Чем постоянное напряжение отличается от переменного: «Чем переменный ток отличается от постоянного?» – Яндекс.Кью

Содержание

как HVDC спасли переменный ток / Хабр

В мире, казалось бы, победившего переменного тока назревает — нет, не революция, но органичная эволюция: постоянный ток не просто возвращается, а претендует на лавры победителя. Инвестиции в возобновляемые источники энергии и трансграничная передача электричества сделали высоковольтные сети постоянного тока как никогда актуальными. В этом посте мы рассказываем, почему постоянный ток уступил току переменному и как спустя век после «Войны токов» постоянный ток взял реванш.

Источник: Shutterstock

Постоянный ток — это основа современного технологического общества: вся полупроводниковая электроника, работающая от сети или аккумуляторов, использует постоянный ток, с его помощью добывают чистый алюминий, магний, медь и другие вещества. В бортовой сети автомобиля тоже постоянный ток, как и в электрической передаче дизельных судов. Ну и конечно электропоезда: трамваи, метро и некоторые электровозы питаются постоянным током. И космос: все рукотворные космические объекты функционируют исключительно благодаря постоянному току от батарей или РИТЭГов.

Помимо всего этого, есть еще одна область, где постоянный ток если не незаменим, то по крайней мере значительно эффективнее переменнее тока, — высоковольтные линии для передачи высокой мощности. Линии постоянного тока (HVDC, High-voltage direct current) еще век назад стали спасением высоковольтных линий переменного тока (HVAC, High-voltage alternating current). Если бы не постоянный ток, электричество в наших розетках было бы куда дороже и исчезало чаще, чем это происходит сейчас. Давайте разберемся в этой интересной истории «взаимовыручки».

Ирония судьбы постоянного тока

Чтобы оценить всю иронию ситуации с возвращением постоянного тока в высоковольтные линии электропередач, нужно вспомнить о событиях «Войны токов» — сражения апологетов постоянного тока в лице изобретателя и бизнесмена Томаса Эдисона и тока переменного, преимущества которого осознавал предприниматель Джордж Вестингауз. Вкратце напомним о том, как постоянный ток проиграл битву за то, чтобы стать основой мирового энергоснабжения.

После того, как человечество подчинило себе электричество и научилось извлекать из него пользу в промышленности, дальновидные бизнесмены смекнули, что на электрификации городов в перспективе можно сколотить не просто капитал, а фантастическое состояние. Изобретатель Томас Эдисон отлично умел монетизировать свой талант инноватора и зарабатывал не столько на собственных изобретениях, сколько на усовершенствовании чужих идей. Одним из примеров такой успешной «доводки» стало создание лампы накаливания, которая появилась благодаря попавшем в руки Эдисона дуговым лампам с угольными электродами. Такие лампы хоть и давали свет, но в качестве постоянных источников освещения не годились — в те времена угольные дуговые лампы работали от силы несколько часов, а включить их можно было только один раз.

Первая серийная лампа Эдисона — еще с угольной нитью и временем работы в несколько десятков часов. Источник: Terren / Wikimedia Commons

Усовершенствовав конструкцию и создав свою знаменитую лампу накаливания, которая могла работать 40 часов, а после доработки 1200 часов, Эдисон осознал, что его лампочка может стать основой систем освещения городов и помещений — давая более яркий свет по сравнению со свечами и газовыми фонарями, лампы накаливания имели меньшую стоимость, не чадили, не жгли кислород в помещениях, а замены требовали реже, чем те же свечи. Производством ламп занялось предприятие Edison Electric Light, а генераторов постоянного тока — Edison General Electric. Продавая лампы ниже себестоимости, Эдисон завоевал рынок освещения, а для первых потребителей начал строить энергосети в Лондоне и Нью-Йорке.

Лампа накаливания может работать и с переменным, и с постоянным током, но Эдисон сделал выбор в пользу постоянного тока. Причина этого решения очень тривиальна и далека от физики. Как мы говорили, Эдисон был не только изобретателем, но и очень предприимчивым бизнесменом. В электричестве он видел не только способ дешевого освещения городов, но и возможность для модернизации промышленности за счет внедрения электрической тяги. Существовавшие в то время электромоторы работали только на постоянном токе.

К тому же для заработка на поставках электричества надо было как-то измерять потребление каждого абонента. Эдисон создал индивидуальный счетчик, представлявший собой резервуар с электролитом и пластиной, на которой под действием проходящего тока оседала медь — каждый месяц пластину взвешивали и по разнице массы вычисляли потребление электроэнергии. Такой счетчик работал только с постоянным током.

Счетчик постоянного тока конструкции Томаса Эдисона. «Передача показаний» заключалась в передаче банки с пластинами представителям энергетической компании. Источник: Thomas A. Edison Papers / edison.rutgers.edu

Но были у постоянного тока и нерешенные проблемы, главная из которых — невозможность передачи высокой мощности на большие (более 2 км) расстояния. Чтобы передать высокую мощность, которая необходима для электроснабжения предприятия или системы освещения города, в электросети нужно повысить либо ток, либо напряжение (мощность, напомним, равна произведению напряжения и силы тока). Но в конце XIX века не было способов менять напряжение постоянного тока. Выпускаемые в США электроприборы работали от напряжения 110 В, поэтому электростанции Эдисона, работавшие на паровых генераторах, должны были посылать в сеть именно 110 В.

Оставалось управлять силой тока. При повышении тока часть энергии уходит на нагрев проводов (с высоким напряжением такой проблемы нет). Для снижения потерь и нагрева нужно уменьшать сопротивление, увеличивая диаметр проводника или применяя материалы с хорошей электропроводностью, например, медь. И всё равно потери будут расти в зависимости от длины кабеля.

Чтобы сократить длину проводника до допустимой, потребители должны были располагаться не далее, чем в 1,5-2 км от электростанции, иначе мощность в сети падала до неприемлемых значений. Например, на 56-километровой линии между французскими городами Крей и Париж потери достигали 45%. Как Эдисон ни бился с проблемой потерь в сетях постоянного тока, решить ему ее так и не удалось. Единственным выходом было только строительство маломощных электростанций рядом с потребителями. Тогда это не казалось надругательством над экологией и жителями — именно такие станции и строила компания Эдисона. Первая из них была построена на Пёрл-стрит на Манхэттене в Нью-Йорке в 1882 году, в том же году началась прокладка подземных кабелей сети постоянного тока с напряжением 110 В.

Эдисон прокладывал под землей линии электропередач уличного освещения еще до того, как это стало модным в Москве. На иллюстрации укладка линии постоянного тока в Нью-Йорке в 1882 году. Источник: W. P. Snyder / Wikimedia Commons

Ошибочность своего выбора Томас Эдисон осознал, хотя и не признал публично, когда его конкурент по электрическому бизнесу — Джордж Вестингауз, — начал вкладываться в строительство электростанций и сетей переменного тока, имевших серьезные преимущества перед сетями тока постоянного. Благодаря уже изобретенным к тому моменту трансформаторам напряжение переменного тока можно было без труда повышать и понижать. Трансформаторы решали проблему передачи высокой мощности, ведь вместо силы тока можно было просто увеличить напряжение, для передачи которого не требовались толстые провода из дорогой меди.

Таким образом сети Вестингауза могли передавать очень высокую мощность по дешевым кабелям меньшего диаметра и при этом практически без потерь. Это доказывает пример 175-километровой сети переменного тока между немецким городом Лауффен-ам-Неккар и Франкфуртом — ее КПД составил 80,9% после запуска в 1891 году и 96% после модернизации — несравнимо выше 45% на втрое меньшей дистанции у сети постоянного тока.

Трехфазный генератор переменного тока в Лауффен-ам-Неккар, Германия. Источник: Historisches Museum, Frankfurt

У сетей переменного тока не было жесткого ограничения на длину. Благодаря этому стало возможным строительство гидроэлектростанций, электричество с которых могло передаваться в крупные города, расположенные за десятки и даже сотни километров от места выработки. А гидроэлектростанция — это куда более значимый и прибыльный проект, чем маломощная угольная станция внутри города.

«Война токов» продолжилась некрасивой пиар-кампанией Эдисона против переменного тока (показана, в частности в художественном фильме 2017 года «Война токов», или The Current War, режиссёра А. Гомес-Рехона), судебной и законотворческой волокитой против Вестингауза и постепенной потерей позиций бизнеса Эдисона под давлением всё более популярных сетей переменного тока. Последняя эдисоновская электростанция постоянного тока прекратила свою работу в 1981 году, что же до потребителей, в Сан-Франциско до сих пор сотни объектов (в основном старинные лифты) используют постоянный ток через выпрямители переменного тока. Но для нас это уже не так важно.

Постоянный ток спасает переменный

Всего через несколько лет после начала масштабного строительства электростанций и сетей переменного тока выяснилось, что переменный ток имеет проблемы при передаче энергии… на большие расстояния! Коронный разряд в высоковольтных воздушных линиях, на который может приходиться до половины потерь, поверхностный эффект, при котором переменный ток протекает по проводнику неравномерно и из-за этого требует проводники бо́льшего диаметра, реактивная мощность из-за высокого емкостного сопротивление подводных кабелей, «съедавшая» почти 100% переменного тока уже через 50 км — всё это вызывало потери процентов и десятков процентов мощности в первых магистральных сетях переменного тока.

Утечки на больших расстояниях — это во-первых. А во-вторых, объединение энергосетей переменного тока требовало идеальной синхронизации генераторов, расположенных в разных частях страны. При отсутствии синхронизации генератор в лучшем случае не будет подавать ток в сеть, в худшем — произойдет короткое замыкание.

Спасением высоковольтных сетей переменного тока стали высоковольтные сети постоянного тока, избавленные от некоторых недостатков конкурента. Постоянный ток не создает поверхностный эффект в проводнике и потому использует всю площадь сечения проводника с максимальной эффективностью (это уменьшает диаметр и стоимость проводов). В цепях постоянного тока нет реактивной мощности, поэтому в подводных кабелях с высокой емкостью потерь не происходит.

В высоковольтных сетях переменного тока толщина скин-слоя (отмечен буквой δ) определяется точкой падения плотности тока на 63%.В сетях с частотой 50 Гц скин-слой достигает 9,34 мм — часть объема дорогостоящего проводника просто не работает. Источник: biezl / Wikimedia Commons

Вырисовывалась замечательная синергия: электростанции и потребители используют переменный ток, но для его транспортировки на сотни километров применяются сети постоянного тока. Оставалась лишь одна «пустяковая» проблема — как превратить переменный ток в постоянный и обратно?

В конце XIX века швейцарский инженер Рене Тюри предложил использовать для соединения сетей с разным типом тока систему «мотор-генератор», в которой на одном конце сети переменный ток вращал мотор, приводящий в действие генератор постоянного тока, а на другом конце постоянный ток в свою очередь вращал мотор с генератором переменного тока. Идея, гениальная в своей простоте, но с невысоким КПД — двойное преобразование за счет моторов и генераторов «съедало» часть мощности. Тем не менее, других решений, кроме системы Тюри, не было, поэтому с 1883 года началось строительство магистральных сетей постоянного тока с машинами Тюри, связывающих крупные электростанции и города в Европе.

Одна из машин Тюри. Самая крупная из них, весом 4500 кг, генерировала 66 кВт. Источник: Wikimedia Commons

В 1902 году американец Питер Купер-Хьюитт изобрел ртутно-дуговой выпрямитель — несложное устройство для превращения переменного тока в постоянный. Оригинальный выпрямитель Купера-Хьюитта представлял собой замысловатую стеклянную колбу с выходящими из нее электродами, дно которой было заполнено ртутью. В работе выпрямитель выглядит очень эффектно. Впрочем, из-за хрупкости колбы стекло в выпрямителе вскоре заменили на металл.

Работа ртутно-дуговых выпрямителей завораживает. Увы, но сейчас полюбоваться такой красотой можно разве что в музеях — ртутные выпрямители давно не используются, да и те, что остались, сделаны из металла.

Ртутные выпрямители дали толчок к развитию высоковольтных сетей постоянного тока — вместо громоздких и ненадежных машин системы Тюри достаточно было установить выпрямители, в числе недостатков которых была только потенциальная токсичность при разгерметизации и необходимость в хорошем охлаждении из-за тепловых потерь. КПД устройства достигал 98-99%.

На смену ртутным выпрямителям были созданы газотроны и тиратроны (1940-е), полевые транзисторы с изолированным затвором MOSFET и полярные транзисторы с изолированным затвором IGBT (1959 год), запираемые тиристоры GTO (1962 год) — более совершенные, компактные и надежные преобразователи.

Современный тиристорный конвертер AC/DC. Источник Toshiba Energy Systems & Solutions Corporation

Когда каждый процент на счету

Несмотря на заметный прогресс в области выпрямления тока, оборудование для преобразования переменного тока в постоянный и обратно до сих пор стоит очень больших денег. Настолько больших, что строительство сетей переменного тока, даже с учетом повышенного расхода материала для проводов, выходит сильно дешевле. Вне зависимости от длины линии, стартовая цена высоковольтной магистрали постоянного тока обязательно включает стоимость двух преобразователей в начале и конце линии — габаритных и очень дорогих устройств, производимых всего несколькими компаниями в мире, в числе которых и Toshiba. На это оборудование приходится до половины стоимости сети.

Но по мере увеличения длины магистрали стоимость линии на переменном токе растет быстрее, чем на токе постоянном. Виной тому сложность магистрали HVAC — для передачи аналогичной мощности HVDC нужно вдвое меньше проводников меньшего диаметра, а значит, вдвое меньше опор, которые и сами стоят немало, и требуют крайне дорогостоящего монтажа. При длине линии около 600 км стоимость HVDC и HVAC равна, но на больших расстояниях, порядка 2000 км, HVDC выходит сильно дешевле, чем HVAC, примерно на 30-40%, а это сотни миллионов долларов экономии.

Стоимости HVDC и HVAC пересекаются на линии, длинной около 600 км. Далее HVDC становится заметно выгодней. Источник: wdwd / Wikimedia Commons

На каждые 1000 км линии потери в HVDC составляют 2-3%, а самое современное оборудование позволяет снизить этот параметр до 1%. Потери в HVAC могут достигать 6%. Даже в самых эффективных сетях переменного тока с самым лучшим оборудованием потери будут на 30-40% больше, чем в HVDC Несколько процентов от полной мощности — вроде бы терпимая ерунда? Когда речь идет о сетях, передающих несколько гигаватт, каждый процент превращается в десятки потраченных впустую мегаватт, которые можно было бы использовать для электроснабжения маленького города. Не говоря уже о потерянной прибыли.

Прошлое, настоящее и будущее HVDC

HVDC-ветка в между Данией и Швецией передает 350 МВт всего по двум проводникам. Всего два провода — это отличительная особенность воздушных линий постоянного тока, в линиях переменного тока проводников больше в два-три раза. Встречаются и монополярные HVDC с всего одним проводником (второй вывод из выпрямителя соединяют с землей), но их использование несет проблемы для подземных металлоконструкций, поэтому чаще применяется биполярная схема с двумя проводниками. Источник: Shuttertock

HVDC является оптимальным решением для связи сетей стран, разделенных морем. Так ветка между итальянским городом Чепагатти и муниципалитетом Котор в Черногории, которая экспортирует электроэнергию в Италию, пролегает по дну Адриатического моря — используй эта 400-километровая ветка переменный ток, емкостные потери в кабеле были бы слишком большими, и это бы удорожало стоимость электроэнергии для Италии. Кстати, в строительстве этой линии участвовала Toshiba: мы поставили преобразователи напряжения.

Но всё же больше всего Toshiba поучаствовала в строительстве HVDC-сетей в Японии, где исторически сложилась очень необычная ситуация: западная часть страны эксплуатирует ток с частотой 60 Гц, а восточная — 50 Гц. Эта коллизия, которую уже невозможно устранить, возникла еще в конце XIX века, когда Япония одновременно закупила генераторы в Европе и США с выходной частотой тока 50 Гц и 60 Гц соответственно. Результатом поспешного решения далекого прошлого стала вынужденная необходимость строить HVDC-ветки для соединения энергосистем разных частей страны.

HVDC-сети и вставки постоянного тока в Японии помогала строить Toshiba. Первой стала вставка для соединения внутри страны сетей на 50 Гц и 60 Гц, построенная в 1977 году при участии Toshiba. Ее мощность на момент постройки составила 600 МВт. К 2021 году Toshiba провела глубокую модернизацию вставки, увеличив ее мощность на 900 МВт и уменьшив число используемых тиристоров, что позволило немного сэкономить на оборудовании.

Элегазовые выключатели и трансформатор на линии 550 кВ, соединяющей восточную и западную энергосети Японии. Источник: Toshiba Energy Systems & Solutions Corporation

Первая высоковольтная линия постоянного тока, длиною 193 км, связала острова Хоккайдо и Хонсю в 1979 году. Сеть передает 300 МВт с напряжением 250 кВ. В 2000 году мы поставили тиристорные конверторы для мощнейшей подводной HVDC-линии между островами Сикоку и Хонсю — ветка передает 1400 МВт. На момент строительства линии в ней использовались самые крупные в мире тиристоры, которые в следующий раз применялись только 10 лет спустя при постройке китайской HVDC Lingbao 2.

Третья японская HVDC, построенная между островами Хоккайдо и Хонсю, была запущена совсем недавно — в 2019 году. Toshiba выступила главным поставщиком преобразователей на полярных транзисторах с изолированными затворами (IGBT).

На сегодняшний день в мире построено более 150 сетей HVDC и 50 вставок постоянного тока. Среди них есть как объекты, построенные в 1970-х годах прошлого века, так и совсем новые. Около 10 HVDC в Европе находятся в стадии строительства прямо сейчас с планируемым сроком запуска 2021-2025 годы. Строящиеся линии соединяют некоторые европейские страны с Великобританией (для выравнивания нагрузки на европейскую энергосеть), тянуть до которой подводный HVAC бессмысленно.

Однако интерес к HVDC-сетям в последние годы растет, и причина тому — «зеленая» энергетика. В отличие от угольных, газовых и атомных электростанций, возобновляемые источники энергии имеют очень четкую географию: в одних областях больше солнечных дней, в других чаще и стабильней дует ветер.

В Германии около 63 ГВт установленной мощности приходится на ветряные электростанции, 7,8 ГВт из которых — оффшорные станции, расположенные в Северном море в десятках километров от берега. Если нужно передать гигаватты мощности от «ветряков» по кабелям, лежащим под водой, лучшим выбором будет, как вы помните, сеть постоянного тока.

Вот так аккуратно выглядит конвертор для HVDC будущей оффшорной ветряной электростанции Dogger Bank на севере Великобритании. Агрегат будет полностью автономным, не требующим присутствия технического персонала. Источник: Aibel

В Австралии компания Sun Cable готовится приступить к постройке гигантской фотовольтаической (солнечной) электростанции, мощностью 14 ГВт. Причем электроэнергию с нее будут потреблять не в Австралии, а в Сингапуре, куда она будет поступать по подводной HVDC-сети.

Чем больше в мире будет появляться масштабных проектов, связанных с возобновляемыми источниками энергии, тем сильнее будут востребованы высоковольтные линии постоянного тока. Не стоит фантазировать о том, что однажды мечты Эдисона осуществятся и в наших розетках переменное напряжение сменится постоянным, — этого не будет, пожалуй, никогда. Тем лучше, что переменный и постоянный токи пришли к органичному сосуществованию и взаимовыручке в деле электроснабжения планеты.

Объяснение, чем постоянный ток отличается от переменного. Какой ток называют постоянным. Электрический ток постоянный и переменный. Отличие постоянного тока от переменного

Несмотря на то, что электрический ток является незаменимой частью современной жизни, многие пользователи не знают о нем даже основополагающих сведений. В данной статье, опустив курс базовой физики, рассмотрим, чем отличается постоянный ток от переменного, а также какое он находит применение в современных бытовых и промышленных условиях.

Вконтакте

Различие типов тока

Что такое ток, рассматривать здесь не будем, а сразу перейдем к основной теме статьи. Переменный ток отличается от постоянного тем, что он непрерывно изменяется по направлению движения и своей величине .

Изменения эти осуществляются периодами через равные временные отрезки. Для создания подобного тока применяют специальные источники или генераторы, выдающие переменную ЭДС (электродвижущую силу), которая регулярно изменяется.

Основополагающая схема упомянутого устройства для генерации переменного тока довольно проста. Это рамка в виде прямоугольника, изготавливаемая из медных проволок, которая закрепляется на ось, а затем при помощи ременной передачи вращается в поле магнита. Кончики этой рамки припаиваются к медным контактным колечкам, скользящим по непосредственно контактным пластинкам, вращаясь синхронно с рамкой.

При условии равномерного ритма вращения начинает индуцироваться ЭДС, которая периодически изменяется. Измерить ЭДС, возникшую в рамке, возможно специальным прибором. Благодаря появлению реально определить переменную ЭДС и вместе с ней переменный ток.

В графическом исполнении эти величины характерно изображаются в виде волнообразной синусоиды . Понятие синусоидального тока зачастую относится к переменному току, поскольку подобный характер изменения тока является наиболее распространенным.

Переменный ток – алгебраическая величина, а его значение в конкретный временной момент именуется мгновенным значением. Знак непосредственно самого переменного тока определяется по направлению, в котором в данный временной момент проходит ток. Следовательно, знак бывает положительным и отрицательным.

Характеристики тока

Для сравнительной оценки всевозможных переменных токов применяют критерии, именуемые параметрами переменного тока , среди которых:

  • период;
  • амплитуда;
  • частота;
  • круговая частота.

Период – отрезок времен, когда производится законченный цикл изменения тока. Амплитудой называют максимальное значение. Частотой переменного тока назвали количество законченных периодов за 1 сек.

Перечисленные выше параметры дают возможность отличать различные виды переменных токов, напряжений и ЭДС.

При расчете сопротивления разных цепей воздействию переменного тока допустимо подключить еще один характерный параметр, именуемый угловой либо круговой частотой . Этот параметр определяется скоростью вращения вышеупомянутой рамки под определенным углом в одну секунду.

Важно! Следует понимать, чем отличается ток от напряжения. Принципиальная разница известна: ток является количеством энергии, а напряжением называется мера .

Переменный ток получил свое название, потому что направление движения у электронов безостановочно изменяется, как и заряд. У него встречается различная частота и электрическое напряжение.

Это и является отличительной чертой от постоянного тока, где направление движения электронов неизменно . Если сопротивление, напряжение и сила тока неизменны, а ток течет только в одну сторону, то такой ток является постоянным.

Для прохождения постоянного тока в металлах потребуется, чтобы источник постоянного напряжения оказался замкнут на себя при помощи проводника, которым и является металл. В отдельных ситуациях для выработки постоянного тока применяют химический источник энергии, который называется гальваническим элементом.

Передача тока

Источники переменного тока – обычные розетки. Они располагаются на объектах разнообразного назначения и в жилых помещениях. К ним подключаются различные электрические приборы, которые получают необходимое для их работы напряжение.

Использование переменного тока в электрических сетях является экономически обоснованным, поскольку величина его напряжения может преобразовываться к уровню необходимых значений. Совершается это при помощи трансформаторного оборудования с допускаемыми незначительными потерями. Транспортировка от источников электроснабжения к конечным потребителям является более дешевой и простой.

Передача тока к потребителям начинается непосредственно с электростанции, где используется разновидность чрезвычайно мощных электрических генераторов. Из них получают электрический ток, который по кабелям направляется к трансформаторным подстанциям. Зачастую подстанции располагают неподалеку от промышленных либо жилых объектов электрического потребления. Полученный подстанциями ток преобразуется в трехфазное переменное напряжение.

В батарейках и аккумуляторах содержится постоянный ток , который отличается устойчивостью свойств, т.е. они не изменяются со течением времени. Он используется в любых современных электрических изделиях, а еще в автомобилях.

Преобразование тока

Рассмотрим отдельно процесс преобразования переменного тока в постоянный. Данный процесс производится при помощи специализированных выпрямителей и включает три шага:

  1. Первым шагом подключается четырехдиодный мост заданной мощности. Это в свою очередь позволяет задать движение однонаправленного типа у заряженных частиц. Кроме того, он понижает верхние значения у синусоид, свойственных переменному току.
  2. Далее подключается фильтр для сглаживания либо специализированный конденсатор. Это осуществляется с диодного моста на выход. Сам же фильтр способствует исправлению впадин между пиковыми значениями синусоид. А подключение конденсатора значительно снижает пульсации и приводит их к минимальным значениям.
  3. Затем производится подключение устройств, стабилизирующих напряжение, с целью снижения пульсаций.

Данный процесс, в случае необходимости, способен производиться в двух направлениях, конвертируя постоянный и переменный ток.

Еще одной отличительной чертой является распространение электромагнитных волн по отношению к пространству. Доказано, что постоянный тип тока не позволяет электромагнитным волнам распространяться в пространстве, а переменный ток может вызывать их распространение. Кроме того, при транспортировке переменного тока по проводам индукционные потери значительно меньше, нежели при передаче постоянного тока.

Обоснование выбора тока

Разнообразие токов и отсутствие единого стандарта обуславливается не только потребностью в различных характеристиках в каждой индивидуальной ситуации. В решении большинства вопросов перевес оказывается в пользу переменного тока. Подобная разница между видами токов обуславливается следующими аспектами:

  • Возможность передачи переменного тока на значительные расстояния. Возможность преобразования в разнородных электрических цепях с неоднозначным уровнем потребления.
  • Поддержание постоянного напряжения для переменного тока оказывается в два раза дешевле, нежели для постоянного.
  • Процесс преобразования электрической энергии непосредственно в механическую силу осуществляется со значительно меньшими затратами в механизмах и двигателях переменного тока.

Изначально люди не знали, что такое ток. Был известен статический заряд, но никто не понимал и не осознавал природы электричества. Понадобились долгие века, пока Кулон разработал собственную теорию, а немецкий священник фон Клейн обнаружил, что банка способна запасать энергию. К тому времени, как Ван де Грааф создал первый генератор, любой уже знал, в чем отличие постоянного тока от переменного.

История переменного и постоянного электрического тока

Издавна, к примеру, люди видели, что кристалл турмалина притягивает пепел. Кстати, свойства пьезоэлектричества впервые описаны именно на примере турмалина.

В начала 19-го века было показано, что нагретый кристалл приобретает электрический заряд. За счёт деформации образовались два полюса:

  • Южный (аналогический).
  • Северный (антилогический).

Причём если температура после нагрева остаётся постоянной, электричество исчезает. Потом появление полюсов отмечается уже при охлаждении. Выходит, кристалл турмалина при изменении температуры вырабатывает электричество. Дальнейшие исследования показали, что размер потенциала зависит от:

  1. Поперечного сечения кристалла (среза поперёк полюсов).
  2. Разницы температур.

Прочие факторы влияния на величину заряда не оказывают. Указанное явление получило название пироэлектричества. Диэлектрик турмалин потихоньку заряжался от тока, текущего внутри. А заряд оставался на месте (определённые участки поверхности) из-за изолирующих свойств. Пока не замкнуть полюса турмалина проводником, кристалл продолжит копить заряд по мере изменения температуры. Линию, объединяющую полюса, назвали пироэлектрической осью.

Пьезоэлектричество открыто известной парой Кюри на основе турмалина в 1880 году. Осознавалось, что при изменении размеров кристалла начнут вырабатываться заряды, осталось лишь придумать методику для проведения опыта. Кюри использовал для этого статическое давление обычной массы. Эксперимент проводится на изолирующей поверхности. К примеру, масса в 1 кг вызывает появление в кристалле турмалина электрического заряда в пределах пяти сотых статических единиц.

Как появляется электрический ток

Любопытно, что стройная теория по описанному явлению ещё не создана. Важно указание, что в природе присутствуют заряды, получаемые различными методами. Во время грозы это происходит за счёт сил трения воздушных масс, молекул влаги и прочих явлений. Земля заряжена отрицательно, вверх постоянно течёт ток через атмосферу. Током называется движение носителей заряда в силу неких причин. К примеру, разницы потенциалов – перепад в уровне носителей между двумя точками пространства.

Сравним с напором воды. Когда преграда устраняется, поток хлынет в направлении меньшего давления. Теперь возьмём аналогию с кристаллом турмалина. Допустим, появились на его концах заряды. Дальше потребуется вызвать движение, к примеру, медной жилкой провода. Объединим полюса, и потечёт электрический ток. Движение носителей продолжится, пока потенциал не уравняется. При этом кристалл разряжается.

О переменности или постоянстве тока нельзя сказать в ходе указанного ходе процесса. Переменный и постоянный ток являются физическими идеалами, а используются в силу относительной простоты получения математических моделей и управления при помощи них технологическим оборудованием.


Электрический ток в действительности

На практике форма тока (зависимость плотности зарядов от времени) не синусоидальная. По разным причинам вид графика искажается. Это, к примеру, происходит при запуске оборудования и остановке, из-за наведённых помех различной природы. Форма переменного и постоянного тока искажается. Причём давно установлено, что это вредит аппаратуре. Для борьбы с подобной напастью требовались методы, и математики придумали спектральный анализ.

Колебание любой формы возможно представить в виде суммы с различным удельным весом простейших синусоид разной частоты. Получается, что по цепи двигается одновременно масса составляющих, в совокупности дающих ток. Причём не обязательно все составляющие двигаются заодно с основной массой. Представим элементы как группу муравьёв, каждый тащит в свою сторону, а результирующий эффект заставляет груз перемещаться лишь в одну. Упомянем, что помимо коэффициента (амплитуды) каждая составляющая обладает фазой (направлением), а именуется гармоникой.

Каскады техники устроены так, чтобы полезные частоты (преимущественно 50 Гц) проходили внутрь прибора, а прочее уходило на землю. Указан признак для решения затруднения, упомянутого в начале. Любое колебание представляется в виде набора полезных и вредных сигналов, исходя из этого, аппаратуру полагается конструировать надлежащим образом. К примеру, на описанном принципе работают все приёмники: избирательно пропускают ток нужной частоты. Так удаётся отрезать помехи, а волна передаётся с минимальными искажениями на большие расстояния.

Примеры использования переменного и постоянного тока

Приблизительно постоянным считается ток разряда автомобильного аккумулятора. Напряжение здесь постепенно падает, а потому даже при одинаковой нагрузке эффект разнится хронометрически. В целом, происходит это плавно. Ток течёт в одном направлении и проявляет приблизительно постоянную плотность. Аналогично работают:

  1. Аккумулятор сотового телефона.
  2. Батарейка любого типа.
  3. Аккумулятор питания ноутбуков.

В природе источников постоянного тока (генераторов), за исключением матушки-Земли, нет. Человеку гораздо удобнее создавать роторы, которые, вращаясь с конкретной частотой, создают условия для образования в катушках статора переменного электрического тока. Потом промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.

Источником постоянного тока допустимо считать адаптеры. Это устройства, выполняющие преобразование переменного тока в постоянный. Допустим, у сотовых телефонов это +5 В, а для мобильных раций характерен большой разброс. Устройство постоянного тока может функционировать исключительно от номинала, для которого сконструировано. В противном случае либо работоспособность нарушается, либо – при больших отклонениях – возможен полный выход из строя.

Это касается и переменного, и постоянного тока. Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется. Из соображений экономии двигатели работают от трёх фаз. Каждая считается переменным током частоты 50 Гц. Говорили выше, что у любой гармоники присутствует фаза. В рассматриваемом случае фаза равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что три фазы равно отстоят друг от друга. При подобном раскладе генераторам ГЭС легче производить энергию, поступающую в дома в неизменном виде. Но в квартиру заходит единственная фаза переменного тока.

Поэтому бытовые приборы по внутреннему устройству сильно отличаются от промышленных. Важными признаются параметры переменного тока. В любом государстве они стандартизированы и чётко выдерживаются. К параметрам переменного тока относят:

  1. Действующее значение напряжения — вызывающее в обычном проводнике постоянное идентичного номинала. Действующее значение ниже амплитуды в корень из двух раз либо близко к указанному. Требования для РФ составляют 220-230 В плюс-минус 10% от номинала.
  2. К частоте переменного тока предъявляются повышенные строгие требования. Предел отклонений от 50 Гц измеряется десятыми долями процента. Потому стабилизации движения вала на ГЭС уделяется столько внимания. От скорости его вращения зависит параметр.
  3. Нелинейные искажения считаются отдельной темой. Требований множество, определиться непросто. Особенно строго нормируются гармоники основной частоты, к примеру: 100, 150, 200, 250 Гц.

Подобные требования предъявляются и к параметрам постоянного тока. Допустим, известные автомобильные аккумуляторы в действительности включают в арсенал не 12, а 14 В. По мере разряда вольтаж падает. Если на аккумуляторе зарегистрировано напряжение 11,9 В, банка считается вышедшей из строя. Предлагаем внимательно читать инструкции. Дополним: в отдельных ноутбуках присутствует заряд бережного расхода энергии аккумулятора. В этом случае уровень поддерживается в рамках двух третей от полного. Считается, что тогда батарея прослужит дольше.

Итак, требования направлены на поддержание долгого и правильного функционирования оборудования. Параметры постоянного и переменного тока считаются фактором, определяющим надёжность и работоспособность системы.

Очень давно, учеными был изобретен электрический ток. Первым изобретением был постоянный. Но в последующем, проводя в своей лаборатории опыты, Никола Тесла изобрел переменный ток. Между ними было и есть много различий, согласно которым один из них используется в слаботочной аппаратуре, а другой имеет возможность преодолевать различные расстояния с небольшими потерями. Но многое зависит от величин токов.

Ток переменный и постоянный: разница и особенности

Отличие переменного тока от постоянного, можно понять исходя из определений. Для того чтобы лучше разобраться в принципе работы и особенностях, необходимо знать следующие факторы.

Основные отличия:

  • Движение заряженных частиц;
  • Способ производства.

Переменным, называют такой ток, в котором заряженные частицы, способны изменять направление движения и величину в определенное время. К главным параметрам переменного тока относят его напряжение и частоту.

В настоящее время, общественные электрические сети и различные объекты, используют переменный ток, с определенным напряжением и частотой. Данные параметры определяются оборудованием и устройствами.

Обратите внимание! В бытовых электросетях, используется ток величиной 220 Вольт и тактовой частотой 50 Гц.

Направление движения и частота заряженных частиц в постоянном токе неизменны. Данный ток для питания используют различные бытовые устройства, такие как телевизоры и компьютеры.

В связи с тем, что переменный ток, проще и экономичнее по способу производства и передачи на различные расстояния, он стал основой электрификации объектов. Производят переменный ток на различных электростанциях, с которых посредством проводников, то поступает к потребителю.

Постоянный ток, получают при преобразовании переменного тока или путем химических реакций (например, щелочная батарейка). Для преобразования, используют трансформаторы тока.

Какой уровень напряжения является допустимым для человека: особенности

Для того чтобы знать, какие значения электрического тока являются допустимыми для человека, составлены соответствующие таблицы, в которых указаны величины переменного и постоянного тока и время.

Параметры воздействия электрического тока:

  • Сила;
  • Частота;
  • Время;
  • Относительная влажность.

Допустимое напряжение прикосновения и ток, которые протекают через человеческое тело в различных режимах электроустановок, не превышают следующих значений.

Переменный ток 50 Гц, должен быть не более 2,0 Вольт и силой тока 0,3 мА. Ток с частотой 400 Гц напряжением 3,0 Вольт и сила тока 0,4 мА. Постоянный ток напряжением 8 и силой тока 1 мА. Безопасное воздействие тока с такими показателями, до 10 минут.


Обратите внимание! Если электромонтажные работы производятся при повышенных температурах и высокой относительной влажности, данные значения уменьшаются в три раза.

В электроустановках с напряжением до 100 Вольт, которые глухо заземлены, или изолирована нейтраль, безопасные токи прикосновения следующие.

Переменный ток 50 Гц с разбросом напряжения от 550 до 20 Вольт и силой тока от 650 до 6 мА, переменный ток 400Гц с напряжением от 650 до 36 Вольт, и постоянный ток от 650 до 40 Вольт, не должен воздействовать на тело человека в пределах от 0,01 до 1 секунды.

Опасный переменный ток для человека

Считается, что для жизни человека, переменный электрический ток наиболее опасен. Но это при условии, если не вдаваться в подробности. Многое зависит от различных величин и факторов.

Факторы, влияющие на опасное воздействие:

  • Продолжительность контакта;
  • Путь прохождения электрического тока;
  • Сила тока и напряжение;
  • Какое сопротивление тела.

Согласно правилам ПУЭ, самый опасный ток для человека, это переменный с частотой, которая варьируется в пределах от 50 до 500 Гц.

Стоит отметить, что при условии, сила тока не превышает 9 мА, то любой, может сам освободиться от токоведущей части электроустановки.

Если данное значение превышено, то для того чтобы освободиться от воздействия электрического тока, человеку нужно стронная помощь. Связано это с тем, что ток переменный, намного сильнее способен возбуждать нервные окончания, и вызывать непроизвольные судороги мышц.

Например, при касании токоведущей части устройства внутренней частью ладони, мышечная судорога будет сильнее сжимать кулак, с течением времени.

Почему еще переменный ток опаснее? При одинаковых значениях силы тока, переменный в несколько раз сильнее воздействует на организм.


Так как, переменный ток воздействует на нервные окончания и мышцы, то стоит понимать, что этим, том влияет и на работу сердечной мышцы. Из чего следует, что при контакте с переменным током, возрастает риск летального исхода.

Важным показателем, является сопротивление тела человека. Но при ударе переменным током с высокими частотами, сопротивление тела значительно снижается.

Какой величины опасен для человека постоянный ток

Опасным для человека, может быть и постоянный ток. Конечно переменный, в десятки раз опаснее. Но если рассматривать токи в различных величинах, то постоянный может быть намного опаснее переменного.

Воздействие постоянного тока на человека разделяют:

  • 1 порог;
  • 2 порог;
  • 3 порог.

При воздействии постоянного тока перового порога (ток ощутимый), начинают немного дрожать руки, и появляется легкое покалывание.

Второй порог (ток не отпускающий), в пределах от 5 до 7 мА, является наименьшим значением, при котором человек, не может освободиться от проводника самостоятельно.

Данный ток считается не опасным, так как сопротивление тела человека выше, чем его значения.

Третий порог (фибрилляционный), при значениях от 100 мА и выше, ток сильно воздействует на организм и на внутренние органы. При этом ток при данных значениях, способен вызвать хаотичное сокращение сердечной мышцы и привести к его остановке.

На силу воздействия, влияют и другие факторы. Например сухая кожа человека, обладает сопротивлением от 10 до 100 кОм. Но если касание произошло мокрой поверхностью кожи, то сопротивление значительно снижается.

Движение электронов в проводнике

Чтобы понимать что такое ток и откуда он берётся, нужно иметь немного знаний о строении атомов и законах их поведения. Атомы состоят из нейтронов (с нейтральным зарядом), протонов (положительный заряд) и электронов (отрицательный заряд).

Электрический ток возникает в результате направленного перемещения протонов и электронов, а также ионов. Как можно направить движение этих частиц? Во время любой химической операции электроны «отрываются» и переходят от одного атома к другому.

Те атомы, от которых «оторвался» электрон становятся положительно заряженным (анионы), а те к которым присоединился – отрицательно заряженными и называются катионами. В результате этих «перебеганий» электронов возникает электрический ток.

Естественно, этот процесс не может продолжаться вечно, электрический ток исчезнет когда все атомы системы стабилизируются и будут иметь нейтральных заряд (отличный бытовой пример – обычная батарейка, которая «садится» в результате окончания химической реакции).

История изучения

Древние греки первыми заметили интересное явление: если потереть камень янтаря об шерстяную ткань, то он начинает притягивать мелкие предметы. Следующие шаги начали делать ученые и изобретатели эпохи ренессанса, которые построили несколько интересных устройств, демонстрировавших это явление.

Новым этапом изучения электричества стали работы американца Бенджамина Франклина, в частности его опыты с Лейденовской банкой – первым в мире электроконденсатором.

Именно Франклин ввёл понятия положительных и отрицательных зарядов, а также он придумал громоотвод. И наконец, изучение электротока стало точной наукой после описания закона Кулона.

Основные закономерности и силы в электрическом токе

Закон Ома – его формула описывает взаимосвязь силы, напряжения и сопротивления. Открыт в 19м веке немецким ученым Георгом Симоном Омом. Единица измерения электросопротивления названа в его честь. Его открытия были очень полезны непосредственно для практического использования.

Закон Джоуля – Ленца говорит, что на любом участке электрической цепи совершается работа. В результате этой работы нагревается проводник. Такой тепловой эффект часто используется на практике в инженерии и технике (отличный пример – лампа накаливания).

Движение зарядов при этом совершается работа

Эта закономерность получила такое название потому что сразу 2 ученых примерно одновременно и независимо, вывели её с помощью опытов
.

В начале 19го века британский ученый Фарадей догадался, что изменяя количество линий индукции, которые пронизывают поверхность ограниченную замкнутым контуром, можно сделать индукционный ток. Посторонние силы, действующие на свободные частицы, называют электродвижущей силой (ЭДС индукции).

Разновидности, характеристики и единицы измерения

Электрический ток может быть или переменным , или постоянным .

Постоянный электроток — это ток, который не меняет своё направление и знак во времени, однако он может менять свою величину. Постоянный электроток в качестве источника чаще всего использует гальванические элементы.

Переменным называется тот, который меняет направление и знак по закону косинуса. Его характеристикой является частота. Единицы измерения в системе СИ – Герцы (Гц).

В последние десятилетия очень большое распространение получил . Это вид переменного тока, который включает в себя 3 цепи. В этих цепях действует переменные ЭДС одинаковой частоты, но развернутые по фазе одна относительно другой на треть периода. Фазой называют каждую отдельную электроцепь.


Почти все современные генераторы производят трёхфазный электроток.

  • Сила и количество тока

Сила тока зависит от величины заряда, протекающего в электроцепи за единицу времени. Сила тока это отношение электрозаряда, проходящего сквозь сечение проводника, ко времени его прохождения.

В системе СИ единица измерения силы заряда – кулон (Кл), времени – секунда (с). В итоге получаем Кл/с, данную единицу называют Ампер (A). Измеряется сила электротока с помощью прибора – амперметра.

Напряжение — это соотношение работы к величине заряда. Работа измеряется в джоулях (Дж), заряд в кулонах. Данная единица называется Вольт (В).

  • Электрическое сопротивление

Показания амперметра на различных проводниках дают разные значения. А для того чтобы замерять мощность электроцепи пришлось бы использовать 3 прибора. Явление объясняется тем, что у каждого проводника различная проводимость. Единица измерения называется Ом и обозначается латинской буквой R. Сопротивление также зависит и от длины проводника.

  • Электрическая емкость

Два проводника, которые изолированы один от второго, могут накапливать электрические заряды. Данное явление характеризуется физ. величиной, которую называют электрической емкостью. Её единицей измерения – фарад (Ф).

  • Мощность и работа электрического тока

Работа электротока на конкретном участке цепи равняется перемножению напряжения тока на силу и время. Напряжение меряют вольтами, силу амперами, время секундами. Единицей измерения работы приняли джоуль (Дж).

Мощность электротока – это отношение работы ко времени её совершения. Мощность обозначают буквой P и измеряют ваттами (Вт). Формула мощности очень простая: Сила тока умноженная на напряжение тока.

Существует также единица именуемая ватт-час. Её не следует путать с ваттами, это 2 разные физические величины. В ваттах измеряют мощность (скорость потребления или передачи энергии), а в ватт-часах выражается энергия произведённая за конкретное время. Это измерение часто применяют в отношении бытовых электроприборов.

Например, лампа мощность которой равняется 100 Вт работала в течении одного часа, то она потребила 100 Вт*ч, а лампочка мощность которой 40 ватт потребит столько же электроэнергии за 2.5 часа.

Для того, чтобы замерять мощность электроцепи используют ваттметр

Какой вид тока эффективнее и какая между ними разница?

Постоянный электроток легко использовать в случае параллельного подключения генераторов, для переменного необходима синхронизация генератора и энергосистемы.

В истории произошло событие под названием «Война токов». Эта «война» произошла между двумя гениальными изобретателями – Томасом Эдисоном и Николой Теслой. Первый поддерживал и активно продвигал постоянный электроток, а второй переменный. «Война» закончилась победой Теслы в 2007 году, когда Нью-Йорк окончательно перешел на переменный.

Разница в эффективности передачи энергии на расстоянии оказалось огромной в пользу переменного тока. Постоянный электроток невозможно использовать, если станция находятся далеко от потребителя.

Но постоянный всё равно нашел сферу применения: он широко используется в электротехнике, гальванизации, некоторых видах сварки. Также постоянный электроток получил очень большое распространение в сфере городского транспорта (троллейбусы, трамваи, метро).

Естественно, не бывает плохих или хороших токов, у каждого вида есть свои преимущества и недостатки, самое главное – правильно их использовать.

Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток – отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное – в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).


Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.


Горизонтальная ось отображает угол поворота в градусах, вертикальная – величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)


Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.


Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.


Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

Разница между постоянным и переменным напряжением. Чем отличается постоянный ток от переменного

Постоянный электрический ток — это движение частиц с зарядом в определенном направлении. То есть его напряжение или сила (характеризующие величины) имеют одно и то же значение и направление. Это то, чем постоянный ток отличается от переменного. Но рассмотрим все по порядку.

История появления и «войны токов»

Постоянный ток раньше называли гальваническим из-за того, что его открыли в результате гальванической реакции. пробовал передавать его по линиям электрических передач. В то время велись нешуточные споры между учеными по этому вопросу. Они даже получили название «войны токов». Решался вопрос о выборе в качестве основного, переменного или постоянного. «Борьба» была выиграна переменным видом, так как постоянный несет существенные потери, передаваясь на расстоянии. Зато трансформировать переменный вид не составляет никакого труда, это то, чем постоянный ток отличается от переменного. Поэтому последний легко передавать даже на огромные расстояния.

Источники постоянного электрического тока

В качестве источников могут служить аккумуляторы или другие приборы, где он возникает посредством химической реакции.

Это и генераторы, где он получается в результате а после этого выпрямляется за счет коллектора.

Применение

В различных устройствах постоянный ток применяется довольно часто. С ним работают, например, многие бытовые приборы, зарядные устройства и генераторы автомобиля. Любой портативный аппарат запитывается от источника, вырабатавающего постоянный вид.

В промышленных масштабах его применяют в двигателях и аккумуляторах. А в некоторых странах им оснащают высоковольтные линии электропередач.

В медицине с помощью постоянного электрического тока проводят оздоровительные процедуры.

На железной дороге (для транспорта) используют и переменный, и постоянный виды.

Переменный ток

Чаще всего, впрочем, применяют именно его. Здесь среднее значение силы и напряжения за определенный период равны нулю. По величине и направлению он постоянно изменяется, причем с равными промежутками времени.

Чтобы вызвать переменный ток, используют генераторы, в которых во время электромагнитной индукции возникает Это осуществляется при помощи магнита, вращаемого в цилиндре (роторе), и статора, выполненного в виде неподвижного сердечника с обмоткой.

Переменный ток используют в радио, телевидении, телефонии и многих других системах ввиду того, что его напряжение и силу возможно преобразовывать, почти не теряя энергию.

Широко применяют его и в промышленности, а также в целях освещения.

Он может быть однофазным и многофазным.

Который изменяется согласно синусоидальному закону, является однофазным. Он изменяется в течение определенного промежутка времени (периода) по величине и направлению. Частота переменного тока является числом периодов за секунду.

Во втором случае самое большое распространение получил трехфазный вариант. Это система из трех электроцепей, которые имеют одинаковую частоту и ЭДС, сдвинуты по фазе на 120 градусов. Ее используют для питания электрических двигателей, печей, осветительных приборов.

Многими разработками в сфере электричества и практическим их применением, а также воздействием на переменный ток высокой частоты человечество обязано великому ученому Николе Тесла. До сих пор не все его труды, оставшиеся потомкам, являются познанными.

Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?

Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени. Параметры, на которые при этом обращают внимание, это частота и напряжение. В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц. Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду. Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.

Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.

Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в которые находятся вблизи домов, предприятий и остальных конструкций.

В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.

Преобразование

Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:

  • подключение моста с четырьмя диодами, имеющих необходимую мощность;
  • подключение фильтра или конденсатора на выход с моста;
  • подключение стабилизаторов напряжения для уменьшения пульсаций.

Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.

Очень давно, учеными был изобретен электрический ток. Первым изобретением был постоянный. Но в последующем, проводя в своей лаборатории опыты, Никола Тесла изобрел переменный ток. Между ними было и есть много различий, согласно которым один из них используется в слаботочной аппаратуре, а другой имеет возможность преодолевать различные расстояния с небольшими потерями. Но многое зависит от величин токов.

Ток переменный и постоянный: разница и особенности

Отличие переменного тока от постоянного, можно понять исходя из определений. Для того чтобы лучше разобраться в принципе работы и особенностях, необходимо знать следующие факторы.

Основные отличия:

  • Движение заряженных частиц;
  • Способ производства.

Переменным, называют такой ток, в котором заряженные частицы, способны изменять направление движения и величину в определенное время. К главным параметрам переменного тока относят его напряжение и частоту.

В настоящее время, общественные электрические сети и различные объекты, используют переменный ток, с определенным напряжением и частотой. Данные параметры определяются оборудованием и устройствами.

Обратите внимание! В бытовых электросетях, используется ток величиной 220 Вольт и тактовой частотой 50 Гц.

Направление движения и частота заряженных частиц в постоянном токе неизменны. Данный ток для питания используют различные бытовые устройства, такие как телевизоры и компьютеры.

В связи с тем, что переменный ток, проще и экономичнее по способу производства и передачи на различные расстояния, он стал основой электрификации объектов. Производят переменный ток на различных электростанциях, с которых посредством проводников, то поступает к потребителю.

Постоянный ток, получают при преобразовании переменного тока или путем химических реакций (например, щелочная батарейка). Для преобразования, используют трансформаторы тока.

Какой уровень напряжения является допустимым для человека: особенности

Для того чтобы знать, какие значения электрического тока являются допустимыми для человека, составлены соответствующие таблицы, в которых указаны величины переменного и постоянного тока и время.

Параметры воздействия электрического тока:

  • Сила;
  • Частота;
  • Время;
  • Относительная влажность.

Допустимое напряжение прикосновения и ток, которые протекают через человеческое тело в различных режимах электроустановок, не превышают следующих значений.

Переменный ток 50 Гц, должен быть не более 2,0 Вольт и силой тока 0,3 мА. Ток с частотой 400 Гц напряжением 3,0 Вольт и сила тока 0,4 мА. Постоянный ток напряжением 8 и силой тока 1 мА. Безопасное воздействие тока с такими показателями, до 10 минут.


Обратите внимание! Если электромонтажные работы производятся при повышенных температурах и высокой относительной влажности, данные значения уменьшаются в три раза.

В электроустановках с напряжением до 100 Вольт, которые глухо заземлены, или изолирована нейтраль, безопасные токи прикосновения следующие.

Переменный ток 50 Гц с разбросом напряжения от 550 до 20 Вольт и силой тока от 650 до 6 мА, переменный ток 400Гц с напряжением от 650 до 36 Вольт, и постоянный ток от 650 до 40 Вольт, не должен воздействовать на тело человека в пределах от 0,01 до 1 секунды.

Опасный переменный ток для человека

Считается, что для жизни человека, переменный электрический ток наиболее опасен. Но это при условии, если не вдаваться в подробности. Многое зависит от различных величин и факторов.

Факторы, влияющие на опасное воздействие:

  • Продолжительность контакта;
  • Путь прохождения электрического тока;
  • Сила тока и напряжение;
  • Какое сопротивление тела.

Согласно правилам ПУЭ, самый опасный ток для человека, это переменный с частотой, которая варьируется в пределах от 50 до 500 Гц.

Стоит отметить, что при условии, сила тока не превышает 9 мА, то любой, может сам освободиться от токоведущей части электроустановки.

Если данное значение превышено, то для того чтобы освободиться от воздействия электрического тока, человеку нужно стронная помощь. Связано это с тем, что ток переменный, намного сильнее способен возбуждать нервные окончания, и вызывать непроизвольные судороги мышц.

Например, при касании токоведущей части устройства внутренней частью ладони, мышечная судорога будет сильнее сжимать кулак, с течением времени.

Почему еще переменный ток опаснее? При одинаковых значениях силы тока, переменный в несколько раз сильнее воздействует на организм.


Так как, переменный ток воздействует на нервные окончания и мышцы, то стоит понимать, что этим, том влияет и на работу сердечной мышцы. Из чего следует, что при контакте с переменным током, возрастает риск летального исхода.

Важным показателем, является сопротивление тела человека. Но при ударе переменным током с высокими частотами, сопротивление тела значительно снижается.

Какой величины опасен для человека постоянный ток

Опасным для человека, может быть и постоянный ток. Конечно переменный, в десятки раз опаснее. Но если рассматривать токи в различных величинах, то постоянный может быть намного опаснее переменного.

Воздействие постоянного тока на человека разделяют:

  • 1 порог;
  • 2 порог;
  • 3 порог.

При воздействии постоянного тока перового порога (ток ощутимый), начинают немного дрожать руки, и появляется легкое покалывание.

Второй порог (ток не отпускающий), в пределах от 5 до 7 мА, является наименьшим значением, при котором человек, не может освободиться от проводника самостоятельно.

Данный ток считается не опасным, так как сопротивление тела человека выше, чем его значения.

Третий порог (фибрилляционный), при значениях от 100 мА и выше, ток сильно воздействует на организм и на внутренние органы. При этом ток при данных значениях, способен вызвать хаотичное сокращение сердечной мышцы и привести к его остановке.

На силу воздействия, влияют и другие факторы. Например сухая кожа человека, обладает сопротивлением от 10 до 100 кОм. Но если касание произошло мокрой поверхностью кожи, то сопротивление значительно снижается.

Сейчас невозможно представить себе человеческую цивилизацию без электричества. Телевизоры, компьютеры, холодильники, фены, стиральные машины — вся бытовая техника работает на нем. Не говоря уже о промышленности и больших корпорациях. Основным источником энергии для электроприемников является переменный ток. А что это такое? Каковы его параметры и характеристики? Чем отличаются постоянный и переменный ток? Мало кто из людей знает ответы на эти вопросы.

Переменный против постоянного

В конце девятнадцатого века, благодаря открытиям в области электромагнетизма, возник спор по поводу того, какой же ток лучше применять, чтобы удовлетворить человеческие потребности. Как же все начиналось? Томас Эдисон в 1878 году основал свою компанию, которая в будущем стала знаменитой General Electric. Компания быстро разбогатела и завоевала доверие инвесторов и простых граждан Соединенных Штатов Америки, так как было построено по всей стране несколько сотен электростанций, работающих на постоянном токе. Заслуга Эдисона — в изобретении трехпроводной системы. Постоянный ток замечательно работал с первыми электрическими двигателями и лампами накаливания. Это были фактически единственные приемники энергии на то время. Счетчик, который также был изобретен Эдисоном, работал исключительно на постоянном токе. Однако в противовес развивающейся компании Эдисона выступили конкурентные корпорации и изобретатели, которые хотели противопоставить постоянному току переменный.

Недостатки изобретения Эдисона

Джордж Вестингауз, инженер и бизнесмен, заметил в патенте Эдисона слабое звено — огромные потери в проводниках. Однако ему не удалось разработать конструкцию, которая могла бы конкурировать с этим изобретением. В чем же недостаток Эдисоновского постоянного тока? Основная проблема — передача электроэнергии на расстояния. А так как при его увеличении растет и сопротивление проводников, то это значит, что будут увеличиваться и потери мощности. Для понижения этого уровня необходимо либо повышать напряжение, а это приведет к понижению силы самого тока, либо утолщать провод (то есть снижать сопротивление проводника). Способов эффективного повышения напряжения постоянного тока в то время не было, поэтому электростанции Эдисона держали напряжение, близкое к двум сотням вольт. К сожалению, передаваемые таким образом потоки мощности не могли обеспечить нужды промышленных предприятий. Постоянный ток не мог гарантировать генерацию электроэнергии мощным потребителям, которые находились на значительном расстоянии от электростанции. А повышать толщину проводов или строить больше станций было слишком дорого.

Переменный ток против постоянного

Благодаря разработанному в 1876 году инженером Павлом Яблочковым трансформатору, изменять напряжение у переменного тока было очень просто, что давало потрясающую возможность передавать его на сотни и тысячи километров. Однако на тот момент не существовало двигателей, которые работали бы на переменном токе. Соответственно, не было и генерирующих станций, и сетей для передачи.

Изобретения Николы Теслы

Несомненное преимущество постоянного длилось недолго. Никола Тесла, работая инженером в фирме Эдисона, понял, что постоянный ток не может обеспечить человечество электроэнергией. Уже в 1887 году Тесла получил сразу несколько патентов на аппараты переменного тока. Началась целая борьба за более эффективные системы. Основными конкурентами Теслы были Томсон и Стенли. А 1888 году однозначную победу получил сербский инженер, который предоставил систему, способную транспортировать электрическую энергию на расстояния в сотни миль. Молодого изобретателя быстро взял к себе Вестингауз. Однако сразу же началось противостояние между компаниями Эдисона и Вестингауза. Уже в 1891 году была разработана Теслой система трехфазного переменного тока, что позволило выиграть тендер по строительству огромной электрической станции. С тех пор однозначно позицию лидера занял переменный ток. Постоянный же сдавал свои позиции по всем фронтам. Особенно когда появились выпрямители, способные преобразовывать переменный ток в постоянный, что стало удобно для всех приемников.

Определение переменного тока

Пример простейшего генератора

В качестве самого простого источника используют прямоугольную рамку, изготовленную из меди, которая закреплена на оси и вращается в магнитном поле при помощи ременной передачи. Концы этой рамки припаяны контактными кольцами к медным, которые скользят по щеткам. Магнит создает равномерно распределенное в пространстве магнитное поле. Плотность силовых магнитных линий здесь одинакова в любой части. Вращающаяся рамка пересекает эти линии, и на ее сторонах индуцируется переменная электродвижущая сила (ЭДС). С каждым поворотом направление суммарной ЭДС меняется на обратное, так как рабочие стороны рамки за оборот проходят через разные полюса магнита. Так как меняется скорость пересечения силовых линий, то становится другой и величина электродвижущей силы. Поэтому если равномерно вращать рамку, то индуктированная электродвижущая сила периодически будет меняться как по направлению, так и по величине, ее можно измерить при помощи внешних приборов и, как следствие, использовать для того, чтобы создавать переменный ток во внешних цепях.

Синусоидальность

Что это такое? Переменный ток графически характеризуется волнообразной кривой — синусоидой. Соответственно, ЭДС, ток и напряжение, которые изменяются по этому закону, называются параметрами синусоидальными. Кривая так названа потому, что является изображением тригонометрической переменной величины — синуса. Именно синусоидальный характер переменного тока — наиболее распространенный во всей электротехнике.

Параметры и характеристики

Переменный ток — это явление, которое характеризуется определенными параметрами. К ним относят амплитуду, частоту и период. Последний (обозначается буквой Т) — это промежуток времени, в течение которого напряжение, ток или ЭДС совершает цикл полного изменения. Чем быстрее будет вращение ротора у генератора, тем период будет меньше. Частотой (f) называют количество полных периодов тока, напряжения или ЭДС. Она измеряется в Гц (герцах) и обозначает количество периодов за одну секунду. Соответственно, чем больше период, тем меньше частоты. Амплитудой такого явления, как переменный ток, называют наибольшее его значение. Записывается амплитуда напряжения, тока или электродвижущей силы буквами с индексом «т» — U т I т, Е т соответственно. Часто к параметрам и характеристикам переменного тока относят действующее значение. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

В данной расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока . В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют . Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

U ср = 2 * U max / π = 0,636 U max

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

U max = U изм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток . Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.

Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток — это движение электронов в проводнике, напряжение — это то, что приводит их (электроны) в движение.

Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.

Отличие постоянного тока от переменного

Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, «течет» в все время одну сторону. Например, по металлическим проводам от плюсового зажима источника напряжения к минусовому (в электролитах его создают положительные и отрицательные ионы). Сами же электроны движутся от минуса к плюсу, но ещё до открытия электрона договорились считать, что ток течет от плюса к минусу и до сих пор при расчетах придерживаются этого правила.

Чем же от постоянного отличается переменный ток (напряжение)? Из самого названия следует, что он меняется. Но — как именно? Переменный ток меняет за период как свою величину, так и направление движения электронов. В наших бытовых розетках — это ток с синусоидальными (гармоническими) колебаниями частотой 50 герц (50 колебаний в секунду).

Если рассмотреть замкнутую цепь на примере лампочки, то мы получим следующее:

  • при постоянном токе электроны будут течь через лампочку всегда в одном направлении от (-) минуса к (+) плюсу
  • при переменном направление движения электронов будет меняться в зависимости от частоты генератора. т. е. если в нашей сети частота переменного тока 50 герц (Hz), то направление движения электронов за 1 секунду поменяется 100 раз. Таким образом + и — в нашей розетке меняются местами сто раз в секунду относительно ноля . Именно поэтому мы можем воткнуть электрическую вилку в розетку «вверх ногами» и все будет работать.

Переменное напряжение в нашей бытовой розетке изменяется по синусоидальному закону. Что это значит? Напряжение от нуля увеличивается до положительного амплитудного значения (положительный максимум), потом уменьшается до нуля и продолжает уменьшаться дальше — до отрицательного амплитудного значения (отрицательный максимум), затем снова увеличивается, переходя через ноль и возвращается к положительному амплитудному значению.

Говоря другими словами, при переменном токе постоянно меняется его заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Получается, что за секунду электроны 100 раз меняют направление своего движения и свою полярность, с положительной на отрицательную (помните, что их частота составляет 50 герц — 50 периодов или колебаний в секунду?).



Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. А генератор переменного тока обладает более простой конструкцией, а потому прост и дешев в эксплуатации.

Дело в том, что одинаковую мощность можно передать высоким напряжением и маленьким током или наоборот: низким напряжением и большим током. Чем больше ток, тем больше нужно сечение провода, т.е. провод должен быть толще. Для напряжения толщина провода не важна, были бы изоляторы хорошие. Переменный ток (в отличие от постоянного) просто легче преобразовывать.

И это — удобно. Так по проводу относительно небольшого сечения электростанция может отправить пятьсот тысяч (а иногда и до полутора миллионов) вольт энергии при токе в 100 ампер практически без потерь. Потом, например, трансформатор городской подстанции «заберет» 500 000 вольт при токе в 10 ампер и «отдаст» в городскую сеть 10 000 вольт при 500 амперах. А районные подстанции уже преобразуют это напряжение в 220/380 вольт при токе порядка 10 000 ампер, для нужд жилых и промышленных кварталов города.

Разумеется схема упрощена и имеется в виду вся совокупность районных подстанций в городе, а не какая-то конкретно.

Персональный компьютер (ПК) работает по схожему принципу, но — в обратную сторону. Он преобразует переменный ток в постоянный а затем, при помощи , понижает его напряжение до значений, необходимых для работы всех компонентов внутри .

В конце 19-го века всемирная электрификация вполне могла пойти и другим путем. Томас Эдисон (считается, что именно он изобрел одну из первых коммерчески успешных ламп накаливания) активно продвигал свою идею постоянного тока. И если бы не исследования другого выдающегося человека, доказавшего эффективность тока переменного, то все могло бы быть по другому.

Гениальный серб Никола Тесла (некоторое время работавший у Эдисона), первым спроектировал и построил генератор многофазного переменного тока, доказав его эффективность и преимущество по сравнению с аналогичными разработками, работавшими с постоянным источником энергии.

Сейчас давайте рассмотрим «места обитания» постоянного и переменного тока. Постоянный, например, находится в нашем телефонном аккумуляторе или батарейках. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в местах его хранения (аккумуляторах).

Источники постоянного напряжения это:

  1. обычные батарейки применяемые в различных приборах (фонарики, плееры, часы, тестеры и т.д.)
  2. различные аккумуляторы (щелочные, кислотные и т. п.)
  3. генераторы постоянного тока
  4. другие специальные устройства, например: выпрямители, преобразователи
  5. аварийные источники энергии (освещение)

Например, городской электротранспорт работает на постоянном токе напряжением в 600 Вольт (трамваи, троллейбусы). Для метрополитена оно выше — 750-825 Вольт.

Источники переменного напряжения:

  1. генераторы
  2. различные преобразователи (трансформаторы)
  3. бытовые электросети (домашние розетки)

О том, как и чем измерять постоянное и переменное напряжение мы с Вами говорили вот , а напоследок (всем тем кто дочитал статью до конца) хочу рассказать небольшую историю. Озвучил ее мне мой шеф, а я перескажу с его слов. Уж больно она к нашей сегодняшней теме подходит!

Поехал он как-то в служебную командировку с нашими директорами в соседний город. Налаживать дружественные отношения с тамошними IT-шниками:) А сразу возле трассы там такое замечательное местечко есть: родник с чистой водой. Возле все обязательно останавливаются и воду набирают. Это, своего рода, уже традиция.

Местные власти, решив облагородить данное место, сделали все по последнему слову техники: вырыли сразу под родничком большую прямоугольную яму, обложили ее ярким кафелем, перелив сделали, подсветку светодиодную, бассейн получился. Дальше — больше! Сам родник «упаковали» в крапленую гранитную крошку, придали ему благородную форму, иконку над жерлом под стекло вмуровали — святое место, значится!

И последний штрих — поставили систему подачи воды на фотоэлементе. Получается, что бассейн всегда наполнен и в нем «булькает», а чтобы набрать воду непосредственно из родничка, нужно поднести руки с сосудом к фотоэлементу и оттуда — «проистекает» 🙂

Надо сказать, что по дороге к источнику наш шеф рассказывал одному из директоров, как это круто: новые технологии, вайфай, фотоэлементы, сканирование по сетчатке глаза и т.д. Директор был классическим технофобом, поэтому придерживался противоположного мнения. И вот, подъезжают они к родничку, подносят руки куда следует, а вода не течет!

Они и так, и сяк, а результата — ноль! Оказалось, что тупо не было напряжения в электрической сети, которая питала эту шайтан-систему:) Директор был «на коне»! Отпустил несколько «контрольных» фраз по поводу всех этих п…х технологий, таких же п…х элементов, всех машин вообще и данной конкретной в частности. Зачерпнул канистрой прямо из бассейна и пошел в машину!

Вот и получается, мы можем настроить все что угодно, «поднять» навороченный сервер, предоставить лучший и востребованный сервис, но, все равно, самый главный человек — это дядя Вася-электрик в ватнике, который одним движением руки может организовать полный skipped всей этой технической мощи и изяществу:)

Так что помните: главное — качественное электропитание. Хороший (источник бесперебойного питания) и стабильное напряжение в розетках, а все остальное — приложится:)

На сегодня у нас — все и до следующих статей. Берегите себя! Ниже — небольшое видео по теме статьи.

Чем переменный ток отличается от постоянного

В преддверии статьи о трансформаторах, мы решили устроить небольшой экскурс и выпустить две небольшие статьи по основным электротехническим определениям, которые плавно подведут нас к пониманию принципа действия трансформаторов. Ведь электричество и трансформаторы неразрывно связаны в своей истории, когда в связи с ростом передаваемых мощностей появилась потребность адаптировать мощность или напряжение под нужные пользователю параметры.

Что такое постоянный и переменный ток?

Постоянный ток не меняет своих показателей и направления движения. Встретить такой ток можно в самых обычных пальчиковых батарейках. Постоянный ток характеризуется непрерывным, направленным в одну сторону движением заряженных частиц, он практически никогда не используется в бытовых целях. Потому что передача такого тока на большие расстояния несёт за собой колоссальные потери и передавать его просто невыгодно. Поэтому, чтобы сделать электричество более дешевым и доступным, используют именно переменный ток.

Переменный ток — это ток, направление движения которого может меняться в процессе работы, равно как и его показатели. Поэтому для движения такого тока используется два полюса. Чаще всего их называют плюс и минус. Такой ток имеет частоту. Частота, это самое сложное для понимания, постараемся рассказать максимально просто. Начнем с того, что во всех бытовых сетях по всему миру используется периодический переменный ток. Именно эти самые пресловутые периоды и делают его переменным. Переменный ток имеет определённый период своих изменений. Периодом называется полный цикл всех изменений показателей тока. Как только заканчивается первый период, начинается следующий период и так до бесконечности. Один период равен одному Герцу, а частота тока измеряется в секунду. Общепринятая частота тока в России и большинстве стран Европы равна 50 Гц. В США и Канаде используют сети частотой 60 Гц, а в некоторых странах, например, в Японии, используют оба стандарта частоты. Это и позволяет току двигаться постоянно. Как только вы втыкаете вилку в сеть, вы замыкаете плюс и минус, и начинается движение тока.

Мы с вами разобрались, что такое постоянный и переменный ток, и какая между ними разница. Поговорили о том, что переменный ток имеет огромные потери при передаче на большие расстояния. В следующий раз расскажем про высоковольтное и низковольтное напряжение. Нам предстоит понять, как именно электричество попадает в наши квартиры.

переменного тока и постоянного тока | Различия между переменным током и постоянным током

Электроэнергия производится двумя способами: переменный ток (AC) и постоянный ток (DC). Сегодня более 90% электроэнергии производится в виде переменного тока. Но есть много различий между переменным током и постоянным током. Давайте сравним переменный и постоянный ток.

Различия между переменным током (AC) и постоянным током (DC)

Мы можем перечислить различия между переменным током (AC) и постоянным током (DC) следующим образом:

Определение

Ток, который периодически меняет направление и силу в зависимости от времени, называется переменным током (AC).Сила переменного тока зависит от мощности источника. Ток, направление и сила которого не меняются с течением времени, называется постоянным током (DC).

Форма сигнала

Переменный ток меняет направление (как положительное, так и отрицательное). Форма волны чистого переменного тока представляет собой синусоидальную волну. Другие формы волны переменного тока — квадрат, треугольник, пилообразная волна.

Постоянный ток всегда течет в одном и том же направлении. Это либо положительно, либо отрицательно. Чистый DC — это ровная линия.

История и ученые

Первой системой распределения электроэнергии, представленной в 1882 году, была система Томаса Эдисона на 110 В постоянного тока от станции Перл-Стрит на Манхэттене. Затем последовала электростанция на Гейбл-стрит в Хьюстоне, штат Техас, и несколько других небольших электростанций в каждом городе.

С увеличением спроса на электроэнергию возрастала потребность в повышении надежности и эффективности. Парсонс сделал возможным эффективное производство электроэнергии благодаря изобретению паровой турбины в 1884 году.В 1881 году француз Люсьен Голар и англичанин Джон Д. Гиббс запатентовали в Англии систему передачи переменного тока. Этот патент был куплен американцем Джорджем Вестингаузом в 1885 году. В 1886 году Уильям Стэнли установил первую практическую трансмиссию переменного тока в Грейт-Баррингтоне, штат Массачусетс. Трансформатор использовался для повышения генерируемого напряжения до 3000 В для передачи и понижался другим трансформатором до 500 В для использования. В 1888 году Никола Тесла представил многофазную систему переменного тока. Позже было обнаружено, что трехфазные системы лучше, чем одно- или двухфазные системы, и они стали стандартными системами передачи.AC по-прежнему широко используется в современных отраслях промышленности, на предприятиях и в домах по всему миру.

Безопасность

Источники питания постоянного тока

имеют положительную и отрицательную клеммы. Ток течет от отрицательной стороны батареи через цепь к положительной стороне батареи. Следовательно, прикосновение к одной стороне цепи не приведет к поражению электрическим током, потому что цепь не замкнута. Прикосновение к обеим сторонам приведет к замыканию цепи и может привести к поражению электрическим током.

Поскольку ток в цепи переменного тока течет в обоих направлениях, нет положительного и отрицательного, как в цепях постоянного тока. Вместо этого у них есть один или два токоведущих или горячих проводника, нейтральный провод и, возможно, заземляющий провод или земля, в зависимости от проводки.

Обычно, когда цепь замыкается, ток течет вперед и назад между горячим и нейтральным проводниками. Заземление служит мерой безопасности, позволяя разрядить избыточную энергию в случае опасности или неисправности.

Вы можете подумать, что для получения электрического разряда от цепи переменного тока вам нужно коснуться и горячего, и нейтрального, но это не так, по крайней мере, в типичных цепях переменного тока, подобных тем, что находятся в здании. Поскольку у большинства цепей переменного тока есть заземление, если вы коснетесь только горячей стороны цепи, электричество пройдет через вас и вернется на землю, чтобы замкнуть цепь.

Передача и распределение

Уильям Стэнли разработал трансформаторы

, которые могли преобразовывать электричество в желаемое напряжение.В системе переменного тока трансформаторы использовались для повышения или повышения напряжения, выходящего из электростанции. Это позволило электричеству перемещаться по проводам на большие расстояния. Когда электричество достигло своего пункта назначения, другой трансформатор затем отключился или уменьшил напряжение, чтобы электричество можно было использовать в домах и на фабриках. Система постоянного тока не могла использовать трансформаторы. В системе постоянного тока напряжение падало по мере того, как оно перемещалось все дальше и дальше от генератора.Чтобы преодолеть этот недостаток, необходимо было бы строить электростанции рядом с опытными потребителями, что является дорогостоящим решением.

Вскоре система переменного тока — а не более дорогая, требующая больших затрат на обслуживание и менее эффективная система постоянного тока — стала получать большую часть заказов. Вскоре стало очевидным еще одно преимущество альтернативной системы: позволяя центральным станциям обслуживать более широкие рынки, система кондиционирования воздуха также поощряла коммунальные предприятия строить более крупные станции, которые затем получали выгоду от экономии за счет масштаба и снижали свои эксплуатационные расходы.

В 1893 году была выбрана система переменного тока для передачи электроэнергии из Ниагарского водопада в Буффало. Вскоре после этого «универсальная» система переменного тока стала новым стандартом для передачи электроэнергии. Теперь одна генерирующая станция может относительно дешево передавать электроэнергию в обширной зоне обслуживания.

Преобразование друг в друга

Электростанции

по умолчанию вырабатывают переменный ток, поэтому для его преобразования в постоянный ток потребуются дополнительные усилия. Преобразовать переменный ток в постоянный намного проще и дешевле, чем преобразовывать постоянный ток в переменный.

Поколение

Батареи, топливные элементы и солнечные элементы производят так называемый постоянный ток (DC). С другой стороны, мощность, которая поступает от генератора на электростанции, называется переменным током (AC)

.

С помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью.

Эффективность

Потери мощности в линии (P = I2R) зависят от сопротивления линии, а также от тока, протекающего по линии.Однако использование более узких, но менее дорогих проводов должно иметь более высокое сопротивление, чем проводники с более толстым радиусом (R = ρl / A). Однако из-за высокого напряжения ток в линии передачи становится низким, и квадрат меньшего тока уменьшает увеличение сопротивления линии, что приводит к уменьшению общих потерь мощности в линии. Таким образом, эффективность передачи переменного тока выше, чем передачи постоянного тока.

Частота

Частота переменного тока показывает, сколько раз меняется направление напряжения и тока.Если частота 50 Гц, это означает, что ток меняет направление 50 раз. Частота постоянного тока всегда равна нулю. Потому что он никогда не меняет своего направления.

Направление

Постоянные токи — это токи, которые, хотя их величина может меняться, по существу текут только в одном направлении. Другими словами, постоянные токи однонаправлены. С другой стороны, переменные токи двунаправлены и постоянно меняют направление своего потока.

Поток электронов

В переменном токе электроны соответственно меняют направление между отрицательным и положительным полюсами.В постоянном токе электроны движутся только от отрицательного полюса к положительному. Символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Коэффициент мощности

В цепи постоянного тока мощность равна произведению напряжения и тока. Эта формула также верна для чисто резистивных цепей переменного тока. Однако, когда в цепи переменного тока присутствует реактивное сопротивление — индуктивное или емкостное — формула мощности постоянного тока неприменима.Напротив, произведение напряжения и тока выражается в вольт-амперах (ВА) или киловольт-амперах (кВА). Этот продукт известен как кажущаяся мощность. Когда счетчики используются для измерения мощности в цепи переменного тока, полная мощность — это значение напряжения, умноженное на значение тока. Фактическая мощность, которая преобразуется схемой в другую форму энергии, измеряется ваттметром и называется истинной мощностью. При проектировании и эксплуатации системы питания переменного тока желательно знать отношение истинной мощности, преобразованной в данной цепи, к полной мощности цепи.Это соотношение называется коэффициентом мощности. Коэффициент мощности переменного тока варьируется от 0 до 1. Коэффициент мощности постоянного тока всегда равен 1.

Расчет

Анализ системы переменного тока всегда включает комплексные числа, а постоянный ток — только действительное число, что упрощает анализ. Анализ цепей постоянного тока имеет дело с постоянными токами и напряжениями, в то время как анализ цепей переменного тока имеет дело с изменяющимися во времени напряжениями и токами.

Хранение

DC легче хранить, особенно в небольших объемах.Когда электричество хранится, мы можем использовать его, когда нам это нужно. Лучший способ хранить электроэнергию для относительно небольших приложений — использовать аккумуляторные батареи. AC не может быть сохранен.

Двигатели тяговые

Изначально двигатели постоянного тока были основой электрических тяговых двигателей. Его основными преимуществами были крутящий момент-скорость и простая система управления тяговым усилием, однако в двигателях постоянного тока используются переключатели / щетки и коллекторы, что делает их менее надежными и подходящими для работы на высоких скоростях.Использование двигателей переменного тока вместо двигателей постоянного тока было первым изменением в электрике железнодорожного транспорта. Для более высоких плотностей мощности двигатели переменного тока уменьшили габариты и вес, повысили эффективность и удельную мощность, снизили эксплуатационные расходы и сократили техническое обслуживание, поскольку у них нет щеток. В настоящее время двигатели постоянного тока используются в специальных приложениях с более низкими требованиями к мощности, поскольку затраты на управление (силовая электроника) ниже.

Электромобили

Электромобили работают от постоянного тока, и их батареи можно заряжать от постоянного тока за небольшую часть времени, необходимого для зарядки от переменного тока.Зарядные устройства для быстрых электромобилей всегда работают от постоянного тока.

Передача на очень большие расстояния

Передача переменного тока заменила передачу постоянного тока из-за простоты и эффективности преобразования напряжения с помощью трансформаторов. Однако передача высокого напряжения постоянного тока (HVDC) имеет то преимущество, что в ней отсутствуют реактивные составляющие тока и, следовательно, отсутствуют потери в линиях из-за таких токов и нет необходимости в синхронизации. Постоянный ток обычно используется только для передачи на большие расстояния, потому что оборудование, используемое для преобразования, стоит дорого.Он также используется для соединения двух систем с очень короткими линиями, поэтому фазы систем не нужно синхронизировать, а также для подводных силовых кабелей из-за ограничений по току зарядки в кабелях переменного тока.

Продолжить чтение

Мощность переменного тока

и мощность постоянного тока — Почему система переменного тока лучше системы постоянного тока

Системы питания используют либо постоянный ток (постоянный ток), либо переменный ток (переменный ток). Давайте изучим эти системы.

Сравнение переменного и постоянного тока

Рассмотрим следующий сценарий:

  • Электростанция питает дом, расположенный на расстоянии более 1000 футов.
  • Дом требует тока 100 А при 480 В.
  • Установка вырабатывает 100 А при 480 В
  • Предположим, что система постоянного тока и система переменного тока с системой переменного тока, использующей трансформатор на 480/4800 В рядом с генерирующей станцией и трансформатор на 4800/480 В рядом с домом. См. Рисунок ниже.
Рисунок 1: AC vs.Система постоянного тока

Давайте посмотрим, как система постоянного тока соотносится с системой переменного тока.

СИСТЕМА ПОСТОЯННОГО ТОКА СИСТЕМА ПЕРЕМЕННОГО ТОКА
1. Для передачи 100 А по линии потребуется кабель большего диаметра (в диаметре) для системы постоянного тока. 1. После преобразования ток в ЛЭП будет 10А. Потребуется кабель меньшего размера.

2. Кабель большего диаметра означает меньшее сопротивление проводника. Обычно 0.15 Ом на 1000 футов можно использовать для проводника на 100 А (на AWG). В этом случае

Падение напряжения (VD) на линии = 0,15 * 100 = 15 В.

2. Кабель меньшего диаметра (диаметр) означает большее сопротивление. Обычно для проводника на 10 ампер можно использовать 1,5 Ом на 1000 футов. В этом случае

Падение напряжения (VD) = 1,5 * 10 = 15 В.

То же, что и в системе постоянного тока.

3. Генератор постоянного тока должен генерировать 480 В плюс 15 В для подачи энергии в дом.Таким образом, в доме напряжение упадет с 495 В на холостом ходу до 480 В при полной нагрузке. Вариант на 15 В.

3. Подождите, пока отводы на трансформаторе поднимут напряжение на 15 В, чтобы получить 4815 В. В доме это эквивалентно 481,5 В. Отклонение от холостого хода до полной на 1,5 В.

Инженеры называют это изменение напряжения регулированием напряжения (VR). Важный фактор в энергосистеме. Чем меньше VR, тем лучше система.

4.Потери в системе передачи = VD * Ток (в ваттах) = 15 * 100 = 1500 Вт

4. Потери в системе передачи (в ваттах) = 15 * 10 = 150 Вт.

В десять раз меньше, чем передача постоянного тока.

5. Трансформаторы не работают с подключенным к нему источником постоянного тока. Это приведет к короткому замыканию. Единственный способ понизить напряжение для распределения — использовать мотор-генератор или роторный преобразователь — процесс неэффективный.

5.Трансформаторы работают с КПД 99% при полной нагрузке. Используется во всей системе переменного тока.

Система питания постоянного тока

Система постоянного тока не может применяться ко всем областям энергосистемы. Поскольку постоянный ток создает постоянное магнитное поле, преобразовать напряжение (с помощью индукции) непросто. Значит, не подходит для распределения мощности . Однако после подачи питания в дом вы можете получать питание постоянного тока с помощью адаптера питания (который содержит крошечный трансформатор и выпрямитель), поставляемого производителем вашего устройства.

На уровне групповой передачи существует ограниченное применение системы постоянного тока. Чтобы получить сверхвысокое напряжение постоянного тока (от переменного тока), а затем преобразовать его обратно в переменный, вам нужны дорогостоящие преобразовательные подстанции, обычно стоимостью в 100 миллионов долларов. В Северной Америке преобразовательные подстанции связывают межрегиональные энергосистемы на своих границах. Например, западное межсоединение (выделено фиолетовым цветом) связано с восточным межсоединением (синим и зеленым). Восточное межсоединение привязано к Техасу (серым цветом) и Канаде (белым цветом).

Преобразовательные подстанции HVDC в США

Разделение межрегиональных систем, как показано, гарантирует, что любые системные нарушения (по величине напряжения, току короткого замыкания или колебаниям частоты) не передаются.

Если вы можете переварить стоимость двух преобразовательных подстанций, можно получить огромную экономию на инфраструктуре линий электропередачи. Ознакомьтесь с этой брошюрой Alstom для получения дополнительной информации.

Из-за экономичности этой технологии текущее применение для систем постоянного тока при большой мощности —

  • для очень длинных линий передачи (т. Е.е. экономия от инфраструктуры линий электропередачи идет на преобразовательные подстанции)
  • интеграция возобновляемых источников энергии. Например, энергия ветра, генерируемая на Равнинах Среднего Запада Америки, может быть экспортирована на Западное или Восточное побережье. Гидроэнергетику северо-запада или Канады можно экспортировать туда, где в этом есть необходимость.
Рисунок 2: Цепь постоянного тока

В системах постоянного тока мощность, передаваемая на нагрузку, определяется по формуле:

P = V * I (Вт)

Где, V = R * I (закон Ома)

Потери, понесенные в системы постоянного тока являются чисто резистивными (индуктивного сопротивления нет!).Они выделяются в виде тепла, определяемого величиной I²R (Джоули).

Преимущество системы питания постоянного тока:
  1. Простая система. Легко понять. Никаких абстрактных понятий, таких как реактивная мощность, в отличие от систем переменного тока.
  2. Подходит для передачи HVDC. Для передачи энергии постоянного тока требуется меньше линий передачи.
  3. Может использоваться для соединения двух асинхронных систем переменного тока.
  4. Подводная передача электроэнергии возможна по линиям постоянного тока. Он не имеет емкостного эффекта, так как линии переменного тока находятся под морской водой.
  5. Постоянный ток не вызывает фибрилляции сердца, как переменный ток. Это просто останавливает это. Фибрилляция сердца опаснее, чем сердце, которое на мгновение перестало биться.
Недостаток системы питания постоянного тока:
  1. Система постоянного тока не подходит для распределения энергии.
  2. Системы HVDC, которые используются в настоящее время, являются производными от систем переменного тока, использующих дорогие преобразовательные подстанции. Снижение затрат за счет сокращения линий передачи (особенно междугородных) в системе HVDC идет на строительство дорогостоящих преобразовательных подстанций.

Система питания переменного тока

Щелкните изображение ниже, если вам нравятся уравнения мощности переменного тока.

Рисунок 3: Схема переменного тока

Переменный ток, в отличие от постоянного тока, является величиной, изменяющейся во времени. Это имеет серьезные последствия. Теперь переменным токам приходится иметь дело не только с сопротивлением (материала), но и с противодействием индуктивного сопротивления линий передачи, трансформаторов, двигателей и т. Д. — посмотрите закон Ленца.

Реальная мощность, описанная в уравнении (слева), выполняет фактическую работу в энергосистеме.Это то, что приводит в движение моторы, зажигает лампочки и так далее. С другой стороны, реактивная мощность не выполняет реальной работы. Но тем не менее это необходимо. Он в основном используется для намагничивания трансформаторов, двигателей, любых катушек, линий передачи и т. Д. Другими словами, он облегчает передачу реальной мощности, удовлетворяя потребности каждого оборудования. Все еще не понимаете? Посмотрите видео ниже, которое лучше всего описывает это явление.

Без поддержки реактивной мощности до длинных линий передачи (от генераторов, конденсаторных батарей и т. Д.) на концах линий будет значительное падение напряжения.

Почему трехфазная система питания переменного тока, а не четырех, пяти или шести фаз?

Системы переменного тока в основном проектируются как трехфазные. Вы можете обеспечить большую мощность с трехфазной системой, чем с однофазной или двухфазной системой, но нет никакого преимущества в использовании более трех фаз. Это точка безубыточности. Использование большего количества линий означает более высокие затраты на инфраструктуру.

Переменный ток колеблется 60 раз в секунду (в США).Это в области электричества. В механической области это соответствует 1800 об / мин для 4-полюсного генератора. Если к электросети подключено более одного 4-полюсного генератора, то все эти генераторы должны вращаться со скоростью 1800 об / мин для выработки переменного тока с частотой 60 Гц. Если какой-либо генератор ускоряется или замедляется (из-за переходных процессов в системе), необходимо немедленно принять меры по устранению неисправности (локализовать неисправность или отключить генератор, работающий вне такта). Подробнее об этом читайте в этой статье.

Преимущества системы питания переменного тока
  1. Очень гибкая система.Он может передавать питание нагрузкам на большие расстояния с помощью трансформаторов.
  2. Генераторы переменного тока прочнее и проще в сборке, чем генераторы постоянного тока. Генераторы постоянного тока нуждаются в щетках и коммутаторах для генерации постоянного тока.
Недостаток системы питания переменного тока
  1. Очень опасен, поскольку вызывает фибрилляцию сердца. Незаземлен от скачков напряжения.
  2. Сложная система. Компьютер с программным обеспечением для анализа энергосистем (например, EMTP, ETAP, PTW и т. Д.) Спас инженеров.
  3. Стабильность системы имеет решающее значение.Система выходит из строя, если соединенные между собой генераторы не генерируют на одной и той же частоте (т.е. не синхронизируются)

Резюме

Системы постоянного тока отлично подходят для передачи большой мощности при действительно высоких напряжениях. Однако они просто не подходят для распределения электроэнергии. Системы переменного тока предоставляют простые средства доставки энергии удаленным пользователям с удаленных генерирующих станций. Сочетание обеих технологий подходит для построения энергосистемы.

Поддержите этот блог, поделившись статьей

Разница между напряжением и током переменного и постоянного тока |

Вопрос от пользователя Voltimum: Кабели обычно рассчитаны на переменное напряжение и ток.Могут ли они также использоваться для передачи постоянного напряжения и тока и в чем различия?

Ответ предоставлен Мартином Муксуорти. Мартин является экспертом в области австралийских стандартов, кабелей для электроснабжения, кабелей для частотно-регулируемых приводов, инструментальных и коммуникационных кабелей.

Австралийские стандарты, описывающие конструкцию кабелей, основаны на напряжениях и токах переменного тока. Это не означает, что одни и те же кабели нельзя также использовать для передачи постоянного напряжения и тока, как они, конечно, могут.

Что касается номинального напряжения постоянного тока кабеля, фактически, напряжения постоянного тока менее обременительны, чем напряжения переменного тока. Принято правило: номинальное напряжение постоянного тока кабеля на 50% выше, чем номинальное напряжение переменного тока. Например, если у нас есть кабель с номиналом 0,6 / 1 кВ, то есть 600 В между фазой и землей и 1000 В между фазами, его соответствующее номинальное напряжение постоянного тока будет 900 В между проводником и землей и 1500 В постоянного тока между проводником. (Обратите внимание, что я перешел от описания «фазы» к «проводнику» просто потому, что термин «фаза» применим только к системам переменного тока.)

Что касается номинального постоянного тока кабеля, то опять же, постоянный ток менее обременительн, чем переменный ток, и имеет меньший эффект нагрева по сравнению с переменным током. Однако эффект не так велик и зависит от кожного воздействия, которое возникает, когда по проводнику проходит переменный ток. Распределение тока имеет тенденцию перемещаться к внешней стороне проводника при прохождении переменного тока, и это увеличивает сопротивление проводника переменному току. Воздействие на кожу зависит от частоты и размера проводника.При сетевых частотах 50 Гц влияние незначительно для медных проводников 95 мм2 и действительно начинает становиться важным фактором только при размерах проводов выше 185 мм2 для меди, где разница составляет более 2%. Поэтому общепринятой практикой является присвоение номинального тока переменного тока из AS / NZS 3008.1.1 кабелю постоянного тока, поскольку ошибка будет небольшой и консервативной. Только при работе с чрезвычайно высокими токами может возникнуть необходимость выполнить подробный расчет номинального тока, чтобы точно определить разницу между номинальным током переменного тока и номинальным током постоянного тока.

У вас есть вопросы специалиста? Попробуйте экспертов Voltimum прямо сейчас!

В чем разница между переменным и постоянным напряжением?

В чем разница между переменным и постоянным напряжением?

Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление.

Где мы используем постоянный ток?

Постоянный ток имеет множество применений, от зарядки аккумуляторов до больших источников питания для электронных систем, двигателей и т. Д. Очень большое количество электроэнергии, поступающей от постоянного тока, используется при выплавке алюминия и других электрохимических процессах.

Автомобильный аккумулятор на 12 В переменного или постоянного тока?

Автомобильные аккумуляторы обеспечивают 12,6 В постоянного тока через шесть ячеек, производящих по 2,1 В. Все, что ниже ставки заряда 75% или около 12.45 В, как правило, означает, что аккумулятор недостаточно заряжен и требует подзарядки.

Использует ли автомобиль переменный или постоянный ток?

В автомобилях используется постоянный ток, постоянный ток. Это электричество, производимое батареями, и оно течет в одном постоянном направлении.

Какое напряжение может вырабатывать динамо-машина?

Обычная динамо-машина для велосипеда может выдавать около 0,5 А при 12 В, то есть выходная мощность составляет 6 Вт.

Может ли динамо заряжать аккумулятор?

Динамо-машина заряжает аккумулятор, пока его напряжение выше, чем напряжение аккумулятора.Вам нужно будет контролировать ток, идущий в батарею, тем более, что ваша батарея имеет относительно небольшую емкость по сравнению с возможностями динамо-машины.

Как динамо заряжает аккумулятор?

Когда батарея вырабатывает электричество, происходит прямо противоположное: лишний свинец растворяется с пластин в реакции, которая производит электрический ток. Аккумулятор заряжается от генератора на современных автомобилях или от динамо-машины на более ранних. Оба являются типами генераторов и приводятся в движение ремнем от двигателя.

Что такое динамо-зарядка?

ЗАРЯДКА С DYNAMO. Функция динамо-машины — преобразовывать механическую энергию в электрическую. Механизм управления, связанный с динамо-машиной, регулирует выходной ток в соответствии с требованиями к электрической системе и состоянием батареи.

Что дает Динамо?

Испытание под нагрузкой с постоянным сопротивлением (18 Ом)

скорость (км / ч) Выходная мощность (Вт) Выходной ток (A)
5 0.45 0,115
15 1,89 0,325
30 3,21 0,435

Как работает динамо-машина постоянного тока?

Динамо-машина В динамо-машине коммутатор с разъемным кольцом меняет соединения катушек каждые пол-оборота. Поскольку индуцированная разность потенциалов вот-вот изменит направление, соединения меняются местами. Это означает, что ток во внешней цепи всегда в одном и том же направлении.

Что такое принцип генератора постоянного тока?

Генератор

постоянного тока работает по принципу динамически индуцированной электромагнитной силы. Когда проводник помещается в переменное магнитное поле, внутри проводника индуцируется электродвижущая сила. Величина наведенной ЭДС измеряется с помощью уравнения электродвижущей силы генератора.

В чем разница между двигателем постоянного тока и динамо-машиной?

Динамо-машина преобразует механическую энергию в электрическую, а двигатель — в механическую.Динамо-машина принимает движение и выводит электричество, а двигатель принимает электричество и выводит движение.

Сколько электроэнергии может вырабатывать двигатель постоянного тока 12 В?

Он может производить более 1300 Вт, что составляет 91 ампер при 14,7 В — более чем достаточно для зарядки чего угодно, включая автомобильные аккумуляторы.

Какое напряжение нужно двигателю постоянного тока?

Типичные двигатели постоянного тока могут работать от напряжения от 1,5 В до 100 В и более. Робототехники часто используют двигатели, которые работают от 6, 12 или 24 вольт, потому что большинство роботов питаются от батарей, и батареи обычно доступны с этими значениями.

Сколько стоит двигатель постоянного тока 775?

Стандартный двигатель 775 постоянного тока 12В-36В 3500-9000об / мин Двигатель с большим крутящим моментом и высокой мощностью

M.R.P .: 999,00
Цена: ₹ 209,00
Вы экономите: ₹ 790,00 (79%)
С учетом всех налогов

Какая скорость вращения двигателя постоянного тока 775?

Сравнить с другими электродвигателями

Этот элемент 775 Двигатель постоянного тока 12 В / 24 В, 10000 об / мин / 20000 об / мин, высокоскоростной, 80 Вт, удлинительный вал с крутящим моментом высокой мощности… 775 Двигатель постоянного тока 12 В — 24 В постоянного тока, макс. 6000-12000 об / мин Шарикоподшипник Большой крутящий момент Высокая мощность Малошумный мотор-редуктор Электронный компонент Двигатель
марка Acogedor SPSP
материал Материал