Изоляция силовых кабелей: Изоляция кабеля. Какие виды бывают.

Содержание

Изоляция кабеля. Какие виды бывают.

Изоляция кабеля нужна для того, чтобы изоляционный материал препятствовал распространению электрического тока. Без изоляции кабель был бы уязвимым для любых повреждений и всегда бы бил током. Изолирующий слой должен иметь достаточную электрическую прочность, что полностью исключит возможность пробоя электричества под напряжением. Есть определённая изоляция кабелей гост, которая задаёт стандарты и требования к качеству.

Виды изоляции

ПВХ – наиболее распространённый вид изоляции. За счёт вариаций состава полимера можно добиться разных свойств материала. Данный вид обладает высоким электрическим сопротивлением в комнатных температурах, однако, когда температура повышается, его сопротивление уменьшается. Потому ПВХ изоляция подходит при работе в температурном режиме не выше 70 градусов. Изоляция кабеля обладает низкой ценой и химической стойкостью ко многим веществам. Применяется в местах, где соединение неподвижно. Не способна распространять горение.

Резина – применяется в прорезиненной оболочке шлангового типа.

Из-за своей дороговизны, как правила, любой тип резины, который выполняет роль изоляции, считается искусственным материалом. В каучуке присутствуют добавления вулканизирующих веществ, ускорителей вулканизации, наполнителей, смягчителей, противостарителей, красителей. Резиновая изоляция позволяет совершать большой радиус изгиба, потому успешно используется для подключения подвижных соединений. Имеет недорогую стоимость и высокий уровень электроизоляционных характеристик. Резина считается во много раз более эффективным материалом, чем ПВХ. Способствует распространению горения.

Кремнийорганический тип – имеет повышенную стойкость к пониженной и повышенной температуре.

Сохраняет свои заявленные характеристики при температуре от -60 до – +180 градусов. За счёт силоксановых связей имеется стойкость к окислению. Когда температура превышает отметку 240 градусов, то прочность изоляции уменьшится в два раза. Используется для термостойкого провода. Из минусов можно выделить низкое сопротивление кислоты и щелочи, а также высокую стоимость. Данная

изоляция силовых кабелей подойдёт для работы в нестабильных температурных условиях.

Сшитый полиэтилен – это относительно новый вид изоляции.

Используется для высоковольтных кабелей, которые прокладываются по земле. Обладает высокой гибкостью и способен работать при большом нагреве жилы без потери своих качеств. Из-за сложного изготовления данная изоляция стоит относительно дорого.

Полиэтиленовая – имеет 2 разновидности, применяемые в кабельной промышленности. Это ПЭНП и ПЭВП, которые различаются уровнем плотности. Имеют хорошую устойчивость к растворителям, когда температура около +20. При высокой температуре теряет своё сопротивление. Относится к категории кабелей общей промышленности для прокладывания стационарно. Данный материал превышает сопротивление электричеству в 300 раз больше, чем изоляция из ПВХ. Материал имеет слабую гибкость, потому не подходит как

изоляция жил кабеля передвижных прокладок. Обладает относительно дорогой стоимостью.

ПТФЭ – имеет хорошие технические характеристики на разных температурных режимах. Рабочий диапазон работы без потери характеристик – от -90 до +250. Когда температура повышается свыше 400 градусов, образуются ядовитые газы. Изоляция кабеля ПТФЭ может оказывать противостояние большинству химических веществ. При соблюдении рабочей температуры может реагировать только на расплавленный калий, натрий и некоторые фтористые соединения. Применяется для механических нагрузок. Из недостатков материала можно отметить высокую стоимость и содержание токсичных веществ.

Электромагнитный экран – используется для стабилизации электрических полей в кабельной или проводниковой промышленности. Это в большинстве случаев высоковольтные кабеля и кабеля управления. Экран может производиться из: медной проволоки, электропроводящих резин, оцинкованных стальных проволок, металлизированной бумаги. Применяется для защиты сигнала от помех электромагнитного поля. Изоляция обладает средним уровнем гибкости и способна защищать от механических повреждений. Из минусов можно отметить высокую электропроводность и дорогую стоимость материалов.

Преимущества заказа в компании Электро-САД

Изоляция кабеля – это важное составляющее кабеля, подходить к её выбору нужно тщательным образом. В компании Электро-САД измерение изоляции кабеля происходит с учётом всех факторов, которые могут влиять на результат, это нужно, чтобы изоляция соответствовала всем заявленным требованиям качества. Это позволяет получить по-настоящему высококачественную изоляцию.

 

Виды и типы изоляции проводов или кабелей

Техническая составляющая современного мира не может существовать без питания электричеством. Миллионы электростанций поставляют данный ресурс как в жилые дома, так и на производственные сооружения. Освещение, обеспечение работоспособности приборов — вся современная жизнь зависит от тока. Для передачи этого ценного ресурса используются кабели и провода, изолированные специальными материалами для долговечности и безопасности службы.

Виды и типы изоляции проводов и кабелей

В производстве кабелей используют множество текстур и материй, обладающих способностью к изоляции. Основным свойством изолирующего покрытия признается полная неспособность проводить электрический ток.

Что собой представляют изолированные кабели

Примерами такого покрытия служат:

  • резиновое;
  • ПВХ;
  • полиэтиленовое;
  • фторопластовое;
  • бумажное;
  • шелковое;
  • полистироловое.
Изоляция может быть сделана из разного материала

Менее популярным изолятором служит окись магния. В зависимости от особенностей кабеля, его конструкции и эксплуатируемого сетевого напряжения подбирается тип изолирования:

  • оболочные и безоболочные кабели с показаниями постоянного напряжения до 700 В, номинальным переменным током 220 В для однофазных и 380 В для трехфазных сетей;
  • оболочные и безоболочные кабельные системы с постоянным напряжением в диапазоне 700-1000 В, переменным 220-400 В;
  • кабеля с постоянным напряжением, ограниченным 3600 В, переменным от 400 до 1800 В;
  • кабеля с постоянным диапазоном 1000-6000 В, переменным 400-1800 В.

К сведению! По агрегатному состоянию диэлектрики подразделяются на жидкие, газообразные и твердые подвиды, по происхождению — на органические, неорганические и волокнистые материалы.

Информация о видах изоляции с учетом их особенностей и специфики применения поможет максимально использовать потенциал кабелей в производстве.

Жидкая изоляция

При использовании изоляционных материалов методом обмотки части проводов оставались без покрытия. Такие зоны, начиная с 2010 г., стали покрывать совершенно новым материалом — жидкой изоляцией. Структура позволяла равномерно нанести слой вязкой субстанции на оголенные зоны без зазоров. После высыхания образовывалось покрытие, не пропускающее электричество. Со временем эксклюзивное жидкое покрытие стало доступно повсеместно. Однако оно имеет как преимущества, так и недостатки в применении.

Жидкая изолента

Положительные свойства покрытия:

  • высокая стойкость к внешним неблагоприятно влияющим факторам;
  • способность к диалектному покрытию;
  • устойчивость к вибрации;
  • способность переносить воздействие ультрафиолетовых излучений;
  • легкость в применении ремонтных работ;
  • пластичность и укрывистость провода в труднодоступных местах и сгибах.

Недостатки изоляции:

  • токсичность;
  • высокая стоимость;
  • летучесть жидкости — малая экономичность расхода при открытии герметичной банки.

Характеристики жидкой электроизоляции:

  • субстанция представляет собой вязкое, тянущееся вещество;
  • выпускается в трех видах — в тюбике, банке и в виде спрея;
  • нанесение производится кистью, за исключением распылителя.

Важно! Перед использованием изоляции кабелей и проводов сеть обесточивается.

Менее экономичный по расходу спрей-изолятор. Однако он способен проникнуть в самые труднодоступные места. Тюбик позволит более дозировано расходовать материал без применения дополнительных приспособлений. Банка со средством подойдет в массовом использовании.

Твердая изоляция

Помимо жидких диэлектриков, существуют твердые аналоги. К ним относятся:

  • бумажная обмотка. Ленты из хлопчатобумажной основы пропитываются жидкими составами диэлектриков — маслами, после чего производится плотная обмотка кабеля. Преимуществами данного вида признаны долговечность применения, низкая стоимость и способность противостоять сырым грунтам и высокой влажности. Из недостатков выявлено смещение жидкости при вертикальном и наклонном положении кабеля. Данная деформация неизменно приводит к износу и потере диэлектрических способностей;
  • резиновые диэлектрики. Такой способ изоляции гарантирует гибкость кабеля, полную непроницаемость влаги и среднюю износостойкость. Минусами признаны невысокая температурная граница применения (не более 65 °С), высокая стоимость и потеря эластичности со временем;
  • пластмассовая изоляция. В качестве основы используют полиэтилен, полихлорвинил и СПЭ. Плюсы такого вида покрытия — расширенный диапазон рабочей температуры, экологичность, повышенная устойчивость к влаге, пропорциональность прочности и веса, нейтральность химического и электрического типа, устойчивость к механическим повреждениям. Недостатки — деформация при температуре свыше 140 °С;
  • ПВХ. Преимущества данного вида изоляции в высоком сопротивлении к деформациям, экологичность, небольшие потери при допустимом токе нагрузки, продуктивность использования на сложных трассах ввиду небольших диаметров и массе. Из недостатков выявлена низкая устойчивость к минусовой температуре (не более −60 °С) и ультрафиолетовым излучениям;
  • шелковая обмотка аналогична бумажной, пропитываемой специальными маслами. Прочность материала гарантирует высокую износостойкость. Однако воздействие температур губительно для такой изоляции. В результате обмотка шелком нашла себя лишь во внутренних трассах и конструкциях кабеля в помещениях с постоянной температурой.
Твердые диэлектрические материалы

Обратите внимание! Твердые виды изоляции подбираются с учетом месторасположения кабеля и вероятности влияния внешних повреждающих факторов.

Газообразная изоляция

В газообразной изоляции применяются:

  • азот;
  • водород;
  • электротехнический газ;
  • воздух.
Трансформатор с электрогазовой изоляцией

Преимущества данного вида диэлектриков заключаются в способности к охлаждению кабеля, снижении опасности взрыва. Недостатки — герметичность при использовании, вероятность окисления, приводящая к снижению электрической прочности.

Неорганическая изоляция

К неорганическим диэлектрикам относятся:

  • слюда;
  • фарфор;
  • керамика;
  • мусковит;
  • флогопит;
  • стекло.
Неорганическая изоляция

Обратите внимание! Положительными особенностями признаны стойкость к высоким температурам и воздействию агрессивных химических веществ. Недостаток — низкая сопротивляемость механическим повреждениям.

Лакированные ткани

Лакоткани широко применимы в электроизоляции. Они подразделяются на:

  • хлопчатобумажные;
  • шелковые;
  • стеклянные;
  • капроновые.
Лакоткань в изолировании кабеля

Общими положительными характеристиками признаны гибкость, высокая устойчивость к воздействию влаги и повышенным температурам. Недостатки — низкое противостояние механическим повреждениям, воздействию ультрафиолета и низких температурных режимов, поэтому требуется теплоизоляция.

Где используется изоляция проводов и кабелей

Изолированные провода и кабели используются повсеместно как в быту, так и в производстве. Провода наиболее часто применяются в подключении приборов и систем. Примером могут стать любые соединяемые технические средства: от игровой приставки до сложных компьютеров и бытовых приборов. Кабеля же служат для проведения электричества от станции к жилым домам, производственным организациям и иным учреждениям.

Применение изолированных кабелей осуществляется в разных сферах

Кабеля прокладываются воздушным, подземным и подводным способами. Вне зависимости от цели использования проводов и кабельных трасс необходима изоляция от проникновения электрического тока во внешнюю среду.

Обратите внимание! Диэлектрические материалы служат для обеспечения безопасности окружающего мира и живых существ, сохранения и экономичности использования напряжений различного вида. Также назначением изоляции признано сохранение долгой службы кабелей и проводов.

Как правильно использовать изоляцию проводов

Производственная изоляция проводов и кабеля сертифицирована, следовательно, соответствует качеству и прошла контрольные испытания. Однако со временем могут появиться прорехи в покрытии. В такие моменты, если нет возможности заменить полностью, настает черед ремонта изоляции. Для этого используют изоленту, термотрубки и жидкие диэлектрики. Подбирают способ изолирования в зависимости от вида повреждения:

  • потертость основного покрытия устраняется с помощью термоусадки;
  • изломы, удлинение и замена вилки изолируются при помощи жидких и термических диэлектриков;
  • механические повреждения в больших количествах требуют полной замены провода.

Важно! изоляция проводов применяется и в случае самостоятельной спайки и скрутки сердцевин, однако следует соблюдать меры предосторожности и технику безопасности.

Поврежденная изоляция поддается ремонту

Причины повреждений провода:

  • перетирание при частом использовании;
  • воздействие внешних факторов;
  • порча домашними питомцами;
  • скачки напряжения;
  • несоответствие правилам эксплуатации;
  • использование некачественных материалов.

Основные требования к безопасному использованию изоляции:

  • провода и кабели должны быть обесточены;
  • качество изоляционных материалов высокое и соответствует стандартам;
  • сердцевина обесточенного провода обезжиривается и очищается непосредственно перед процедурой изоляции;
  • способ изолирования соответствует его месту проведения;
  • ремонтник должен иметь достаточный опыт и навыки изоляции.

Важно! Не стоит проводить данную процедуру самостоятельно без опыта. Во избежание несчастных и чрезвычайных ситуаций электроизоляцию необходимо доверить профессионалу.

Изоляция электрического кабеля — важнейшая составляющая работоспособности энергетических сетей. Правильная защита провода от воздействия внешних факторов вкупе с особенностями монтажа и применения гарантирует долгую и бесперебойную поставку тока. Своевременный ремонт и замена диэлектрических материалов невозможны без знания характеристик, преимуществ и недостатков изолятора вне зависимости от бытового или производственного использования.

Изоляция кабеля — статьи по кабельной продукции

Изоляция кабеля должна иметь электрическую прочность, исключающую возможность электрического пробоя при напряжении, на которое рассчитан кабель. Для изолирования жил кабелей между собой и от наружных металлических оболочек применяют бумажную, пластмассовую и резиновую изоляцию.

Бумажная пропитанная изоляция жил кабелей имеет хорошие электрические характеристики, продолжительный срок службы, сравнительно высокую допустимую температуру и невысокую стоимость, поэтому находит наибольшее применение. К недостаткам следует отнести гигроскопичность, которая обусловливает необходимость тщательного изготовления и полной герметичности оболочек и муфт кабелей.

Из многослойной упрочненной кабельной бумаги на основе сульфатной целлюлозы марки КМП-120 изготовляют изоляцию для силовых кабелей напряжением до 35 кВ. Можно изготовлять изоляцию из двухслойной бумаги марок К-080, К-120, К-170 или многослойной — КМ-120, КМ-140 и КМ-170. Толщина бумаги соответственно составляет 80, 120, 140 и 170 мкм.

Жилы обматывают бумажными непропитанными лентами. Наиболее распространена обмотка с зазором, которая позволяет в некоторых пределах изгибать кабель без опасности повреждения бумажной изоляции. Во избежание ухудшения электрических характеристик изоляции зазоры между витками соседних лент, расположенных сверху (по вертикали), не должны совпадать. При наложении большого количества лент избежать совпадений зазоров не удается, поэтому число совпадений нормируют. Допускается не более трех совпадений лент бумаги и изоляции «жила — жила» или «жила — оболочка (экран)» в кабелях напряжением 6 кВ, не более четырех для кабелей 10 кВ, не более шести для кабелей 35 кВ.

Бумажная изоляция должна накладываться плотно, без складок и морщин, наличие которых приводит к образованию пустот, воздушных включений, снижающих надежность кабелей. Толщина изоляционного слоя на силовые кабели нормируется ГОСТом и зависит от номинального напряжения и сечения жил кабеля. Для увеличения электрической прочности на поясную изоляцию кабелей напряжением 6 и 10 кВ, на жилы и поверх изоляции кабелей напряжением 20 и 35 кВ накладывают экран из электропроводящей бумаги. Цифровое обозначение или отличительную расцветку имеют в многожильных кабелях верхние ленты изоляции жил. При цифровом обозначении на верхнюю ленту первой жилы наносят цифру 1, второй — 2, третьей — 3, четвертой — 4. При отличительной расцветке номеру 1 соответствует белый или желтый, номеру 2 — синий или зеленый, номеру 3 — красный или малиновый, номеру 4 — коричневый или черный цвета.

Изолированные жилы многожильных кабелей скручивают, заполняя промежутки между ними изоляционными материалами, до получения круглой формы. На скрученные изолированные жилы накладывают поясную изоляцию бумажными лентами определенной толщины. Бумажную изоляцию кабелей вначале сушат, затем пропитывают маслоканифольными составами: МП-1 для кабелей напряжением 1—10 кВ и МП-2 — 20—35 кВ. Пропиткой достигается увеличение электрической прочности бумажной изоляции.

Пластмассовую изоляцию применяют для силовых кабелей. Ее изготовляют из полиэтилена или поливинилхлорида (ПВХ), Хорошими механическими свойствами в широком интервале температур, стойкостью к действию кислот, щелочей, влаги и высокими электроизоляционными характеристиками обладает полиэтилен. В зависимости от способа получения полиэтилена различают полиэтилен низкой и высокой плотности. Полиэтилен высокой плотности имеет большие по сравнению с полиэтиленом низкой плотности температуру плавления и механическую прочность.

Полиэтилен низкой плотности размягчается при температуре около 105°С, высокой плотности — 140°С. Введение в полиэтилен органических перекисей и последующая вулканизация значительно повышают его температуру плавления и стойкость к растрескиванию. Вулканизирующийся полиэтилен незначительно деформируется при 150°С. Для получения самозатухающего полиэтилена вводят специальные добавки.

Для электропроводящих экранов кабелей с полиэтиленовой изоляцией в полиэтилен добавляют полиизобутилен, ацетиленовую сажу и стеариновую кислоту. Твердый продукт полимеризации — поливинилхлорид (ПВХ) — не распространяет горения. Для повышения эластичности и морозостойкости в него добавляют пластификаторы — каолин, тальк, карбонат кальция, для получения цветного ПВХ вводят окрашивающие добавки. ПВХ стареет под воздействием температуры, солнечной радиации и т.п. за счет улетучивания пластификатора (происходит снижение эластичности и холодостойкости).

Резиновая изоляция состоит из смеси каучука (натурального или синтетического), наполнителя, мягчителя, ускорителя вулканизации, противостарителя, красителя и др. Для изоляции кабелей применяют резину РТИ-1, имеющую в составе 35 % каучука.

Плюсы резиновой изоляции — гибкость и практически полная негигроскопичность. Недостатки — более высокая стоимость и низкая рабочая температура жилы (65°С) по сравнению с другими видами изоляции, что снижает допустимую нагрузку на кабель.

Со временем у изоляционных резин наблюдается значительное снижение эластичности и изменение других физико-механических свойств. Старение резиновой изоляции происходит под воздействием различных факторов и является в основном следствием окислительной деструкции (разрушения) содержащегося в резине каучука. С целью защиты изоляции жил от воздействия света, влаги, различных химических веществ, а также для предохранения ее от механических повреждений кабели снабжают оболочками.

Лучшими материалами для изготовления оболочек кабелей в отношении герметичности и влагонепроницаемости, гибкости и теплостойкости являются металлы — свинец и алюминий. Кабели с невлагоемкой (пластмассовой или резиновой) изоляцией не нуждаются в металлической оболочке, поэтому их обычно изготовляют в пластмассовой или резиновой оболочке. Толщина оболочки нормируется и зависит от материала, из которого она изготовлена, диаметра кабеля и условий эксплуатации.

Свинцовые оболочки изготовляют из свинца марки С-3 (чистого свинца не менее 99,95 %). Свинец принадлежит к числу весьма тяжелых металлов (плотность 11340 кг/м3). Температура плавления — 327,4°С. Свинец обладает малой механической прочностью и значительной текучестью, что приходится учитывать при вертикальных прокладках кабелей в голой свинцовой оболочке. При повышении температуры текучесть свинца увеличивается. Нормальный электрохимический потенциал свинца равен -0,13 В, поэтому он обладает малой химической активностью и высокой коррозионной стойкостью.

Минус свинцовых оболочек — малая стойкость против вибрационных нагрузок, особенно при повышенной температуре. Повышения вибростойкости и механической прочности достигают введением в свинец присадки из сурьмы. Свинцовая оболочка кабелей без защитных покровов изготовляется из свинцово-сурьмянистых сплавов марок ССуМ, ССуМТ. Свинцовые оболочки не должны иметь рисок, царапин и вмятин, выводящих их за пределы минимальных допусков по толщине.

Алюминиевые оболочки изготовляют методом выпрессовывания из алюминия А-5 чистотой не ниже 99,97 %. Плотность алюминия — 2700 кг/м3, предел прочности — 39,3—49,1 МПа. Алюминиевые оболочки в 2—2,5 раза прочнее и в 4 раза легче, чем свинцовые, имеют повышенную стойкость к вибрационным нагрузкам и обладают высокими экранирующими свойствами. Недостатки алюминиевых оболочек — большие технологические трудности наложения их на кабель и малая стойкость к электрохимической коррозии, что объясняется высоким нормальным отрицательным потенциалом алюминия (-1,67 В).

Коррозия сводится к вытеснению из среды, с которой соприкасается алюминий, ионов водорода и переходу самого алюминия в виде ионов в раствор. Поэтому кабели с алюминиевыми оболочками защищают против гниения особо стойкими покровами, не пропускающими к оболочке влагу.

Пластмассовые оболочки изготавливают из шлангового ПВХ-пластиката или полиэтилена. Пластмассовые оболочки сочетают в себе легкость, гибкость и вибростойкость, но через пластмассу постепенно диффундируют водяные пары, что приводит к падению сопротивления изоляции кабелей. Поэтому их применяют в кабелях с негигроскопичной изоляцией из полиэтилена, ПВХ и др. Шланговый пластикат отличается от изоляционного подбором пластификаторов и стабилизаторов, обеспечивающих большую стойкость против светового старения. Для оболочек кабелей применяют ПВХ-пластикат марки 0-40. Оболочки кабелей из ПВХ-пластиката при температуре ниже допустимой становятся жесткими и при ударе могут разрушаться.

Хорошая механическая прочность ПВХ-пластиката позволяет широко применять кабели в оболочке без защитных покровов. Он не распространяет горения, он влаго- и маслостоек, стоек к электрической и химической коррозии. Кабели в такой оболочке просты в производстве и удобны в монтаже.

Резиновые оболочки изготавливают из маслостойкой резины РШН-2, не распространяющей горения. Резиновые оболочки обладают высокой стойкостью к растягивающим, ударным и крутящим нагрузкам.

Защитные покровы состоят из подушки, брони и наружного покрова и предназначены для защиты кабелей от механических повреждений и коррозии. В обозначение марки кабеля, не имеющего защитного покрова, добавляется буква «Г».

Подушки кабеля представляют собой концентрические слои волокнистых материалов и битумного состава или битума поверх оболочки, предназначаются для предохранения оболочек кабеля от повреждения лентами или проволоками брони и защиты ее от коррозии и не имеют обозначения. Усиленную подушку с дополнительной обмоткой двумя пластмассовыми лентами, обеспечивающую защиту от коррозии и блуждающих токов, маркируют буквой «л». Для повышения стойкости против коррозии подушку изготовляют с двумя слоями пластмассовых лент и маркируют цифрой и буквой — «2л». С целью повышения коррозионной и влагостойкости подушки поверх лент из ПВХ-пластиката (и другого равноценного материала) накладывают слой выпрессованного полиэтилена или ПВХ-пластиката. В маркировке этот тип подушки обозначают буквами «п» (полиэтилен) и «в» (ПВХ-пластикат). Защитные покровы без подушки маркируют буквой «б». Минимальная толщина подушки зависит от конструкции, диаметра кабеля и составляет 1,5—3,4 мм.

Броня служит для защиты кабелей от механических повреждений. Для кабелей, не подвергающихся в процессе эксплуатации растягивающим усилиям, применяют ленточную броню, которая состоит из двух стальных лент толщиной от 0,3 до 0,8 мм (в зависимости от диаметра кабеля по оболочке) и накладывается так, чтобы верхняя лента перекрывала зазоры между витками нижней ленты. Для кабелей, которые подвергаются растягивающим усилиям, применяют броню из стальных оцинкованных плоских или круглых проволок. Толщина брони из стальных оцинкованных плоских проволок составляет 1,5—1,7 мм, диаметр круглых проволок — 4—6 мм.

Наружный покров, в который входит слой битумного состава или битума, пропитанная пряжа и покрытия, предохраняющие витки кабеля от слипания, в маркировке обозначения не имеет. Покров с негорючим элементом в маркировке кабеля имеет букву «Н». С выпрессованным полиэтиленовым защитным шлангом покровы имеют обозначение «Шп», а с ПВХ-шлангом — «Шв». Минимальная толщина наружного покрова зависит от диаметра кабеля и составляет 1,9-3 мм.


Силовой кабель — виды, типы изоляции, особенности конструкции, обзор популярных марок

Под силовым кабелем понимается большая группа кабелей с различными конструктивными и электрическими характеристиками. Силовые кабели необходимы для передачи электроэнергии (3-х фазного тока)от источника до конечного потребителя. От подключаемого объекта и условий монтажа силового кабеля зависит выбор типа силового кабеля…Для удобства силовые кабели можно классифицировать по ряду признаков.


Под силовым кабелем понимается большая группа кабелей с различными конструктивными и электрическими характеристиками. Силовые кабели необходимы для передачи электроэнергии (3-х фазного тока)от источника до конечного потребителя. От подключаемого объекта и условий монтажа силового кабеля зависит выбор типа силового кабеля. К выбору силового кабеля нужно подходить очень тщательно. Обычно при строительстве тех или иных объектов составляется проект электрических сетей, в котором указываются требуемые характеристики кабеля исходя из количества подключаемых объектов, мощности, длины линии и множество других параметров в соответствии с которыми подбираются кабельные марки. В данной статье мы попробуем разобраться, какие силовые кабели бывают, охарактеризовать каждую группу силовых кабелей, в частности их применение, конструктивные особенности и наиболее популярные марки.

Силовые кабели. Классификация

Для удобства силовые кабели можно классифицировать по ряду признаков:

  • По напряжению:
    -силовые кабели на низкое напряжение: 0,66 кВ, 1кВ, 3кВ, 6кВ, 10 кВ, 20 кВ, 35 кВ;
    — силовые кабели на высокое напряжение: 110 кВ, 220 кВ, 330 кВ, 380 кВ, 500 кВ, 750 кВ и выше;
  • По материалу изоляции: — пластмассовая;
    -полиэтиленовая;
    — резиновая;
    -бумажная;
  • По материалу и форме токоведущих жил: — алюминиевые;
    -медные; -круглая, секторная или сегментная форма жил
  • Приведенная укрупненная классификация наиболее распространенная в кабельной среде. В соответствии с ней можно выделить следующие группы силовых кабелей:

    silivoi_pvh.jpg

    — распространенный тип кабеля как в промышленности, так и в быту. ПВХ или поливинилхлорид представляет собой твердый полимер с невысокими электроизоляционными свойствами, однако с хорошей устойчивостью к воздействию кислот, щелочей, солей, влаге. Длительная рабочая температура силовых кабелей с ПВХ изоляцией может составлять +80-90 С. При более высоких температурах ПВХ начинает плавиться с выделением опасного хлороводорода.Также ПВХ ухудшает свои свойства на солнечном свете. Для снижения отрицательных свойств ПВХ в него добавляют специальные добавки, делая его негорючим, нетоксичным и более стойким к агреесивным воздействиям.
    Наиболее популярные марки силовых кабелей с ПВХ изоляцией (перечислим из медных): ВВГ, ВВГнг

Изоляция силовых кабелей высокого напряжения — Студопедия

Электрические кабели − это гибкие изолированные проводники, снабженные защитными оболочками, которые предохраняют изоляцию от внешних механических и иных воздействий.Основными элементами силовых кабелей являются проводники−жилы, изоляция по отношению к земле и между жилами, герметичная металлическая оболочка и защитные покровы. Для герметизации используется оболочка из свинца или алюминия, а для защиты от механических повреждений − броня из стальных лент или проволок; защита металлической оболочки и брони от коррозии производится с помощью лент кабельной бумаги или пряжи, пропитанных битумом.

В качестве пропитывающего состава в кабелях с бумажной изоляцией применяются вязкие пропитки (маслоканифольный компаунд), нефтяные или синтетические кабельные масла. Маслоканифольный компаунд применяется обычно в кабелях до 35 кВ включительно. Это упрощает конструкцию кабельных линий, так как добавление канифоли в нефтяное масло приводит к существенному увеличению вязкости пропитывающего состава, благодаря чему пропиточная масса в условиях нормальной эксплуатации не вытекает через концевые разделки кабеля. Кроме того, присутствие канифоли увеличивает стойкость масла против окисления.

Кабели с вязкой пропиткой до напряжения 10 кВ включительно чаще всего выполняются трехжильными с поясной изоляцией и секторными жилами. На рис. 2.6а приведена конструкция кабеля на напряжение 10 кВ. Секторная форма жилы обеспечивает более полное использование объема под металлической оболочкой, а поясная изоляция увеличивает изоляций относительно оболочки без увеличения изоляции между жилами. Для увеличения механической прочности поверх свинцовой оболочки накладывается броня из двух стальных лент, наматываемых в противоположные стороны и защищенных от коррозии битумным покровом.


а) б)

Рис. 2.6. Трехжильные кабели с вязкой пропиткой: а− с поясной изоляцией и секторными жилами на 10 кВ; б−с отдельно освинцованными жилами на 35 кВ;

1 − токоведущая жила; 2 − изоляция жил; 3 − поясная изоляция: 4 − джутовое заполнение; 5 — свинцовая оболочка; 6 − броня; 7 − антикоррозийный покров;

8 − экран из полупроводящей бумаги

При напряжениях 20 и 35 кВ применяютсякабели с отдельно освинцованными или экранированными жилами (рис. 2.6б), в которых для увеличения рабочей напряженности обеспечивается наличие только радиальных напряженностей электрического поля.


В маслонаполненных кабелях на напряжение 110 кВ и выше изоляция пропитывается нефтяным маслом, имеющим значительно меньшую вязкость, чем масло канифольный компаунд. Возможность перемещения масла вдоль кабеля при нагревании и охлаждении обеспечивает компенсацию тепловых расширений и поддержание требуемого давления в кабеле при помощи специальных баков давления, в которые поступает избыточный объем масла при нагреве кабеля. При охлаждении масло уходит обратно в кабель. Эти баки представляют собой гофрированные сосуды, наполненные маслом, в которых поддерживается определенное давление. Обычно баки давления ставят у концевых муфт кабеля и распределяют по длине кабеля у стопорных муфт, обеспечивающих электрический контакт и не передающих давление масла из одного отрезка кабеля в другой.

По величине давления маслонаполненные кабели разделяются на кабели низкого давления − до 0,5 МПа и высокого давления − до 1,5 МПа на поверхность кабеля накладываются специальные проволоки скольжения.

Конструкция кабеля низкого давления на напряжение 110 кВ приведена на рис. 2.7а. Кабель имеет пустотелую жилу 2, по каналу 1 которой масло может свободно перемещаться и вытесняться в баки давления.

Увеличение давления требует упрочнения свинцовой оболочки, что обычно осуществляется наложением на нее синтетических или бронзовых лент или стальных оцинкованных проволок, поэтому кабели высокого давления в ряде случаев выполняются в стальном трубопроводе (рис. 2.7б), где прокладываются три одножильных кабеля с изоляцией из пропитанной бумаги и снабженных поверх изоляции металлическим экраном. Эти кабели выполняются или в свинцовых оболочках, которые снимаются при протяжке в трубопровод, или в эластичных покрытиях (полиэтиленовых оболочках), которые остаются на кабелях после прокладки.

В кабелях с пластмассовой изоляцией пластмасса (полиэтилен) накладывается методом экструзии (выдавливания). При этом предполагается получение более однородной изоляции с высокими электрическими характеристиками. Для ослабления напряженности на поверхность многопроволочной жилы и на поверхность изоляции под металлической оболочкой наносятся слои полупроводящего полиэтилена, а для затруднения развития дендритов антиэмиссионный спой из материала с повышенной диэлектрической проницаемостью, который наносится между полупроводящим экраном и изоляцией.

а) б)

Рис. 2.7. Маслонаполненные кабели:

а − маслонаполненный кабель низкого давления 110 кВ: 1 − маслопроводящий канал; 2 − токоведущая жила; 3,5 − экраны из лент полупроводящей бумаги;

4 − изоляция из бумаги; 6 −оболочка из свинца; 7−11, 13- защитные покровы; 12 − броня из стальных и медных проволок;

б − маслонаполненный кабель 220 кВ высокого давления в стальной трубе:

1 − токоведущая жила, 2 − изоляция из кабельных бумаг; 3 − медные ленты;

4 − полукруглые проволоки скольжения; 5 − кабельное масло; 6 − стальная труба; 7 − антикоррозийный защитный покров

Для соединения отрезков кабеля в линию, а также для присоединения концов кабеля к шинам распределительных устройств или аппаратов выполняются соединительные и концевые муфты. Устройство кабельных муфт и их изоляции зависит, естественно, от конструкции кабеля. Однако во всех случаях учитывается то обстоятельство, что монтаж выполняется в полевых условиях и изоляция в муфтах имеет более низкое качество, чем в самом кабеле. Поэтому изоляционные расстояния в муфтах увеличиваются.

3.4. Изоляция силовых кабелей

Под действием частичных разрядов происходит постепенное разрушение микрообъемов изоляции, размеры газового включения растут в направлении электрического поля, и этот процесс завершается пробоем изоляции.

При постоянном напряжении интенсивность частичных разрядов существенно слабее, поскольку заряжение емкости газового включения Cв происходит за счет токов утечки через изоляцию, которые обычно много меньше емкостных токов.

Эффективным средством борьбы с частичными разрядами являет-

ся пропитка изоляции. Замена воздуха жидким диэлектриком с диэлектрической проницаемостью εr>1 увеличивает емкость Cв, снижая напряжение на воздушном включении; кроме того, электрическая прочность жидкого диэлектрика существенно больше электрической прочности газа.

Тепловое старение внутренней изоляции возникает за счет ускоре-

ния различных химических реакций при рабочих температурах изоляции, обычно лежащих в пределах от 60оС до 130оС. Химические реакции приводят к постепенному изменению структуры и свойств материалов и к ухудшению изоляции в целом.

Для твердой изоляции наиболее характерным является постепенное снижение механической прочности в процессе теплового старения, что приводит к повреждению изоляции под действием механических нагрузок и затем к ее пробою. В жидких диэлектриках продукты разложения загрязняют изоляцию и снижают ее электрическую прочность. Для органической изоляции повышение температуры на 10оС снижает срок службы изоляции вдвое; в сложной изоляции силовых трансформаторов процесс теплового старения протекает быстрее, чем по десятиградусному правилу.

Старение изоляции возникает и при механических нагрузках на твердую изоляцию. Сущность этого вида старения заключается в том, что в напряженном материале возникает упорядоченное движение локальных микродефектов, и за счет этого образуются и постепенно увеличиваются в размерах микротрещины. При действии сильных электрических полей в микротрещинах возникают частичные разряды, ускоряющие разрушение изоляции.

Увлажнение изоляции может рассматриваться как одна из форм старения изоляции. Влага проникает в изоляцию главным образом из окружающего воздуха. При этом происходит уменьшение сопротивления изоляции, рост диэлектрических потерь, связанный с дополнительным нагревом изоляции и ускоряющий тепловое старение изоляции. Неравномерное увлажнение, кроме того, приводит к искажению электрического поля и снижает пробивное напряжение изоляции.

Увлажнение – процесс в принципе обратимый, влага может быть удалена из изоляции сушкой. Однако сушка крупногабаритных конструкций требует вывода оборудования из строя на длительное время, а в ряде

Изоляция кабеля. Вопросы по изоляции кабеля. Какие бывают изоляции.

Чем обычно характеризуется изоляция кабелей?

Изоляция электрического кабеля должна обладать достаточной электрической прочностью, которая полностью исключает вероятность электрического пробоя при напряжении, на которое рассчитан данный кабель. Для того чтобы изготовить изоляцию жил кабеля между собой, а также для недопущения соприкосновения жил с металлической наружной оболочкой, как правило, используют бумажную, пластмассовую или же резиновую изоляцию.
Чем хороша бумажная изоляция?

Бумажная пропитанная изоляция определяется качественными электрическими характеристиками, большим сроком службы. Такой изоляционный слой в состоянии выдержать высокую температуру при относительно небольшой цене. В связи с этим такой тип изоляции используется достаточно часто. Однако у бумажной изоляции имеется и несколько отрицательных качеств. Например, к недостаткам необходимо отнести гигроскопичность. Из-за нее кабель должен быть изготовлен таким образом, чтобы все оболочки и муфты были тщательно загерметизированы.
Из чего изготавливают бумажную изоляцию?

Как правило, бумажный слой изоляции в кабелях производят из многослойной бумаги увеличенной прочности. Такую бумагу делают на базе сульфатной целлюлозы марки КМП-120. Данная изоляция более всего подойдет для силового кабеля, который рассчитан на напряжение до 35 кВ.

Вполне допустимо, что изоляция может быть сделана из двухслойной бумаги марок К-080, К-120, К-170 или же многослойной бумаги КМ-12, КМ-140, КМ-170. При этом толщина слоя бумаги составляет 80, 120, 140 и 170 мкм.
Как производят данную изоляцию?

Жилы в процессе изготовления такого изоляционного слоя обматывают бумажными непропитанными лентами. Чаще всего можно встретить обмотку с зазоров. С помощью такого хода можно в определенных пределах изгибать кабель без вероятности того, что он переломится или бумажная изоляция будет повреждена. Для того чтобы электротехнические характеристики кабеля остались на прежнем уровне, необходимо, чтобы зазоры между витками соседних лент, находящихся сверху по вертикали, полностью не совпадали.

Однако в том случае, если необходимо наложить большое количество лент, то не получится избежать совпадений зазоров. Для этого существуют специальные нормы, которые определяют количество таких совпадений. Если кабель предназначен для напряжения до 6 кВ, то совпадений может быть не более 3, для кабеля, рассчитанного на 10 кВ, — не более 4; для кабеля 35 кВ — не свыше 6.
Как накладывают изоляцию?

Слой изоляции очень плотно прилегает к токопроводящей жиле. На нем не должно быть морщин или складок. Если они будут наблюдаться в структуре кабеля, то это приведет к возникновению пустот или же воздушных включений, которые в значительной степени понижают надежность работы кабеля.
От чего зависит толщина изоляционного слоя?

Толщина изоляционного слоя находится в прямой зависимости от номинального напряжения, а также от сечения жил. Этот показатель прописан в соответствующих ГОСТах. Для того чтобы сделать электрическую прочность кабеля как можно выше, на поясную изоляцию кабеля, рассчитанного на напряжение 6 и 10 кВ, а также на жилы и поверх изоляции укладывают экран, изготовленный из электропроводящей бумаги.
Как далее производится изготовление кабеля с бумажной изоляцией?

Жилы, снабженные изоляционным слоем, плотно скручивают, производят заполнение промежутков между ними с помощью изоляционных материалов до тех пор, пока кабель не приобретет круглую форму.

Затем на скрученные жилы дополнительно накладывают поясную изоляцию, которая также выполняется с помощью бумажных лент необходимой толщины.

После того как бумажная изоляция намотана на жилы, ее следует тщательно просушить, после чего производят пропитывание маслоканифольными составами: МП-1, если кабель предназначен для напряжения от 1 до 10 кВ и МП-2 — 20—35 кВ. С помощью пропитывания происходит дополнительное увеличение электрической прочности изоляционного слоя.
Где используется пластмассовая изоляция?

Данный вид изоляции применяется в силовых кабелях. Ее обычно производят из полиэтилена или из поливинилхлорида.
Какими технологическими характеристиками обладает пластмассовая изоляция?

Такой вид изоляции способен сохранять все свои основные свойства в большом диапазоне температур. Пластмассовая изоляция способна хорошо сопротивляться негативному воздействию кислот, щелочей, влажной среды. Она имеет высокие электроизоляционные свойства. Особенно это относится к полиэтилену. В зависимости от технологии изготовления полиэтилен бывает высокой и низкой плотности. Полиэтилен высокой плотности обладает большой температурой плавления и механической прочностью.

Необходимо отметить, что полиэтилен низкой плотности начинает плавиться при 105 °С, тогда как полиэтилен высокой плотности расплавляется при 140 °С.

Зачастую в полиэтилен вводят дополнительные вещества, например органические перекиси, после чего производят вулканизацию данного материала.

Оба эти процесса позволяют в значительной степени увеличить температуру плавления материала и сделать его более устойчивым к растрескиванию. Полиэтилен, прошедший через вулканизацию, начинает незначительно деформироваться только при температуре 150 °С.

Для того чтобы получить самозатухающий полиэтилен, в него также вносят дополнительные добавки. Например, для электропроводящих экранов кабелей с полиэтиленовой изоляцией вносят полиизобутилен, ацетиленовую сажу или же стеариновую кислоту.

Каковы преимущества поливинилхлоридного изоляционного слоя?

Поливинилхлорид представляет собой твердый продукт полимеризации. Он не распространяет огонь. Для того чтобы увеличить уровень морозостойкости и эластичности ПВХ, в его состав вносят специальные пластификаторы, например каолин, тальк, карбонат кальция. Для того чтобы добиться цветного ПВХ, в него вносят красящие пигменты.

Отрицательной стороной использования ПВХ является то, что он начинает быстро стареть, находясь под воздействием высокой температуры, солнечного света, а также за счет того, что с течением времени в его составе постепенно разрушается пластификатор. Из-за этого снижается уровень его эластичности и морозоустойчивости.
Что включает в себя резиновая изоляция?

Резиновая изоляция представляет собой смесь натурального или синтетического каучука с наполнителем, размягчителей, ускорителем вулканизации, противостарителем, красителем и некоторыми другими веществами.

Для изготовления изоляционного слоя кабелей используют резину РТИ-1, в составе которой находится 35% каучука.
В чем заключаются преимущества и недостатки резиновой изоляции?

Положительные качества резиновой изоляции заключаются в том, что данный материал очень хорошо гнется и практически не впитывает в себя воду. Однако есть и отрицательные стороны: во-первых, резиновая изоляция имеет большую стоимость по сравнению с остальными разновидностями. Кроме того, рабочая температура жилы должна быть не слишком высокой — не более 65 °С.

Такая температура значительно ниже, чем у других видов изоляции. Поэтому допустимая нагрузка на электрический кабель будет не слишком высокой.

Следует также отметить, что с течением времени изоляционный слой, изготовленный из резины, начинает терять свою эластичность и меняет остальные физико-технические характеристики. Разрушается резина из-за различных внешних и внутренних факторов, так как этот процесс чаще всего представляет собой следствие окислительного процесса, который происходит между каучуком и воздухом.
Как защищают резину от старения?

Для того чтобы процесс старения резины шел как можно медленнее, а также для защиты материала от воздействия света, влаги и прочих химических соединений и механических воздействий, кабели имеют дополнительные оболочки.
Из чего производят оболочки для резиновой изоляции?

Лучше всего, если оболочка для изоляционного слоя, выполненного из резины, изготовлена из металла, например, из свинца или алюминия. Если у кабеля изготовлена невлагоемкая изоляция, то они не будут нуждаться в сооружении дополнительной оболочки.

В связи с этим их, как правило, выпускают в пластмассовой или резиновой оболочке. Толщина оболочки в этом случае находится в прямой зависимости от материала, из которого ее изготавливают, а также от диаметра кабеля и конкретных условий, в которых он будет находиться.

Сопротивление изоляции кабеля

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

Insulation Resistance of a Cable. why cables are insulated? Insulation Resistance of a Cable. why cables are insulated?

ПОЧЕМУ КАБЕЛИ ИЗОЛИРОВАНЫ? ВВЕДЕНИЕ

За исключением кабелей передачи энергии, которые находятся на электрических опорах, почти все кабели, которые используются сегодня, изолированы. Уровень или степень сопротивления изоляции кабеля зависит от цели, для которой кабель был разработан. Помимо экономии энергии от потери или рассеивания в окружающую среду, одна из важнейших причин , почему кабели изолированы, — это спасти нас от опасности поражения электрическим током.

Электричество очень опасно. Первое прикосновение может быть последним прикосновением и никогда не дает ни единого шанса. Легкое прикосновение к кабелю, по которому проходит электрический ток, может привести к несчастному случаю со смертельным исходом. Наше тело частично проводит электричество. Когда наше тело соприкасается с проводником с током, электрический ток будет стремиться течь от проводника, а затем к нашему телу. Наше тело, будучи частичным проводником, не сможет проводить электрический ток. Когда ток слишком силен, чем может выдержать наше тело, он убивает человека, это вопрос.

Чтобы избежать подобных аварий в наших домах, возникла необходимость в изоляции кабелей. Изоляция предотвращает утечку тока, а также не дойдет до нас, тем самым защищая нас от поражения электрическим током.

ЧТО ТАКОЕ ИЗОЛЯТОР?

Изолятор — это материал или вещество, не проводящее тепло или электричество. Изоляторы не проводят тепло или электричество, потому что в них нет свободно движущихся электронов. Считается, что проводники изолированы, если они покрыты изоляционными материалами, такими как ПВХ и т. Д.Процесс называется изоляцией. Изолятор вокруг проводника предотвращает утечку электроэнергии и сигналов в окружающую среду.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ИЗОЛИРОВАННЫЕ МАТЕРИАЛЫ

Повышение температуры увеличивает сопротивление в проводниках, в то время как сопротивление уменьшается с повышением температуры в полупроводниках, а также в изоляторах. Повышение температуры может сделать полупроводник хорошим проводником, а изолятор — полупроводником.

СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

Жилы кабеля снабжены изоляцией подходящей толщины, чтобы избежать утечки тока.Толщина любого кабеля зависит от назначения его конструкции. Путь утечки тока в таком кабеле радиальный. Сопротивление или противодействие, обеспечиваемое изоляцией току, также радиально по всей ее длине.

Для одножильной жилы кабеля радиусом r 1 , радиусом внутренней оболочки r 2 , длиной l и удельным сопротивлением изоляционного материала ρ периметр жилы равен 2πr l . Толщина изоляции указывается как dr.

R ins = ρdr / 2πr l

При интеграции мы получим:

R ins = ρ / 2π l [loge r 2 / r 2 ]

R ins обратно пропорционально 1/ l в отличие от R = ρ l . Где ρ (rho) — постоянная, известная как удельное сопротивление .
Существуют кабели, которые имеют более одного изоляционного слоя и более одной жилы.Главный провод, находящийся в центре, служит основным проводником. Другая жила служит для заземления и предотвращения выхода электромагнитных волн и излучения из кабеля. Он служит щитом. Кабели в этой категории — это коаксиальные кабели.

Коаксиальный кабель передает электрический сигнал с помощью внутреннего проводника (внутренний или основной проводник может быть любым хорошим проводником, но в основном предпочтительна медь из-за ее низкого удельного сопротивления, медь также может быть покрыта гальваническим покрытием) содержится в основном в корпусе из ПВХ.Перед внешним корпусом из ПВХ расположены два или более других изолятора с алюминиевой фольгой или медной жилой между ними. Кабели защищены от внешних воздействий наружным корпусом из ПВХ. В то время как напряжение проходит через внутренний проводник, экран или корпус практически не пропускают напряжение.

Преимущество коаксиальной конструкции заключается в том, что электрическое и магнитное поля ограничены диэлектриком с небольшой утечкой за пределы экрана. Благодаря уровню изоляции в кабелях, который предотвращает проникновение внешних электромагнитных полей и излучений в них, исключаются помехи.Поскольку проводники большого диаметра имеют меньшее сопротивление, утечка электромагнитного поля будет меньше. То же самое и с кабелями с большей изоляцией. Зная, что более слабые сигналы легко прерываются небольшими помехами, кабели с большим количеством слоев изоляции всегда являются хорошим выбором для передачи таких сигналов.

ХАРАКТЕРИСТИКИ ИЗОЛИРОВАННОГО КАБЕЛЯ

Отметив, что сопротивление изоляции кабеля определяется его конструктивным назначением, есть некоторые факторы, которые инженер должен учесть перед проектированием кабеля.Коаксиальные кабели потребуют большей изоляции, потому что кабель не только предотвращает утечку мощности, но и задерживает электромагнитное излучение. Утеплитель варьируется от одного слоя до двух, трех или четырех. Кабели предназначены для разных целей.

Ниже приведены некоторые характеристики изолированных кабелей;

  • Термостойкие кабели
  • Высокая устойчивость изоляции
  • Высокая устойчивость к порезам, разрывам и истиранию
  • Лучшие механические и электрические свойства
  • Устойчивость к маслам, растворителям и химическим веществам
  • Устойчивость к озону и погодным условиям.
.

Характеристики кабелей с изоляцией из сшитого полиэтилена

Эффект сшивки

XLPE — это общепризнанное сокращение от сшитого полиэтилена. Этот и другие сшитые синтетические материалы, ярким примером которых является EPR (этиленпропиленовый каучук), все чаще используются в качестве изоляционных материалов для кабелей в широком диапазоне напряжений.

Characteristics of XLPE insulated cables with reference to the UK standards Characteristics of XLPE insulated cables with reference to the UK standards Характеристики кабелей с изоляцией из сшитого полиэтилена в соответствии со стандартами Великобритании (на фото: антенный кабель с алюминиевым проводником 10 кВ с изоляцией из сшитого полиэтилена)

Полиэтилен обладает хорошими электрическими свойствами и, в частности, низким коэффициентом диэлектрических потерь, что дает ему возможность использовать при гораздо более высоких напряжениях, чем ПВХ.Полиэтилен использовался и до сих пор используется в качестве изоляционного материала для кабелей, но в качестве термопластичного материала его применение ограничено термическими ограничениями .

Сшивание — это эффект, возникающий при вулканизации резины, а для таких материалов, как сшитый полиэтилен, процесс сшивания часто описывается как «вулканизация» или «отверждение». Небольшие количества химических добавок к полимеру позволяют сшивать молекулярные цепи в решетку путем соответствующей обработки после экструзии.

Эффект сшивки заключается в том, чтобы подавлять движение молекул относительно друг друга под воздействием тепла, и это дает улучшенную стабильность при повышенных температурах по сравнению с термопластическими материалами. Это допускает более высокие рабочие температуры как при нормальной нагрузке, так и в условиях короткого замыкания, так что кабель из сшитого полиэтилена имеет более высокий номинальный ток, чем его эквивалентный аналог из ПВХ.

Также необходимо учитывать эффекты старения, ускоряемые повышением температуры, , но в этом отношении также XLPE имеет благоприятные характеристики .

BS 5467 определяет конструкцию и требования к кабелям с изоляцией из сшитого полиэтилена и EPR на напряжение до 3,3 кВ. Конструкция в основном аналогична кабелю из ПВХ согласно BS 6346, за исключением разницы в изоляционном материале. Из-за повышенной ударной вязкости XLPE толщина изоляции немного уменьшена по сравнению с ПВХ.

33kV XLPE cable 33kV XLPE cable Кабель XLPE 33 кВ (фото: openelectrical.org)

Стандарт также распространяется на кабели с изоляцией из HEPR (твердый этиленпропиленовый каучук), но XLPE является наиболее часто используемым материалом. От 3,8 кВ до 33 кВ, кабели с изоляцией из сшитого полиэтилена и EPR подпадают под действие стандарта BS 6622 , который определяет конструкцию, размеры и требования.

Полимерные формы изоляции кабеля более восприимчивы к электрическому разряду, чем пропитанная бумага, и при более высоких напряжениях, где электрические напряжения достаточно высоки, чтобы способствовать разряду, важно минимизировать газовые пространства внутри изоляции или на ее внутренней и внешние поверхности.

Для этого кабели из сшитого полиэтилена для 6.6 кВ и выше имеют полупроводниковые экраны над проводником и над каждой изолированной жилой. Экран проводника представляет собой тонкий слой, выдавленный во время той же операции, что и изоляция, и сшитый с ним, так что два компонента тесно связаны. Экран над сердечником может быть аналогичным экструдированным слоем или слоем полупроводниковой краски с нанесенной поверх него полупроводящей лентой.

Используются одно- и трехжильные конструкции , и есть возможности для конструктивных изменений в зависимости от условий использования, при условии, что жилы окружены индивидуально или в виде трехжильного узла металлическим слоем, который может быть броней, оболочкой или медными проводами или лентами.

Типичная бронированная конструкция, которая была поставлена ​​в значительных количествах, показана на рис. 1 ниже.

XLPE cable construction XLPE cable construction Рисунок 1 — Конструкция кабеля из сшитого полиэтилена

Где:

  1. Круглый многопроволочный
  2. Полупроводниковый экран из сшитого полиэтилена
  3. Изоляция из сшитого полиэтилена
  4. Экран из полупроводящей ленты
  5. Медный ленточный экран
  6. Наполнитель ПВХ
  7. Папка
  8. Оболочка из экструдированного ПВХ
  9. Броня из стальной оцинкованной проволоки 10.Внешняя оболочка из экструдированного ПВХ

В Великобритании этот тип кабеля, в основном одножильный, предпочтителен для кабельной разводки электростанций, где легкость и удобство подключения являются основными соображениями. Трехжильные конструкции также используются для поставок на стройплощадку.

Underground direct buried power cables Underground direct buried power cables Подземные прямые кабели питания под землей

Для подземных распределительных сетей на 11 кВ кабель с изоляцией из сшитого полиэтилена экономически не конкурирует с кабелем с алюминиевой оболочкой с бумажной изоляцией, но в настоящее время ведется работа по стандартизации и оценке конструкции кабеля с изоляцией из сшитого полиэтилена, включая пробные установки, в рамках подготовки к любым изменениям ситуации.За рубежом, где другие обстоятельства, наибольший спрос на кабели из сшитого полиэтилена.

Поскольку производственные мощности все больше ориентируются на этот рынок, кабели с изоляцией из сшитого полиэтилена составляют значительную долю производства в Великобритании.


Кабельное соединение холодной усадки — Одноядерный высоковольтный кабель из сшитого полиэтилена

Артикул: Newnes Electrical Pocket Book — E.A. Ривз DFH (с отличием), CEng, MIEE Martin J. Heathcote BEng, CEng, FIEE

,

Сравнение изоляционных материалов кабелей

XLPE Insulated Power Cable XLPE Insulated Power Cable Силовой кабель высокого напряжения с изоляцией из сшитого полиэтилена

Электроизоляционные материалы используются для металлических проводов подземных кабелей на всех номинальных напряжениях. В качестве изоляции используются полимерные материалы, но природа полимера может варьироваться в зависимости от класса напряжения.

Поскольку бумажная изоляция сначала использовалась в энергетике, а затем была заменена в приложениях низкого и среднего напряжения, при любом сравнении свойств обычно используется система жидкость-бумага в качестве стандарта.
.

Передача Кабели , которые определяются как кабели, работающие выше 46 кВ, традиционно используют бумажно-масляные системы в качестве изоляции. Бумага наносится тонкой пленкой, намотанной на жилу кабеля. Несколько лет назад была разработана разновидность этой бумажной изоляции, в качестве материала которой использовался ламинат бумаги с полипропиленом (PPP или PPLP).

С момента появления синтетических полимеров полиэтилен (PE) использовался в качестве изоляционного материала, и в большинстве стран (за исключением Франции) использование полиэтилена ограничивалось сшитой версией (XLPE).

Сшитый полиэтилен

считается предпочтительным материалом из-за простоты его обработки и обращения, хотя системы бумага / масло имеют гораздо более длительную историю использования и существует гораздо больше информации о надежности.

Основные различия между бумажной и полиолефиновой изоляцией

Бумага / целлюлоза Полиэтилен
Натуральный Синтетика
Углерод / водород / кислород Углерод / водород / кислород
Больше полярных / средних потерь Менее полярные, низкие потери
Цепи линейные Цепи разветвленные
Фибриллы Нефибриллы
Частично кристаллический / Относительно постоянный Частично кристаллический / Зависит от используемого сорта
Нет теплового расширения при нагревании Значительное тепловое расширение
Несшитый Несшитый
Термическое разложение через расщепление слабого звена Ухудшение слабых звеньев

.

Сшитый полиэтилен Этилен-пропиленовый каучук
Синтетика Синтетика
Углерод / водород Углерод / водород
Менее полярные, низкие потери Потери из-за присадок
Цепи разветвленные, сшитые Цепи разветвленные, сшитые
Неволокнистый Неволокнистый
Чуть меньше кристаллов PE Наименее кристаллический из всех
Такое же тепловое расширение, как у PE Незначительное тепловое расширение
Сшитый Сшитый
Ухудшение слабых звеньев То же, что и XLPE

В этой таблице сравниваются свойства бумаги , полиэтилена, сшитого полиэтилена и изоляционных материалов из этилен-пропиленового каучука.Только бумага представляет собой натуральный полимер и поэтому обрабатывается иначе. Бумагу получают из дерева или хлопка.

Синтетические полимеры получают путем полимеризации мономеров, полученных из нефти. Все они состоят из углерода и водорода, но бумага также содержит кислород. Последний присутствует в виде функциональных гидроксильных или эфирных групп. Они вносят вклад в меру полярности, которая отсутствует в синтетических полимерах. (Полярность означает повышенные диэлектрические потери.)

Особо следует отметить понятие теплового расширения при нагревании.В то время как все синтетические полимеры подвергаются тепловому расширению при нагревании, этого не происходит с целлюлозой, хотя масло будет это делать. То, как эта изоляция реагирует на старение, является хорошо изученным вопросом, поскольку это напрямую связано с надежностью кабеля после установки и подачи питания. Когда целлюлоза разлагается, это происходит в «слабом звене», в области кислородной связи между кольцами. Когда это происходит, DP уменьшается.

С другой стороны, полиолефины разлагаются по совершенно другому механизму — окислительной деградации на определенных участках.

Защита от разложения полиолефинам придается путем добавления антиоксиданта к гранулам перед экструзией. Обратите внимание, что добавление антиоксидантов в масло, чтобы предотвратить его разложение, довольно распространено. На диаграмме следует отметить еще один момент: различная реакция типов изоляции на испытания постоянным током. Испытания кабелей постоянным током традиционно выполняются для определения состояния кабеля в определенные моменты времени во время их использования, например, перед сезоном пиковых нагрузок. Этот метод был принят для кабелей PILC много лет назад.

Позже он был перенесен на экструзионные диэлектрические кабели. Исследования и разработки последних нескольких лет показали, что полиэтилен и сшитый полиэтилен могут быть повреждены при испытании на постоянном токе, но этого не происходит с системами бумага-масло.

Кабели

EPR не изучались в той же степени, и в настоящее время нельзя сделать никаких выводов о влиянии испытаний постоянным током на изоляцию.

Преимущества полиэтилена

  • Низкая диэлектрическая проницаемость (низкая диэлектрическая проницаемость)
  • Low tan delta (низкие диэлектрические потери)
  • Высокая начальная диэлектрическая прочность

Преимущества сшитого полиэтилена (в дополнение к вышеперечисленным)

  • Улучшенные механические свойства при повышенной температуре
  • Нет плавления при температуре выше 105 ° C, но происходит тепловое расширение.
  • Пониженная восприимчивость к водяным деревьям

Преимущества EPR

  • Уменьшенное тепловое расширение по сравнению с XLP
  • Пониженная чувствительность к водяным деревьям
  • Повышенная гибкость

Преимущества PILC

  • Недостаточная чувствительность к испытаниям на постоянном токе
  • Известная история надежности

Особые преимущества синтетической полимерной изоляции перед PILC

  • Уменьшенный вес
  • Принадлежности для более удобного использования
  • Неисправности ремонтировать проще
  • Гидравлическое давление / насос не требуется
  • Пониженный риск распространения пламени
  • Снижена начальная стоимость

Некоторые из этих преимуществ являются электрическими, а некоторые нет.Следует проявлять осторожность при попытке сравнить EPR, XLPE и TR-XLPE. Есть много различных формулировок ЭПР.

Природа неполимерных добавок, включая наполнители, играет важную роль в влиянии на свойства, а также на характер процесса смешивания. Ясно то, что любой состав EPR будет иметь более высокие потери, чем система PE или XLPE с неминеральным наполнением. Некоторые системы EPR могут иметь очень высокие потери. Это может повлиять на устойчивость к водяным деревьям. Однако системы ЭПР обычно «мягче» из-за отсутствия кристалличности, и поэтому с ними легче обращаться в полевых условиях, особенно при очень низких температурах.

Недостатки PILC включают тот факт, что свинец обычно используется в качестве внешней оболочки, и мотивация не использовать свинец для новых установок очень высока. Бумага также очень чувствительна к порче от влаги.

Автор: Брюс С. Бернштейн

,

Экранирование силовых кабелей

Почему экранирование кабелей?

Силовые кабели среднего и высокого напряжения в цепях с напряжением более 2000 вольт обычно имеют экранирующий слой из медной или алюминиевой ленты или проводящего полимера. Если неэкранированный изолированный кабель контактирует с землей или заземленным объектом, электростатическое поле вокруг проводника будет сосредоточено в точке контакта, что приведет к коронному разряду и, в конечном итоге, к разрушению изоляции.

Кроме того, ток утечки и емкостной ток через изоляцию представляют опасность поражения электрическим током.Заземленный экран выравнивает электрическое напряжение вокруг проводника, отводит любой ток утечки на землю. Обязательно используйте конусы для снятия напряжения на концах экрана, особенно для кабелей, работающих при напряжении более 2 кВ относительно земли.

Экраны силовых кабелей подключены к заземлению на каждом конце экрана и в местах сращивания для резервирования, чтобы предотвратить удар, даже если наведенный ток будет течь в экране. Этот ток приведет к потерям и нагреву и уменьшит максимальный номинальный ток цепи.Испытания показывают, что наличие оголенного заземляющего проводника, прилегающего к изолированным проводам, будет быстрее проводить ток замыкания на землю. В сильноточных цепях экраны могут быть подключены только с одного конца.

В очень длинных высоковольтных цепях экран может быть разбит на несколько частей, так как при длительном проходе экрана во время повреждения цепи может возникнуть опасное напряжение. Однако опасность поражения электрическим током при заземлении только одного конца экрана должна быть оценена с учетом риска!

Экранирование силового кабеля осуществляется путем окружения сборки или изоляции заземленной проводящей средой.Это ограничивает диэлектрическое поле внутри этого экрана.

Используются два разных типа экранов:

Изоляционный экран предназначен для:

  • Получите симметричное распределение радиальных напряжений с помощью изоляции.
  • Устраняет касательные и продольные напряжения на поверхности изоляции.
  • Исключить из диэлектрического поля такие материалы, как оплетка, ленты и наполнители, которые не предназначены для использования в качестве изоляции.
  • Защищайте кабели от наведенного или прямого среднего напряжения. Экраны делают это, делая импульсное сопротивление равномерным по длине кабеля и помогая ослабить импульсные потенциалы.

Экранирование проводов

Paper Insulated Cable Paper Insulated Cable Кабель с бумажной изоляцией

В кабелях с номинальным напряжением более 2000 В согласно промышленным стандартам требуется экран проводника. Назначение полупроводникового, также называемого экранирующим, материала поверх проводника состоит в том, чтобы обеспечить гладкий цилиндр, а не относительно шероховатую поверхность многожильного проводника, чтобы уменьшить концентрацию напряжений на границе раздела с изоляцией.

Экранирование проводов использовалось для кабелей с ламинарной и экструдированной изоляцией .

Используемые материалы представляют собой полупроводниковые материалы или материалы с высокой диэлектрической проницаемостью, известные как материалы для контроля напряжения. Оба служат одной и той же функции снижения стресса.

Экраны проводов для кабелей с бумажной изоляцией представляют собой ленты сажи или металлизированные бумажные ленты. Изначально экранирующие материалы проводника были сделаны из полупроводниковых лент, которые спирально наматывались на проводник.Существующие стандарты по-прежнему допускают такую ​​ленту поверх проводника. Это делается, особенно на больших проводниках, для того, чтобы прочно удерживать жилы вместе во время нанесения экструдированного полупроводникового материала, который теперь требуется для кабелей среднего напряжения.

Опыт работы с кабелями, которые имели только полупроводниковую ленту, был неудовлетворительным, поэтому промышленность изменила свои требования и потребовала нанесения экструдированного слоя поверх проводника.

В экструдированных кабелях этот слой теперь выдавливается непосредственно над проводником и соединяется с изоляционным слоем, который наносится поверх этого слоя снятия напряжения.Чрезвычайно важно, чтобы между этими двумя слоями не было пустот или постороннего материала.

Современные экструдированные слои не только чистые (без нежелательных примесей), но и очень гладкие и круглые. Это значительно уменьшило образование водяных прядей, которые могут возникать на неровных поверхностях. При одновременном выдавливании двух слоев экран проводника и изоляция отверждаются одновременно. Это обеспечивает неразрывную связь, сводящую к минимуму вероятность образования пустот на критической границе раздела.

Из соображений совместимости экструдированный экранирующий слой обычно изготавливается из того же или подобного полимера, что и изоляция.

Специальная сажа используется для создания слоя поверх проводника полупроводника для обеспечения необходимой проводимости . Отраслевые стандарты требуют, чтобы полупроводниковый материал проводника имел максимальное удельное сопротивление 1000 метров Ом. Эти стандарты также требуют, чтобы этот материал прошел испытание на долговременную стабильность на удельное сопротивление на уровне аварийной рабочей температуры, чтобы гарантировать, что слой остается проводящим и, следовательно, обеспечивает длительный срок службы кабеля.

Водонепроницаемый материал может быть включен как часть экрана проводника для предотвращения радиального проникновения влаги. Этот слой состоит из тонкого слоя алюминия или свинца, зажатого между полупроводниковым материалом. Аналогичный ламинат можно использовать для изоляционного экрана по той же причине.

Не существует окончательного стандарта, описывающего класс экструдируемых защитных материалов, известный как « супер гладкий, супер чистый ». Обычно нецелесообразно использовать фирменное наименование производителя или номер продукта для описания любого материала.

T Термин «супер гладкий, супер чистый» — единственный способ на момент написания данной статьи описать класс материала, обеспечивающий более высокое качество кабеля, чем в более ранней версии. Это только академический вопрос, поскольку старые типы материалов больше не используются для строительства кабелей среднего напряжения известными поставщиками.

Дело в том, что эти новые материалы значительно улучшили характеристики кабеля в лабораторных условиях.


Изоляционный экран для кабелей среднего напряжения

Изоляционный экран кабеля среднего напряжения состоит из двух компонентов:

  • Полупроводящий слой или слой для снятия напряжений
  • Металлический слой ленты или отвода, заземляющих проводов, концентрических нейтральных проводов или металлической трубки.

Для обеспечения длительного срока службы кабеля они должны работать как единое целое.

Слой снятия напряжений

Полимерный слой, используемый с удлиненными кабелями, заменил ленточные экраны, которые использовались много лет назад. Этот экструдированный слой называется экструдированным изоляционным экраном или экраном. Его свойства и требования к совместимости аналогичны ранее описанному экрану проводника, за исключением того, что стандарты требуют, чтобы объемное удельное сопротивление этого внешнего слоя было ограничено до 500 мОм.

Неметаллический слой находится непосредственно над изоляцией, и напряжение на этой границе раздела ниже, чем на границе раздела экрана проводника. Этот внешний слой не требуется связывать для кабелей с номинальным напряжением до 35 кВ. При напряжении выше этого настоятельно рекомендуется приклеивать этот слой к изоляции.

Поскольку большинство пользователей хотят, чтобы этот слой легко снимался, Ассоциация осветительных компаний Эдисона (AEIC) установила пределы натяжения полосы.В настоящее время эти ограничения заключаются в том, что полоса шириной 1/2 дюйма, отрезанная параллельно проводнику, отслаивается с минимальным усилием в 6 фунтов и усилием не менее 24 фунтов под углом 90º к поверхности изоляции.

Металлический щит

Металлическая часть изоляционного экрана или экрана необходима для обеспечения пути с низким сопротивлением для прохождения зарядного тока на землю. Важно понимать, что экструдированные экранирующие материалы не выдержат длительного протекания тока силой более нескольких миллиампер.Эти материалы способны выдерживать небольшие зарядные токи, но не переносят несимметричные токи или токи короткого замыкания.

Металлический компонент изоляционного экрана системы должен выдерживать эти более высокие токи. С другой стороны, чрезмерное количество металла в экране одножильного кабеля обходится дорого по двум причинам. Во-первых, дополнительный металл сверх необходимого количества увеличивает первоначальную стоимость кабеля. Во-вторых, чем больше металлический компонент изоляционного экрана, тем выше потери в экране, которые приводят к протеканию тока в центральном проводнике.

В конструкции кабеля должно быть предусмотрено достаточное количество металла, чтобы обеспечить активацию резервной защиты кабеля в случае неисправности кабеля в течение срока его службы. Есть также опасения по поводу потерь щита.

Следовательно, необходимо, чтобы:
  • Тип оборудования, отключающего цепи, которое необходимо проанализировать. Какова конструкция и рабочие настройки устройства hse, АПВ или автоматического выключателя?
  • С каким током повреждения будет встречаться кабель в течение срока службы?
  • Какие потери в щите допустимы? Сколько раз нужно заземлять экран? Будут ли разрывы экрана для предотвращения циркуляции токов?

Концентрические нейтральные кабели

Если указаны концентрические нейтральные кабели, концентрические нейтрали должны быть изготовлены в соответствии со стандартами ICEA.Эти провода должны соответствовать ASTM B3 для проводов без покрытия или B33 для проводов с покрытием.

Эти провода накладываются непосредственно на неметаллический изоляционный экран с укладкой не менее шести или более чем в десять раз больше диаметра концентрических проводов.


Экранирование кабелей низкого напряжения

Shielding of low voltage cables Shielding of low voltage cables Экранирование кабелей низкого напряжения обычно требуется там, где индуктивные помехи могут быть проблемой. В многочисленных применениях кабелей связи, контрольно-измерительных приборов и управления небольшие электрические сигналы могут передаваться по проводнику кабеля и усиливаться на приемном конце.Нежелательные сигналы ( шум ) из-за индуктивных помех могут быть больше желаемого сигнала. Это может привести к ложным сигналам или звуковому шуму, которые могут повлиять на голосовую связь.

По всему спектру частот необходимо разделить возмущения на эффекты электрического поля и эффекты магнитного поля.

Электрополя

Эффекты электрического поля — это эффекты, которые являются функцией емкостной связи или взаимной емкости между цепями.Экранирование может быть выполнено с помощью сплошного металлического экрана для изоляции нарушенной цепи от нарушающей цепи.

Даже полупроводниковые экструзии или ленты, дополненные заземленным проводом постоянного тока, могут выполнять некоторую функцию экранирования от воздействия электрического поля.

Магнитные поля

Эффекты магнитного поля являются результатом связи магнитного поля между цепями. Это немного сложнее, чем для электрических эффектов.

На относительно низких частотах энергия, испускаемая источником, рассматривается как излучение.Он увеличивается пропорционально квадрату частоты. Это электромагнитное излучение может вызывать дисбаланс на значительном расстоянии и проникать в любые «отверстия» в защите. Это может происходить с экранами из оплетки или лент, которые не перекрываются. Тип металла, используемого в щите, также может повлиять на величину помех.

Любой материал металлического экрана, в отличие от магнитных металлов, обеспечивает некоторый экран из-за вихревых токов, которые возникают в металлическом экране падающим полем.Эти вихревые токи стремятся нейтрализовать мешающее поле. Неметаллическое полупроводниковое экранирование неэффективно для магнитных эффектов. Как правило, наиболее эффективным экранированием является полный стальной трубопровод, но это не всегда практично.

Эффективность щита называется «коэффициент экранирования » и выражается как:

SF = Индуцированное напряжение в цепи экрана / Индуктивное напряжение в неэкранированной цепи

Испытательные схемы для измерения эффективности различных конструкций экранирования против эффектов электрического и магнитного поля были опубликованы Гудингом и Слэйдом.

ИСТОЧНИК: Лоуренс Дж. Келли и Карл С. Лендинджер, Википедия

,

Добавить комментарий

Ваш адрес email не будет опубликован.