Какие физические явления бывают в физике. Физические явления, которые происходят с физическими телами
Человек живет в мире природы. Ты сам и все, что тебя окружает, — воздух, деревья, река, солнце — это различные объекты природы
. С объектами природы постоянно происходят изменения, которые называются природными явлениями
.
С древних времен люди пытались понять: как и почему происходят различные явления? Как летают птицы и почему они не падают? Как может дерево плыть по воде и почему оно не тонет? Некоторые природные явления — гром и молния, солнечное и лунное затмения — пугали людей, пока ученые не выяснили, как и почему они возникают.
Наблюдая и изучая явления, происходящие в природе, люди нашли им применение в своей жизни. Наблюдая за полетом птиц (рис. 1), люди сконструировали самолет (рис. 2).
Рис. 1 | Рис. 2 |
Наблюдая за плавающим деревом, человек научился строить корабли, покорил моря и океаны. Изучив способ передвижения медузы (рис. 3), ученые придумали ракетный двигатель (рис. 4). Наблюдая за молнией, ученые открыли электричество, без которого сегодня люди не могут жить и работать. Всевозможные бытовые электрические устройства (осветительные лампы, телевизоры, пылесосы) окружают нас повсюду. Различные электрические инструменты (электродрель, электропила, швейная машинка) используются в школьных мастерских и на производстве.
Ученые разделили все физические явления на группы (рис. 6):
|
Рис. 6 |
Механические явления
— это явления, происходящие с физическими телами при их движении относительно друг друга (обращение Земли вокруг Солнца, движение автомобилей, качание маятника).
Электрические явления
Магнитные явления — это явления, связанные с возникновением у физических тел магнитных свойств (притяжение магнитом железных предметов, поворот стрелки компаса на север).
Оптические явления — это явления, возникающие при распространении, преломлении и отражении света (отражение света от зеркала, миражи, появление тени).
Тепловые явления — это явления, связанные с нагреванием и охлаждением физических тел (кипение чайника, образование тумана, превращение воды в лед).
Атомные явления — это явления, возникающие при изменении внутреннего строения вещества физических тел (свечение Солнца и звезд, атомный взрыв).
В 1979 году Горьковский народный университет научно — технического творчества выпустил Методические материалы к своей новой разработке «Комплексному методу поиска новых технических решений». Мы планируем познакомить читателей сайта с этой интересной разработкой, во многом значительно опередившей свое время. Но сегодня предлагаем ознакомиться с фрагментом третьей части методических материалов, вышедшей под названием «Массивы информации». Предлагаемый в ней список физических эффектов включает в себя всего 127 позиций. Сейчас специализированные компьютерные программы предлагают более развернутые версии указателей физэффектов, но для пользователя, все еще «не охваченного» программной поддержкой интерес представляет таблица применений физических эффектов, созданная в Горьком. Ее практическая польза состоит в том, что на входе решатель должен был указать, какую функцию из перечисленных в таблице он хочет обеспечить и какой из видов энергии планирует использовать (как сказали бы сейчас — указать ресурсы). Номера в клетках таблицы — это номера физических эффектов в перечне. Каждый физэффект снабжен отсылками на литературные источники (к сожалению, почти все они в настоящее время являются библиографическими редкостями).
Редактор
Список физических эффектов и явлений
Горьковский народный университет научно — технического творчества
Горький, 1979 год
N | Название физического эффекта или явления | Краткое описание сущности физического эффекта или явления | Типовые выполняемые функции (действия) (см. табл. 1) | Литература |
1 | 2 | 3 | 4 | 5 |
1 | Инерция | Движение тел после прекращения действия сил. Вращающееся или поступательно движущееся по инерции тело может аккумулировать механическую энергию, производить силовое воздействие | 5, 6, 7, 8, 9, 11, 13, 14, 15, 21 | 42, 82, 144 |
2 | Гравитация | силовое взаимодействие масс на расстоянии, в результате которого тела могут двигаться, сближаясь друг с другом | 5, 6, 7, 8, 9, 11, 13, 14, 15 | 127, 128, 144 |
3 | Гироскопический эффект | Вращающиеся с большой скоростью тела способны сохранять неизменным положение своей оси вращения. Силовое воздействие со стороны с целью изменить направление оси вращения приводит к прецессии гироскопа, пропорциональной силе | 10, 14 | 96, 106 |
4 | Трение | Сила, возникающая при относительном перемещении двух соприкасающихся тел в плоскости их касания. Преодоление этой силы приводит к выделению тепла, света, износу | 2, 5, 6, 7, 9, 19, 20 | 31, 114, 47, 6, 75, 144 |
5 | Замена трения покоя трением движения | При колебаниях трущихся поверхностей сила трения уменьшается | 12 | 144 |
6 | Эффект безизносности (Крагельского и Гаркунова) | Пара сталь-бронза с глицериновой смазкой практически не изнашивается | 12 | 75 |
7 | Эффект Джонсона-Рабека | Нагрев трущихся поверхностей металл-полупроводник увеличивает силу трения | 2, 20 | 144 |
8 | Деформация | Обратимое или необратимое (упругая или пластическая деформация) изменение взаимного положения точек тела под действием механических сил, электрических, магнитных, гравитационных и тепловых полей, сопровождающееся выделением тепла, звука, света | 4, 13, 18, 22 | 11, 129 |
9 | Эффект Пойтинга | Упругое удлинение и увеличение в объеме стальных и медных проволок при их закручивании. Свойства материала при этом не меняются | 11, 18 | 132 |
10 | Связь деформации с электропроводностью | При переходе металла в сверхпроводящее состояние его пластичность повышается | 22 | 65, 66 |
11 | Электропластический эффект | Увеличение пластичности и уменьшение хрупкости металла под действием постоянного электрического тока высокой плотности или импульсного тока | 22 | 119 |
12 | Эффект Баушингера | Понижение сопротивления начальным пластическим деформациям при перемене знака нагрузки | 22 | 102 |
13 | Эффект Александрова | С ростом соотношения масс упруго соударяющихся тел коэффициент передачи энергии растет только до критического значения, определяемого свойствами и конфигурацией тел | 15 | 2 |
14 | Сплавы с памятью | Деформированные с помощью механических сил детали из некоторых сплавов (титан-никель и др.) после нагрева восстанавлива-ют в точности свою первоначаль-ную форму и способны при этом создавать значительные силовые воздействия | 1, 4, 11, 14, 18, 22 | 74 |
15 | Явление взрыва | Воспламенение веществ вследствие мгновенного их химического разложения и образование сильно нагретых газов, сопровождающееся сильным звуком, выделением значительной энергии (механической, тепловой), световой вспышкой | 2, 4, 11, 13, 15, 18, 22 | 129 |
16 | Тепловое расширение | Изменение размеров тел под действием теплового поля (при нагреве и охлаждении). Может сопровождаться возникновением значительных усилий | 5, 10, 11, 18 | 128,144 |
17 | Фазовые переходы первого рода | Изменение плотности агрегатного состояния веществ при определенной температуре, сопровождающееся выделением или поглощением | 1, 2, 3, 9, 11, 14, 22 | 129, 144, 33 |
18 | Фазовые переходы второго рода | Скачкообразное изменение теплоемкости, теплопроводности, магнитных свойств, текучести (сверхтекучесть), пластичности (сверхпластичность), электропроводности (сверхпроводимость) при достижении определенной температуры и без энергообмена | 1, 3, 22 | 33, 129, 144 |
19 | Капиллярность | Самопроизвольное течение жидкости под действием капиллярных сил в капиллярах и полуоткрытых каналах (микротрещинах и царапинах) | 6, 9 | 122, 94, 144, 129, 82 |
20 | Ламинарность и турбулентность | Ламинарность — упорядоченное движение вязкой жидкости (или газа) без междуслойного перемешивания с убывающей от центра трубы к стенкам скоростью потока. Турбулентность — хаотическое движение жидкости (или газа) с беспорядочным движением частиц по сложным траекториям и почти постоянной по сечению скоростью потока | 5, 6, 11, 12, 15 | 128, 129, 144 |
21 | Поверхностное натяжение жидкостей | Силы поверхностного натяжения, обусловленные наличием поверхностной энергии, стремятся сократить поверхность раздела | 6, 19, 20 | 82, 94, 129, 144 |
22 | Смачивание | Физико-химическое взаимодействие жидкости с твердым телом. Характер зависит от свойств взаимодействующих веществ | 19 | 144, 129, 128 |
23 | Эффект автофобности | При контакте жидкости с низким натяжением и высокоэнергетического твердого тела происходит сначала полное смачивание, затем жидкость собирается в каплю, а на поверхности твердого тела остается прочный молекулярный слой жидкости | 19, 20 | 144, 129, 128 |
24 | Ультразвуковой капиллярный эффект | Увеличение скорости и высоты подъема жидкости в капиллярах под действием ультразвука | 6 | 14, 7, 134 |
25 | Термокапиллярный эффект | Зависимость скорости растекания жидкости от неравномерности нагрева ее слоя. Эффект зависит от чистоты жидкости, от ее состава | 1, 6, 19 | 94, 129, 144 |
26 | Электрокапиллярный эффект | Зависимость поверхностного натяжения на границе раздела электродов с растворами электролитов или ионными расплавами от электрического потенциала | 6, 16, 19 | 76, 94 |
27 | Сорбция | Процесс самопроизвольного сгущения растворенного или парообразного вещества (газа) на поверхности твердого тела или жидкости. При малом проникновении вещества сорбтива в сорбент происходит адсорбция, при глубоком — абсорбция. Процесс сопровождается теплообменом | 1, 2, 20 | 1, 27, 28, 100, 30, 43, 129, 103 |
28 | Диффузия | Процесс выравнивания концентрации каждой компоненты во всем объеме смеси газа или жидкости. Скорость диффузии в газах увеличивается с понижением давления и ростом температуры | 8, 9, 20, 22 | 32, 44, 57, 82, 109, 129, 144 |
29 | Эффект Дюфора | Возникновение разности температур при диффузионном перемешивании газов | 2 | 129, 144 |
30 | Осмос | Диффузия через полупроницаемую перегородку. Сопровождается созданием осмотического давления | 6, 9, 11 | 15 |
31 | Тепломассо-обмен | Передача тепла. Может сопровождаться перемешиванием массы или обуславливаться перемещением массы | 2, 7, 15 | 23 |
32 | Закон Архимеда | Действие подъемной силы на тело, погруженное в жидкость или газ | 5, 10, 11 | 82, 131, 144 |
33 | Закон Паскаля | Давление в жидкостях или газах передается равномерно по всем направлениям | 11 | 82, 131, 136, 144 |
34 | Закон Бернулли | Постоянство полного давления в установившемся ламинарном потоке | 5, 6 | 59 |
35 | Вязкоэлектрический эффект | Увеличение вязкости полярной непроводящей жидкости при протекании между обкладками конденсатора | 6, 10, 16, 22 | 129, 144 |
36 | Эффект Томса | Снижение трения между турбулентным потоком и трубопроводом при введении в поток полимерной добавки | 6, 12, 20 | 86 |
37 | Эффект Коанда | Отклонение струи жидкости, вытекающей из сопла по направлению к стенке. Иногда наблюдается «прилипание» жидкости | 6 | 129 |
38 | Эффект Магнуса | Возникновение силы, действующей на цилиндр, вращающийся в набегающем потоке, перпендикулярной потоку и образующим цилиндра | 5,11 | 129, 144 |
39 | Эффект Джоуля- Томсона (дроссель-эффект) | Изменение температуры газа при его протекании через пористую перегородку, диафрагму или вентиль (без обмена с окружающей средой) | 2, 6 | 8, 82, 87 |
40 | Гидравлический удар | Быстрое перекрытие трубопровода с движущейся жидкостью вызывает резкое повышение давления, распространяющееся в виде ударной волны, и появление кавитации | 11, 13, 15 | 5, 56, 89 |
41 | Электрогидравлический удар (эффект Юткина) | Гидравлический удар, вызываемый импульсным электрическим разрядом | 11, 13, 15 | 143 |
42 | Гидродинамическая кавитация | Образование разрывов в быстром потоке сплошной жидкости в результате местного понижения давления, вызывающее разрушение объекта. Сопровождается звуком | 13, 18, 26 | 98, 104 |
43 | Акустическая кавитация | Кавитация, возникающая вследствие прохождения акустических волн | 8, 13, 18, 26 | 98, 104, 105 |
44 | Сонолюминесценция | Слабое свечение пузырька в момент его кавитационного схлопывания | 4 | 104, 105, 98 |
45 | Свободные (механические) колебания | Собственные затухающие колебания при выводе системы из равновесного положения. При наличии внутренней энергии колебания становятся незатухающими (автоколебаниями) | 1, 8, 12, 17, 21 | 20, 144, 129, 20, 38 |
46 | Вынужденные колебания | Колебания год действием периодической силы, как правило, внешней | 8, 12, 17 | 120 |
47 | Акустический парамагнитный резонанс | Резонансное поглощение веществом звука, зависящее от состава и свойств вещества | 21 | 37 |
48 | Резонанс | Резкое возрастание амплитуды колебаний при совпадении вынужденных и собственных частот | 5, 9, 13, 21 | 20, 120 |
49 | Акустические колебания | Распространение в среде звуковых волн. Характер воздействия зависит от частоты и интенсивности колебаний. Основное назначение — силовое воздействие | 5, 6, 7, 11, 17, 21 | 38, 120 |
50 | Реверберация | Послезвучание, обусловленное переходом в определенную точку запаздывающий отраженных или рассеянных звуковых волн | 4, 17, 21 | 120, 38 |
51 | Ультразвук | Продольные колебания в газах, жидкостях и твердых телах в диапазоне частот 20х103-109Гц. Распространение лучевое с эффектами отражения, фокусировки, образование теней с возможностью передачи большой плотности энергии, используемой для силового и теплового воздействия | 2, 4, 6, 7, 8, 9, 13, 15, 17, 20, 21, 22, 24, 26 | 7, 10, 14, 16, 90, 107, 133 |
52 | Волновое движение | еренос энергии без переноса вещества в виде возмущения, распространяющегося с конечной скоростью | 6, 15 | 61, 120, 129 |
53 | Эффект Допплера-Физо | Изменение частоты колебаний при взаимном перемещении источника и приемника колебаний | 4 | 129, 144 |
54 | Стоячие волны | При определенном сдвиге фаз прямая и отраженная волны складываются в стоячую с характерным расположением максимумов и минимумов возмущения (узлов и пучностей). Перенос энергии через узлы отсутствует, а между соседними узлами наблюдается взаимопревращение кинетической и потенциальной энергии. Силовое воздействие стоячей волны способно создавать соответствующую структуру | 9, 23 | 120, 129 |
55 | Поляризация | Нарушение осевой симметрии, поперечной волны относительно направления распространения этой волны. Поляризацию вызывают: отсутствие осевой симметрии у излучателя, или отражение и преломление на границах разных сред, или распространение в анизотропной среде | 4, 16, 19, 21, 22, 23, 24 | 53, 22, 138 |
56 | Дифракция | Огибание волной препятствия. Зависит от размеров препятствия и длины волны | 17 | 83, 128, 144 |
57 | Интерференция | Усиление и ослабление волн в определенных точках пространства, возникающее при наложении двух или нескольких волн | 4, 19, 23 | 83, 128, 144 |
58 | Муаровый эффект | Возникновение узора при пересечении под небольшим углом двух систем равноудаленных параллельных линий. Небольшое изменение угла поворота ведет к значительному изменению расстояния между элементами узора | 19, 23 | 91, 140 |
59 | Закон Кулона | Притяжение разноименных и отталкивание одноименных электрически заряженных тел | 5, 7, 16 | 66, 88, 124 |
60 | Индукцированные заряды | Возникновение зарядов на проводнике под действием электрического поля | 16 | 35, 66, 110 |
61 | Взаимодействие тел с полями | Смена формы тел приводит к изменению конфигурации образующихся электрических и магнитных полей. Этим можно управлять силами, действующими на заряженные частицы, помещенные в такие поля | 25 | 66, 88, 95, 121, 124 |
62 | Втягивание диэлектрика между обкладками конденсатора | При частичном введении диэлектрика между обкладками конденсатора наблюдается его втягивание | 5, 6, 7, 10, 16 | 66, 110 |
63 | Проводимость | Перемещение свободных носителей под действием электрического поля. Зависит от температуры, плотности и чистоты вещества, его агрегатного состояния, внешнего воздействия сил, вызывающих деформацию, от гидростатического давления. При отсутствии свободных носителей вещество является изолятором и называется диэлектриком. При термическом возбуждении становится полупроводником | 1, 16, 17, 19, 21, 25 | 123 |
64 | Сверхпроводимость | Значительное увеличение проводимости некоторых металлов и сплавов при определенных значениях температуры, магнитного поля и плотности тока | 1, 15, 25 | 3, 24, 34, 77 |
65 | Закон Джоуля- Ленца | Выделение тепловой энергии при прохождении электрического тока. Величина обратно пропорциональна проводимости материала | 2 | 129, 88 |
66 | Ионизация | Появление свободных носителей заряда в веществах под действием внешних факторов (электромагнитного, электрического или теплового полей, разрядов в газах облучения рентгеновскими лучами или потоком электронов, альфа-частиц, при разрушении тел) | 6, 7, 22 | 129, 144 |
67 | Вихревые токи (токи Фуко) | В массивной неферромагнитной пластине, помещенной в изменяющееся магнитное поле перпендикулярно его линиям, протекают круговые индукционные токи. При этом пластина нагревается и выталкивается из поля | 2, 5, 6, 10, 11, 21, 24 | 50, 101 |
68 | Тормоз без трения покоя | Колеблющаяся между полюсами электромагнита тяжелая металлическая пластина «увязает» при включении постоянного тока и останавливается | 10 | 29, 35 |
69 | Проводник с током в магнитном поле | Сила Лоренца воздействует на электроны, которые через ионы передают силу кристаллической решетке. В результате проводник выталкивается из магнитного поля | 5, 6, 11 | 66, 128 |
70 | Проводник, движущийся в магнитном поле | При движении проводника в магнитном поле в нем начинает протекать электрический ток | 4, 17, 25 | 29, 128 |
71 | Взаимная индукция | Переменный ток в одном из двух расположенных рядом контуров вызывает появление ЭДС индукции в другом | 14, 15, 25 | 128 |
72 | Взаимодействие проводников с током движущихся электрических зарядов | Проводники с током протягиваются друг к другу или отталкиваются. Аналогично взаимодействуют движущиеся электрические заряды. Характер взаимодействия зависит от формы проводников | 5, 6, 7 | 128 |
73 | ЭДС индукции | При изменении магнитного поля или его движения в замкнутом проводнике возникает ЭДС индукции. Направление индукционного тока дает поле, препятствующее изменению магнитного потока, вызывающего индукцию | 24 | 128 |
74 | Поверхностный эффект (скин- эффект) | Токи высокой частоты идут только по поверхностному слою проводника | 2 | 144 |
75 | Электромагнитное поле | Взаимное индуктирование электрического и магнитного полей представляет собой распространение (радио волн, электромагнитных волн, света, рентгеновских и гамма лучей). Его источником может служить и электрическое поле. Частным случаем электромагнитного поля является световое излучение (видимое, ультрафиолетовое и инфракрасное). Его источником может служить и тепловое поле. Электромагнитное поле обнаруживается по тепловому эффекту, электрическому действию, световому давлению, активизации химических реакций | 1, 2, 4, 5, 6, 7, 11, 15, 17, 19, 20, 21, 22, 26 | 48, 60, 83, 35 |
76 | Заряд в магнитном поле | На заряд, движущийся в магнитном поле, действует сила Лоренца. Под действием этой силы движение заряда происходит по окружности или спирали | 5, 6, 7, 11 | 66, 29 |
77 | Электрореологический эффект | Быстрое обратимое повышение вязкости неводных дисперсных систем в сильных электрических полях | 5, 6, 16, 22 | 142 |
78 | Диэлектрик в магнитном поле | В диэлектрике, помещенном в электромагнитное поле, часть энергии переходит в тепловую | 2 | 29 |
79 | Пробой диэлектриков | Падение электрического сопротивления и термическое разрушение материала из-за разогрева участка диэлектрика под действием сильного электрического поля | 13, 16, 22 | 129, 144 |
80 | Электрострикция | Упругое обратимое увеличение размеров тела в электрическом поле любого знака | 5, 11, 16, 18 | 66 |
81 | Пьезо-электрический эффект | Образование зарядов на поверхности твердого тела под воздействием механических напряжений | 4, 14, 15, 25 | 80, 144 |
82 | Обратный пьезоэффект | Упругая деформация твердого тела под действием электрического поля, зависящая от знака поля | 5, 11, 16, 18 | 80 |
83 | Электро-калорический эффект | Изменение температуры пироэлектрика при внесении его в электрическое поле | 2, 15, 16 | 129 |
84 | Электризация | Появление на поверхности веществ электрических зарядов. Может вызываться и в отсутствии внешнего электрического поля (для пироэлектриков и сегнетоэлектриков при смене температуры). При воздействии на вещество сильным электрическим полем с охлаждением или освещением получаются электреты, создающие вокруг себя электрическое поле | 1, 16 | 116, 66, 35, 55, 124, 70, 88, 36, 41, 110, 121 |
85 | Намагничивание | Ориентация собственных магнитных моментов веществ во внешнем магнитном поле. По степени намагничивания вещества подразделяются на парамагнетики, ферромагнетики. У постоянных магнитов магнитное поле остается после снятия внешнего электрические и магнитные свойства | 1, 3, 4, 5, 6, 8, 10, 11, 22, 23 | 78, 73, 29, 35 |
86 | Влияние температуры на электрические и магнитные свойства | Электрические и магнитные свойства веществ вблизи определенной температуры (точки Кюри) резко меняются. Выше точки Кюри Ферромагнетик переходит в парамагнетик. Сегнетоэлектрики имеют две точки Кюри, в которых наблюдаются или магнитные, или электрические аномалии. Антиферромагнитики теряют свои свойства при температуре, названной точкой Нееля | 1, 3, 16, 21, 22, 24, 25 | 78, 116, 66, 51, 29 |
87 | Магнито- электрический эффект | В сегнетоферромагнетиках при наложении магнитного (электрического) поля наблюдается изменение электрической (магнитной) проницаемости | 22, 24, 25 | 29, 51 |
88 | Эффект Гопкинса | Возрастание магнитной восприимчивости при приближении к температуре Кюри | 1, 21, 22, 24 | 29 |
89 | Эффект Бархгаузена | Ступенчатый ход кривой намагничивания образца вблизи точки Кюри при изменении температуры, упругих напряжений или внешнего магнитного поля | 1, 21, 22, 24 | 29 |
90 | Жидкости, твердеющие в магнитном поле | язкие жидкости (масла) в смеси с ферромагнитными частицами твердеют при помещении в магнитное поле | 10, 15, 22 | 139 |
91 | Пьезо-магнетизм | Возникновение магнитного момента при наложении упругих напряжений | 25 | 29, 129, 144 |
92 | Магнито- калорический эффект | Изменение температуры магнетика при его намагничивании. Для парамагнетиков увеличение поля увеличивает температуру | 2, 22, 24 | 29, 129, 144 |
93 | Магнитострикция | Изменение размеров тел при изменении их намагниченности (объемное или линейное), объект зависит от температуры | 5, 11, 18, 24 | 13, 29 |
94 | Термострикция | Магнитострикционная деформация при нагреве тел в отсутствии магнитного поля | 1, 24 | 13, 29 |
95 | Эффект Эйнштейна и де Хааса | Намагничивание магнетика приводит к его вращению, а вращение вызывает намагничивание | 5, 6, 22, 24 | 29 |
96 | Ферро- магнитный резонанс | Избирательное (по частоте) поглощение энергии электромагнитного поля. Частота меняется в зависимости от интенсивности поля и при смене температуры | 1, 21 | 29, 51 |
97 | Контактная разность потенциалов (закон Вольты) | Возникновение разности потенциалов при контакте двух разных металлов. Величина зависит от химического состава материалов и их температуры | 19, 25 | 60 |
98 | Трибоэлектричество | Электризация тел при трении. Величина и знак заряда определяются состоянием поверхностей, их составом, плотностью и диэлектрической проницаемостью | 7, 9, 19, 21, 25 | 6, 47, 144 |
99 | Эффект Зеебека | Возникновение термоЭДС в цепи из разнородных металлов при условии разной температуры в местах контакта. При контакте однородных металлов эффект возникает при сжатии одного из металлов всесторонним давлением или насыщении его магнитным полем. Другой проводник при этом находится в нормальных условиях | 19, 25 | 64 |
100 | Эффект Пельтье | Выделение или поглощение тепла (кроме джоулева) при прохождении тока через спай разнородных металлов в зависимости от направления тока | 2 | 64 |
101 | Явление Томсона | Выделение или поглощение тепла (избыточного над джоулевым) при прохождении тока по неравномерно нагретому однородному проводнику или полупроводнику | 2 | 36 |
102 | Эффект Холла | Возникновение электрического поля в направлении, перпендикулярном направлению магнитного поля и направлению тока. В ферромагнетиках коэффициент Холла достигает максимума в точке Кюри, а затем снижается | 16, 21, 24 | 62, 71 |
103 | Эффект Эттингсгаузена | Возникновение разности температур в направлении, перпендикулярном магнитному полю и току | 2, 16, 22, 24 | 129 |
104 | Эффект Томсона | Изменение проводимости ферроманитного проводника в сильном магнитном поле | 22, 24 | 129 |
105 | Эффект Нернста | Возникновение электрического поля при поперечном намагничивании проводника перпендикулярно направлению магнитного поля и градиенту температур | 24, 25 | 129 |
106 | Электрические разряды в газах | Возникновение электрического тока в газе в результате его ионизации и под действием электрического поля. Внешние проявления и характеристики разрядов зависят от управляющих факторов (состава и давления газа, конфигурации пространства, частоты электрического поля, силы тока) | 2, 16, 19, 20, 26 | 123, 84, 67, 108, 97, 39, 115, 40, 4 |
107 | Электроосмос | Движение жидкостей или газов через капилляры, твердые пористые диафрагмы и мембраны, а также через силы очень мелких частиц под действием внешнего электрического поля | 9, 16 | 76 |
108 | Потенциал течения | Возникновение разности потенциала между концами капилляров а также между противоположными поверхностями диафрагмы, мембраны или другой пористой среды при продавливании через них жидкости | 4, 25 | 94 |
109 | Электрофорез | Движение твердых частиц, пузырьков газа, капель жидкости, а также коллоидных частиц, находящихся во взвешенном состоянии, в жидкой или газообразной среде под действием внешнего электрического поля | 6, 7, 8, 9 | 76 |
110 | Седиментационный потенциал | Возникновение разности потенциалов в жидкости в результате движения частиц, вызванного силами неэлектрического характера (оседание частиц и т.п.) | 21, 25 | 76 |
111 | Жидкие кристаллы | Жидкость с молекулами удлиненной формы имеет свойство мутнеть пятнами при воздействия электрического поля и менять цвет при различных температурах и углах наблюдения | 1, 16 | 137 |
112 | Дисперсия света | Зависимость абсолютного показателя преломления от длины волны излучения | 21 | 83, 12, 46, 111, 125 |
113 | Голография | Получение объемных изображений путем освещения объекта когерентным светом и фотографирования интерференционной картины взаимодействия рассеянного объектом света с когерентным излучением источника | 4, 19, 23 | 9, 45, 118, 95, 72, 130 |
114 | Отражение и преломление | При падении параллельного пучка света на гладкую поверхность раздела двух изотропных сред часть света отражается обратно, а другая, преломляясь, проходит во вторую среду | 4, | 21 |
115 | Поглощение и рассеяние света | ри прохождении света через вещество его энергия поглощается. Часть идет на переизлучение, остальная энергия переходит в другие виды (тепло). Часть переизлученной энергии распространяется в разные стороны и образует рассеянный свет | 15, 17, 19, 21 | 17, 52, 58 |
116 | Испускание света. Спектральный анализ | Квантовая система (атом, молекула), находящаяся в возбужденном состоянии, излучает излишнюю энергию в виде порции электромагнитного излучения. Атомы каждого вещества имеют сбою структуру излучательных переходов, которые можно зарегистрировать оптическими методами | 1, 4, 17, 21 | 17, 52, 58 |
117 | Оптические квантовые гeнераторы (лазеры) | Усиление электромагнитных волн за счет прохождения их через среду с инверсией населенности. Излучение лазеров когерентное, монохроматическое, с высокой концентрацией энергии в луче и малой расходимостью | 2, 11, 13, 15, 17, 19, 20, 25, 26 | 85, 126, 135 |
118 | Явление полного внутреннего отражения | Вся энергия световой волны, падающей на границу раздела прозрачных сред со стороны среды оптически более плотной, полностью отражается в эту же среду | 1, 15, 21 | 83 |
119 | Люминесценция, поляризация люминесценции | Излучение, избыточное под тепловым и имеющее длительность, превышающую период световых колебаний. Люминесценция продолжается некоторое время после прекращения возбуждения (электромагнитного излучения, энергии ускоренного потока частиц, энергии химических реакций, механической энергии) | 4, 14, 16, 19, 21, 24 | 19, 25, 92, 117, 68, 113 |
120 | Тушение и стимуляция люминесценции | Воздействие другим видом энергии, кроме возбуждающей люминесценцию, может или стимулировать, или потушить люминесценцию. Управляющие факторы: тепловое поле, электрическое и электромагнитное поля (ИК-свет), давление; влажность, присутствие некоторых газов | 1, 16, 24 | 19 |
121 | Оптическая анизотропия | азличие оптических свойств веществ по различным направлениям, зависящее от их структуры и температуры | 1, 21, 22 | 83 |
122 | Двойное лучепреломление | На. границе раздела анизотропных прозрачных тел свет расщепляется на два взаимоперпендикулярных поляризованных луча, имеющих различные скорости распространения в среде | 21 | 54, 83, 138, 69, 48 |
123 | Эффект Максвелла | Возникновение двойного лучепреломления в потоке жидкости. Определяется действием гидродинамических сил, градиентом скоростей потока, трением о стенки | 4, 17 | 21 |
124 | Эффект Керра | Возникновение оптической анизотропии у изотропных веществ под действием электрического или магнитного полей | 16, 21, 22, 24 | 99, 26, 53 |
125 | Эффект Поккельса | Возникновение оптической анизотропии под действием электрического поля в направлении распространения света. Слабо зависит от температуры | 16, 21, 22 | 129 |
126 | Эффект Фарадея | Поворот плоскости поляризации света при прохождении через вещество, помещенное в магнитное поле | 21, 22, 24 | 52, 63, 69 |
127 | Естественная оптическая активность | Способность вещества поворачивать плоскость поляризации прошедшего через него света | 17, 21 | 54, 83, 138 |
Таблица выбора физических эффектов
Список литературы к массиву физических эффектов и явлений
1. Адам Н.К. Физика и химия поверхностей. М., 1947
2. Александров Е.А. ЖТФ. 36, №4, 1954
3. Алиевский Б.Д. Применение криогенной техники и сверхпроводимости в электрических машинах и аппаратах. М., Информстандартэлектро, 1967
4. Аронов М.А., Колечицкий Е.С., Ларионов В.П., Минеин В.Р., Сергеев Ю.Г. Электрические разряды в воздухе при напряжении высокой частоты, М., Энергия, 1969
5. Аронович Г.В. и др. Гидравлический удар и уравнительные резервуары. М., Наука, 1968
6. Ахматов А.С. Молекулярная физика граничного трения. М., 1963
7. Бабиков О.И. Ультразвук и его применение в промышленности. ФМ, 1958″
8. Базаров И.П. Термодинамика. М., 1961
9. Батерс Дж. Голография и ее применение. М., Энергия, 1977
10. Баулин И. За барьером слышимости. М., Знание, 1971
11. Бежухов Н.И. Теория упругости и пластичности. М., 1953
12. Беллами Л. Инфракрасные спектры молекул. M., 1957
13. Белов К.П. Магнитные превращения. М., 1959
14. Бергман Л. Ультразвук и его применение в технике. М., 1957
15. Бладергрен В. Физическая химия в медицине и биологии. М.,1951
16. Борисов Ю.Я., Макаров Л.О. Ультразвук в технике настоящего и будущего. АН СССР, М., 1960
17. Борн М. Атомная физика. М., 1965
18. Брюнинг Г. Физика и применение вторичной электронной эмисси
19. Вавилов С.И. О «горячем» и «холодном» свете. М., Знание, 1959
20. Вайнберг Д.В., Писаренко Г.С. Механические колебания и их роль в технике. М., 1958
21. Вайсбергер А. Физические методы в органической химии. Т.
22. Васильев Б.И. Оптика поляризационных приборов. М., 1969
23. Васильев Л.Л., Конев С.В. Теплопередающие трубки. Минск, Наука и техника, 1972
24. Веников В.А., Зуев Э.Н., Околотин B.C. Сверхпроводимость в энергетике. М., Энергия, 1972
25. Верещагин И.К. Электролюминесценция кристаллов. М., Наука, 1974
26. Волькенштейн М.В. Молекулярная оптика, 1951
27. Волькенштейн Ф.Ф. Полупроводники как катализаторы химических реакций. М., Знание, 1974
28. Волькенштейн Ф.Ф, Радикало-рекомбинационная люминесценция полупроводников. М., Наука, 1976
29. Вонсовский С.В. Магнетизм. М., Наука, 1971
30. Ворончев Т.А., Соболев В.Д. Физические основы электровакуумной техники. М., 1967
31. Гаркунов Д.Н. Избирательный перенос в узлах трения. М., Транспорт, 1969
32. Гегузин Я.Е. Очерки о.диффузии в кристаллах. М., Наука, 1974
33. Гейликман Б.Т. Статистическая физика фазовых переходов. М., 1954
34. Гинзбург В.Л. Проблема высокотемпературной сверхпроводимости. Сборник «Будущее науки» М., Знание, 1969
35. Говорков В.А. Электрические и магнитные поля. М., Энергия, 1968
36. Голделий Г. Применение термоэлектричества. М., ФМ, 1963
37. Гольданский В.И. Эффект Месбауэра и его
применение в химии. АН СССР, М., 1964
38. Горелик Г.С. Колебания и волны. М., 1950
39. Грановский В.Л. Электрический ток в газах. T.I, М., Гостехиздат, 1952, т.II, М., Наука, 1971
40. Гринман И.Г., Бахтаев Ш.А. Газоразрядные микрометры. Алма-Ата, 1967
41. Губкин А.Н. Физика.диэлектриков. М., 1971
42. Гулиа Н.В. Возрожденная энергия. Наука и жизнь, №7, 1975
43. Де Бур Ф. Динамический характер адсорбции. М., ИЛ, 1962
44. Де Гроот С.Р. Термодинамика необратимых процессов. М., 1956
45. Денисюк Ю.Н. Образы внешнего мира. Природа, №2, 1971
46. Дерибере М. Практическое применение инфракрасных лучей. М.-Л., 1959
47. Дерягин Б.В. Что такое трение? М., 1952
48. Дитчберн Р. Физическая оптика. М., 1965
49. Добрецов Л.Н., Гомоюнова М.В. Эмиссионная электроника. М., 1966
50. Дорофеев А.Л. Вихревые токи. М., Энергия, 1977
51. Дорфман Я.Г. Магнитные свойства и строение вещества. М., Гостехиздат, 1955
52. Ельяшевич М.А. Атомная и молекулярная спектроскопия. М., 1962
53. Жевандров Н.Д. Поляризация света. М., Наука, 1969
54. Жевандров Н.Д. Анизотропия и оптика. М., Наука, 1974
55. Желудев И.С. Физика кристаллов диэлектриков. М., 1966
56. Жуковский Н.Е. О гидравлическом ударе в водопроводных кранах. М.-Л., 1949
57. Зайт В. Диффузия в металлах. М., 1958
58. Зайдель А.Н. Основы спектрального анализа. М., 1965
59. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлении. М., 1963
60. Зильберман Г.Е. Электричество и магнетизм, М., Наука, 1970
61. Знание — сила. №11, 1969
62. «Илюкович A.M. Эффект Холла и его применение в измерительной технике. Ж. Измерительная техника, №7, 1960
63. Иос Г. Курс теоретической физики. М., Учпедгиз, 1963
64. Иоффе А.Ф. Полупроводниковые термоэлементы. М., 1963
65. Каганов М.И., Нацик В.Д. Электроны тормозят дислокацию. Природа, № 5,6, 1976
66. Калашников, С.П. Электричество. М., 1967
67. Канцов Н.А. Коронный разряд и его применение в электрофильтрах. М.-Л., 1947
68. Карякин А.В. Люминесцентная дефектоскопия. М., 1959
69. Квантовая электроника. М., Советская энциклопедия, 1969
70. Кенциг. Сегнетоэлектрики и антисегнетоэлектрики. М., ИЛ, 1960
71. Кобус А., Тушинский Я. Датчики Холла. М., Энергия, 1971
72. Кок У. Лазеры и голография. М., 1971
73. Коновалов Г.Ф., Коновалов О.В. Система автоматического управления с электромагнитными порошковыми муфтами. М., Машиностроение, 1976
74. Корнилов И.И. и др. Никелид титана и.другие сплавы с эффектом «памяти». М., Наука, 1977
75. Крагелъский И.В. Трение и износ. М., Машиностроение, 1968
76. Краткая химическая энциклопедия, т.5., М., 1967
77. Коесин В.З. Сверхпроводимость и сверхтекучесть. М., 1968
78. Крипчик Г.С. Физика магнитных явлений. М., МГУ, 1976
79. Кулик И.О., Янсон И.К. Эффект Джозефсона в сверхпроводящих туннельных структурах. М., Наука, 1970
80. Лавриненко В.В. Пьезоэлектрические трансформаторы. М. Энергия, 1975
81. Лангенберг Д.Н., Скалапино Д.Дж., Тейлор Б.Н. Эффекты Джозефсона. Сборник «Над чем думают физики», ФТТ, М., 1972
82. Ландау Л.Д., Ахизер А.П., Лифшиц Е.М. Курс общей физики. М., Наука, 1965
83. Ландсберг Г.С. Курс общей физики. Оптика. М., Гостехтеоретиздат, 1957
84. Левитов В.И. Корона переменного тока. М., Энергия, 1969
85. Лендъел Б. Лазеры. М., 1964
86. Лодж Л. Эластичные жидкости. М., Наука, 1969
87. Малков М.П. Справочник по физико-техническим основам глубокого охлаждения. М.-Л., 1963
88. Мирдель Г. Электрофизика. М., Мир, 1972
89. Мостков М.А. и др. Расчеты гидравлического удара, М.-Л., 1952
90. Мяников Л.Л. Неслышимый звук. Л., Судостроение, 1967
91. Наука и жизнь, №10, 1963; №3, 1971
92. Неорганические люминофоры. Л., Химия, 1975
93. Олофинский Н.Ф. Электрические методы обогащения. М., Недра, 1970
94. Оно С, Кондо. Молекулярная теория поверхностного натяжения в жидкостях. М., 1963
95. Островский Ю.И. Голография. М., Наука, 1971
96. Павлов В.А. Гироскопический эффект. Его проявления и использование. Л., Судостроение, 1972
97. Пенинг Ф.М. Электрические разряды в газах. М., ИЛ, 1960
98. Пирсол И. Кавитация. М., Мир, 1975
99. Приборы и техника эксперимента. №5, 1973
100. Пчелин В.А. В мире двух измерений. Химия и жизнь, № 6, 1976
101. Paбкин Л.И. Высокочастотные ферромагнетики. М., 1960
102. Ратнер С.И., Данилов Ю.С. Изменение пределов пропорциональности и текучести при повторном нагружении. Ж. Заводская лаборатория, №4, 1950
103. Ребиндер П.А. Поверхностно-активные вещества. М., 1961
104. Родзинский Л. Кавитация против кавитации. Знание — сила, №6, 1977
105. Рой Н.А. Возникновение и протекание ультразвуковой кавитации. Акустический журнал, т.З, вып. I, 1957
106. Ройтенберг Я.Н., Гироскопы. М., Наука, 1975
107. Розенберг Л.Л. Ультразвуковое резание. М., АН СССР, 1962
108. Самервилл Дж. М. Электрическая дуга. М.-Л., Госэнергоиздат, 1962
109. Сборник «Физическое металловедение». Вып. 2, М., Мир, 1968
110. Сборник «Сильные электрические поля в технологических процессах». М., Энергия, 1969
111. Сборник «Ультрафиолетовое излучение». М., 1958
112. Сборник «Экзоэлектронная эмиссия». М., ИЛ, 1962
113. Сборник статей «Люминесцентный анализ», М., 1961
114. Силин А.А. Трение и его роль в развитии техники. М., Наука, 1976
115. Сливков И.Н. Электроизоляция и разряд в вакууме. М., Атомиздат, 1972
116. Смоленский Г.А., Крайник Н.Н. Сегнетоэлектрики и антисегнетоэлектрики. М., Наука, 1968
117. Соколов В.А., Горбань А. Н. Люминесценция и адсорбция. М., Наука, 1969
118. Сороко Л. От линзы к запрограммированному оптическому рельефу. Природа, №5, 1971
119. Спицын В.И., Троицкий О.А. Электропластическая деформация металла. Природа, №7, 1977
120. Стрелков С.П. Введение в теорию колебаний, М., 1968
121. Стророба Й., Шимора Й. Статическое электричество в промышленности. ГЗИ, М.-Л., 1960
122. Сумм Б.Д., Горюнов Ю.В. Физико-химические основы смачивания и растекания. М., Химия, 1976
123. Таблицы физических величин. М., Атомиздат, 1976
124. Тамм И.Е. Основы теории электричества. M., 1957
125. Тиходеев П.М. Световые измерения в светотехнике. М., 1962
126. Федоров Б.Ф. Оптические квантовые генераторы. М.-Л., 1966
127. Фейман. Характер физических законов. М., Мир, 1968
128. Феймановские лекции по физике. T.1-10, М., 1967
129. Физический энциклопедический словарь. Т. 1-5, М., Советская энциклопедия, 1962-1966
130. Франсом М. Голография, М., Мир, 1972
131. Френкель Н.З. Гидравлика. М.-Л., 1956
132. Ходж Ф. Теория идеально пластических тел. М., ИЛ, 1956
133. Хорбенко И.Г. В мире неслышимых звуков. М., Машиностроение, 1971
134. Хорбенко И.Г. Звук, ультразвук, инфразвук. М., Знание, 1978
135. Чернышов и др. Лазеры в системах связи. М., 1966
136. Чертоусов М.Д. Гидравлика. Специальный курс. М., 1957
137. Чистяков И.Г. Жидкие кристаллы. М., Наука, 1966
138. Шерклифф У. Поляризованный свет. М., Мир, 1965
139. Шлиомис М.И. Магнитные жидкости. Успехи физических наук. Т.112, вып. 3, 1974
140. Шнейдерович Р.И., Левин О.А. Измерение полей пластических деформаций методом муара. М., Машиностроение, 1972
141. Шубников А.В. Исследования пьезоэлектрических текстур. М.-Л., 1955
142. Шульман З.П. и др. Электрореологический эффект. Минск, Наука и техника, 1972
143. Юткин Л.А. Электрогидравлический эффект. М., Машгиз, 1955
144. Яворский Б.М., Детлаф А. Справочник по физике для инженеров и студентов вузов. М., 1965
Мы часто принимаем как должное все то, что происходит с нами на земле, но каждую минуту нашу жизнь контролирует множество сил. В мире есть удивительное количество необычных, парадоксальных или требующих объяснения физических законов, с которыми мы встречаемся каждый день. В занимательном исследовании физических явлений, которые должен знать каждый, мы поговорим о частых случаях, которые многие люди считают загадкой, странных силах, которые мы не можем понять, и как научная фантастика может стать реальностью с помощью манипуляций со светом.
10. Эффект холодного ветра
Наше восприятие температуры довольно субъективно. Влажность, индивидуальная физиология и даже наше настроение может изменить наше восприятие горячих и холодных температур. То же происходит и с ветром: температура, которую мы ощущаем, не является реальной. Воздух, который непосредственно окружает человеческое тело, служит своего рода воздушным плащом. Эта изоляционная воздушная подушка держит тепло. Когда на вас дует ветер, эту воздушную подушку сдувает и вы начинаете чувствовать реальную температуру, которая гораздо холоднее.Эффект прохладного ветра воздействует только на те объекты, которые выделяет тепло.
9. Чем быстрее вы едете, тем сильнее сила удара.
Люди имеют тенденцию думать линейно, в основном это основано на принципах наблюдения; если одна капля дождя весит 50 миллиграмм, две капли должны весить около 100 миллиграмм. Однако, силы, которые контролируют вселенную, часто нам показывают иной результат, связанный с распределением сил. Объект, движущийся со скоростью 40 километров в час, врежется в стену с определенной силой. Если вы удвоите скорость движения объекта до 80 километров в час, ударная сила возрастет не в два, а в четыре раза. Этот закон объясняет то, почему аварии на автомагистралях намного более разрушительные, чем аварии в городах.
8. Орбита – это всего лишь постоянное свободное падение.
Спутники выступают как заметное недавнее приложение к звездам, но мы редко задумываемся о понятии «орбита». Мы знаем в общем, что объекты движутся вокруг планет или больших небесных тел и никогда не падают. Но причина возникновения орбит удивительно парадоксальна. Если какой-то предмет уронить, то он падает на поверхность. Однако, если он находится достаточно высоко и движется с достаточно большой скоростью, он отклоняется от земли по дуге. Тот же эффект не дает земле столкнуться с солнцем.
7. Тепло вызывает замерзание.
Вода – самая важная жидкость на земле. Это самое загадочное и парадоксальное соединение в природе. Одно из малоизвестных свойств воды, это, например, что теплая вода замерзает быстрее, чем холодная. Еще не до конца понятно, как это происходит, но это явление, известное как парадокс Мпембы, был открыт еще Аристотелем около 3000 лет назад. Но почему именно это происходит еще остается загадкой.
6. Давление воздуха.
В данный момент на вас воздействует давление воздуха равное примерно 1000 килограмм, столько же весит маленькая машина. Это происходит из-за того, что атмосфера сама по себе довольно тяжелая, и человек, находящийся на дне океана испытывает на себе давление равное 2.3 кг на квадратный сантиметр. Наш организм может выдерживать такое давление, и оно не может нас задавить. Однако, герметичные объекты, например, пластиковые бутылки,выброшенные с очень большой высоты возвращаются на землю в сдавленном состоянии.
5. Металлический водород.
Водород – первый элемент в периодической системе, что делает его самым простым элементом во Вселенной. Его атомный номер 1 значит, что в нем есть 1 протон, 1 электрон и нет нейтронов. Хотя водород известен как газ, он может показывать некоторые свойства, присущие скорее металлам, чем газам. Водород расположен в периодической таблице сразу выше натрия, летучий металл, который является частью состава столовой соли. Физики давно поняли, что водород ведет себя как металл под высоким давлением, как тот, что можно найти на звездах и в ядре газовых планет-гигантов. Попытка произвести такое соединение на земле требует больших усилий, но некоторые ученые верят, что они уже создали небольшие такие образцы, воздействуя давлением на кристаллы алмаза.
4. Эффект Кориолиса.
Благодаря довольно большому размеру планеты, человек не ощущает ее движение. Однако,движение Земли по часовой стрелке заставляет объекты, путешествующие в северном полушарии, слегка перемещаться также по часовой стрелке. Это явление известно как эффект Кориолиса. Так как поверхность Земли движется с определенной скоростью по отношению к атмосфере, разница между поворотом Земли и движением атмосферы заставляет объект, движущийся на север, подобрать энергию вращения Земли и начать отклоняться на восток. Противоположное явление наблюдается в южном полушарии. В результате, навигационные системы должны учитывать силу Кориолиса, чтобы избежать отклонения от курса.
3. Эффект Доплера.
Звук может быть независимым явлением, но восприятие звуковых волн зависит от скорости. Австрийский физик Кристиан Доплер открыл, что когда движущийся объект, например, сирена, издает звуковые волны, они скапливаются перед объектом и рассеиваются за ним. Это явление, известное как эффект Доплера, заставляет звук приближающегося объекта становится на тон выше из-за укорачивания длины звуковых волн. После того, как объект пройдет мимо, замыкающие звуковые волны удлиняются и, соответственно, становятся на тоны ниже.
2. Испарение.
Будет логичным допускать, что химикаты в процессе перехода из твердого состояния в газоподобное должны пройти через жидкое состояние. Однако, вода способна сразу трансформироваться из твердого вещества в газ при определенных обстоятельствах. Сублимация, или испарение, может заставить исчезнуть ледники под воздействием солнца, которое превращает лед в пар. Таким же образом металлы, к примеру, мышьяк, может переходить в газообразное состояние при нагревании, выделяя при этом токсичные газы. Вода может испаряться при температуре ниже точки плавления под воздействием источника тепла.
1.Замаскированные устройства.
Быстро развивающаяся технология превращает сюжеты научной фантастики в научные факты. Мы может видеть объекты, когда от них отражается свет волнами разной длины. Ученые выдвинули теорию, что объекты могут считаться невидимыми при определенном воздействии света. Если свет вокруг объекта можно рассеять, он становится невидимым для человеческого глаза. В последнее время эта теория стала реальностью, когда ученые изобрели прозрачную шестиугольную призму, которая рассеивала свет вокруг предмета, помещенного внутрь. При помещении в аквариум призма делала золотую рыбку, которая там плавала, невидимой, а на земле домашний скот исчезал из виду. Этот эффект засекречивания работает по тем же принципам, что и летательные аппараты, которые невозможно засечь радаром.
Copyright сайт — Елена Семашко
P.S. Меня зовут Александр. Это мой личный, независимый проект. Я очень рад, если Вам понравилась статья. Хотите помочь сайту? Просто посмотрите ниже рекламу, того что вы недавно искали.
Об окружающем мире. Кроме обычного любопытства, это было вызвано практическими нуждами. Ведь, например, если знаешь, как поднять
и переместить тяжелые камни, то сможешь возвести прочные стены и построить дом, жить в котором удобнее, чем в пещере или землянке. А если научишься выплавлять металлы из руд и изготавливать плуги, косы, топоры, оружие и т. п., сможешь лучше вспахать поле и получить более высокий урожай, а в случае опасности суме ешь защитить свою землю.
В древности существовала только одна наука — она объединяла все знания о природе, которые накопило к тому времени человечество. В наши дни эта наука называется естествознанием.
Узнаём о физической науке
Еще одним примером электромагнитного поля является свет. С некоторыми свойствами света вы познакомитесь при изучении раздела 3.
3. Вспоминаем о физических явлениях
Материя вокруг нас постоянно изменяется. Некоторые тела перемещаются относительно друг друга, часть из них сталкиваются и, возможно, разрушаются, из одних тел образуются другие… Перечень таких изменений можно продолжать и продолжать — недаром еще в глубокой древности философ Гераклит заметил: «Все течет, все меняется». Изменения в окружающем нас мире, то есть в природе, ученые называют специальным термином — явления.
Рис. 1.5 . Примеры природных явлений
Рис. 1.6. Сложное природное явление — грозу можно представить как совокупность целого ряда физических явлений
Восход и закат Солнца, сход снежной лавины, извержение вулкана, бег лошади, прыжок пантеры — все это примеры природных явлений (рис. 1.5).
Чтобы лучше понять сложные природные явления , ученые разделяют их на совокупность физических явлений — явлений, которые можно описать с помощью физических законов.
На рис. 1.6 показана совокупность физических явлений, образующих сложное природное явление — грозу. Так, молния — огромный электрический разряд — представляет собой электромагнитное явление. Если молния попадет в дерево, то оно вспыхнет и начнет выделять тепло — физики в таком случае говорят о тепловом явлении. Грохот грома и потрескивание пылающего дерева — звуковые явления.
Примеры некоторых физических явлений приведены в таблице. Взгляните, например, на первую строку таблицы. Что может быть общего между полетом ракеты, падением камня и вращением целой планеты? Ответ прост. Все приведенные в этой строке примеры явлений описываются одними и теми же законами — законами механического движения. С помощью этих законов можно вычислить координаты любого движущегося тела (будь то камень, ракета или планета) в любой интересующий нас момент времени.
Рис. 1.7 Примеры электромагнитных явлений
Каждый из вас, снимая свитер или расчесывая волосы пластмассовым гребнем, наверняка обращал внимание на появляющиеся при этом крохотные искры. И эти искры, и могучий разряд молнии относятся к одним и тем же электромагнитным явлениям и, соответственно, подчиняются одним и тем же законам. Поэтому для изучения электромагнитных явлений не стоит дожидаться грозы. Достаточно изучить, как ведут себя безопасные искорки, чтобы понять, чего следует ждать от молнии и как избежать возможной опасности. Впервые такие исследования провел американский ученый Б. Франклин (1706-1790), который изобрел эффективное средство защиты от грозового разряда — молниеотвод.
Изучив физические явления по отдельности, ученые устанавливают их взаимосвязь. Так, разряд молнии (электромагнитное явление) обязательно сопровождается значительным повышением температуры в канале молнии (тепловое явление). Исследование этих явлений в их взаимосвязи позволило не только лучше понять природное явление — грозу, но и найти путь практического применения электромагнитных и тепловых явлений. Наверняка каждый из вас, проходя мимо строительной площадки, видел рабочих в защитных масках и ослепительные вспышки электросварки. Электросварка (способ соединения металлических деталей с помощью электрического разряда) — это и есть пример практического использования научных исследований.
4. Определяем, что же изучает физика
Теперь, когда вы узнали, что собой представляют материя и физические явления, пришла пора определить, что же является предметом изучения физики. Эта наука изучает: структуру и свойства материи; физические явления и их взаимосвязь.
- подводим итоги
Окружающий нас мир состоит из материи. Существует два вида материи: вещество, из которого состоят все физические тела, и поле.
В мире, который нас окружает, постоянно происходят изменения. Эти изменения называются явлениями. Тепловые, световые, механические, звуковые, электромагнитные явления — все это примеры физических явлений.
Предмет изучения физики — структура и свойства материи, физические явления и их взаимосвязь.
- Контрольные вопросы
Что изучает физика? Приведите примеры физических явлений. Можно ли считать физическими явлениями события, которые происходят во сне или в воображении? 4. Из каких веществ состоят следующие тела: учебник, карандаш, футбольный мяч, стакан, автомобиль? Какие физические тела могут состоять из стекла, металла, дерева, пластмассы?
Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. — X.: Издательство «Ранок», 2007. — 192 с.: ил.
Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты ДополненияНас окружает бесконечно разнообразный мир веществ и явлений.
В нем непрерывно происходят изменения.
Любые изменения, которые происходят с телами, называют явлениями. Рождение звезд, смена дня и ночи, таяние льда, набухание почек на деревьях, сверкание молнии при грозе и так далее – все это явления природы.
Физические явления
Вспомним, что тела состоят из веществ. Заметим, что при одних явлениях вещества тел не меняются, а при других – меняются. Например, если разорвать листок бумаги пополам, то, несмотря на произошедшие изменения, бумага останется бумагой. Если же бумагу сжечь, то она превратится в пепел и дым.
Явления, при которых могут изменяться размеры, форма тел, состояние веществ, но вещества остаются прежними, не превращаются в другие, называют физическими явлениями (испарение воды, свечение электрической лампочки, звучание струн музыкального инструмента и т. д.).
Физические явления чрезвычайно разнообразны. Среди них различают механические, тепловые, электрические, световые и др.
Давайте вспомним, как плывут по небу облака, летит самолет, едет автомобиль, падает яблоко, катится тележка и т. д. Во всех перечисленных явлениях предметы (тела) движутся. Явления, связанные с изменением положения какого-либо тела по отношению к другим телам, называют механическими (в переводе с греческого «механе» означает машина, орудие).
Многие явления вызываются сменой тепла и холода. При этом происходят изменения свойств самих тел. Они меняют форму, размеры, изменяется состояние этих тел. Например, при нагревании лед превращается в воду, вода – в пар; при понижении температуры пар превращается в воду, вода – в лед. Явления, связанные с нагреванием и охлаждением тел, называют тепловыми (рис. 35).
Рис. 35. Физическое явление: переход вещества из одного состояния в другое. Если заморозить капли воды, вновь возникнет лед
Рассмотрим электрические явления. Слово «электричество» происходит от греческого слова «электрон» – янтарь. Вспомните, что, когда вы быстро снимаете с себя шерстяной свитер, вы слышите легкий треск. Проделав то же в полной темноте, вы увидите еще и искры. Это простейшее электрическое явление.
Чтобы познакомиться еще с одним электрическим явлением, проделайте следующий опыт.
Нарвите маленькие кусочки бумаги, положите их на поверхность стола. Расчешите чистые и сухие волосы пластмассовой расческой и поднесите ее к бумажкам. Что произошло?
Рис. 36. Небольшие кусочки бумаги притягиваются к расческе
Тела, которые способны после натирания притягивать легкие предметы, называют наэлектризованными (рис. 36). Молнии при грозе, полярные сияния, электризация бумаги и синтетических тканей – все это электрические явления. Работа телефона, радио, телевизора, разнообразных бытовых приборов – это примеры использования человеком электрических явлений.
Явления, которые связаны со светом, называют световыми. Свет излучают Солнце, звезды, лампы и некоторые живые существа, например жуки-светлячки. Такие тела называются светящимися.
Мы видим при условии воздействия света на сетчатку глаза. В абсолютной темноте мы видеть не можем. Предметы, которые сами не излучают свет (например, деревья, трава, страницы этой книги и др.), видны только тогда, когда они получают свет от какого-нибудь светящегося тела и отражают его от своей поверхности.
Луна, о которой мы часто говорим как о ночном светиле, в действительности является лишь своеобразным отражателем солнечного света.
Изучая физические явления природы, человек научился использовать их в повседневной жизни, быту.
1. Что называют явлениями природы?
2. Прочитайте текст. Перечислите, какие явления природы называются в нем: «Наступила весна. Солнце греет все сильнее. Тает снег, бегут ручьи. На деревьях набухли почки, прилетели грачи».
3. Какие явления называют физическими?
4. Из перечисленных ниже физических явлений в первый столбик выпишите механические явления; во второй – тепловые; в третий – электрические; в четвертый – световые явления.
Физические явления: вспышка молнии; таяние снега; спуск с горы на санках; плавление металлов; работа электрического звонка; радуга на небе; солнечный зайчик; перемещение камней, песка водой; кипение воды.
Вперед >>>
|
Рис. 1 | Рис. 2 |
Наблюдая за плавающим деревом, человек научился строить корабли, покорил моря и океаны. Изучив способ передвижения медузы (рис. 3), ученые придумали ракетный двигатель (рис. 4). Наблюдая за молнией, ученые открыли электричество, без которого сегодня люди не могут жить и работать. Всевозможные бытовые электрические устройства (осветительные лампы, телевизоры, пылесосы) окружают нас повсюду. Различные электрические инструменты (электродрель, электропила, швейная машинка) используются в школьных мастерских и на производстве.
Ученые разделили все физические явления на группы (рис. 6):
|
Рис. 6 |
Механические явления
— это явления, происходящие с физическими телами при их движении относительно друг друга (обращение Земли вокруг Солнца, движение автомобилей, качание маятника).
Электрические явления
— это явления, возникающие при появлении, существовании, движении и взаимодействии электрических зарядов (электрический ток, молния).
Магнитные явления
— это явления, связанные с возникновением у физических тел магнитных свойств (притяжение магнитом железных предметов, поворот стрелки компаса на север).
Оптические явления
— это явления, возникающие при распространении, преломлении и отражении света (отражение света от зеркала, миражи, появление тени).
Тепловые явления
— это явления, связанные с нагреванием и охлаждением физических тел (кипение чайника, образование тумана, превращение воды в лед).
Атомные явления
— это явления, возникающие при изменении внутреннего строения вещества физических тел (свечение Солнца и звезд, атомный взрыв).
Наблюдай и объясняй.
1. Приведи пример природного явления. 2. К какой группе физических явлений оно относится? Почему? 3. Назови физические тела, которые участвовали в физических явлениях.
Вперед >>>
|
Рис. 1 | Рис. 2 |
Наблюдая за плавающим деревом, человек научился строить корабли, покорил моря и океаны. Изучив способ передвижения медузы (рис. 3), ученые придумали ракетный двигатель (рис. 4). Наблюдая за молнией, ученые открыли электричество, без которого сегодня люди не могут жить и работать. Всевозможные бытовые электрические устройства (осветительные лампы, телевизоры, пылесосы) окружают нас повсюду. Различные электрические инструменты (электродрель, электропила, швейная машинка) используются в школьных мастерских и на производстве.
Ученые разделили все физические явления на группы (рис. 6):
|
Рис. 6 |
Механические явления
— это явления, происходящие с физическими телами при их движении относительно друг друга (обращение Земли вокруг Солнца, движение автомобилей, качание маятника).
Электрические явления
— это явления, возникающие при появлении, существовании, движении и взаимодействии электрических зарядов (электрический ток, молния).
Магнитные явления
— это явления, связанные с возникновением у физических тел магнитных свойств (притяжение магнитом железных предметов, поворот стрелки компаса на север).
Оптические явления
— это явления, возникающие при распространении, преломлении и отражении света (отражение света от зеркала, миражи, появление тени).
Тепловые явления
— это явления, связанные с нагреванием и охлаждением физических тел (кипение чайника, образование тумана, превращение воды в лед).
Атомные явления
— это явления, возникающие при изменении внутреннего строения вещества физических тел (свечение Солнца и звезд, атомный взрыв).
Наблюдай и объясняй.
1. Приведи пример природного явления. 2. К какой группе физических явлений оно относится? Почему? 3. Назови физические тела, которые участвовали в физических явлениях.
Электрические явления 10 класс онлайн-подготовка на Ростелеком Лицей
Электрические явления.
Многие физические тела могут взаимодействовать друг с другом силами так называемой электромагнитной природы. Чтобы так взаимодействовать, телам нужно обладать зарядом.
Заряд – это величина, характеризующая возможность физических объектов взаимодействовать друг с другом электромагнитными силами.
Свойства заряда:
— Положительные и отрицательные
— Взаимодействуют: притягиваются, отталкиваются
— Сохраняются
Заряд измеряется в кулонах, обозначается Q: q[кл]
Атомы состоят из заряженных частиц. Взаимодействие заряженных частиц в конечном счете определяет большинство физических явлений окружающего нас мира: структуру вещества, пластичность, цвет, химические реакции, теплопроводность и так далее.
Тела по большей части электрически нейтральны. Но есть небольшой дисбаланс, именно он называется электростатическим зарядом. Заряды перетекают.
Электростатический заряд может накапливаться при механическом контакте тел. Например, в грозовом облаке. Вследствие механического трения капелек друг с другом в грозовом облаке накапливается огромный электростатический разряд. Аналогичный заряд накапливается на земле. Заряды стремятся воссоединиться, а слой воздуха не дает им этого сделать.
Явление обмена зарядами при механическом взаимодействии можно наблюдать и в быту. Например, когда вы перестилаете синтетическое одеяло, оно весело щелкает. А ночью даже светится. То же происходит, если натереть многострадальную эбонитовую палочку, или даже долго гладить кота.
Два положительных заряда отталкиваются
По III закону Ньютона они действуют друг на друга с одинаковой силой:
Это закон Кулона.
Коэффициент k рассчитывается как:
Подводя итоги:
• Существуют положительно и отрицательно заряженные тела.
• Заряженные тела взаимодействуют друг с другом по закону Кулона.
• Заряды замкнутой системы не изменяется.
• Все тела состоят из заряженных частиц, поэтому электромагнитные явления окружают нас.
Примеры физического явления в физике. Тепловые явления. Термодинамический способ объяснения
Испокон веков человечество пыталось логично объяснить различные электрические явления, примеры которых они наблюдали в природе. Так, в древности молнии считались верным признаком гнева богов, средневековые мореплаватели блаженно трепетали перед огнями святого Эльма, а наши современники чрезвычайно боятся встречи с шаровыми молниями.
Всё это — электрические явления. В природе всё, даже мы с вами, несёт в себе Если объекты с большими зарядами разной полярности сближаются, то возникает физическое взаимодействие, видимым результатом которого становится окрашенный, как правило, в жёлтый или фиолетовый цвет поток холодной плазмы между ними. Её течение прекращается, как только заряды в обоих телах уравновешиваются.
Самые распространённые электрические явления в природе — молнии. Ежесекундно в поверхность Земли их ударяет несколько сотен. Молнии выбирают своей целью, как правило, отдельностоящие высокие объекты, поскольку, согласно физическим законам, для передачи сильного заряда требуется кратчайшее расстояние между грозовым облаком и поверхностью Земли. Чтобы обезопасить здания от попадания в них молний, их хозяева устанавливают на крышах громоотводы, которые представляют собой высокие металлические конструкции с заземлением, что при попадании молний позволяет отводить весь разряд в почву.
Ещё одно электрическое явление, природа которого очень долгое время оставалась неясной. Имели с ним дело в основном моряки. Проявляли огни себя следующим образом: при попадании корабля в грозу вершины его мачт начинали полыхать ярким пламенем. Объяснение явлению оказалось очень простым — основополагающую роль играло высокое напряжение электромагнитного поля, что всякий раз наблюдается перед началом грозы. Но не только моряки могут иметь дело с огнями. Пилоты крупных авиалайнеров также сталкивались с этим явлением, когда пролетали сквозь облака пепла, подброшенного в небо извержениями вулканов. Огни возникают от трения частиц пепла об обшивку.
И молнии, и огни святого Эльма — это электрические явления, которые видели многие, а вот с столкнуться удавалось далеко не каждому. Их природа так и не изучена до конца. Обычно очевидцы описывают шаровую молнию как яркое светящееся образование шарообразной формы, хаотично перемещающееся в пространстве. Три года назад была выдвинута теория, которая поставила под сомнение реальность их существования. Если ранее считалось, что разнообразные шаровые молнии — это электрические явления, то теория предположила, что они являются не чем иным, как галлюцинациями.
Есть ещё одно явление, имеющее электромагнитную природу — северное сияние. Оно возникает вследствие воздействия солнечного ветра на верхние Северное сияние похоже на всполохи самых разных цветов и фиксируется, как правило, в довольно высоких широтах. Есть, конечно, и исключения — если достаточно высока, то сияние могут видеть в небе и жители умеренных широт.
Электрические явления являются довольно интересным объектом исследования для физиков по всей планете, так как большинство из них требует подробного обоснования и серьёзного изучения.
Жизнь человека тесно связана с теп-ловыми явлениями . Он встречается с их проявлениями так же часто, как и с меха-ническими. Это — нагревание или охлажде-ние тел, зависимость их свойств от темпе-ратуры , изменение агрегатных состояний ве-щества и т. п. Поэтому с давних времен человечество старалось познать «тайну» теп-ловых явлений , объяснить их природу, ис-пользовать их в повседневной жизни. Сог-ласно древнегреческому мифу, Прометей был прикован к скале и обречен на вечные страдания за то, что похитил огонь с Олим-па и передал его людям.
Тепловые явления и процессы связаны с передачей и превра-щением энергии, обусловливаю-щими изменение температуры тел или переход вещества из одного агрегатного состояния в другое.
Сложилось так, что природа тепловых явлений объясняется в физике двумя спо-собами, взаимно дополняющими друг дру-га. Один из способов — так называемый термодинамический подход, который основывается на обобще-нии многовекового опыта наблюдений за протеканием тепловых явлений и процес-сов, и на формулировании общих прин-ципов их протекания. Термодинамический подход рассматривает теплоту с позиций макроскопических свойств вещества — дав-ления, температуры, объема, плотности и т. п. Он есть описательным способом изу-чения тепловых явлений, поскольку не прибегает к выяснению сути теплового движения. Другой способ — молекулярно-кинетическая теория вещества.
Термодинамика — это теория теплоты, которая объясняет природу тепловых явлений, не учитывая при этом молекуляр-ного строения вещества. Материал с сайта
В истории физики развитие представле-ний о природе теплоты происходило в по-стоянном противостоянии приверженцев тер-модинамического и молекулярно-кинетического подходов к объяснению тепловых яв-лений . Первые аргументировали преимущест-ва термодинамики относительной простотой описания тепловых явлений и процессов, особенно в расчетах технических устройств, выполняющих механическую работу за счет теплоты.
Законы термодинамики проще, чем молекулярно-кинетическая теория объясняют тепловые явления и процессы , однако требуют экс-периментального определения отдельных величин (например, теплоемкости)
На этой странице материал по темам:
-
Для чего нужна термодинамика в жизни обычных людей примеры явлений
Механика кратко
Тепловые явления тепловое движение объяснения с примерами
Тепловые явления в древнегреческих мифах
Физика тепловые явления в повседневной жизни
Вопросы по этому материалу:
Давайте рассмотрим, какие тепловые явления можно наблюдать субботним утром прохладного сентября.
Итак, рано проснувшись и приняв душ, мы сушим волосы потоком сухого горячего воздуха, создаваемого электрическим феном (испарение ).
Затем для комфорта включаем электрический камин, который дает дополнительное тепло (излучение) в том месте комнаты, где установлено наше любимое кресло. Конвекция происходит в комнате, когда включено отопление. Горячий воздух от батареи или камина поднимается, а холодный опускается.
Мы садимся в это кресло, укрывшись пушистым одеялом (закон теплопроводности ) и пьем горячий шоколад из кружки, материал которой плохо проводит тепло (опять закон теплопроводности ). А для нагревания воды мы использовали чайник.
Посмотрев по сторонам, мы делаем следующие выводы – дом построен по законам тепловых явлений, начиная с выбора материалов и заканчивая грамотным установлением систем теплоснабжения и вентиляции. Представьте только, если бы форточки находились внизу – да их удобно было бы открывать, но вот проветрить помещение было бы очень сложно. Материалы для стен домов используют пористые, чтобы воздух предохранял дом от перепадов температур.
А заглянув в кухню – мы увидим множество примеров тепловых явлений.
Практически во всех технологических процессах приготовления пищи можно наблюдать, как происходит теплопередача от одного продукта к другому, от плиты или печи к кастрюле или другой емкости.
В процессе нагревания будут принимать участие все три вида теплопередачи: от огня к сосуду – излучение, сквозь стенки сосуда к воде – теплопроводность, а сама вода прогревается путём конвекции.
Теплопроводность: Применение веществ с малой теплопроводностью: если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки изготовляют из пластмассы или другого сплава, обладающего малой теплопроводностью. У толстых, массивных чугунных сковородок дно прогревается более равномерно, чем у сделанных из тонкой стали. Те участки дна стальной посуды, которые располагаются непосредственно над огнём, прогреваются особенно сильно, и на них пища часто пригорает. Именно поэтому хозяйки выбирают сковородки с толстым дном, как правило, чугунные. Из походной алюминиевой кружки очень сложно пить горячий чай, а вот современный фаянс прекрасно справляется с этой задачей. Вы также знаете, что если в горячий чай опустить холодную ложку, через некоторое время она нагреется. При этом чай отдаст часть своего тепла не только ложке, но и окружающему воздуху
Конвекция: Пищу готовят на плитах. Тёплый воздух от плит, от приготовленных блюд поднимается вверх, а холодный опускается вниз. При работе вентилятора наблюдается и вынужденная конвекция.
Излучение. Излучают энергию все тела: и сильно и слабо нагретые. Тела с тёмной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. Так, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в тёмном. Эти знания помогают экономить на электричестве при выборе посуды.
Вода на кухне присутствует во всех трёх состояниях: в газообразном – когда вода кипит, в жидком – когда в ней варят продукты, в твёрдом – в виде кубиков льда для напитков.
Плавление: Настоящий шоколад тает во рту – температура плавления какао масла близка к температуре плавления человеческого тела.
Испарение: Свойство уксуса – испаряясь, уничтожать резкие, неприятные запахи, — удобно использовать на кухне. Если налить на сковороду немного уксуса и поставить её на слабый огонь, то чад, запах жира, рыбы, чеснока скоро улетучится. Чтобы избавиться от неприятного запаха при варке капусты, нужно накрыть кастрюлю тряпкой, смоченной уксусом, а сверху — крышкой. В хлебнице, в столе, в подвесном шкафчике таким же образом можно избавиться от неприятного запаха залежалого хлеба.
Кипение: на кипении основано приготовление пищи в пароварках и мультиварках.
Подойдя к окну – мы также можем наблюдать очень много тепловых явлений.
Например, летом идёт дождь а зимой снег. Образуется роса на листьях. Появляется туман.
Вперед >>>
|
10 самых странных природных электрических явлений
10 марта 2015 г.
Иконки блога в штучной упаковке — Master FIles Электромонтажные работы
У нас есть электричество. Ограничил это. Поместили его за стены и в провода, направили в обширные сети, дугообразные высоко над нашими головами и похороненные глубоко под землей. Но у него все еще осталось несколько секретов — вот 10 из самых странных природных электрических явлений, когда-либо зарегистрированных .
Вулкан Молния
Также называемые «грязными грозами» , эти удары молнии происходят после массовых извержений вулканов. Единого мнения о причине нет, но многие эксперты считают, что шлейфы пепла создают достаточно статического электричества, чтобы вызывать бури.
Фото Гордона ДымовскиBall Lightning
Еще один тип молнии до сих пор до конца не изучен и даже официально не признан до конца 1960-х годов. Те, кто видел шаровую молнию , часто описывают ее как парящую всего в нескольких футах над землей, потрескивающую, шипящую и иногда взрывающуюся.Некоторые утверждают, что он проникает в здания и плывет по коридорам, избегая людей и других объектов. Ученые в Китае предполагают, что шарики могут быть результатом испарения оксида кремния; после удара молнии в землю выделившийся пар вступает в реакцию с кислородом, образуя светящийся шар.
Вечная буря
В устье реки Кататумбо в Венесуэле гроза бушует почти 300 ночей в году. Каждую ночь падают десятки тысяч болтов, возможно, вызванных поднимающимся метановым болотным газом, встречающимся с вздымающимися ветрами Анд — независимо от источника, конечный результат прекрасен и ужасен.
Фото www.cont.ws
Огонь Святого Эльма
Огонь Святого Эльма, впервые замеченный моряками, представляет собой потустороннее голубое или фиолетовое пламя, которое появляется вокруг кораблей и предвещает конец мощных штормов . Объяснение? Разница в напряжении между морем и окружающей атмосферой, которая вызывает ионизацию газа, особенно в высоких точках, таких как вершины мачт. Этот эффект также возникает на вершинах церковных шпилей и вокруг крыльев самолетов.Фото Тома
Фото wikipedia.orgУистлерс
Также называемый «электромагнитным хором рассвета», Свистящие звуки — это пронзительные звуки, создаваемые в верхних слоях атмосферы во время гроз. Говорят, что они звучат как пение птиц от «охотников», которые их преследуют.
Спрайты
Спрайты представляют собой разновидность плазменного разряда, в результате которого возникают массивные ярко-красные вспышки диаметром до 50 километров. Из-за большой высоты спрайты в основном безвредны, но самолеты или контрольное оборудование, попавшие в их след, могут выйти из строя.
Фото Джейсона АрнсаWire Corona
Возникающие на линиях электропередач эти яркие огни, называемые Wire Corona, могут быть вызваны накоплением статического электричества на близлежащих башнях и линиях и могут служить объяснением количества наблюдений «НЛО» в этих областях.
Фото wikipedia.orgУтконос
Не все загадочные электрические явления связаны с бурей; царство животных полно животных с уникальным зарядом. Утконос , например, отслеживает добычу с помощью 40 000 электрических датчиков на клюве.
Фото TreviraElectric Rays
Некоторые лучи, тем временем, могут генерировать свои собственные электрические поля , а некоторые способны производить 220 вольт, когда им угрожают.
Фото Чака Самнера
Восточные шершни
Активные в самое жаркое время дня, эти шершней питаются от солнечной энергии: их коричневые полосы улавливают солнечный свет, а желтые полосы преобразуют и накапливают энергию.
Фото Рашида H
Несмотря на привычность и простоту использования, мы еще многого не знаем об электричестве.К счастью, существует множество природных явлений, которые помогают нам лучше понять и улучшить.
Похожие статьи
Электрические явления – обзор
3.1.2.1 Электрокинетический источник
Слово электрокинетический (электро+кинетический) подразумевает электрическое явление, генерирующее электрический потенциал в результате движения электрических зарядов, ионов и жидкости в комбинации. Изучение электрокинетического механизма берет свое начало в электрохимии, особенно связанной с коллоидной наукой.Существует четыре типа явлений, а именно (1) электрофорез, (2) электроосмос, (3) потенциал течения и (4) потенциал седиментации, которые относятся к категории электрокинетического источника. Механизм электрофореза относится к движению заряженных частиц внутри жидкости из-за наличия электрического поля, когда жидкая среда остается неподвижной. Электроосмос возникает, когда нейтрально заряженная жидкость движется по электрически заряженной поверхности под действием электрического поля. С другой стороны, потенциал течения возникает, когда нейтрально заряженная жидкость вынуждена двигаться через электрически заряженную поверхность.Седиментационный потенциал возникает, когда заряженные коллоидные частицы в жидкости движутся под действием силы тяжести. Обратите внимание, что потенциалы течения и седиментации генерируют электрическое поле, когда причинная сила имеет механическую природу. С другой стороны, кинетическое движение жидкости или частицы индуцируется наличием электрического поля. В геофизическом контексте потенциал течения очень важен, поскольку он возникает из-за движения жидкости внутри породы через суженные поровые пространства (Jouniaux et al., 2009). Таким образом, контекст измерений SP, относящихся к потоку жидкости в пористой среде, остается в центре внимания данного исследования.
Основной принцип механизма источника в явлении электрокинетического типа связан с образованием двойного электрического слоя (ДЭС) и «дзета»-потенциала. Внешняя поверхность объекта в электролите поглощает один конкретный вид зарядов, в результате чего поверхность объекта электрически заряжена с одной полярностью. Это сформирует облако электрического заряда рядом с объектом.Но в непосредственной близости от этого облака зарядов слой электрических зарядов противоположной полярности вызывает образование ДЭС, который затем действует как конденсатор. Схематическое изображение модели EDL и дзета-потенциала показано на рис. 3.1.1.
РИСУНОК 3.1.1. Модель двойного электрического слоя.
Обратите внимание, что дзета-потенциал на самом деле является электрокинетическим потенциалом, который представляет собой разность потенциалов между адсорбирующей поверхностью (между твердым телом и жидкостью) объекта и любым местом в диффузной зоне электролита, где электрические заряды (включая ионы) противоположной полярности равны по количеству и рассеяны случайным образом.Измеряется в милливольтах (мВ). Существуют различные модели, описывающие EDL, такие как классическая модель Гельмгольца, модель Гуи-Чепмена-Штерна (GCS), модель Бокриса-Девантана-Мюллера, модель Трасатти-Буззанки, модель Конвея и модель Маркуса. Однако модель GCS широко используется для объяснения EDL. Какую бы модель мы ни рассматривали, структура ДЭС на самом деле представляет собой сложное ионное устройство внутри жидкости с ограниченной толщиной заряженных слоев. Для краткости я ограничусь обсуждением EDL с учетом модели GCS только в дальнейшем.
GCS-модель ДЭС (рис. 3.1.1) демонстрирует распределение зарядов внутри электролита и на границе раздела твердое тело–жидкость. Заряды одного типа (серые шарики) адсорбируются на поверхности твердого материала. Фактически адсорбция происходит на границе твердое тело–жидкость и процесс соответствует поверхностному потенциалу Ψ. Следовательно, твердая поверхность, находящаяся в непосредственном контакте с электролитом, заряжена особым типом заряда, создающим электрическое поле, отталкивающее заряды противоположной полярности (черные шарики) благодаря кулоновской силе.Этот процесс в конечном итоге приводит к образованию стационарного слоя, в котором заряды не могут двигаться в поперечном направлении. Затем заряды противоположной полярности прилипают к плоскости. Плоскость неподвижных зарядов отделена на небольшом расстоянии от границы твердое тело–жидкость. Пространство между этими двумя слоями известно как область Гельмгольца, а разделяющее расстояние называется расстоянием Дебая (λD), которое составляет порядка нанометра (10−9 м). Зона с неподвижным слоем называется слоем Штерна. Вне слоя Штерна существует диффузная зона, в которой заряды могут свободно двигаться в любом направлении.Дзета-потенциал, как описано, уменьшается с увеличением расстояния от границы твердое тело-жидкость. К сожалению, дзета-потенциал трудно измерить напрямую, его значение можно оценить только с помощью моделирования. Зета-потенциал зависит от температуры окружающей среды и pH жидкости. Lorentz (1969) в терминах взаимодействия глина-флюид дает эмпирическую зависимость между дзета-потенциалом и pH флюида при комнатной температуре (∼300°K) как
(3.1.1)ζ=-38,6+281.0exp(−0,48×pH) мВ,
Уравнение (3.1.1) предполагает, что дзета-потенциал в основном остается отрицательным при значительном значении рН жидкости. Фактически, Ишидо и Мизутани (1981) продемонстрировали, что дзета-потенциал всегда остается отрицательным для большинства типов горных пород, пока рН флюида выше 2. Дзета-потенциал песка и песчаников, взаимодействующих с водой, имеет Значение рН 7–8 равно −17 мВ (Jouniax, Ishido, 2012).
Однако нас интересует потенциал течения, который является одним из членов группы электрокинетических потенциалов, так как он играет значительную роль в исследованиях течения подземных вод.Потенциал течения напрямую связан с движением жидкости через поровые пространства породы. В горных породах существуют два типа поровых пространств: первичные и вторичные. Первичные поровые пространства неразрывно связаны с матрицей породы, тогда как вторичные поровые пространства возникают из-за внешних причин, таких как трещины, стыки, пустоты и т. д. Связанные поровые пространства, которые позволяют воде течь внутри породы, приписываются физическим коэффициентам, называется проницаемостью. Таким образом, поток воды через проницаемые поровые пространства является необходимым условием для возникновения потенциала течения.Когда возникает такой поток, частицы ионов, присутствующие в воде, не движутся с той же скоростью, что и скорость потока воды через поры, поскольку подвижность частиц ионов меняется. Например, подвижность отрицательно заряженных ионов гидроксила и сульфата значительно меньше подвижности положительно заряженных ионов натрия, кальция и калия. Это вызывает зоны накопления двух видов (например, отрицательно и положительно заряженных) видов ионов. В результате зона, соответствующая заднему концу направления потока, заряжена отрицательно, а зона, соответствующая переднему концу, заряжена положительно, как если бы имелись две полярности электрической батареи.Феномен гидродинамического потенциала широко используется в моделях источника при интерпретации потока подземных вод в трещине посредством просачивания (Corwin, 1989; Panthulu et al., 2001; Moore et al., 2011), подповерхностного потока, определяемого топографией (Sill, 1983; Goto et al. al., 2012; Jardani et al., 2006; Revil et al., 2017), или через гидротермальный источник (Fitterman, Corwin, 1982; Finizola et al., 2004; Singarimbun et al., 2012; Byrdina et al. , 2012). Перепад давления Δp в капилляре вызывает потенциал течения Δϕs.Это связано с уравнением Гельмгольца-Смолуховского следующим образом:
(3.1.2)Δϕs=csoΔp,
, где c , поэтому — коэффициент потенциала потока, который записывается следующим образом (Roy, 2019):
(3.1.3)cso=εwζηdσe,
где ε w — диэлектрическая проницаемость воды, ηdis динамическая вязкость воды, σ e — эффективная электропроводность воды. Единицей измерения коэффициента потенциала течения c , поэтому является мВ/Па, где Па является единицей измерения давления в паскалях в единицах системы СИ.
Электрические явления
2
Kagome Graphene обещает захватывающие свойства
16 февраля 2021 г. — Физики впервые получили соединение графена, состоящее из атомов углерода и небольшого количества атомов азота в регулярной сетке шестиугольников и треугольников. Этот сотовый …
Искусственный интеллект, способный обнаруживать скрытые физические законы в различных данных
дек.9, 2021 — Исследователи успешно разработали технологию искусственного интеллекта, которая может извлекать скрытые уравнения движения из обычных данных наблюдений и создавать модель, верную законам…
Эффективные клапаны для электронных спинов
12 августа 2020 г. — Исследователи разработали новую концепцию, в которой спин электрона используется для переключения электрического тока. Помимо фундаментальных исследований, такие спиновые клапаны также являются ключевыми элементами спинтроники…
Какая квантовая теория идеальна?
12 июля 2019 г. — Для некоторых явлений в квантовой физике многих тел существует несколько конкурирующих теорий. Но какой из них лучше всего описывает квантовое явление? Группа исследователей успешно развернула искусственную …
Лазерные установки следующего поколения открывают новую эру исследований релятивистской плазмы
26 мая 2020 г. — Усиление чирпированных импульсов увеличивает мощность лазерных импульсов во многих современных самых мощных исследовательских лазерах, а поскольку лазерные установки следующего поколения стремятся увеличить мощность луча, физики …
Соединение двух классов нетрадиционных сверхпроводников
11 ноября 2020 г. — Понимание нетрадиционной сверхпроводимости — одна из самых сложных и увлекательных задач физики твердого тела. Различные классы нетрадиционных сверхпроводников разделяют это …
Ультрахолодные квантовые частицы нарушают классическую симметрию
9 августа 2019 г. — Многие явления природного мира свидетельствуют о наличии симметрии в их динамической эволюции, что помогает исследователям лучше понять внутренний механизм системы.Однако в квантовой физике эти …
Открытие безрадиационной квантовой технологии с графеном
8 июля 2021 г. — «Тяжелые фермионы» — это привлекательный теоретический способ создания явлений квантовой запутанности, но до недавнего времени они наблюдались в основном в опасно радиоактивных соединениях. У исследователей есть …
Ультратонкие полупроводники, электрически соединенные со сверхпроводниками
6 июля 2021 г. — Исследователи оснастили ультратонкий полупроводник сверхпроводящими контактами.Эти чрезвычайно тонкие материалы с новыми электронными и оптическими свойствами могут проложить путь к ранее …
Динамика экосистем: топологические фазы в биологических системах
21 декабря 2020 г. — Физики показали, что в биологии могут существовать топологические фазы, и тем самым выявили связь между физикой твердого тела и …
Обнаружено новое наномасштабное электрическое явление
ЭНН-АРБОР — В очень малых масштабах физика может стать странной.Профессор биомедицинской инженерии Мичиганского университета обнаружил новый пример такого наномасштабного явления, которое может привести к созданию более быстрых и менее дорогих портативных диагностических устройств и расширить границы в создании микромеханических устройств и устройств типа «лаборатория на чипе».
В нашем макромасштабном мире материалы, называемые проводниками, эффективно передают электричество, а материалы, называемые изоляторами или диэлектриками, — нет, если только на них не действует чрезвычайно высокое напряжение. При таких обстоятельствах «пробоя диэлектрика», как, например, когда молния попадает в крышу, диэлектрик (крыша в этом примере) получает необратимые повреждения.
В наномасштабе это не так, согласно новому открытию Алана Ханта, доцента кафедры биомедицинской инженерии. Хант и его исследовательская группа смогли провести электрический ток неразрушающим образом через стеклянную пластинку, которая обычно не является проводником.
Статья об исследовании недавно опубликована в Интернете в журнале Nature Nanotechnology.
«Это новое, действительно наномасштабное физическое явление, — сказал Хант. «В больших масштабах это не работает.Вы получаете сильный нагрев и урон.
«Важно то, насколько круто падение напряжения на диэлектрике. Когда вы дойдете до наномасштаба и сделаете свой диэлектрик чрезвычайно тонким, вы сможете добиться пробоя при скромных напряжениях, которые могут обеспечить батареи. Вы не получаете урона, потому что вы находитесь в таком маленьком масштабе, что тепло рассеивается необычайно быстро».
Эти проводящие наноразмерные диэлектрические полоски — это то, что Хант называет электродами из жидкого стекла, изготовленные в Центре ультрабыстрых оптических исследований Университета Мексики с помощью фемтосекундного лазера, который излучает световые импульсы длительностью всего квадриллионные доли секунды.
Стеклянные электроды идеально подходят для использования в устройствах «лаборатория на чипе», которые объединяют несколько лабораторных функций на одном чипе размером всего в миллиметры или сантиметры. Устройства могут привести к мгновенным домашним тестам на болезни, пищевые загрязнители и токсичные газы. Но большинству из них для работы нужен источник питания, и прямо сейчас они полагаются на провода для передачи этого питания. По словам Ханта, инженерам часто бывает трудно вставить эти провода в крошечные машины.
«Конструкция микрофлюидных устройств ограничена из-за проблем с питанием», — сказал Хант.«Но мы можем вживить электроды прямо в устройство».
Вместо того, чтобы использовать провода для передачи электричества, команда Ханта вытравливает каналы, по которым ионная жидкость может передавать электричество. Эти каналы, в 10 тысяч раз тоньше точки этой «i», физически тупиковые в местах их пересечения с микрофлюидными или нанофлюидными каналами, в которых проводится анализ на лабораторном чипе (это важно во избежание загрязнения ). Но электричество в ионных каналах может пронестись через тонкий стеклянный тупик, не повредив при этом устройство.
Это открытие является результатом несчастного случая. По словам Ханта, два канала в экспериментальном наножидкостном устройстве не совпадали должным образом, но исследователи обнаружили, что электричество проходит через устройство.
«Мы были удивлены этим, поскольку это противоречит общепринятому представлению о поведении непроводящих материалов», — сказал Хант. «При дальнейшем изучении мы смогли понять, почему это могло произойти, но только в нанометровом масштабе».
Что касается приложений электроники, Хант сказал, что проводка, необходимая в интегральных схемах, фундаментально ограничивает их размер.
«Если бы вы могли использовать обратимый пробой диэлектрика, чтобы он работал на вас, а не против вас, это могло бы существенно изменить ситуацию», — сказал Хант.
Статья называется «Электроды из жидкого стекла для нанофлюидики». Это исследование финансируется Национальным институтом здравоохранения.
Университет занимается патентной защитой интеллектуальной собственности и ищет партнеров по коммерциализации, которые помогут вывести технологию на рынок.
Инженерный колледж Мичиганского университета входит в число лучших инженерных школ страны.Его бюджет на инженерные исследования, составляющий 160 миллионов долларов в год, является одним из крупнейших среди всех государственных университетов. В штате Мичиган Инжиниринг находятся 11 академических отделов и Центр инженерных исследований Национального научного фонда. Колледж играет ведущую роль в Мичиганском мемориальном энергетическом институте Феникса и является местом расположения завода по производству наноматериалов Лурье мирового класса. Первоклассная стипендия Michigan Engineering, международный масштаб и междисциплинарная сфера деятельности объединяются, чтобы создать The Michigan Difference.Узнайте больше на www.engin.umich.edu.
Центр Алана Ханта для сверхбыстрой оптической научной биомедицинской лаборатории
Электричество | ClearlyExplained.com
Электричество — совокупность физических явлений, связанных с наличием и протеканием электрического заряда.
Электрическое поле между двумя зарядами.изображение: википедия
Электричество дает широкий спектр хорошо известных эффектов, таких как молния, статическое электричество, электромагнитная индукция и электрический ток.
Кроме того, электричество позволяет создавать и принимать электромагнитное излучение, такое как радиоволны.
В электричестве заряды создают электромагнитные поля (фундаментальная сила природы), которые действуют на другие заряды. Электричество возникает благодаря нескольким типам физики:
- электрический заряд :
- свойство некоторых субатомных частиц, определяющее их электромагнитные взаимодействия.
- На электрически заряженное вещество воздействуют электромагнитные поля, и они создают их.
- электрическое поле и электростатика:
- особенно простой тип электромагнитного поля, создаваемого электрическим зарядом, даже когда он не движется (т. е. отсутствует электрический ток). например создание статически заряженного воздушного шара/пластмассы (трибоэлектрический эффект)
- Электрическое поле воздействует на другие заряды поблизости или вызывает электризацию контактов.
- электрический потенциал :
- способность электрического поля совершать работу над электрическим зарядом, обычно измеряемая в вольтах.
- электрический ток :
- движение или поток электрически заряженных частиц, обычно измеряемый в амперах.
- электромагниты :
- Движущиеся заряды создают магнитное поле. Электрические токи генерируют магнитные поля, а изменяющиеся магнитные поля генерируют электрические токи.
В электротехнике электричество используется для:
- электроэнергии
- , когда электрический ток используется для питания (генерации электрического тока или преобразования в работу/движение) оборудования;
- электроника
- , которая касается электрических цепей, которые включают активные электрические компоненты, такие как:
- электронные лампы,
- транзисторы,
- диоды и интегральные схемы, и
и индуктивность для управления потоком электрического тока)
- , которая касается электрических цепей, которые включают активные электрические компоненты, такие как:
Краткий обзор истории
Электрические явления изучались с древних времен, хотя прогресс в теоретическом понимании оставался медленным до семнадцатого и восемнадцатого веков.
Даже тогда практического применения электричества было немного, и только в конце девятнадцатого века инженеры смогли использовать его в промышленности и быту.
Быстрое распространение электрических технологий в то время изменило промышленность и общество. Необычайная универсальность электричества означает, что его можно использовать в почти безграничном наборе технологических приложений, включая транспорт, отопление, освещение, связь и вычисления. В настоящее время электроэнергия является основой современного индустриального общества.
источник : http://en.wikipedia.org/w/index.php?title=Electricity&oldid=61415595
Происхождение слова электричество
янтарь» или «как янтарь», от ἤλεκτρον, электрон, греческое слово «янтарь») для обозначения свойства притягивать мелкие предметы после трения, было придумано английским ученым Уильямом Гилбертом. Он тщательно изучал электричество и магнетизм, отличая эффект магнитного камня от статического электричества, возникающего при трении янтаря.
Видео с описанием некоторых из этих ранних экспериментов. источник: Сэм Галлахер
см. также
Электромагнетизм
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка браузера на прием файлов cookie
Существует множество причин, по которым файл cookie не может быть установлен правильно. Ниже приведены наиболее распространенные причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
- Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы это исправить, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.
Как правило, в файле cookie может храниться только та информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, если вы не решите ввести его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступ к остальной части вашего компьютера, и только сайт, создавший файл cookie, может его прочитать.
Самый быстрый словарь в мире | Vocabulary.com
электрическое явление физическое явление, связанное с электричеством
оптическое явление физическое явление, связанное со светом или связанное со светом
геологическое явление природное явление, связанное со структурой или составом земли
инженер-электрик Лицо, обученное практическому применению теории электричества
электротехника отрасль технических наук, изучающая использование электричества и оборудования для производства и распределения электроэнергии, а также управление машинами и связью
механическое явление: физическое явление, связанное с равновесием или движением объектов
химическое явление любое природное явление, связанное с химией
электрическая энергия энергия, доступная при протекании электрического заряда через проводник
природное явление все явления, не являющиеся искусственными
электрический конденсатор: электрическое устройство, характеризующееся способностью накапливать электрический заряд
электрическое лечение терапевтическое применение электричества к телу
электрический дипольный момент дипольный момент в электрическом диполе
электропроводность прохождение электричества через проводник
электрический преобразователь, преобразующий переменный ток в постоянный или наоборот
акустическое явление: физическое явление, связанное с производством или передачей звука
коммунальное предприятие, обеспечивающее электроснабжение
электрическое устройство устройство, которое производит или приводится в действие электричеством
электрическая силовая линия силовая линия в электрическом поле
органическое явление природное явление, связанное с живыми растениями и животными
электрический шунт проводник с низким сопротивлением, соединенный параллельно с другим устройством для отвода части тока