Формулы со скоростью – Формула скорости ℹ️ определение, обозначение, единицы измерения, примеры вычислений, онлайн-калькулятор

Содержание

Формула скорости

   

Здесь – скорость, – пройденный путь, – время, за которое был пройден этот путь.

Единица измерения скорости – м/с (метр в секунду).

Скорость – это мера того, какое расстояние проходит тело за единицу времени. Формула верна только тогда, когда скорость не менялась на всём протяжении пути. Если происходило равноускоренное движение, то:

   

Где – ускорение тела, – начальная скорость. Равноускоренное движение – такое, в котором ускорение не меняется.

Примеры решения задач по теме «Скорость»

Понравился сайт? Расскажи друзьям!

Формула скорости в физике

Определение и формула скорости

Определение

Мгновенной скоростью (или чаще просто скоростью) материальной точки называется физическая величина равная первой производной от радиус–вектора точки по времени (t). Обозначают скорость обычно буквой v. Это векторная величина. Математически определение вектора мгновенной скорости записывается как:

Скорость имеет направление указывающее направление движения материальной точки и лежит на касательной к траектории ее движения. Модуль скорости можно определить как первую производную от длины пути (s) по времени:

Скорость характеризует быстроту перемещения в направлении движения точки по отношениюк рассматриваемой системе координат.

Скорость в разных системах координат

Проекции скорости на оси декартовой системы координат запишутся как:

Следовательно, вектор скоростив декартовых координатах можно представить:

где единичные орты. При этом модуль вектора скорости находят при помощи формулы:

В цилиндрических координатах модуль скорости вычисляют при помощи формулы:

в сферической системе координат:

Частные случаи формул для вычисления скорости

Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const). При равномерном движении скорость можно вычислить, применяя формулу:

где s– длина пути, t – время, за которое материальная точка преодолела путь s.

При ускоренном движении скорость можно найти как:

где – ускорение точки, – отрезок времени, в течение которого рассматривается скорость.

Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:

где – начальная скорость движения, .

Единицы измерения скорости

Основной единицей измерения скорости в системе СИ является: [v]=м/с2

В СГС: [v]=см/с2

Примеры решения задач

Пример

Формула «Скорость, время, расстояние». Как решать задачи?

Давайте школьный урок физики превратим в увлекательную игру! В этой статье нашей героиней станет формула «Скорость, время, расстояние». Разберем отдельно каждый параметр, приведем интересные примеры.

Скорость

Что же такое «скорость»? Можно наблюдать, как одна машина едет быстрее, другая –медленее; один человек идет быстрым шагом, другой – не торопится. Велосипедисты тоже едут с разной скоростью. Да! Именно скоростью. Что же под ней подразумевается? Конечно же, расстояние, которое прошел человек. проехала машина за какое-то определенное время. Допустим, что скорость человека 5 км/ч. То есть за 1 час он прошел 5 километров.

как находить скорость время расстояние

Как находить скорость, время, расстояние? Начнем со скорости. Посмотрите внимательно, в чем она измеряется? Естественно, км/ч, м/с. Существуют и другие единицы измерения, например, км/с (в космонавтике), мм/ч (в биохимии). Обратите внимание на то, что стоит перед знаком «/» и после. Во-первых, он означает «дробь», а значит, в числителе – мм, км, м, в знаменателе – ч, с, мин. Во-вторых, кажется это напоминает формулу, не правда ли? Километры, метры – расстояние, длина, а час, секунда, минута – время. Вот вам и подсказка. Чтобы проще было запомнить, как находить скорость, посмотрите не единицы измерения (км/ч, м/с). Одними словами:

v=S/t=км/ч.

Время

Что из себя представляет время? Разумеется, оно зависит от скорости. Например, вы ждете у порога дома маму и старшего брата. Они идут из магазина. Брат дошел намного раньше. Маму пришлось ждать еще минут 5. Почему? Потому что они шли с разной скоростью. Разумеется, чтобы быстрее добраться до места назначения, нужно прибавить скорость: ускорить шаг, надавить на «газ» в авто посильнее, разогнаться на велосипеде. Только при спешке будьте осторожны и бдительны, чтобы не врезаться в кого-то или во что-то.

формула скорость время расстояние

Как находить время? У скорости есть подсказка – км/ч. А как быть со временем? Во-первых, время измеряется в минутах, секундах, часах. Формула «скорость, время, расстояние» здесь преображается следующим образом:

время t[сек., мин., ч]=S[м, мм, км]/v[м/с, мм/мин, км/ч].

Если преобразовать дробь по всем правилам математики, сократить параметр расстояния (длины), то останется только секунда, минута или час.

Расстояние, длина пройденного пути

Здесь будет легче сориентироваться, скорее всего, автомобилистам, у которых есть счетчик пробега в машине. Они смогут определить, сколько километров проехали, а еще и скорость знают. Но так как движение неравномерное, то установить тоное время перемещения не получится, если только мы возьмем среднюю скорость.

формула пути

Формула пути (расстояния) – произведение скорости и времени. Конечно же, самый удобный и доступный параметр — это время. Часы есть у всех. Скорость пешехода не строго 5 км/ч, а приблизительно. Поэтому здесь может быть погрешность. В таком случае, вам лучше взять карту местности. Обратите внимание, какой масштаб. Должно быть указано, сколько километров или метров в 1 см. Приложите линейку и замерьте длину. Например, от дома до музыкальной школы прямая дорога. Отрезок получился 5 см. А в масштабе указано 1 см = 200 м. Значит, реальное расстояние — 200*5=1000 м=1 км. За сколько вы проходите это расстояние? За полчаса? Выражаясь техническим языком, 30 мин=0,5 ч=(1/2) ч. Если мы решим задачу, то получится, что идете со скоростью 2 км/ч. Всегда вам поможет решить задачу формула «скорость, время, расстояние».

Не упустите!

Советую вам не упускать очень важные моменты. Когда вам дается задача, смотрите внимательно, в каких единицах измерения даны параметры. Автор задачи может схитрить. Напишет в дано:

Человек проехал по тротуару на велосипеде 2 километра за 15 минут. Не спешите сразу решать задачу по формуле, иначе у вас получится ерунда, а учитель ее вам не засчитает. Помните, что ни в коем случае нельзя делать так: 2 км/15 мин. У вас единица измерения получится км/мин, а не км/ч. Вам нужно добиться последнего. Переведите минуты в часы. Как это сделать? 15 минут – это 1/4 часа или 0,25 ч. Теперь можете смело 2км/0,25ч=8 км/ч. Теперь задача решена верно.

Вот так легко запоминается формула «скорость, время, расстояние». Только соблюдайте все правила математики, обращайте внимание на единицы измерения в задаче. Если есть нюансы, как в рассмотренном чуть выше примере, сразу же переводите в систему единиц СИ, как положено.

Как найти скорость. Понятие о физической величине и формула :: SYL.ru

Ввиду того что такая физическая величина, как скорость, фигурирует во многих задачах, имеющих связь с разделами механики (а именно кинематикой и динамикой), вопрос “как найти скорость” является достаточно актуальным. И эта тенденция будет сохраняться дальше, поскольку вопрос нахождения скорости (хоть она будет начальной, хоть конечной, хоть мгновенной, которая является обобщенной вариацией этих двух скоростей) останется актуальным еще надолго. А раз так, то следует узнать о скорости как физической величине все, что пригодится в последующем для решения задач.

Где упоминается скорость тела?

как найти скорость

На самом деле, в реальном мире мы сталкиваемся со скоростью ежесекундно. Если так подумать, на Земле постоянно что-то да находится в движении. Вы можете попробовать возразить, ограничившись, например, пределами своей комнаты. То есть, по мнению некоторых людей, ночью в комнате ничего не движется. Кровати, шкафы, стулья, стол и прочие предметы находятся на своих местах, в то время как сам человек спит, то есть не движется.

Следовательно, скорость любого элемента данной системы (комнаты, как мы условились считать) равна нулю. Да, в этом что-то есть, и с одной стороны, человек, выдвинувший такое предположение, мог оказаться правым. Но не следует забывать о том, что своеобразную систему представляет собой сама наша планета Земля, а не только предметы, которые на ней находятся. А ведь все мы знаем, что ежесекундно Земля вращается вокруг своей оси. В этой системе отсчета все тела, находящиеся в пределах планеты, также совершают движение. Поэтому говорить о том, что предмет, который, казалось бы, не двигается, находится в абсолютном покое, нельзя. Это первое, что нужно было бы сказать о скорости тела.

С детской скамьи мы учимся решать много задач не только физического, но и математического характера. Их в настоящее время не так много, и ставка делается больше на гуманитарные дисциплины наподобие иностранного языка, хотя они не должны преподаваться в ущерб родному языку и техническим дисциплинам. Но речь немного не об этом. Так вот, понятие скорости тела мы можем встретить не только в задачах по физике, хотя там она встречается, пожалуй, наиболее часто. Несколько реже, но все же фигурирует скорость тела и в задачах по математике.

Наверняка все помнят эти до ужаса ненавистные (в большинстве случаев) задачи, в которых требовалось найти, через сколько времени встретятся два автомобиля, если они движутся с такими-то скоростями. Условия при этом могут быть самые разные. То движение происходит по круговой траектории (спортсмены на велосипедах или мотоциклах), то по прямолинейной траектории. В общем, задач множество. И как бы там ни было, а наша задача заключается в том, чтобы понять, что нужно делать, столкнувшись с вопросом о том, как найти скорость в том или ином случае.

Скорость в физике

как найти начальную скорость

Нередко ученики, которые впервые (а возможно и повторно) знакомятся с азами (можно их так назвать) кинематики, задаются вопросом о том, как найти начальную скорость. Это действительно важно, поскольку множество задач из первой части материалов, которые предлагаются ученику для самостоятельного решения на экзамене в 9 и 11 классе, имеют целью нахождение начальной скорости либо величин, каким-либо образом связанных с ней.

Да и вообще, хотелось бы отметить, что в определенных случаях знание формул кинематики (в том числе и формулы начальной скорости при соответствующем виде движения) поможет решить даже задачу из последней части. Разумеется, на соответствующую тему. Итак, как найти начальную скорость в задачах по физике? Давайте вспомним, какие формулы даются в разделе кинематики для использования их в целях нахождения неизвестных величин.

Виды движения

как найти скорость сближения

Как известно, движение может быть равномерным, а может быть равноускоренным (равнозамедленным). Если из названия непонятно, каковы различия всех этих трех видов движения, то попробуем объяснить более конкретно. Равномерным движением называется движение, осуществляемое при постоянной скорости тела или материальной точки. В то же время равноускоренным движением называется движение, осуществляемое при наличии постоянного ускорения. Равнозамедленное движение – аналог равноускоренного, только ускорение при этом будет отрицательным.

На деле все выглядит так. При равномерном движении есть постоянная скорость, но ускорение отсутствует. Оно равно нулю. Тело при этом за одинаковые промежутки времени будет проходить одинаковые расстояния (если соответствующие условия не изменяются, нет никаких внешних воздействий). О каких воздействиях идет речь? На бумаге все выглядит идеально. Посмотрели на скорость, посмотрели на дистанцию, нашли время. Вот из этих трех параметров – время, скорость, расстояние – складывается своеобразный равносторонний треугольник, на котором строятся многие задачи.

Нюансы

как найти скорость

На деле же представим, что есть два участка дороги. Один ровный, другой с небольшими бугорками. Скорость у автомобиля пускай будет та же самая, но за счет сопротивления за один и тот же промежуток времени он пройдет на втором участке дороги расстояние меньшее, чем на первом. Однако это уже задача больше из категории динамики, где рассматриваются причины, вызывающие движение тела. Кстати, логично, что при равномерном движении его конечная и начальная скорость совпадают друг с другом, а также с мгновенной скоростью.

При равноускоренном движении все будет несколько иначе. Будет присутствовать положительное ускорение, оно будет постоянным. Но вследствие присутствия ускорения скорость будет ежесекундно изменяться. В связи с этим вопрос о том, как найти скорость в определенный момент времени при наличии ускорения в системе, становится актуальным. Для этого существуют определенные формулы.

Как найти скорость?

как найти начальную скорость

Чтобы найти скорость тела в определенный момент времени, найти начальную скорость или конечную, необходимо для начала разобраться с типом движения. Если оно равномерное, то все достаточно просто. Для того чтобы найти скорость в этом случае, следует просто поделить пройденное телом расстояние на прошедшее время. Это и будет ответ. Немного сложнее дело обстоит в том случае, если движение равноускоренное или равнозамедленное.

Допустим, что тело в течение некоторого периода времени ускоряется. Вот одна из формул, которая может быть применена к задаче подобного рода: S = V0t +(-) at^2/2. В выражении в качестве результата (левая часть уравнения) указано пройденное телом расстояние. В правой части у нас слева направо располагается начальная скорость, время, ускорение. Почему указаны два знака? Если тело разгоняется, ускорение будет положительным, перед слагаемым будет ставиться знак “плюс”. Если ускорение отрицательное, перед слагаемым будет ставиться знак “минус”.

Как найти скорость сближения?

Допустим, что у нас есть два тела, которые движутся с известными скоростями. В общем виде пускай это будет V1 и V2. Тогда скорость их сближения будет равна модулю разности. То есть V1 – V2, взятое со знаком “плюс”. Модуль берется для того, чтобы не вдаваться в векторные нюансы, то есть не работать с направлением скоростей, поскольку скорость, как и ускорение, — величина не скалярная, а векторная. Но усложнения в школьной программе ни к чему (по крайней мере, подобные), поэтому применяется модуль.

Средняя скорость — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июня 2019; проверки требуют 13 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 июня 2019; проверки требуют 13 правок.

Сре́дняя ско́рость — это скорость, определяемая отношением перемещения (S) при неравномерном движении к промежутку времени, за который это перемещение произошло.

В кинематике, некоторая усреднённая характеристика скорости, движущегося тела (или материальной точки). Различают два основных определения средней скорости, соответствующие рассмотрению скорости как скалярной либо векторной величины: средняя путевая скорость (скалярная величина) и средняя скорость по перемещению (векторная величина). При отсутствии дополнительных уточнений, под средней скоростью обычно понимают среднюю путевую скорость.

Средняя (путевая) скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:

vcp=ΣsΣt.{\displaystyle v_{cp}={\frac {\Sigma s}{\Sigma t}}.}


Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело двигалось с этими скоростями одинаковые промежутки времени. (В случае, если тело двигалось с разными скоростями неодинаковые промежутки времени, среднюю скорость можно вычислить как взвешенное среднее арифметическое этих скоростей с весами, равными соответствующим промежуткам времени.)

В то же время если, например, половину пути автомобиль двигался со скоростью 180 км/ч, а вторую половину со скоростью 20 км/ч, то средняя скорость будет 36 км/ч. В примерах, подобных этому, средняя скорость равна среднему гармоническому всех скоростей на отдельных, равных между собой, участках пути. Если участки пути, по которому двигалось тело с разными скоростями, не равны между собой, то средняя скорость будет равна взвешенному среднему гармоническому всех скоростей с весами — длинами соответствующих этим скоростям участков пути.

Можно также ввести среднюю скорость по перемещению, которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:

v→cp=r→Δt.{\displaystyle {\vec {v}}_{cp}={\frac {\vec {r}}{\Delta t}}.}

Средняя скорость, определённая таким образом, может равняться нулю даже в том случае, если точка (тело) реально двигалась (но в конце промежутка времени вернулась в исходное положение).

Если перемещение происходило по прямой (причём в одном направлении), то средняя путевая скорость равна модулю средней скорости по перемещению.

Что такое ускорение? Формулы ускорения при равноускоренном движении по прямой траектории

Содержание статьи:

Ускорение в физике — это одна из важных кинематических характеристик, без знания которой невозможно описать ни один вид движения. В данной статье рассмотрим, что это за величина, а также приведем формулы ускорения при движении равноускоренном прямолинейном.

Ускорение и причина его появления

В физике величину, которая характеризует изменение во времени скорости, называют ускорением. Математическая формула для ускорения выглядит так:

a¯ = dv¯/dt.

Чем быстрее изменяется скорость, тем больше будет ускорение тела. Например, значение a = 1 м/с2 говорит о том, что за 1 секунду скорость увеличилась на 1 м/с.

Вам будет интересно:Упразднить — что это значит? Когда используется?

Ускорение у тел возникает за счет действия на них внешних сил любой природы. Этот факт был установлен Ньютоном в XVII веке. В настоящее время он носит название 2-го закона Ньютона:

F¯ = m*a¯.

Обе формулы говорят о том, что вектор ускорения направлен в сторону изменения вектора скорости или в сторону вектора силы (F¯ и dv¯ направлены одинаково). Если направления векторов a¯ и v¯ совпадают, тогда тело будет ускоряться, если они противоположны, то тело будет замедлять свое движение, если же они направлены под некоторым углом, тогда траектория перемещения будет кривой линией.

Равноускоренное прямолинейное движение. Скорость и ускорение

Указанный вид движения предполагает, что траектория тела является прямой линией, а величина ускорения в процессе перемещения тела не изменяется ни по модулю, ни по направлению. Поскольку тело движется по прямой линии, то векторы a¯ и v¯ направлены либо в одну сторону, либо в противоположные.

Предположим, что тело находилось в покое. Затем на него начала действовать постоянная сила, которая придала ему ускорение. В таком случае скорость v в любой момент времени t может быть вычислена так:

v = a*t.

Где a = const. Графиком этого уравнения является возрастающая прямая, которая начинается с точки (v=0; t=0).

Если же тело до начала действия силы уже имело некоторую скорость v0, тогда будут справедливы такие формулы:

v = v0 + a*t;

v = v0 — a*t.

В первом случае речь идет об ускоренном движении, во втором — о замедленном (торможение).

Из последних двух выражений можно получить формулы ускорения при равноускоренном движении тела по прямой линии:

a = (v-v0)/t;

a = (v0-v )/t.

Время t отсчитывается от момента действия силы на тело.

Ускорение и путь

При решении задач на равноускоренное перемещение часто требуется найти ускорение, зная пройденный путь. Покажем, какие формулы для этого следует применять.

Путь рассчитать несложно при равноускоренном движении по прямой. Для этого следует взять интеграл по времени от уравнения v(t). Выполнив это математическое действие, получим три рабочие формулы:

S = a*t2;

S = v0*t + a*t2;

S = v0*t — a*t2.

Первое выражение описывает ускоренное перемещение тела из состояния покоя, второе — ускоренное перемещение с наличием начальной скорости, третье — торможение. Графики всех трех функций S(t) являются параболами.

Как выразить ускорение из формул равноускоренного движения для пути? Для этого необходимо изолировать множитель a*t2 в одной части равенства, а затем все равенство поделить на квадрат времени. Из формул выше получаем:

a = S/t2;

a = (S — v0*t)/t2;

a = (v0*t — S)/t2.

Первое уравнение используется для экспериментального определения ускорения свободного падения g, когда тяжелые тела сбрасывают вниз с некоторой высоты. Подобные эксперименты проводил еще Галилей в конце XVI века. В настоящее время для определения ускорения g в исследуемой местности используют абсолютные гравиметры, принцип работы которых также основан на свободном падении.

Два последних уравнения отличаются друг от друга лишь знаком ускорения. При торможении ускорение считают отрицательным.

Все три выражения приводят к одной и той же единице измерения величины a — м/с2.

Задача на вычисление ускорения

Разобравшись с основными формулами ускорения при равноускоренном движении, решим следующую проблему практического характера: водитель автомобиля, который двигался со скоростью 63 км/ч, увидел, что впереди загорелся красный сигнал светофора. После нажатия на педаль тормоза автомобиль полностью остановился через 100 метров. Зная, что время торможения заняло 14 секунд, необходимо рассчитать соответствующее ускорение.

Для решения задачи можно сразу же воспользоваться одной из записанных выше формул:

a = (v0*t — S)/t2.

Переведем начальную скорость автомобиля из км/ч в м/с, получаем:

v0 = 63*1000/3600 = 17,5 м/с2.

Теперь можно подставить значения из условия задачи и получить ответ: a = 0,74 м/с2. Поскольку речь идет о торможении, то данное ускорение следует взять со знаком минус: a = — 0,74 м/с2.

Источник

Формула пути

   

Здесь – пройденный путь, – ускорение тела, – начальная скорость тела, — время ускоренного движения.

Единица измерения пути – м (метр).

Путь – скалярная величина. Путь – это мера того, какое расстояние преодолело тело в ходе движения. – это скорость, с которой тело двигалось к моменту начала ускорения. У этой формулы есть 2 частных случая:

1) Движение равномерное (без ускорения)

   

Это самый распространённый в задачах, простейший случай. Когда про ускорение ничего не сказано, то под формулой пути имеется в виду именно эта формула.

2) Движение, начатое с неподвижного состояния (без начальной скорости)

   

Путь не нужно путать с перемещением – мерой расстояния между конечной и начальной точкой движения.

Примеры решения задач по теме «Путь тела»

Понравился сайт? Расскажи друзьям!

Отправить ответ

avatar
  Подписаться  
Уведомление о