Электрическая емкость конденсатора формула: параллельное, последовательное соединение, батарея. Виды проводника, формулы. тесты, схема

Содержание

Время зарядки конденсатора формула. Накопление заряда на обкладках конденсатора

Вам понадобится

  • — знание емкости или геометрических и физических параметров конденсатора;
  • — знание энергии или заряда на конденсаторе.

Инструкция

Найдите напряжение между пластинами конденсатора, если известна текущая величина накопленной им энергии, а также его емкость. Энергия, запасенная конденсатором, может быть вычислена по формуле W=(C∙U²)/2, где C — емкость, а U — напряжение между пластинами. Таким образом, значение напряжения может быть получено как корень из удвоенного значения энергии, деленного на емкость. То есть, оно будет равно: U=√(2∙W/C).

Энергия, запасенная конденсатором, также может быть вычислена на основании значения содержащегося в нем заряда (количества ) и напряжения между обкладками. Формула, задающая соответствие между этими параметрами, имеет вид: W=q∙U/2 (где q — заряд). Следовательно, зная энергию и , можно вычислить напряжение между его пластинами по формуле: U=2∙W/q.-12 Ф/м), ε — относительная диэлектрическая проницаемость пространства между пластинами (ее можно узнать из физических справочников). Вычислив емкость, рассчитайте напряжение одним из методов, приведенных в шагах 1-3.

Обратите внимание

Для получения корректных результатов при вычислении напряжений между обкладками конденсаторов, перед проведением расчетов приводите значения всех параметров в систему СИ.

Для того чтобы знать, можно ли использовать в том или ином месте схемы конденсатор, следует определить его . Способ нахождения этого параметра зависит от того, каким образом он обозначен на конденсаторе и обозначен ли вообще.

Вам понадобится

  • Измеритель емкости

Инструкция

На крупных конденсаторах

емкость обычно обозначена открытым текстом: 0,25 мкФ или 15 uF. В этом случае, способ ее определения тривиален.

На менее крупных конденсаторах (в том , SMD) емкость двумя или тремя цифрами. В первом случае, она обозначена в пикофарадах. Во втором случае, первые две цифры емкость , а третья — в каких единицах она выражена:1 — десятки пикофарад;
2 — сотни пикофарад;
3 — нанофарады;
4 — десятки нанофарад;
5 — доли микрофарады.

Существует также система обозначения емкости, использующая сочетания латинских букв и цифр. Буквы обозначают следующие цифры:A — 10;
B — 11;
C — 12;
D — 13;
E — 15;
F — 16;
G — 18;
H — 20;
J — 22;

K — 24;
L — 27;
M — 30;
N — 33;
P — 36;
Q — 39;
R — 43;
S — 47;
T — 51;
U — 56;
V — 62;
W — 68;
X — 75;
Y — 82;
Z — 91.Полученное число следует умножить на число 10, предварительно возведенное в степень, равную цифре, следующей после . Результат будет выражен в пикофарадах.

Встречаются конденсаторы, емкость на которых не обозначена вообще. Вы наверняка встречали их, в , в стартерах ламп дневного . В этом случае, измерить емкость можно только специальным прибором. Они цифровыми и мостовыми.В любом случае, если конденсатор впаян в то или иное устройство, его следует обесточить, разрядить в нем конденсаторы фильтра и сам конденсатор,

емкость которого следует измерить, и лишь после этого выпаять его. Затем его необходимо подключить к прибору.На цифровом измерителе сначала выбирают самый грубый предел, затем переключают его до тех пор, пока он не покажет перегрузку. После этого переключатель переводят на один предел назад и читают показания, а по положению переключателя определяют, в каких единицах они выражены.На мостовом измерителе, последовательно переключая , на каждом из них прокручивают регулятор из одного конца шкалы в другой, пока звук из динамика не исчезнет. Добившись исчезновения , по шкале регулятора считывают результат, а единицы, в которых он выражен, также определяют по положению переключателя.Затем конденсатор устанавливают обратно в устройство.

Обратите внимание

Никогда не подключайте к измерителю заряженные конденсаторы.

Источники:

  • Справочник по системам обозначения емкости

Найти значение электрического заряда можно двумя способами. Первый – измерить силу взаимодействия неизвестного заряда с известным и с помощью закона Кулона рассчитать его значение. Второй – внести заряд в известное электрическое поле и измерить силу, с которой оно действует на него. Для измерения заряда протекающего через поперечное сечение проводника за определенное время измерьте силу тока и умножьте ее на значение времени.

Вам понадобится

  • чувствительный динамометр, секундомер, амперметр, измеритель электростатического поля, воздушный конденсатор.

Инструкция

Измерение заряда при его с известным зарядомЕсли известен одного тела, поднесите к нему неизвестный заряд и измерьте между ними в метрах. Заряды начнут взаимодействовать. С помощью динамометра измерьте силу их взаимодействия. Рассчитайте значение неизвестного заряда — для этого квадрат измеренного расстояния умножьте на значение силы и поделите на известный заряд.9)). Если заряды отталкиваются, то они одноименные, если же притягиваются – разноименные.

Измерение значения заряда , внесенного в электрическое полеИзмерьте значение постоянного электрического поля специальным прибором (измеритель электрического поля). Если такого прибора нет, возьмите воздушный конденсатор, зарядите его, измерьте напряжение на его обкладках и поделите не расстояние между пластинами – это и будет значение электрического поля внутри конденсатора в вольтах на метр. Внесите в поле неизвестный заряд. С помощью чувствительного динамометра измерьте силу, которая на него действует. Измерение проводите в . Поделите значение силы на напряженность электрического поля. Результатом будет значение

заряда в Кулонах (q=F/Е).

Измерение заряда , протекающего через поперечное проводникаСоберите электрическую цепь с проводниками и последовательно подключите к ней амперметр. Замкните ее на источник тока и измерьте силу тока с помощью амперметра в амперах. Одновременно секундомером засеките , в которого в цепи был электрический ток. Умножив значение силы тока на полученное время, узнайте заряд, через поперечное сечение каждого за это время (q=I t). При измерениях следите, чтобы проводники не перегревались и не произошло короткое замыкание.

Конденсатором называется устройство, способное накапливать электрические заряды. Количество накапливаемой электрической энергии в конденсаторе характеризуется его емкостью . Она измеряется в фарадах. Считается, что емкость в один фарад соответствует конденсатору, заряженному электрическим зарядом в один кулон при разности потенциалов на его обкладках в один вольт.

Инструкция

Определите емкость плоского конденсатора по формуле С = S e e0/d, где S — площадь поверхности одной пластины, d — между пластинами, e — относительная диэлектрическая проницаемость , заполняющей пространство между пластинами (в вакууме она равна ), e0 — электрическая постоянная, равная 8,854187817 10(-12) Ф/м.Исходя из приведенной формулы, величина емкости будет зависеть от площади проводников, между ними и от материала диэлектрика. В качестве диэлектрика может применяться или слюда.

Вычислите емкость сферического конденсатора по формуле С = (4П e0 R²)/d, где П — число «пи», R — радиус сферы, d — величина зазора между его сферами.Величина емкости сферического

конденсатора прямо пропорциональна концентрической сферы и обратно пропорциональна расстоянию между сферами.

Рассчитайте емкость цилиндрического конденсатора по формуле С = (2П e e0 L R1)/(R2-R1), где L — длина конденсатора , П — число «пи», R1 и R2 — радиусы его цилиндрических обкладок.

Если конденсаторы в цепи соединены параллельно, рассчитайте их общую емкость по формуле С = С1+С2+…+Сn, где С1, С2,…Сn – емкости параллельно соединенных конденсаторов.

Вычислите общую емкость последовательно соединенных конденсаторов по формуле 1/С = 1/С1+1/С2+…+1/Сn, где С1, С2,…Сn — емкости последовательно соединенных конденсаторов.

Обратите внимание

На любом конденсаторе обязательно должна быть нанесена маркировка, которая может быть буквенно-цифровая или цветовая. Маркировка отражает его параметры.

Источники:

  • Цветовая маркировка резисторов, конденсаторов и индуктивностей

Емкость – величина, в системе СИ выражаемая в фарадах. Хотя используются, фактически, лишь производные от нее – микрофарады, пикофарады и так далее. Что касается электроемкости плоского конденсатора, она зависит от зазора меж обкладок и их площади, от вида диэлектрика, в данном зазоре расположенного.

Инструкция

В том случае, если обкладки конденсатора имеют одинаковую площадь и имеют расположение строго одна над другой, рассчитайте площадь одной из обкладок – любой. Если же одна из них относительно другой смещена либо они разные , нужно рассчитывать площадь области, в которой обкладки друг дружку перекрывают.

При этом используются общепринятые формулы, рассчитывать площади таких геометрических фигур, как круг (S=π(R^2)), прямоугольника (S=ab), его частного случая – квадрата (S=a^2) – и других.(-12) Ф/м и является, по сути, диэлектрической проницаемостью вакуума.

Состоит из двух пластин (или обкладок), находящихся одна перед другой и сделанных из проводящего материала. Между пластинами находится изолирующий материал, называемый диэлектриком (рис. 4.1). Простейшими диэлектриками являются воздух, бумага, слюда и т. д.

Рис. 4.1

Зарядка конденсатора

Основным свойством конденсатора является его способность запасать электрическую энергию в виде электрического заряда.
На рис. 4.2(а) изображена схема, в которой конденсатор соединяется через ключ с источником питания. Когда ключ замкнут (рис. 4.2(б)), положительный полюс источника «откачивает» электроны с обкладки А, и она приобретает положительный заряд. Отрицательный полюс источника питания тем временем «поставляет» электроны на обкладку В, в результате чего она приобретает отрицательный заряд, по абсолютной величине равный положительному заряду обкладки А. Такой поток электронов называется током заряда. Он продолжает течь до тех пор, пока напряжение на конденсаторе не сравняется с ЭДС источника питания. В этом случае говорят, что конденсатор полностью заряжен. Электрический заряд обозначается буквой Q, а его величина измеряется в кулонах (Кл).


Рис. 4.2.

Когда конденсатор заряжен, между его обкладками возникает разность потенциалов, а следовательно, и электрическое поле.
Если в момент, когда конденсатор уже зарядился, разомкнуть ключ (рис. 4.2(в)), конденсатор будет хранить заряд. В этом случае внутри диэлектрика между обкладками возникает электрическое поле. При разряде конденсатора через сопротивление нагрузки (рис. 4.2(г)) электрическое ноле исчезает.

Емкость конденсатора

Способность конденсатора накапливать электрический заряд называется емкостью, а величина этой емкости обозначается буквой С и измеряется в фарадах (Ф). Фарада — очень большая единица емкости, и поэтому она практически не используется. Чаще используются дробные единицы:

1 микрофарада (мкФ) = Ф = 10 -6 Ф,

1 пикофарада (пФ) = мкФ = 10 -6 мкФ = 10 -12 Ф.

Емкость конденсатора возрастает с увеличением площади обкладок и убывает с увеличением расстояния между ними.
Например, при возрастании площади обкладок вдвое емкость также увеличивается в два раза. Если же увеличить вдвое расстояние между обкладками, емкость станет вдвое меньше.

Связь заряда, емкости и напряжения

Если конденсатор заряжен до разности потенциалов V , его заряд определяется формулой Q=CV

где С выражается в фарадах, V – в вольтах, а Q – в кулонах. Преобразовав эту формулу, получим:

Энергия заряженного конденсатора

Энергия W, запасенная конденсатором, определяется формулой

где W выражается в джоулях, С – в фарадах, а V — в вольтах.

Параллельное и последовательное соединение конденсаторов

Если два конденсатора, С1 и С2, соединены параллельно (рис. 4.3(а)), результирующая емкость СТ такого соединения равна сумме емкостей этих конденсаторов:

Если конденсаторы соединены последовательно (рис. 4.3(б)), результирующая емкость СТ оказывается меньше емкости любого из конденсаторов я выражается формулой

Например, если С1 = С2, то результирующая емкость СТ последовательного соединения равна половине емкости любого из конденсаторов:

Напряжение на последовательно соединенных конденсаторах

На схеме, показанной на рис. 4.4, конденсаторы С1 и С2 соединены последовательно и подключены к источнику постоянного напряжения VТ. Полное напряжение VТ будет поделено между С1 и С2 таким образом, что на конденсаторе меньшей емкости установится большее напряжение,


Рис. 4.3. Параллельное (а) и последовательное (б) соединение конденсаторов.


и наоборот.

Сумма V1 (напряжения на С1) и V2 (напряжения на С2) всегда равна полному напряжению VТ.
В общем случае, когда несколько конденсаторов, соединенных последовательно, подключено к источнику постоянного тока, напряжение на каждом из конденсаторов обратно пропорционально его емкости. При последовательном соединении двух конденсаторов напряжения на С1 и С2 соответственно равны

Пример 1

Определим результирующую емкость цепи, изображенной на рис. 4.5. Результирующая емкость параллельного соединения равна

С2 + С3 = 10 + 20 = 30 пФ

Поскольку емкость С1 также равна 30 пФ, то результирующая емкость всей цепи равна ½*30 = 15 пФ.



Рис. 4.6. Рис. 4.7.

Пример 2

откуда напряжение на С2 равно 30 – 20 = 10 В.

Рабочее напряжение

Любой конденсатор характеризуется некоторым максимальным напряжением, при превышении которого наступает пробой диэлектрика. Это напряжение называется рабочим, или номинальным, напряжением конденсатора, и подаваемое на конденсатор напряжение ни в коем случае не должно его превышать. При использовании конденсатора в цепях переменного тока амплитудное значение напряжения в цепи также не должно превышать рабочего напряжения конденсатора. Рабочим напряжением для батареи конденсаторов, соединенных параллельно, является наименьшее из рабочих напряжений конденсаторов, входящих в схему, Например, рабочее напряжение для цепи, изображенной на рис. 4.7, равно 25 В.
Для конденсаторов, соединенных последовательно, рабочее напряжение подбирать труднее. Рассмотрим схему на рис. 4.8. Конденсатор С1 (1 мкФ, рабочее напряжение Vраб = 25 В) соединен последовательно с конденсатором С2 (10 мкФ, Vраб = 10 В). Поскольку на конденсаторе С1, обладающем меньшей емкостью, установится большее напряжение, чем на С2, то при расчетах следует прежде всего иметь в виду рабочее напряжение конденсатора С1, равное 25 В. Таким образом, V1 = 25 В. соотношения V1/ V2 = С1/ С2 следует, что

Поскольку рабочее напряжение конденсатора С2 выше, чем V2, рабочее напряжение данной батареи конденсаторов равно 25 + 2,5 = 27,5 В.
Следует заметить, что если бы рабочее напряжение конденсатора было равно, например, 2 В, как показано на рис. 4.9, то он зарядился бы



Рис. 4.8. Рис. 4.9.



Рис. 4.10. Рис. 4.11 . Катушка индуктивности

до уровня рабочего напряжения прежде, чем напряжение на конденсаторе С1 достигло бы 25 В. Вот расчет для этого случая:
V2 = 2 В, тогда.

Следовательно, рабочее напряжение такой батареи будет составлять 20 + 2 = 22 В.

Пример 3

Конденсаторы С1 и С2, изображенные на рис. 4.10, имеют каждый рабочее напряжение 60 В. Какое максимальное напряжение может быть приложено к этой схеме?

Решение
Поскольку на конденсаторе С1 установится более высокое напряжение, чем на конденсаторе С2, то напряжение на нем раньше достигнет уровня рабочего напряжения. При V1 = 60 В

Максимальное напряжение, которое может быть подано на данную схему, составляет 60 + 20 = 80 В.

В этом видео рассказывается о понятии конденсатора:

Темы кодификатора ЕГЭ : электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах .

Но прежде введём понятие электрической ёмкости .

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым .

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду . Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где — заряд шара, — его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В . Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

МкФ.

Как видите, Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2) :

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор . Он состоит из двух параллельных металлических пластин (называемых обкладками ), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора .

Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4) . Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты : поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6) , таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора :

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком :

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10) : заполнение конденсатора диэлектриком увеличивает его ёмкость .

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

где — напряжённость поля первой обкладки:

Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

(11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины alt=»(d_2 > d_1)»> , то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

Это можно переписать следующим образом:

(12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора .

Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

(13)

(14)

Особенно полезными являются формулы (12) и (14) .

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) — (14) останутся неизменными . Ёмкость конденсатора в них теперь будет выражаться по формуле (10) .

Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но — объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина — энергия единицы объёма поля — называется объёмной плотностью энергии . Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

По назначению конденсатор можно сравнить с батарейкой. Но имеется принципиальное отличие в работе данных элементов. Существуют отличия в предельной емкости и скорости зарядки конденсатора и батарейки.

Формула заряда конденсатора

где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками.

Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Заряд на пластинах плоского конденсатора равен:

где – электрическая постоянная; – площадь каждой (или наименьшей) пластины; – расстояние между пластинами; – диэлектрическая проницаемость диэлектрика, который находится между пластинами конденсатора.

Заряд на обкладках цилиндрического конденсатора вычисляется при помощи формулы:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Заряд на обкладках сферического конденсатора найдем как:

Заряд конденсатора связан с энергией поля (W) внутри него:

Из формулы (6) следует, что заряд можно выразить как:

Рассмотрим последовательное соединение из N конденсаторов (рис. 1).

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении, обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды.

При параллельном соединении конденсаторов (рис.2), соединяют обкладки, имеющие заряды одного знака. Суммарный заряд соединения (q) равен сумме зарядов конденсаторов.

Примеры решения задач по теме «Заряд конденсатора»

ru.solverbook.com

Формула емкости конденсатора, С

Если q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками, то величина C, равная:

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в раз больше, чем воздушного ():

где – диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где – радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

ru.solverbook.com

Ёмкость конденсатора — Все формулы

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

Ёмкость цилиндрического конденсатора:

Ёмкость плоского конденсатора:

Емкость сферического конденсатора:

В формуле мы использовали:

Электрическая ёмкость (ёмкость конденсатора)

Потенциал проводника (Напряжение)

Потенциал

Относительная диэлектрическая проницаемость

Электрическая постоянная

Площадь одной обкладки

Расстояние между обкладками

xn--b1agsdjmeuf9e.xn--p1ai

Заряд конденсатора, теория и примеры задач

Определение и заряд конденсатора

Возможность конденсатора накопить электрический заряд зависит от главной характеристики конденсатора – емкости (C).

По своему назначению конденсатор можно уподобить батарейке. Однако существует принципиальное отличие в принципах работы этих элементов. Отличаются, также максимальные емкости и скорости зарядки и разряда конденсатора и батарейки.

Если к конденсатору присоединить источник напряжения (рис.1), то на одной из пластин конденсатора станут накапливаться отрицательные заряды (электроны), на другой положительные частицы (положительные ионы). Между обкладками конденсатора находится диэлектрик, вследствие этого, заряды не могут перебраться на противоположную пластину. Однако заметим, что электроны двигаются от источника тока до пластины конденсатора.

При первоначальном соединении конденсатора и источника тока на обкладках конденсатора много свободного места. Это означает, что сопротивление току этот момент времени минимально, сам ток максимален. В ходе зарядки конденсатора сила тока в цепи постепенно падает, до того момента пока не закончится свободное место на обкладках. При полной зарядке конденсатора ток в цепи прекратится.

Время, которое затрачивается на зарядку конденсатора от нулевого заряда (максимального тока) до полностью заряженного конденсатора (минимальная или нулевая сила тока) называют переходным периодом заряда конденсатора. На практике процесс зарядки конденсатора считают законченным, если сила тока уменьшилась до 1% от начальной величины.

Величина заряда конденсатора (q) связана с его емкостью (C) и разностью потенциалов (U) между его обкладками как:

Примеры решения задач


ru.solverbook.com

Формула электроемкости конденсатора

Обкладки должны иметь такую форму и быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально сосредоточено в ограниченной области пространства, между обкладками.

Назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.

Основной характеристикой конденсатора является электрическая емкость (C). Электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:

q – величина заряда на обкладке; – разность потенциалов между обкладками.

Электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. Если пространство между обкладками одного конденсатора заполнено диэлектриком с проницаемостью равной , а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (C) в раз больше, чем емкость воздушного конденсатора ():

Формула электроемкости основных типов конденсаторов

При расчете электроемкости плоского конденсатора нарушением однородности поля около краёв обкладок обычно пренебрегают. Это становится возможным, если расстояние между пластинами существенно меньше, чем линейные размеры обкладок. В таком случае электрическую емкость плоского конденсатора вычисляют при помощи формулы:

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Если плоский конденсатор между обкладками имеет N слоев диэлектрика, при этом толщина каждого слоя равна , а диэлектрическая проницаемость , то его электрическую емкость рассчитывают при помощи формулы:

Цилиндрический конденсатор составляют две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполнено диэлектриком. При этом емкость цилиндрического конденсатора находят как:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

У сферического конденсатора обкладками служат две концентрические сферические проводящие поверхности, пространство обкладками заполняет диэлектрик. Емкость сферического конденсатора вычисляют как:

где – радиусы обкладок конденсатора. Если , то можно считать, что , тогда, мы имеем:

так как – площадь поверхности сферы, и если обозначить , то получим формулу для емкости плоского конденсатора (3). Если расстояние между обкладками сферического и цилиндрического конденсаторов малы (в сравнении с их радиусами), то в приближенных расчетах используют формулу емкости для плоского конденсатора.

Электрическую емкость для линии из двух проводов находят как:

где d – расстояние между осями проводов; R – радиус проводов; l – длина линии.

Формулы для вычисления электрической емкости соединений конденсаторов

Если конденсаторы соединены параллельно, то суммарная емкость батареи (C) находится как сумма емкостей отдельных конденсаторов ():

При последовательном соединении конденсаторов емкость батареи вычисляют как:

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи найдем как:

Сопротивление конденсатора

Если конденсатор включен в цепь с постоянного тока, то сопротивление конденсатора можно считать бесконечно большим.

При включении конденсатора в цепь переменного тока, его сопротивление носит название емкостного, и вычисляют его с помощью формулы:

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Энергия поля конденсатора

Электрическое поле локализованное между пластинами конденсатора обладает энергией, которую можно вычислить при помощи формулы:

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

Примеры решения задач по теме «Электроемкость конденсатора»

ru.solverbook.com

Как найти заряд конденсатора 🚩 как определить величину заряда 🚩 Естественные науки

В обычном (без плагинов и модов) варианте Minecraft такого понятия, как конденсатор, не существует. Вернее, устройство, выполняющее его функции, имеется, но название у него совершенно другое — компаратор. Некоторая путаница в этом плане произошла еще в период разработки такого прибора. Сперва — в ноябре 2012-го — представители Mojang (компании-создателя игры) объявили о скором появлении в геймплее конденсатора. Однако через месяц они высказались уже о том, что как такового этого прибора не будет, а вместо него в игре будет компаратор.

Подобное устройство существует для проверки заполненности расположенных позади него контейнеров. Таковыми могут быть сундуки (в том числе в виде ловушек), варочные стойки, раздатчики, выбрасыватели, печи, загрузочные воронки и т.п.

Помимо этого, его часто используют для сравнения двух сигналов редстоуна между собою — он выдает результат в соответствии с тем, как было запрограммировано в данной цепи, и с тем, какой режим выбран для самого механизма. В частности, компаратор может разрешить зажигание факела, если первый сигнал больше либо равен другому.

Также порой конденсатор-компаратор устанавливают рядом с проигрывателем, подключая его входом к последнему. Когда в звуковоспроизводящем устройстве проигрывается какая-либо пластинка, вышеупомянутый прибор будет выдавать сигнал, равный по силе порядковому номеру диска.

Скрафтить такой компаратор несложно, если имеется достаточно трудно добываемый ресурс — адский кварц. Его надо поставить в центральный слот верстака, над ним и по бокам от него установить три красных факела, а в нижнем ряду — такое же количество каменных блоков.

В большом количестве модов попадаются конденсаторы, имеющие самое разное предназначение. К примеру, в Galacticraft, где у геймеров есть возможность слетать на многие планеты для ознакомления с тамошними реалиями, появляется рецепт крафта кислородного конденсатора. Он служит для создания механизмов вроде коллектора и накопителя газа для дыхания, а также рамки воздушного шлюза. Для его изготовления четыре стальных пластины размещаются по углам верстака, в центре — оловянная канистра, а под нею — воздуховод. Остальные три ячейки занимают пластины из олова.

В JurassiCraft существует конденсатор потока — некий телепорт, позволяющий переместиться в удивительный игровой мир, кишащий динозаврами. Для создания такого прибора нужно поместить в два крайних вертикальных ряда шесть железных слитков, а в средний — два алмаза и между ними единицу пыли редстоуна. Дабы устройство заработало, надо поставить его на свинью либо вагонетку, а затем щелкнуть по нему правой клавишей мыши, быстро запрыгнув туда. При этом требуется поддержание высокой скорости устройства.

С модом Industrial Craft2 у игрока появляется возможность создавать как минимум два вида тепловых конденсаторов — красный и лазуритовый. Они служат исключительно для охлаждения ядерного реактора и для накопления его энергии и хороши для циклических сооружений такого типа. Остужаются они сами, соответственно, красной пылью или лазуритом.

Красный теплоконденсатор делается из семи единиц пыли редстоуна — их надо установить в виде буквы П и расставить под ними теплоотвод и теплообменник. Крафтинг же лазуритового устройства чуть посложнее. Для его создания четыре единицы пыли редстоуна расставляются по углам станка, в центр пойдет блок лазурита, по бокам от него — два красных тепловых конденсатора, сверху — теплоотвод реактора, а снизу — его же теплообменник.

В ThaumCraft, где сделан акцент на настоящем чародействе, конденсаторы тоже используются. Например, один из них — кристаллический — существует для аккумуляции и отдачи магии. Причем, что интересно, создавать его и многие другие вещи разрешено лишь после изучения особого элемента геймплея — исследования, проводимого за специальным столом и с определенными приборами.

Делается такой конденсатор из восьми тусклых осколков, в центр которых на верстаке помещается мистический деревянный блок. К сожалению, подобный прибор — равно как и его составляющие — просуществовал лишь до ThaumCraft 3, а в четвертой версии мода был упразднен.

www.kakprosto.ru

Соединение конденсаторов: формулы

Содержание:
  1. Последовательное соединение
  2. Онлайн калькулятор
  3. Смешанное соединение
  4. Параллельное соединение
  5. Видео

В электронных и радиотехнических схемах широкое распространение получило параллельное и последовательное соединение конденсаторов. В первом случае соединение осуществляется без каких-либо общих узлов, а во втором варианте все элементы объединяются в два узла и не связаны с другими узлами, если это заранее не предусмотрено схемой.

Последовательное соединение

При последовательном соединении два и более конденсаторов соединяются в общую цепь таким образом, что каждый предыдущий конденсатор соединяется с последующим лишь в одной общей точке. Ток (i), осуществляющий зарядку последовательной цепи конденсаторов будет иметь одинаковое значение для каждого элемента, поскольку он проходит только по единственно возможному пути. Это положение подтверждается формулой: i = ic1 = ic2 = ic3 = ic4.

В связи с одинаковым значением тока, протекающего через конденсаторы с последовательным соединением, величина заряда, накопленного каждым из них, будет одинаковой, независимо от емкости. Такое становится возможным, поскольку заряд, приходящий с обкладки предыдущего конденсатора, накапливается на обкладке последующего элемента цепи. Поэтому величина заряда у последовательно соединенных конденсаторов будет выглядеть следующим образом: Qобщ= Q1 = Q2 = Q3.

Если рассмотреть три конденсатора С1, С2 и С3, соединенные в последовательную цепь, то выясняется, что средний конденсатор С2 при постоянном токе оказывается электрически изолированным от общей цепи. В конечном итоге величина эффективной площади обкладок будет уменьшена до площади обкладок конденсатора с самыми минимальными размерами. Полное заполнение обкладок электрическим зарядом, делает невозможным дальнейшее прохождение по нему тока. В результате, движение тока прекращается во всей цепи, соответственно прекращается и зарядка всех остальных конденсаторов.

Общее расстояние между обкладками при последовательном соединении представляет собой сумму расстояний между обкладками каждого элемента. В результате соединения в последовательную цепь, формируется единый большой конденсатор, площадь обкладок которого соответствует обкладкам элемента с минимальной емкостью. Расстояние между обкладками оказывается равным сумме всех расстояний, имеющихся в цепи.

Падение напряжения на каждый конденсатор будет разным, в зависимости от емкости. Данное положение определяется формулой: С = Q/V, в которой емкость обратно пропорциональна напряжению. Таким образом, с уменьшением емкости конденсатора на него падает более высокое напряжение. Суммарная емкость всех конденсаторов вычисляется по формуле: 1/Cобщ = 1/C1 + 1/C2 + 1/C3.

Главная особенность такой схемы заключается в прохождении электрической энергии только в одном направлении. Поэтому в каждом конденсаторе значение тока будет одинаковым. Каждый накопитель в последовательной цепи накапливает равное количество энергии, независимо от емкости. То есть емкость может воспроизводиться за счет энергии, присутствующей в соседнем накопителе.

Онлайн калькулятор, для расчета емкости конденсаторов соединенных последовательно в электрической цепи.

Смешанное соединение

Параллельное соединение конденсаторов

Параллельным считается такое соединение, при котором конденсаторы соединяются между собой двумя контактами. Таким образом в одной точке может соединяться сразу несколько элементов.

Данный вид соединения позволяет сформировать единый конденсатор с большими размерами, площадь обкладок которого будет равна сумме площадей обкладок каждого, отдельно взятого конденсатора. В связи с тем, что емкость конденсаторов находится в прямой пропорциональной зависимости с площадью обкладок, общая емкость составить суммарное количество всех емкостей конденсаторов, соединенных параллельно. То есть, Собщ = С1 + С2 + С3.

Поскольку разность потенциалов возникает лишь в двух точках, то на все конденсаторы, соединенные параллельно, будет падать одинаковое напряжение. Сила тока в каждом из них будет отличаться, в зависимости от емкости и значения напряжения. Таким образом, последовательное и параллельное соединение, применяемое в различных схемах, позволяет выполнять регулировку различных параметров на тех или иных участках. За счет этого получаются необходимые результаты работы всей системы в целом.

electric-220.ru

Конденсатор — фундаментальный электронный компонент (наряду с резистором и катушкой индуктивности), предназначенный для накопления электрической энергии. Лучшей аналогией его работы будет сравнение с аккумуляторной батареей. Однако основой устройства последней являются обратимые химические реакции, а накопление заряда на обкладках конденсатора имеет исключительно электрическую природу.

Устройство и принцип работы

В простейшем варианте конструкция состоит из двух электродов в форме проводящих пластин (называемых обкладками), разделённых диэлектриком, толщина которого ничтожно мала по сравнению с размерами обкладок. Практически применяемые радиоэлектронные компоненты содержат много слоёв диэлектрика и электродов. В качестве обозначения конденсатора на схеме используются два параллельных отрезка с пространством между ними. Они символизируют металлические пластины обкладок физического прибора, электрически разделённые между собой.

Многие считают Майкла Фарадея автором изобретения, но на самом деле это не так. Но он сделал главное — продемонстрировал первые практические примеры и способы использования этого прибора для хранения электрического заряда в своих экспериментах. Благодаря Фарадею человечество получило способ измерять возможность накапливать заряд. Эта величина называется ёмкостью и измеряется в Фарадах.

Работу конденсатора можно проиллюстрировать на примере событий, проходящих во вспышке цифровой фотокамеры за отрезок времени между нажатием кнопки и тем моментом, когда вспышка погаснет. Основой электронной схемы этого осветительного устройства является конденсатор, в котором происходит следующее:

  • Зарядка. После нажатия кнопки поток электронов приходит в конденсатор и останавливается на одной из его пластин благодаря диэлектрику. Этот поток называется зарядным током.
  • Накопление. Поскольку под действием электродвижущей силы всё больше и больше электронов будут поступать на обкладку и распределяться по ней, отрицательный заряд обкладки может расти до момента, пока накопленный потенциал не будет отталкивать поступающий избыточный поток электронов. Вторая пластина из-за дефицита электронов приобретает положительный заряд, по модулю равный отрицательному на первой. Зарядный ток будет протекать до тех пор, пока напряжение на обеих пластинах не сравняется с приложенным. Сила или скорость тока зарядки будет находиться на максимальном уровне в момент, когда пластины полностью разряжены, и приблизится к нулю в момент, когда напряжение на обкладках и источнике будут равны.
  • Сохранение. Поскольку обкладки заряжены противоположно, ионы и электроны будут притягиваться друг к другу, но не смогут соединиться из-за диэлектрической прослойки, создавая электростатическое поле. Благодаря этому полю конденсатор удерживает и сохраняет заряд.
  • Разряд. Если в цепи появляется возможность для электронов протечь другим путём, то напряжение, накопленное между положительными и отрицательными зарядами обкладок, мгновенно реализуется в электрический ток, импульс которого в лампе вспышки преобразуется в световую энергию.

Таким образом в фотовспышке реализуется способность конденсатора накопить для импульса энергию из батареи питания. Аккумулятор фотокамеры также является устройством, накапливающим энергию, но из-за химической природы накопления генерирует и отдаёт её медленно.

Ёмкость, заряд и напряжение

Свойство конденсатора сохранять заряд на пластинах в виде электростатического поля называется ёмкостью. Чем больше площадь обкладок и меньше расстояние между ними, тем большее количество заряда они способны накопить и, соответственно, обладают большей ёмкостью. При подаче напряжения на конденсатор отношение заряда Q к напряжению V даст значение ёмкости С. Формула заряда конденсатора будет выглядеть так:

Мера электрической ёмкости — фарад (Ф). Эта единица всегда положительная и не имеет отрицательных значений. 1 Ф равен ёмкости конденсатора, который способен сохранить заряд в 1 кулон на пластинах с напряжением в 1 вольт.

Фарад — очень большая единица измерения, для удобства использования применяют в основном её дольные меры:

  • Микрофарад (мкФ): 1мкФ=1/1000000 Ф.
  • Нанофарад (нФ): 1нФ=1/1000000000 Ф.
  • Пикофарад (пФ): 1пФ=1/000000000000 Ф.

Кроме общего размера обкладок и расстояния между ними, существует ещё один параметр, влияющий на ёмкость — используемый тип изолятора. Фактор, по которому определяется способность диэлектрика повышать ёмкость конденсатора в сравнении с вакуумом, называется диэлектрической проницаемостью и описывается для разных материалов постоянной величиной от 1 и до бесконечности (теоретически):

  • вакуум: 1,0000;
  • воздух: 1,0006;
  • бумага: 2,5-3,5;
  • стекло: 3-10;
  • оксиды металлов 6-20;
  • электротехническая керамика: до 80.

Кроме конденсаторов с твёрдым диэлектриком (керамических, бумажных, плёночных) существуют также электролитические . В последних используют алюминиевые или танталовые пластины с оксидным изолирующим слоем в качестве одного электрода и раствор электролита в качестве другого.

Главные особенности этой конструкции состоят в том, что она позволяет накапливать сравнительно внушительный заряд при небольших габаритах и является полярным электрическим накопителем. То есть включается в электрическую цепь с соблюдением полярности.

Энергия, которую способны накопить большинство конденсаторов, обычно невелика — не больше сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому конденсаторы не могут заменить, например, аккумуляторные батареи в качестве источника питания. И хотя они способны эффективно выполнять только одну работу (сохранение заряда), их применение весьма многообразно в электрических цепях. Конденсаторы используются как фильтры, для сглаживания сетевого напряжения, в качестве устройств синхронизации и для других целей.

Заряд емкости постоянным током формула. Формула электрической емкости цилиндрического конденсатора

Темы кодификатора ЕГЭ : электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах .

Но прежде введём понятие электрической ёмкости .

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым .

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду . Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где — заряд шара, — его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В . Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

МкФ.

Как видите, Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2) :

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор . Он состоит из двух параллельных металлических пластин (называемых обкладками ), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора .

Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4) . Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты : поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6) , таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора :

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком :

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10) : заполнение конденсатора диэлектриком увеличивает его ёмкость .

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

где — напряжённость поля первой обкладки:

Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

(11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины alt=»(d_2 > d_1)»> , то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

Это можно переписать следующим образом:

(12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора .

Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

(13)

(14)

Особенно полезными являются формулы (12) и (14) .

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) — (14) останутся неизменными . Ёмкость конденсатора в них теперь будет выражаться по формуле (10) .

Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но — объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина — энергия единицы объёма поля — называется объёмной плотностью энергии . Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Конденсаторы являются неотъемлемой частью электрических схем. В большинстве случаев оперируют такими понятиями, как емкость и рабочее напряжение. Эти параметры являются основополагающими.

В некоторых случаях для более полного понимания работы упомянутого элемента необходимо иметь представление, что означает энергия заряженного конденсатора, как она вычисляется и от чего зависит.

Определение понятия энергии

Наиболее просто вести рассуждения применительно к плоскому конденсатору. В основе его конструкции лежат две металлических обкладки, разделенные тонким слоем диэлектрика.

Если подключить емкость к источнику напряжения, то нужно обратить внимание на следующее:

  • На разделение зарядов по обкладкам электрическим полем затрачивается определенная работа. В соответствии с законом сохранения энергии, эта работа равняется энергии заряженного конденсатора;
  • Разноименно заряженные обкладки притягиваются друг к другу. Энергия заряженного конденсатора в этом случае равняется работе, затраченной на сближение пластин друг к другу вплотную.

Данные соображения позволяют сделать вывод, что формулу энергии заряженного конденсатора можно получить несколькими способами.

Вывод формулы

Энергия заряженного плоского конденсатора наиболее просто определяется, исходя из работы по сближению обкладок.

Рассмотрим силу притяжения единичного заряда одной из обкладок к противоположной:

В данном выражении q0 – величина заряда, E – напряженность поля обкладки.

Поскольку напряженность электрического поля определяется из выражения:

E=q/(2ε0S), где:

  • q – величина заряда,
  • ε0 – электрическая постоянная,
  • S – площадь обкладок,

формулу силы притяжения можно записать как:

Для всех зарядов сила взаимодействия между обкладками, соответственно, составляет:

Работа по сближению пластин равняется произведению силы взаимодействия на пройденное расстояние. Таким образом, энергия заряженного конденсатора определяется выражением:

Важно! В приведенном выражении должна быть разница в положениях пластин. Записывая только одну величину d, подразумеваем, что конечным результатом будет полное сближение, то есть d2=0.

С учетом предыдущих выражений можно записать:

Известно, что емкость плоского конденсатора определяется из такого выражения:

В результате энергия определяется как:

Полученное выражение неудобно тем, что вызывает определенные затруднения определения заряда на обкладках. К счастью, заряд, емкость и напряжение имеют строгую взаимосвязь:

Теперь выражение принимает полностью понятный вид:

Полученное выражение справедливо для конденсаторов любых типов, не только плоских, и позволяет без затруднений в любой момент времени определять накопленную энергию. Емкость обозначается на корпусе и является величиной постоянной. В крайнем случае ее несложно измерять, используя специальные приборы. Напряжение измеряется вольтметром с необходимой точностью. К тому же очень просто зарядить конденсатор не полностью (меньшим напряжением), снизив, таким образом, запасенную энергию.

Для чего необходимо знать энергию

В большинстве случаев применения емкостей в электрических цепях понятие энергии не употребляется. Особенно это относится к время,- и частотозадающим цепям, фильтрам. Но есть области, где необходимо использовать накопители энергии. Наиболее яркий пример –фотографические вспышки. В накопительном конденсаторе энергия источника питания накапливается сравнительно медленно – несколько секунд, но разряд происходит практически мгновенно через электроды импульсной лампы.

Конденсатор, подобно аккумулятору, служит для накопления электрического заряда, но между этими элементами есть много различий. Емкость аккумулятора несравненно выше, чем у конденсатора, но последний способен отдать ее практически мгновенно. Лишь недавно, с появлением ионисторов, это различие несколько сгладилось.

Какова же ориентировочная величина энергии? Можно для примера вычислить ее для уже упомянутой фотовспышки. Пускай, напряжение питания составляет 300 В, а емкость накопительного конденсатора – 1000 мкФ. При полном заряде величина энергии составит 45 Дж. Это довольно большая величина. Прикосновение к выводам заряженного элемента может привести к несчастному случаю.

Присоединим цепь, состоящую из незаряженного конденсатора емкостью С и резистора с сопротивлением R, к источнику питания с постоянным напряжением U (рис. 16-4).

Так как в момент включения конденсатор еще не заряжен, то напряжение на нем Поэтому в цепи в начальный момент времени падение напряжения на сопротивлении R равно U и возникает ток, сила которого

Рис. 16-4. Зарядка конденсатора.

Прохождение тока i сопровождается постепенным накоплением заряда Q на конденсаторе, на нем появляется напряжение и падение напряжения на сопротивлении R уменьшается:

как и следует из второго закона Кирхгофа. Следовательно, сила тока

уменьшается, уменьшается и скорость накопления заряда Q, так как ток в цепи

С течением времени конденсатор продолжает заряжаться, но заряд Q и напряжение на нем растут все медленнее (рис. 16-5), а сила тока в цепи постепенно уменьшается пропорционально разности — напряжений

Рис. 16-5. График изменения тока и напряжения при зарядке конденсатора.

Через достаточно большой интервал времени (теоретически бесконечно большой) напряжение на конденсаторе достигает величины, равной напряжению источника питания, а ток становится равным нулю — процесс зарядки конденсатора заканчивается.

Процесс зарядки конденсатора тем продолжительней, чем больше сопротивление цепи R, ограничивающее силу тока, и чем больше емкость конденсатора С, так как при большой емкости должен накопиться больший заряд. Скорость протекания процесса характеризуют постоянной времени цепи

чем больше , тем медленнее процесс.

Постоянная времени цепи имеет размерность времени, так как

Через интервал времени с момента включения цепи, равный , напряжение на конденсаторе достигает примерно 63% напряжения источника питания, а через интервал процесс зарядки конденсатора можно считать закончившимся.

Напряжение на конденсаторе при зарядке

т. е. оно равно разности постоянного напряжения источника питания и свободного напряжения убывающего с течением времени по закону показательной функции от значения U до нуля (рис. 16-5).

Зарядный ток конденсатора

Ток от начального значения постепенно уменьшается по закону показательной функции (рис. 16-5).

б) Разряд конденсатора

Рассмотрим теперь процесс разряда конденсатора С, который был заряжен от источника питания до напряжения U через резистор с сопротивлением R (рис. 16-6, Где переключатель переводится из положения 1 в положение 2).

Рис. 16-6. Разряд конденсатора на резистор.

Рис. 16-7. График изменения тока и напряжения при разрядке конденсатора.

В начальный момент, в цепи возникнет ток и конденсатор начнет разряжаться, а напряжение на нем уменьшаться. По мере уменьшения напряжения будет уменьшаться и ток в цепи (рис. 16-7). Через интервал времени напряжение на конденсаторе и ток цепи уменьшатся при мерно до 1% начальных значений и процесс разряда конденсатора можно считать закончившимся.

Напряжение на конденсаторе при разряде

т. е. уменьшается по закону показательной функции (рис. 16-7).

Разрядный ток конденсатора

т. е. он, так же как и напряжение, уменьшается по тому же закону (рис. 6-7).

Вся энергия, запасенная при зарядке конденсатора в его электрическом поле, при разряде выделяется в виде тепла в сопротивлении R.

Электрическое поле заряженного конденсатора, отсоединенного от источника питания, не может долго сохраняться неизменным, так как диэлектрик конденсатора и изоляция между его зажимами обладают некоторой проводимостью.

Разряд конденсатора, обусловленный несовершенством диэлектрика и изоляции, называется саморазрядом. Постоянная времени при саморазряде конденсатора не зависит от формы обкладок и расстояния между ними.

Процессы зарядки и разряда конденсатора называются переходными процессами.

Состоит из двух пластин (или обкладок), находящихся одна перед другой и сделанных из проводящего материала. Между пластинами находится изолирующий материал, называемый диэлектриком (рис. 4.1). Простейшими диэлектриками являются воздух, бумага, слюда и т. д.

Рис. 4.1

Зарядка конденсатора

Основным свойством конденсатора является его способность запасать электрическую энергию в виде электрического заряда.
На рис. 4.2(а) изображена схема, в которой конденсатор соединяется через ключ с источником питания. Когда ключ замкнут (рис. 4.2(б)), положительный полюс источника «откачивает» электроны с обкладки А, и она приобретает положительный заряд. Отрицательный полюс источника питания тем временем «поставляет» электроны на обкладку В, в результате чего она приобретает отрицательный заряд, по абсолютной величине равный положительному заряду обкладки А. Такой поток электронов называется током заряда. Он продолжает течь до тех пор, пока напряжение на конденсаторе не сравняется с ЭДС источника питания. В этом случае говорят, что конденсатор полностью заряжен. Электрический заряд обозначается буквой Q, а его величина измеряется в кулонах (Кл).


Рис. 4.2.

Когда конденсатор заряжен, между его обкладками возникает разность потенциалов, а следовательно, и электрическое поле.
Если в момент, когда конденсатор уже зарядился, разомкнуть ключ (рис. 4.2(в)), конденсатор будет хранить заряд. В этом случае внутри диэлектрика между обкладками возникает электрическое поле. При разряде конденсатора через сопротивление нагрузки (рис. 4.2(г)) электрическое ноле исчезает.

Емкость конденсатора

Способность конденсатора накапливать электрический заряд называется емкостью, а величина этой емкости обозначается буквой С и измеряется в фарадах (Ф). Фарада — очень большая единица емкости, и поэтому она практически не используется. Чаще используются дробные единицы:

1 микрофарада (мкФ) = Ф = 10 -6 Ф,

1 пикофарада (пФ) = мкФ = 10 -6 мкФ = 10 -12 Ф.

Емкость конденсатора возрастает с увеличением площади обкладок и убывает с увеличением расстояния между ними.
Например, при возрастании площади обкладок вдвое емкость также увеличивается в два раза. Если же увеличить вдвое расстояние между обкладками, емкость станет вдвое меньше.

Связь заряда, емкости и напряжения

Если конденсатор заряжен до разности потенциалов V , его заряд определяется формулой Q=CV

где С выражается в фарадах, V – в вольтах, а Q – в кулонах. Преобразовав эту формулу, получим:

Энергия заряженного конденсатора

Энергия W, запасенная конденсатором, определяется формулой

где W выражается в джоулях, С – в фарадах, а V — в вольтах.

Параллельное и последовательное соединение конденсаторов

Если два конденсатора, С1 и С2, соединены параллельно (рис. 4.3(а)), результирующая емкость СТ такого соединения равна сумме емкостей этих конденсаторов:

Если конденсаторы соединены последовательно (рис. 4.3(б)), результирующая емкость СТ оказывается меньше емкости любого из конденсаторов я выражается формулой

Например, если С1 = С2, то результирующая емкость СТ последовательного соединения равна половине емкости любого из конденсаторов:

Напряжение на последовательно соединенных конденсаторах

На схеме, показанной на рис. 4.4, конденсаторы С1 и С2 соединены последовательно и подключены к источнику постоянного напряжения VТ. Полное напряжение VТ будет поделено между С1 и С2 таким образом, что на конденсаторе меньшей емкости установится большее напряжение,


Рис. 4.3. Параллельное (а) и последовательное (б) соединение конденсаторов.


и наоборот.

Сумма V1 (напряжения на С1) и V2 (напряжения на С2) всегда равна полному напряжению VТ.
В общем случае, когда несколько конденсаторов, соединенных последовательно, подключено к источнику постоянного тока, напряжение на каждом из конденсаторов обратно пропорционально его емкости. При последовательном соединении двух конденсаторов напряжения на С1 и С2 соответственно равны

Пример 1

Определим результирующую емкость цепи, изображенной на рис. 4.5. Результирующая емкость параллельного соединения равна

С2 + С3 = 10 + 20 = 30 пФ

Поскольку емкость С1 также равна 30 пФ, то результирующая емкость всей цепи равна ½*30 = 15 пФ.



Рис. 4.6. Рис. 4.7.

Пример 2

откуда напряжение на С2 равно 30 – 20 = 10 В.

Рабочее напряжение

Любой конденсатор характеризуется некоторым максимальным напряжением, при превышении которого наступает пробой диэлектрика. Это напряжение называется рабочим, или номинальным, напряжением конденсатора, и подаваемое на конденсатор напряжение ни в коем случае не должно его превышать. При использовании конденсатора в цепях переменного тока амплитудное значение напряжения в цепи также не должно превышать рабочего напряжения конденсатора. Рабочим напряжением для батареи конденсаторов, соединенных параллельно, является наименьшее из рабочих напряжений конденсаторов, входящих в схему, Например, рабочее напряжение для цепи, изображенной на рис. 4.7, равно 25 В.
Для конденсаторов, соединенных последовательно, рабочее напряжение подбирать труднее. Рассмотрим схему на рис. 4.8. Конденсатор С1 (1 мкФ, рабочее напряжение Vраб = 25 В) соединен последовательно с конденсатором С2 (10 мкФ, Vраб = 10 В). Поскольку на конденсаторе С1, обладающем меньшей емкостью, установится большее напряжение, чем на С2, то при расчетах следует прежде всего иметь в виду рабочее напряжение конденсатора С1, равное 25 В. Таким образом, V1 = 25 В. соотношения V1/ V2 = С1/ С2 следует, что

Поскольку рабочее напряжение конденсатора С2 выше, чем V2, рабочее напряжение данной батареи конденсаторов равно 25 + 2,5 = 27,5 В.
Следует заметить, что если бы рабочее напряжение конденсатора было равно, например, 2 В, как показано на рис. 4.9, то он зарядился бы



Рис. 4.8. Рис. 4.9.



Рис. 4.10. Рис. 4.11 . Катушка индуктивности

до уровня рабочего напряжения прежде, чем напряжение на конденсаторе С1 достигло бы 25 В. Вот расчет для этого случая:
V2 = 2 В, тогда.

Следовательно, рабочее напряжение такой батареи будет составлять 20 + 2 = 22 В.

Пример 3

Конденсаторы С1 и С2, изображенные на рис. 4.10, имеют каждый рабочее напряжение 60 В. Какое максимальное напряжение может быть приложено к этой схеме?

Решение
Поскольку на конденсаторе С1 установится более высокое напряжение, чем на конденсаторе С2, то напряжение на нем раньше достигнет уровня рабочего напряжения. При V1 = 60 В

Максимальное напряжение, которое может быть подано на данную схему, составляет 60 + 20 = 80 В.

В этом видео рассказывается о понятии конденсатора:

Электрическая емкость

При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q .

Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

Если потенциал поверхности шара

(5.4.3)
(5.4.4)

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции .

Конденсатор – это два проводника, называемые обкладками , расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

(5.4.5)

Помимо емкости каждый конденсатор характеризуется U раб (или U пр. ) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

В данном случае общим является напряжение U :

Суммарный заряд:

Результирующая емкость:

Сравните с параллельным соединением сопротивлений R :

Таким образом, при параллельном соединении конденсаторов суммарная емкость

Общая емкость больше самой большой емкости, входящей в батарею.

2) Последовательное соединение конденсаторов (рис. 5.10):

Общим является заряд q.

Или , отсюда

Сравните с последовательным соединением R :

Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд , то

. (5.4.7)

Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

Из (5.4.6) можно получить единицы измерения ε 0:

.

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

Энергия конденсатора и его емкость

Если два заряда сообщить двум изолированным проводникам, то между ними возникнет так называемая разность потенциалов, которая зависит от величины этих зарядов и от геометрии проводников. В том случае, если заряды одинаковы по величине, но противоположны по своему знаку, можно ввести определение электрической емкости, из которой потом можно получить такое понятие, как энергия конденсатора. Электрическая емкость системы, состоящей из двух проводников, это отношение одного из зарядов к разности потенциалов между данными проводниками.

Энергия конденсатора напрямую зависит от емкости. Можно определить с помощью расчетов это соотношение. Энергия конденсатора (формула) будет представлена цепочкой:

W= (C*U*U)/2 = (q*q)/(2*C) = q*U/2 , где W- энергия конденсатора, С- емкость, U- разность потенциалов между двумя пластинками (напряжение), q- значение величины заряда.

Значение величины электрической емкости зависит от размеров и формы данного проводника и от диэлектрика, который разделяет эти проводники. Систему, при которой электрическое поле сосредоточено (локализировано) только в некоторой области, называют конденсатором. Проводники, которые составляют это устройство, носят название обкладок. Это простейшая конструкция так называемого плоского конденсатора.

Самый простое устройство – это две плоские пластины, обладающие способностью проводить электрический ток. Данные обкладки расположены параллельно на некотором (сравнительно маленьком) расстоянии друг от друга и разделены слоем определенного диэлектрика. Энергия поля конденсатора в таком случае будет локализирована в основном между пластинами. Однако возле краев обкладок и в некотором окружающем пространстве все же возникнет достаточно слабое излучение. Его называют в литературе полем рассеяния. В большинстве случаев принято пренебрегать им и полагать, что вся энергия конденсатора расположена полностью между обкладками. Но в некоторых случаях его все же учитывают (в основном это случаи использования микроемкостей или, наоборот, сверхъемкостей).

Электрическая емкость (следовательно, энергия конденсатора) напрямую зависит от пластин. Если посмотреть на формулу C= E0*S/d, где C- ёмкость, E0- величина значения такого параметра, как диэлектрическая проницаемость (в данном случае вакуума) и d- значение расстояния между пластинами, то можно сделать определенный вывод, что емкость такого плоского конденсатора будет обратно пропорциональна величине значения расстояния между этими пластинами и прямо пропорциональна их площади. Если же пространство между обкладками заполнить каким-то определенным диэлектриком, то энергия конденсатора и его емкость увеличатся в E раз (E в данном случае — диэлектрическая проницаемость).

Таким образом, теперь можно выразить и формулу потенциальной энергии, которая накапливается между двумя обкладками (пластинами) конденсатора: W=q*E*d. Однако гораздо проще выражать понятие «энергия конденсатора» через емкость: W=(C*U*U)/2.

Формулы параллельного и последовательного соединения остаются верными при любом числе конденсаторов, соединенных в батарею.

Расчет емкости — обзор

8.3.2 Конструкция с импульсной формирующей сетью (PFN)

Конструкция PFN обычно включает источник питания для зарядки конденсаторов AC-DC или DC-DC, высоковольтный конденсатор, воздушный сердечник, проволочную катушку индуктивности. , переключатель кремниевого управляемого выпрямителя (SCR), лампа-вспышка и соответствующая схема управления. Обычно лучше спроектировать систему, выбрав лампу-вспышку, а затем рассчитав правильные значения конденсатора PFN и катушки индуктивности, чтобы получить правильный профиль импульса тока.Типичная схема PFN показана на рис. 8.10.

8.10. Цепь ПФН.

В большинстве практических схем ламп-вспышек индуктивность, емкость и напряжение конденсатора тщательно выбираются таким образом, чтобы энергия передавалась в лампу-вспышку в виде критически затухающего импульса. Критическое демпфирование важно для обеспечения наиболее эффективной передачи энергии от конденсатора к лампе-вспышке. Для лампы-вспышки оптимальным считается коэффициент демпфирования 0,8. График критически затухающего импульса в зависимости от нормированной энергии показан на рис.8.11 (ILC Technology, 1983).

8.11. Критически затухающий пульс.

Коэффициент демпфирования более 0,8 считается «избыточным демпфированием» и приводит к низким пиковым значениям тока и мощности. График коэффициентов сверхдемпфирования для нормированного тока в зависимости от нормированного времени показан на рис. 8.12.

8.12. Передемпфированный импульс.

Коэффициент демпфирования ниже 0,8 означает «недостаточное демпфирование» и приводит к высокому пиковому току, более низкой пиковой мощности и более низкой эффективности передачи энергии. Цепи с недостаточным демпфированием также вызывают реверсирование тока (звон), что отрицательно сказывается на сроке службы лампы-вспышки.График коэффициентов недостаточного демпфирования для нормированного тока в зависимости от нормированного времени показан на рис. 8.13.

8.13. Недодемпфированный импульс.

Разработка схемы лампы-вспышки с критическим демпфированием была бы простой, если бы ее можно было рассматривать как традиционную схему RLC. Однако, в отличие от линейного резистора, лампа-вспышка имеет динамическое сопротивление, обозначаемое K o . Расчет импеданса лампы показан в уравнении 8.2.

[8.2]K0=1,28*%Xe450+%Kr8051/5*ℓdΩA

где давление наполнения выражено в торр, = длина дуги в см и d = диаметр отверстия в см.Единицы: омы*квадратный корень из ампер. Расчет емкости показан в уравнении 8.3.

[8.3]C=2*E0*α4*t32K041/3

где C = емкость в фарадах; E o = энергия, накопленная в конденсаторе, в джоулях; α = безразмерный параметр демпфирования = 0,8 для критического демпфирования; и t = желаемая длительность импульса тока в 10% точках. Расчет индуктивности показан в уравнении 8.4.

[8.4]L=t32C

где L = индуктивность в генри.Расчет напряжения конденсатора показан в уравнении 8.5.

[8,5]В=2*EC

где В = начальное напряжение конденсатора в вольтах. Расчет полного сопротивления цепи показан в уравнении 8.6:

[8.6]Z=LC

, где Z = полное сопротивление цепи в Омах. На самом деле точные номиналы конденсаторов и катушек индуктивности, определенные расчетным путем, редко бывают готовыми к использованию. Поэтому важно пересчитать фактический коэффициент демпфирования, используя фактические значения для конденсатора и катушки индуктивности.Расчет фактического коэффициента демпфирования показан в уравнении 8.7, где α = фактический коэффициент демпфирования:

[8.7]α=K0V0*Z0

При необходимости можно отрегулировать полное сопротивление лампы, чтобы обеспечить достижение критически демпфированного импульса тока . Как видно из уравнения 8.2, K o лампы можно увеличить за счет увеличения давления наполнения. Однако это также повлияет на форму волны текущего импульса. Следовательно, фактические компоненты схемы должны быть выбраны так, чтобы полное сопротивление лампы было в пределах 0.7 и 0,8. Встречно-параллельный шунтирующий диод должен быть добавлен непосредственно к конденсатору PFN, чтобы исключить отрицательное колебание тока в цепи с потенциально недостаточным демпфированием.

Пиковый ток, подаваемый PFN на лампу-вспышку, должен быть рассчитан для обеспечения надлежащего номинала всех компонентов схемы. Расчет пикового тока показан в уравнении 8.8:

[8.8]Ipk=0,94*e−0,77*α*V0Z0

, где I pk = пиковый ток в амперах. Лампы-вспышки не работают в стандартных условиях, и поэтому им не может быть присвоен определенный срок службы.Вместо этого срок службы лампы-вспышки зависит от размера отверстия, длины дуги, подводимой энергии и ширины импульса и рассчитывается по общему количеству выстрелов (вспышек). Максимальная подводимая энергия называется энергией взрыва, Ex. Расчет энергии взрыва показан в уравнении 8.9:

[8.9]Ex=90*d*ℓ*t

, где d = диаметр отверстия в мм; = длина дуги в дюймах; и t = текущая длительность импульса в миллисекундах. Термин «энергия взрыва» используется потому, что это энергия, при которой оболочка может разрушиться.Срок службы лампы-вспышки зависит от отношения подводимой энергии к энергии взрыва. Расчет срока службы лампы-вспышки показан в уравнении 8.10:

[8.10] Срок службы = EinEx−8,5

, где E в = входная энергия от конденсатора, а E x = расчет энергии взрыва. На практике фактический срок службы лампы также может быть ограничен сроком службы электрода из-за напыления материала электрода на поверхность стенки лампы-вспышки. В этом случае светоотдача постепенно падает на протяжении всего срока службы лампы.Эти уравнения PFN можно моделировать с помощью различных компьютерных программ для расчета идеальных значений для приложения. Компьютерное моделирование также позволяет пользователю попробовать сценарии «что, если», чтобы потенциально лучше оптимизировать лазерную систему с использованием готовых компонентов.

Существует множество типов конденсаторов PFN, включая маслонаполненные, металлизированные и дискретные фольговые, пленочные и бумажные диэлектрики. Такие компании, как CSI Technologies, Dearborn Electronics и General Atomics Electronic Systems, предлагают широкий выбор конденсаторов и обычно размещают на своих веб-сайтах полезные руководства по проектированию и спецификации.Металлизированные конденсаторы, показанные на рис. 8.14, широко используются в импульсной лазерной промышленности.

8.14. Металлизированные высоковольтные конденсаторы.

Приобретение подходящей катушки индуктивности PFN часто может оказаться сложной задачей, поэтому большинство компаний производят ее самостоятельно. К счастью, процесс сборки не слишком сложен, и простых петель из магнитной проволоки вокруг пластиковой формы будет достаточно. Магнитную проволоку можно приобрести в таких компаниях, как MWS Wire Industries, и обычно через дистрибьюторов стандартной электронной продукции.Магнитная проволока с полиимидным покрытием предпочтительна для приложений PFN. Материал для герметизации трансформатора обычно можно приобрести в таких компаниях, как Lord Corporation, Master-bond и Solar Compounds Corporation.

Небольшой индивидуальный PFN показан на рис. 8.15. Магнитный провод 20AWG намотан вокруг конденсатора из металлической фольги 20 мкФ, 1 кВ, чтобы обеспечить индуктивность 20 мкГн. Эта сборка PFN является частью лазерной системы, используемой StellarNet, Inc. в их приборе PORTA-LIBS 2000 для спектроскопии лазерного индуцированного пробоя (LIBS).Системы LIBS фокусируют лазер высокой пиковой мощности на небольшой площади поверхности образца для создания плазмы. Это позволяет проводить качественную идентификацию микроэлементов в твердых телах, газах и жидкостях в режиме реального времени посредством оптического обнаружения спектров эмиссии элементов. Прибор PORTA-LIBS 2000 показан на рис. 8.16.

8.15. Сборка PFN 20 мкФ, 20 мкГн, 1 кВ.

8.16. Инструмент StellarNet PORTA-LIBS 2000 LIBS.

Аналогичная сборка PFN использовалась корпорацией RCA (Берлингтон, Массачусетс) в их модели AN/GVS-5 лазерного дальномера ближнего инфракрасного диапазона (NIR).В этом устройстве используется подход времени пролета импульса (ToF) для определения точных измерений расстояния до удаленной цели. Лазерный дальномер ToF состоит из импульсного лазерного передатчика с высокой пиковой мощностью, оптического приемника и вычислителя дальности. В зависимости от применения могут использоваться безопасные и небезопасные для глаз длины волн лазера. Сборка AN/GVS-5 PFN представлена ​​на рис. 8.17.

8.17. Лазерный дальномер NIR AN / GVS-5 корпорации RCA.

Сильноточный тиристорный переключатель SCR можно приобрести у таких производителей, как International Rectifier, Powerex и Semikron.Тиристоры SCR проводят ток только после того, как они были включены клеммой затвора. Как только в SCR началась проводимость, устройство остается зафиксированным во включенном состоянии даже без дополнительного привода затвора, пока через анодно-катодный переход устройства продолжает протекать достаточный ток. В приложении PFN тиристор будет оставаться в проводимости до тех пор, пока ток, протекающий к лампе от конденсатора, превышает спецификацию тока фиксации тиристора. Как только ток упадет ниже номинального тока фиксации, тринистор перестанет проводить ток и останется в выключенном состоянии до тех пор, пока на его затвор не будет получен следующий импульс запуска.

Удерживающие токи тиристора часто составляют менее 1 А, поэтому важно отключить (подавить) высоковольтный источник питания непосредственно перед отправкой команды запуска на тиристор. Время гашения обычно составляет несколько миллисекунд, чтобы убедиться, что и SCR, и лампа-вспышка полностью выходят из проводимости. Напряжение источника питания и номинальная мощность определяются энергией импульса, временем гашения и частотой повторения.

SCR для источников питания лазеров обычно поставляются в трех различных типах упаковки: крепление на шпильке, диск (хоккейная шайба) и модуль.Модули, как правило, проще всего использовать, поскольку их монтажная поверхность имеет тенденцию быть электрически изолированной от выводов анода и катода SCR. Таким образом, радиатор модуля не требует электрической изоляции от корпуса источника питания лазера. Типы шпилек и дисков выдерживают огромное количество тока, но их соединения анода и катода являются монтажными поверхностями и поэтому не изолированы электрически. Радиаторы для этих типов устройств должны обеспечивать необходимую электрическую задержку для приложения.Важные характеристики, которые следует учитывать при использовании тиристорного тиристора, включают рассеивание тепла между анодом и катодом, максимальный ток, напряжение и номинал dv/dt .

Цепи управления затвором тиристора обычно состоят из простого трансформатора, обеспечивающего необходимую изоляцию высокого напряжения между импульсом логического триггера и выводом затвора и катода тиристора. Типичная схема управления затвором SCR показана на рис. 8.18.

8.18. Цепь затвора тиристора.

Элементы защиты затвора включают встречно-параллельный диод и резисторно-конденсаторный (RC) фильтр для поглощения переходных процессов.Диод часто представляет собой быстродействующий стабилитрон для фиксации скачков напряжения на затворе тринистора. Цепь снаббера состоит из сильноточного встречно-параллельного диода и последовательно соединенных резистора и конденсатора, номиналы которых выбраны для необходимой частотной характеристики для приложения.

Преобразование емкости в импеданс и взаимосвязь между ними

Ключевые выводы

●     Узнайте о формулах преобразования емкости в импеданс.

●     Получите более полное представление о взаимодействии емкости и импеданса.

●     Узнайте больше о важности импеданса при анализе цепей переменного тока.

 

Емкость и ее отношение к импедансу

Область электроники содержит различные параметры, которые измеряют, помогают и влияют на функциональность, а также на производительность каждого электронного устройства. Эти параметры влияют на исходные и окончательные проектные решения.

Такие параметры, как емкость и импеданс, должны оставаться в допустимых проектных пределах, иначе даже самый точный проект не сможет обеспечить желаемый функциональный результат.Кроме того, бывают случаи, когда требуется преобразование одного параметра в эквивалент другого. Одно такое преобразование, такое как емкость в импеданс, требует детального анализа цепи переменного тока.

Конденсаторы и емкость

Компонент, связанный с емкостью, — это, конечно же, конденсатор, а способность системы накапливать электрический заряд называется емкостью. В физике это отношение изменения электрического заряда в системе к изменению ее электрического потенциала.В любом случае стандартной единицей измерения емкости является фарад.

Эти пассивные электронные компоненты накапливают энергию в виде электростатического поля. В чистом виде конденсатор состоит из двух проводящих пластин, разделенных изолирующим материалом, называемым диэлектриком. Емкость конденсатора прямо пропорциональна площади поверхности его пластин и обратно пропорциональна расстоянию между этими пластинами. Однако чистая емкость также зависит от диэлектрической проницаемости вещества, разделяющего пластины.

При преобразовании импеданса конденсатора мы используем формулу Z = -jX. Имейте в виду, что реактивное сопротивление является более однозначным параметром и определяет, какое сопротивление будет иметь конденсатор на определенной частоте. Как указывалось ранее, знание импеданса необходимо для детального анализа цепи переменного тока.

Катушка индуктивности и импеданс

Понимание импеданса в цепи переменного тока

Импеданс — это активное сопротивление электрической цепи или компонента переменному току из-за комбинированного воздействия реактивного сопротивления и омического сопротивления.Другими словами, импеданс является расширением принципов сопротивления в цепях переменного тока. Мы также определяем импеданс как любое препятствие или меру сопротивления электрического тока потоку энергии при подаче напряжения.

Более техническое определение — это полное противодействие электрической цепи потоку переменного тока одной частоты. Таким образом, это комбинация реактивного сопротивления и сопротивления, которую мы измеряем в омах и обозначаем символом Z.

Реактивное сопротивление (X) выражает сопротивление компонента переменному току, тогда как импеданс (Z) указывает сопротивление компонента обоим переменного и постоянного тока.Мы показываем его как комплексное число с помощью следующей формулы: Z = R + jX. В идеале импеданс резистора равен его сопротивлению. В этих условиях реальная или действительная часть импеданса представляет собой сопротивление, а мнимая часть равна нулю или нулю.

Преобразование емкости в полное сопротивление

Существуют калькуляторы емкостного реактивного сопротивления, которые позволяют определить полное сопротивление конденсатора при условии, что у вас есть значение его емкости (C) и частота сигнала, проходящего через него (f).Вы вводите емкость в фарадах, пикофарадах, микрофарадах или нанофарадах и частоту в единицах ГГц, МГц, кГц или Гц. Например, емкость в 2 фарад на частоте 100 герц даст импеданс 0,0008 Ом.

Ниже приведена формула, необходимая для расчета вышеуказанных значений:

Теперь мы понимаем параметры идеального резистора, когда его импеданс равен его сопротивлению. Однако полное сопротивление идеального конденсатора равно величине его реактивного сопротивления, хотя эти два параметра не идентичны.Мы выражаем реактивное сопротивление как обычное число в омах, а полное сопротивление конденсатора представляет собой реактивное сопротивление, умноженное на -j. Это соответствует следующей формуле: Z = -jX . В этом контексте термин -j представляет фазовый сдвиг на 90 градусов, который возникает между током и напряжением в чисто емкостной цепи.

Используя уравнение преобразования

Используя приведенное выше уравнение (XC = 1/ωC ​​= 1/2πƒC), вы можете получить реактивное сопротивление конденсатора, а для преобразования его в импеданс конденсатора вы можете использовать формулу Z = -jX .Помните, что реактивное сопротивление является более очевидным значением параметра, и оно определяет, какое сопротивление имеет конденсатор на определенной частоте.

Из приведенных выше уравнений видно, что реактивное сопротивление конденсатора обратно пропорционально емкости и частоте. Следовательно, более высокая емкость и более высокая частота приводят к более низкому реактивному сопротивлению. Эта обратная связь между частотой и реактивным сопротивлением облегчает использование конденсаторов для блокирования низкочастотных компонентов сигнала и одновременного пропускания высокочастотных компонентов.

Емкость в цепи переменного тока легко различима, но для тщательного анализа цепи переменного тока требуется импеданс. Логически это означает, что первостепенное значение имеет более глубокое понимание того, как взаимодействуют эти два параметра.

Обмотка индуктора из медного провода

Наличие функциональных и надежных схем зависит от наличия подходящего набора программного обеспечения для проектирования и анализа, помогающего создавать схемы, имитационные модели и посадочные места.Функции внешнего проектирования от Cadence интегрируются с мощным симулятором PSpice для создания идеальной программной системы для проектирования схем и моделирования.

Если вы хотите узнать больше о том, какое решение у Cadence есть для вас, обратитесь к нам и нашей команде экспертов. Вы также можете посетить наш канал YouTube и посмотреть видеоролики о моделировании и системном анализе, а также узнать, что нового в нашем наборе инструментов для проектирования и анализа.

Видео с вопросом

: расчет емкости в RLC-цепи

Стенограмма видео

В следующей цепи RLC, если амперметр показывает силу тока 5 ампер, рассчитайте номинал конденсатора емкость.Дайте ответ по научному обозначение до двух знаков после запятой.

Здесь нам дали RLC принципиальная схема и информация о ее различных компонентах. Наша задача вычислить неизвестное емкость конденсатора, обозначенного 𝐶. Для этого можно вспомнить формулу которая связывает емкость 𝐶 с резонансной частотой 𝐹 и индуктивностью 𝐿 схема: два 𝜋𝐹 равны квадратному корню из единицы из 𝐿𝐶.

Так как мы заинтересованы в решении для 𝐶 давайте изменим это уравнение, чтобы сделать 𝐶 субъектом. Мы можем начать с возведения в квадрат обеих сторон чтобы отменить радикал, под которым появляется 𝐶. Тогда возьмем обратное обе стороны, чтобы переместить 𝐶 из знаменателя в числитель. Наконец, мы можем разделить обе стороны на 𝐿, чтобы получить 𝐶 сам по себе. Таким образом, выражение можно записать поскольку 𝐶 равно одному на два 𝜋𝐹 в квадрате, умноженному на 𝐿.

Так как мы уже знаем значения индуктивность и резонансная частота для этой схемы, у нас есть все, что нужно для найти емкость 𝐶. Обратите внимание, что нам даже не нужно используйте все значения, данные нам на принципиальной схеме, и это нормально. Мы знаем, что 𝐹 равно 100 герц. и что 𝐿 равно трем генри. Оба эти значения уже выражены в производных единицах СИ, поэтому они готовы к замене в формула.

Делая это и хватая калькулятор, получаем результат 8,4434 и так раз 10 до минус семи фарад, производная единица измерения емкости в системе СИ. Нам сказали дать наш ответ в экспоненциальном представлении до двух знаков после запятой. Это уже в науке обозначение. Так что просто округляем до двух знаков после запятой мест, мы получаем окончательный ответ 8,44 умножить на 10 для отрицательных семи фарад.

Определение, Формула, Единицы СИ, Измерение

Конденсатор — это устройство, которое может накапливать электрические заряды, а также может использоваться для защиты цепей от нежелательных всплесков. Теперь вы можете подумать, что батарея также делает это.

Однако в этом случае разница заключается в том, что батарея хранит энергию в форме химического потенциала, тогда как конденсаторы хранят энергию в форме электрического потенциала. Кроме того, ток утечки у конденсаторов выше, чем у аккумуляторов, а это означает, что конденсаторы не могут удерживать заряд так же долго, как аккумуляторы.

Рис. 1. Конденсатор A. Источник: Эван-Амос, Wikimedia Commons (общественное достояние).

Быстрое движение электронов между двумя пластинами конденсатора делает его очень полезным в электронных приложениях.

Конденсатор

Внутри конденсатора находятся две металлические пластины из проводящего материала, например алюминия. Эти пластины разделены изоляционным материалом, также известным как диэлектрик.

Прежде чем мы рассмотрим, как работает конденсатор, нам нужно понять концепцию поляризации.

Поляризация – это ориентация полярных молекул внутри диэлектрика по направлению к противоположным электродам.

Диэлектрик состоит из множества полярных молекул, которые имеют как положительный, так и отрицательный конец. Когда конденсатор не накапливает заряд, электрического поля нет, и эти молекулы случайным образом указывают в разных направлениях.

Рис. 2. Случайные молекулы (вверху) и молекулы в электрическом поле (внизу). Источник: гиперфизика, Wikimedia Commons (общественное достояние).

При подаче напряжения на конденсатор создается электрическое поле. Положительные концы молекул притягиваются к отрицательно заряженной пластине и наоборот.

Поскольку диэлектрик является изолятором и молекулы не могут смещаться, поляризованные молекулы ориентируются таким образом, что противоположные заряды на молекулах и пластинах обращены друг к другу.

Рис. 3. Ориентация поляризованных молекул в электрическом поле. Источник: Brews ohare, Wikimedia Commons (CC BY-SA 3.0).

Поскольку электрическое поле поляризованных молекул направлено в сторону, противоположную направлению пластин конденсатора, разность потенциалов уменьшается, а способность конденсатора накапливать заряд на единицу разности потенциалов увеличивается.

Возьмите батарейку и подсоедините отрицательный конец к отрицательному выводу конденсатора (обозначен полосой), а положительный конец к положительному выводу. Однако имейте в виду, что не все конденсаторы имеют маркировку полюсов. Если это так, они могут быть подключены в любом направлении в цепи.


Рис. 4. Символ конденсатора. Источник: Wikimedia Commons (общественное достояние).

Заряды текут от батареи к отрицательной клемме конденсатора и от положительной пластины к положительной клемме батареи.


Рис. 5. На диаграмме показано, как напряжение на пластинах и ток, протекающий через пластины, изменяются по мере заряда конденсатора. Источник: jjbeard, Wikimedia Commons (общественное достояние).

После того, как заряды перетекли от положительной пластины к батарее и от батареи к отрицательной пластине, дальнейший поток электронов невозможен, и одна сторона конденсатора заряжена отрицательно, а другая сторона заряжена положительно.Конденсатор находится на том же уровне напряжения, что и батарея.

Поскольку электроны накапливаются на одной стороне конденсатора, мы говорим, что он накапливает энергию, которую можно высвобождать, когда это необходимо.

Между пластинами конденсатора создается разность потенциалов, так как существует разница в количестве зарядов на пластинах.

  

Применение конденсатора 

Заряженный конденсатор можно использовать для обеспечения непрерывного заряда цепи.

Например, когда мы подключаем светодиод к полностью заряженному конденсатору, заряды от отрицательной пластины конденсатора текут через светодиод к положительной пластине конденсатора до тех пор, пока между двумя клеммами не исчезнет разность потенциалов. В результате светодиод на короткое время мигнет.

Эта вспышка будет очень короткой, так как поток электронов очень быстрый. Однако, если мы подключим батарею к конденсатору в этой цепи, конденсатор будет заряжаться и накапливать энергию и снова разряжаться, если в протекании тока возникнет какой-либо перерыв.

Измерение накопленной энергии

Конденсатор имеет два значения: одно показывает напряжение (В) и емкость в фарадах (Ф).

Рисунок 6. Конденсатор с показаниями напряжения и емкости. Источник: Jomegat, Wikimedia Commons (CC BY-SA 3.0).

Показание напряжения на конденсаторе указывает максимальное напряжение, которое он может выдержать. Если это значение превышено, есть вероятность, что конденсатор может сгореть, а иногда даже взорваться.

Емкость конденсатора

Каждый конденсатор имеет емкость, которая представляет собой его способность накапливать электрический заряд.Символом емкости является C, которая измеряется в фарадах. Фарады — это количество кулонов, которые можно хранить на вольт:

Таким образом, емкость можно использовать для расчета заряда в кулонах:

  • Q = электрический заряд.
  • C = емкость.
  • В  = напряжение.

Формула емкости

Емкость можно рассчитать по следующему уравнению:

  • C  = емкость, измеренная в кулонах на вольт (Ф).
  • K = относительная диэлектрическая проницаемость, т. е. диэлектрическая проницаемость материала по отношению к диэлектрической проницаемости свободного пространства. Это выражается как εr/ε0, где εr — диэлектрическая проницаемость материала. Обычно указывается относительная диэлектрическая проницаемость. Например, воздух имеет диэлектрическую проницаемость 1.
  • = эпсилон ноль, диэлектрическая проницаемость свободного пространства, которая имеет постоянное значение 8,85 × 10⁻¹² Ф/м.2 и разделены на 2,15 мм.

    Поскольку K не указан, мы примем его равным 1. Сложение других значений дает:

    Это может показаться очень маленькой емкостью, но на самом деле она огромна.

    Емкость (только A2) — основные выводы

    • Конденсатор — это проводник, который может накапливать заряд в электрической форме.
    • Каждый конденсатор имеет емкость, которая представляет собой количество заряда на единицу разности потенциалов.

    • Конденсатор используется для поддержания тока в цепи в случае прерывания.

    • Две проводящие пластины с диэлектрическим изолятором между ними образуют конденсатор.

    • Работа конденсатора заключается в накоплении отрицательных зарядов на одной пластине, что создает разность потенциалов между двумя пластинами.

    • Единицей измерения емкости являются фарады.

    Емкость (только A2)

    Емкость — это способность объекта накапливать заряд.

    Емкость рассчитывается путем расчета заряда на единицу разности потенциалов.

     Емкость можно измерить с помощью цифрового мультиметра (DMM).

    Емкость измеряется в фарадах (Ф).

    При коротком замыкании конденсатора две пластины действуют как одна, и между двумя пластинами нет диэлектрической среды.Следовательно, емкость равна 0,

    .

    Итоговая емкость (только формат A2) Тест

    Вопрос

    Как называется материал между пластинами конденсатора?

    Вопрос

    Что такое диэлектрическая проницаемость воздуха?

    Ответ

    Один кулон электричества изменяет разность потенциалов между пластинами на один вольт.

    Вопрос

    Почему емкость обычно измеряется в микро-, пико- или нанофарадах?

    Ответ

    Фарада считается слишком большой единицей для практического использования.

    Вопрос

    Если площадь пластин увеличить вдвое, как это повлияет на емкость?

    Ответ

    Емкость увеличится вдвое.

    Вопрос

    Если расстояние между пластинами уменьшить вдвое, как это повлияет на емкость?

    Ответ

    Емкость пластин удвоена.

    Вопрос

    Что произойдет с емкостью, если расстояние между пластинами и площадь пластин увеличить вдвое?

    Ответ

    Емкость остается прежней.

    Вопрос

    Можно ли отнести конденсатор к проводнику?

    Ответ

    Основное назначение конденсаторов — накапливать заряд.Они больше похожи на батареи, но не являются проводниками из-за изоляции между пластинами.

    Вопрос

    Из чего состоят пластины конденсатора?

    Ответ

    Алюминий, тантал или серебро.

    Вопрос

    Что произойдет, если вы превысите уровень напряжения, указанный на конденсаторе?

    Ответ

    Конденсатор взорвется.

    Вопрос

     Почему мы используем конденсаторы?

    Ответ

    Для предотвращения обрывов цепи и защиты цепей от скачков напряжения.

    Вопрос

    Конденсатор ведет себя более или менее как батарея?

    Вопрос

    Какую форму энергии хранит конденсатор?

    Вопрос

    Какой вид энергии хранит батарея?

    Вопрос

    Что произойдет с емкостью, если увеличить диэлектрическую проницаемость?

    Ответ

    Увеличивается емкость.

    Формулы емкости для быстрой проверки

    1.Емкость проводника

    Емкость хранения заряда
    Кл = \(\frac{Q}{V}\)
    Единица измерения → фарад = \(\frac{\text { кулон}}{\text {вольт}}\)

    2. Емкость сферического проводника

    C = 4πε 0 R
    R → Радиус проводника.

    3. Общий потенциал при соединении двух заряженных проводников

    C = C 1 + C 1 + C 2

    9 Q = Q 1 + Q 2 = C 2 = C 1 V 1 + C 2 V 2
    Общий потенциал
    V = \ ( \ frac {\ mathrm {C} _ {1} \ mathrm {V} _ {1} + \ mathrm {C} _ {2} \ mathrm {V} _ {2}} {\ mathrm {C} _ {1 }+\mathrm{C}_{2}}\)
    Перенесенный заряд
    ΔQ = \(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\) (V 1 – V 2 )
    Потери энергии
    ΔU = \(\frac{1}{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}}\) ( В 1 – В 2 ) 2

    4.Конденсатор (конденсатор)

    Расположение проводников для увеличения емкости. Он имеет два проводника, расположенных рядом, один заряжен, а другой заземлен.

    5. Конденсатор с параллельными пластинами

    C = \(\frac{\epsilon_{0} A}{d}\), C m = ε r = \(\left(\frac{\epsilon_{0} A}{d}\ right)\) = ε r C
    Если между ними находится диэлектрик толщиной t, то
    C = \(\frac{\epsilon_{0} A}{\left(d-t+\frac{t} {\epsilon_{r}}\right)}\)
    (a)

    Если плиты толщиной t 1 , t 2 , t 3 ….t n диэлектрической проницаемости s ε r 1 , ε r 2 , …… ε r n расположены между 9027 }{\left(\frac{t_{1}}{\epsilon_{r_{1}}}+\frac{t_{2}}{\epsilon_{r_{2}}}+\ldots .+\frac{ t_{n}}{\epsilon_{r_{n}}}\right)}\)
    и d = t 1 + t 2 + t 3 + …. + т н
    (б)

    6. Сферический конденсатор

    При заземлении внешней сферической оболочки
    C = 4πε 0 ε r \(\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{ 2}-\mathrm{R}_{1}}\) ; R 2 > R 1
    При заземлении внутренней сферы
    C = 4πε 0 ε r \(\frac{\mathrm{R}_{1} \mathrm{R}_{2}} {\ mathrm{R}_{2}-\mathrm{R}_{1}}\) + 4πε 0 R 2

    7.Цилиндрический конденсатор

    C = \(\frac{2 \pi \epsilon_{0} \epsilon_{\mathrm{r}} \ell}{\log _{\mathrm{c}}\left(\mathrm{R}_{2 } / \mathrm{R}_{1}\right)}\)

    8. Емкость двухпроводной линии

    C = \(\frac{\pi \epsilon_{0} \epsilon_{1} \ell}{\log _{e}(d / r)}\) (d >> r)
    l → длина каждого проволока
    d → расстояние между проволоками
    r → радиус каждой проволоки

    9.{2}}{C}\)
    Эта энергия находится в электрическом поле. Плотность энергии электрического поля
    U = \(\frac{1}{2}\) εE 2 = \(\frac{\text {Общая энергия}}{\text {Объем}}\)

    11. Комбинация конденсаторов

    Комбинация серий
    \(\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots \ldots+\frac{1}{C_ {n}}\)
    Q 1 = Q 2 = …….. = Q
    V = V 1 + V 2 + V 3 + ……… + V n
    4
    4 Параллельная комбинация
    С = С 1 + С 2 + …….. C n
    V 1 = V 2 = …….. = V
    Q = Q 1 + Q 2 + Q 3 + …9….. + 5 n

    3

    12. Зарядка и разрядка конденсатора через сопротивление

    Зарядка
    q = q 0 (1 – e -t/RC )
    В = V 0 (1 – e -t/RC )

    I = I 1 — 7 905t
    0 905 /RC , I 0 = \(\frac{V_{0}}{R}\)
    V → P.д. через конденсатор
    q → заряд конденсатора
    I → ток через конденсатор

    Разрядка
    q = q 0 e -t/RC
    V = V 0 e -t/RC
    I = – I 0 e 907 907 907 9071 -t/RC

    Постоянная времени
    при зарядке
    τ = RC, время, при котором q = 0,63Q, V = 0,63В 0 и I = 0,37I 0
    при разрядке q = 0,37Q, V = 0.37В 0 и I = 0,37I 0