт: Гейл, 2007.

Урок истории электричества для детей — видео и стенограмма урока

Бенджамин Франклин

Возможно, вы знаете Бенджамина Франклина как одного из отцов-основателей, но он также открыл электричество в ходе эксперимента с молнией.Франклин в 1752 году подумал, что молния интересна, и захотел узнать о ней больше. Значит, он сделал что-то очень опасное, чего никто из нас не должен делать. Он взял воздушного змея на улицу во время грозы, намочил веревку воздушного змея, вставил металлический ключ в конец, а затем позволил воздушному змею уплыть в шторм. Он обнаружил, что электричество от грозовых облаков шло по струне, и он получил удар током.

Бенджамину Франклину повезло, он только получил удар током.Однако этот опасный эксперимент стал отправной точкой для большего числа ученых, которые в течение следующих ста лет экспериментировали с электричеством. Эти ученые и изобретатели хотели узнать, что можно сделать с электричеством, которое Бенджамин Франклин обнаружил в ходе своего эксперимента.

И именно человек по имени Томас Эдисон открыл следующую большую веху в истории электричества.

Томас Эдисон

Томас Эдисон был первым зарегистрированным изобретателем, изготовившим долговечную электрическую лампочку, которую он создал в своей лаборатории в 1879 году.Он продолжал экспериментировать, улучшая свое изобретение, и к концу 1880-х годов Томас Эдисон смог обеспечить электроэнергией несколько городских кварталов с помощью электростанций.

Изобретатели продолжали экспериментировать с электричеством, и к 1930-м годам электричество было у большинства жителей крупных городов. Вскоре после этого электричество дошло до семей, живущих в сельских районах Соединенных Штатов, благодаря тогдашнему президенту Франклину Д. Рузвельту. Он считал, что американские фермеры должны иметь доступ к электричеству, как и жители городов.Так, в 1935 году было создано Сельское электроуправление для обеспечения электроэнергией сельской местности. Таким образом, к концу 1930-х фермеры в сельской местности также имели доступ к электричеству в своих домах.

Сегодня почти каждая семья имеет доступ к электричеству дома, в школе и на работе. Если вы подумаете о своих повседневных взаимодействиях, вы поймете, что трудно представить жизнь без электричества.

Резюме урока

Электричество — это поток электроэнергии или заряда от источников энергии.Любопытный Бенджамин Франклин обнаружил электричество во время экспериментов в бурную ночь, когда он был поражен электрическим током от молнии. В течение следующих ста лет изобретатели и ученые расширяли это открытие. Томас Эдисон был первым, кто изобрел долговечную электрическую лампочку, а президент Франклин Д. Рузвельт в 1935 году создал Rural Electric Administration , которая снабжала электричеством сельские районы, включая фермы.Оттуда доступ к электричеству расширился до того, что мы имеем сегодня.

Alliant Kids — Кто изобрел электричество? и другие энергетические факты

Большинство отключений электроэнергии вызвано погодой.

Сильный ветер, ледяные бури и сильный снегопад могут сломать деревья и опоры электропередач, которые упадут и разорвут линии. Когда это происходит, энергетические компании работают быстро, чтобы восстановить электроэнергию, как только это станет безопасным.

В ситуации с отключением электроэнергии линейные рабочие становятся героями.Это люди, которые устанавливают, обслуживают и ремонтируют линии электропередач. Они выходят на опасность — включая снежные бури и даже ураганы и торнадо — чтобы восстановить электроэнергию.

Отключение электричества никогда не доставляет удовольствия (неприятно, что нельзя использовать телевизор для видеоигр), но в определенных ситуациях это особенно рискованно. Подумайте о больницах, в которых есть сотни людей, которым нужно заботиться, и им нужен свет, чтобы видеть. Или пожилые люди, которые живут одни и могут нуждаться в кислородных устройствах, чтобы выжить.

Иногда энергокомпания планирует отключение электроэнергии в определенном районе для выполнения необходимых работ.Этот тип сбоев встречается редко и затрагивает лишь небольшое количество людей одновременно. Люди, затронутые этим типом отключения, уведомляются заранее.

Процесс Alliant Energy по восстановлению питания

  • Убедитесь, что критически важные службы, такие как полиция, пожарная служба и больницы, имеют питание.
  • Проверьте объекты генерации, чтобы определить, работает ли еще первоначальный источник энергии.
  • Ремонт линий электропередач, которые передают электроэнергию от электростанций к подстанциям.
  • Ремонт подстанций, где высоковольтная мощность от линий электропередач снижается для домашнего использования.
  • Отремонтировать распределительные линии, которые передают электричество от подстанций в каждый район.
  • Отремонтируйте водопроводные сети, которые обслуживают от 20 до 300 домов и предприятий.
  • Переподключение линий к отдельным клиентам — это самый сложный и трудоемкий этап в процессе восстановления.

История событий: когда в Айову пришло электричество

Сидар-Рапидс Электрик Лайт энд Пауэр Ко.На этой фотографии без даты сотрудники изображены с опорами и оборудованием. Компания, которая несколько раз меняла названия на протяжении многих лет, внедрила ряд новшеств, ставших отраслевыми стандартами, таких как внедрение переменного тока и продажа электроэнергии по счетчикам. (Центр истории)

Давайте взглянем на раннюю историю электричества и электрических удобств в округе Линн.

Ранние толчки

Электричество возникло как любопытное явление.Упоминания о статических зарядах от натирания янтаря датируются шестым веком до нашей эры.

Ремесленники, которые играли с фрикционными машинами из серного шара в 1660-х годах и грубыми, но мощными устройствами, известными как лейденские банки в 1740-х годах, подготовили почву для того, что должно было произойти. Бен Франклин был первым, кто использовал слово «батарея» для обозначения источника электроэнергии — он использовал его для описания нескольких лейденских банок, соединенных последовательно.

Био-шок

Биологические ассоциации с электричеством существовали задолго до того, как электрическое освещение стало обычным явлением.Упоминания о поражении электрическим током — как метафоры или фактические описания электрических угрей или поражений молнией — можно найти в документах округа Линн, датируемых 1850-ми годами.

Предприниматели в раннем нерегулируемом бизнесе по производству медицинских препаратов извлекли выгоду из представления о так называемых целебных силах электричества. Электрическое масло доктора Смита и электрическое масло Томаса часто рекламировались в Cedar Valley Times в 1860-х и 70-х годах, утверждая, что они могут вылечить кашель, дизентерию и ревматизм.

Примерно в то же время врачи использовали стационарные и работающие от аккумуляторов машины, чтобы вызывать спазмы в больных частях тела, вызывая кажущееся омоложение. В 1879 году газета Cedar Rapids Times рассказала о попытке самоубийства горничной городского лидера Джорджа Бевера, которая проглотила яд. Сообщалось, что врач восстановил ее сознание, приложив к ней электрическую батарею на семь часов.

Первый всплеск

На разработку первой волны революционных изобретений, использующих слабые токи электричества, ушло много времени.

Идее телеграфа было около 100 лет, когда Сэмюэл Морзе разработал свою версию в 1832 году. Его первая междугородняя линия между Вашингтоном и Балтимором была проложена в 1843 году, за три года до того, как Айова стала штатом.

Первая телеграфная линия в округе Линн была построена в 1859 году, через 10 лет после того, как Сидар-Рапидс был впервые зарегистрирован. Он был натянут вдоль первой железной дороги, которая достигла города и соединила его с Чикаго.

В 1877 году Сидар-Рапидс проложил собственную 5-мильную систему телеграфных проводов для передачи огня.Система включала 10 пожарных извещателей и два гонга — один в здании водопровода и один в доме начальника пожарной охраны.

Телефоны

Александр Грэм Белл изобрел акустический телеграф в 1875 году. В течение года он получил на него патент, заставил его работать и продемонстрировал прототип на выставке столетия США в Филадельфии.

Четыре года спустя, весной 1880 года, в округе Линн началась установка Национальной телефонной службы Bell.В офисах и жилых домах Сидар-Рапидс было установлено 99 телефонов, которые были подключены к девяти телефонам в Мэрион.

Электрический транспорт

Первые электростатические устройства, похожие на электродвигатели, были изобретены в 1770-х годах, а затем превратились в электродвигатель, запатентованный в 1837 году.

Редактор Cedar Rapids Times в 1871 году поэтически восхвалял потенциал электродвигателей, предполагая, что однажды они вытеснят паровую энергию в промышленном оборудовании и даже приведут в движение летательные аппараты.Двадцать два года спустя парк электрических трамваев действительно заменил конные вагоны общественного транспорта в Сидар-Рапидс. В 1937 году электрические трамваи будут заменены автобусами, работающими на бензине.

С 1904 по 1953 год железная дорога Сидар-Рапидс и Айова-Сити, также известная как CRANDIC, использовала электропоезда для перевозки людей между Сидар-Рапидс и Айова-Сити. 27-мильный маршрут занял 75 минут и вначале совершал до 13 рейсов туда и обратно. Электрический маршрут от Сидар-Рапидс до Ватерлоо проходил с 1914 по 1938 год.

Яркие огни большого города

В 1883 году улицы Сидар-Рапидс освещались как газовыми, так и электрическими лампами.

Почти 200 газовых фонарных столбов с 5-футовыми горелками заправлялись газом, поступающим от компании Cedar Rapids Gas Light Co. на восточном берегу реки Сидар, примерно на шесть кварталов ниже того, что считалось центром города.

В том же году более 20 электрических фонарей осветили центр города благодаря недавно созданной компании Cedar Rapids Electric Light and Power Company, которая управляла электростанцией на авеню А, северо-восток.Десять лет спустя Сидар-Рапидс освещали почти 6000 электрических лампочек.

К середине 1910-х годов растущая электрическая сеть Сидар-Рапидс питалась от гидроэлектростанции на реке Сидар.

Взять на себя ответственность

Интересно, что распространение электричества как утилиты было встречено со страхом и скептицизмом.

The Gazette в 1883 году опубликовала смешанные сообщения, заметив в редакционной статье, что «электричество — это чудесный и сравнительно неизвестный изощренный агент современности», а также поместив статьи из Ежемесячника Демореста, в которых предполагалось, что нефть является лучшим, но недостаточно используемым ресурсом.

В одном из таких произведений об электричестве говорилось: «… большая часть общества никогда не сможет использовать этот дорогостоящий светильник, чтобы изгнать тьму из своих скромных жилищ».

Джо Коффи, независимый писатель и контент-маркетолог из Сидар-Рапидс, ведет эту ежемесячную колонку для The History Center. Комментарии: [email protected]

междугородных электропоездов CRANDIC курсировали между Сидар-Рапидс и Айова-Сити с 1904 по 1953 год.CRANDIC 111, показанный на этой недатированной фотографии, был введен в эксплуатацию в 1939 году. Вагон был отремонтирован, и его можно увидеть в Музее Западной железной дороги в Суйсан-Сити, Калифорния (Архив Музея Западной железной дороги)

.

Светильники 1890-х годов — как этот в особняке Дугласа, где находится Исторический центр на юго-востоке Сидар-Рапидс — часто строились для газового освещения, а затем переделывались в электрическое освещение. В течение этого первого десятилетия перехода от газа к электричеству центр города Сидар-Рапидс освещался как газовыми, так и электрическими лампами.(Центр истории)

Работники Iowa Railway and Light Co. останавливаются, работая над электрическими проводами, обслуживающими Cedar Rapids Foundry & Machine Co., на этой фотографии 1920-х годов. (Центр истории)

Это объявление от 10 января 1883 г.

Добавить комментарий

Ваш адрес email не будет опубликован.